gesso: Hierarchical GxE Interactions in a Regularized Regression Model
The method focuses on a single environmental exposure and induces 
    a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms 
    in a regularized regression model. For details see Zemlianskaia et al. (2021) <doi:10.48550/arXiv.2103.13510>.
| Version: | 1.0.2 | 
| Depends: | dplyr, R (≥ 3.5) | 
| Imports: | Rcpp (≥ 1.0.3), Matrix, bigmemory, methods | 
| LinkingTo: | Rcpp, RcppEigen, RcppThread, BH, bigmemory | 
| Suggests: | glmnet, testthat, knitr, rmarkdown, ggplot2 | 
| Published: | 2021-11-30 | 
| DOI: | 10.32614/CRAN.package.gesso | 
| Author: | Natalia Zemlianskaia | 
| Maintainer: | Natalia Zemlianskaia  <natasha.zemlianskaia at gmail.com> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | gesso results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=gesso
to link to this page.