md5.c

Go to the documentation of this file.
00001 /*-----------------------------------------------------------------------------------*/ 
00002 /*
00003   Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.  All rights reserved.
00004 
00005   This software is provided 'as-is', without any express or implied
00006   warranty.  In no event will the authors be held liable for any damages
00007   arising from the use of this software.
00008 
00009   Permission is granted to anyone to use this software for any purpose,
00010   including commercial applications, and to alter it and redistribute it
00011   freely, subject to the following restrictions:
00012 
00013   1. The origin of this software must not be misrepresented; you must not
00014      claim that you wrote the original software. If you use this software
00015      in a product, an acknowledgment in the product documentation would be
00016      appreciated but is not required.
00017   2. Altered source versions must be plainly marked as such, and must not be
00018      misrepresented as being the original software.
00019   3. This notice may not be removed or altered from any source distribution.
00020 
00021   L. Peter Deutsch
00022   ghost@aladdin.com
00023 
00024   Independent implementation of MD5 (RFC 1321).
00025 
00026   This code implements the MD5 Algorithm defined in RFC 1321, whose
00027   text is available at
00028         http://www.ietf.org/rfc/rfc1321.txt
00029   The code is derived from the text of the RFC, including the test suite
00030   (section A.5) but excluding the rest of Appendix A.  It does not include
00031   any code or documentation that is identified in the RFC as being
00032   copyrighted.
00033 
00034   The original and principal author of md5.c is L. Peter Deutsch
00035   <ghost@aladdin.com>.  Other authors are noted in the change history
00036   that follows (in reverse chronological order):
00037 
00038   2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
00039         either statically or dynamically; added missing #include <string.h>
00040         in library.
00041   2002-03-11 lpd Corrected argument list for main(), and added int return
00042         type, in test program and T value program.
00043   2002-02-21 lpd Added missing #include <stdio.h> in test program.
00044   2000-07-03 lpd Patched to eliminate warnings about "constant is
00045         unsigned in ANSI C, signed in traditional"; made test program
00046         self-checking.
00047   1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
00048   1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
00049   1999-05-03 lpd Original version.
00050 
00051         Added in Scilab A.C April 2006
00052 */
00053 /*-----------------------------------------------------------------------------------*/ 
00054 #include "md5.h"
00055 #include <string.h>
00056 #include <stdio.h>
00057 
00058 #include "MALLOC.h"
00059 /*-----------------------------------------------------------------------------------*/ 
00060 #undef BYTE_ORDER       /* 1 = big-endian, -1 = little-endian, 0 = unknown */
00061 #ifdef ARCH_IS_BIG_ENDIAN
00062 #  define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
00063 #else
00064 #  define BYTE_ORDER 0
00065 #endif
00066 
00067 #define T_MASK ((md5_word_t)~0)
00068 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
00069 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
00070 #define T3    0x242070db
00071 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
00072 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
00073 #define T6    0x4787c62a
00074 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
00075 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
00076 #define T9    0x698098d8
00077 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
00078 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
00079 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
00080 #define T13    0x6b901122
00081 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
00082 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
00083 #define T16    0x49b40821
00084 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
00085 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
00086 #define T19    0x265e5a51
00087 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
00088 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
00089 #define T22    0x02441453
00090 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
00091 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
00092 #define T25    0x21e1cde6
00093 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
00094 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
00095 #define T28    0x455a14ed
00096 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
00097 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
00098 #define T31    0x676f02d9
00099 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
00100 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
00101 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
00102 #define T35    0x6d9d6122
00103 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
00104 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
00105 #define T38    0x4bdecfa9
00106 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
00107 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
00108 #define T41    0x289b7ec6
00109 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
00110 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
00111 #define T44    0x04881d05
00112 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
00113 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
00114 #define T47    0x1fa27cf8
00115 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
00116 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
00117 #define T50    0x432aff97
00118 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
00119 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
00120 #define T53    0x655b59c3
00121 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
00122 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
00123 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
00124 #define T57    0x6fa87e4f
00125 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
00126 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
00127 #define T60    0x4e0811a1
00128 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
00129 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
00130 #define T63    0x2ad7d2bb
00131 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
00132 /*-----------------------------------------------------------------------------------*/ 
00133 char *md5_str(char *p);
00134 char *md5_file(FILE *fp);
00135 /*-----------------------------------------------------------------------------------*/ 
00136 static void md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
00137 {
00138     md5_word_t
00139         a = pms->abcd[0], b = pms->abcd[1],
00140         c = pms->abcd[2], d = pms->abcd[3];
00141     md5_word_t t;
00142 #if BYTE_ORDER > 0
00143     /* Define storage only for big-endian CPUs. */
00144     md5_word_t X[16];
00145 #else
00146     /* Define storage for little-endian or both types of CPUs. */
00147     md5_word_t xbuf[16];
00148     const md5_word_t *X;
00149 #endif
00150     {
00151 #if BYTE_ORDER == 0
00152         /*
00153          * Determine dynamically whether this is a big-endian or
00154          * little-endian machine, since we can use a more efficient
00155          * algorithm on the latter.
00156          */
00157         static const int w = 1;
00158 
00159         if (*((const md5_byte_t *)&w)) /* dynamic little-endian */
00160 #endif
00161 #if BYTE_ORDER <= 0             /* little-endian */
00162         {
00163             /*
00164              * On little-endian machines, we can process properly aligned
00165              * data without copying it.
00166              */
00167             if (!((data - (const md5_byte_t *)0) & 3)) {
00168                 /* data are properly aligned */
00169                 X = (const md5_word_t *)data;
00170             } else {
00171                 /* not aligned */
00172                 memcpy(xbuf, data, 64);
00173                 X = xbuf;
00174             }
00175         }
00176 #endif
00177 #if BYTE_ORDER == 0
00178         else                    /* dynamic big-endian */
00179 #endif
00180 #if BYTE_ORDER >= 0             /* big-endian */
00181         {
00182             /*
00183              * On big-endian machines, we must arrange the bytes in the
00184              * right order.
00185              */
00186             const md5_byte_t *xp = data;
00187             int i;
00188 
00189 #  if BYTE_ORDER == 0
00190             X = xbuf;           /* (dynamic only) */
00191 #  else
00192 #    define xbuf X              /* (static only) */
00193 #  endif
00194             for (i = 0; i < 16; ++i, xp += 4)
00195                 xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
00196         }
00197 #endif
00198     }
00199 
00200 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
00201 
00202     /* Round 1. */
00203     /* Let [abcd k s i] denote the operation
00204        a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
00205 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
00206 #define SET(a, b, c, d, k, s, Ti)\
00207   t = a + F(b,c,d) + X[k] + Ti;\
00208   a = ROTATE_LEFT(t, s) + b
00209     /* Do the following 16 operations. */
00210     SET(a, b, c, d,  0,  7,  T1);
00211     SET(d, a, b, c,  1, 12,  T2);
00212     SET(c, d, a, b,  2, 17,  T3);
00213     SET(b, c, d, a,  3, 22,  T4);
00214     SET(a, b, c, d,  4,  7,  T5);
00215     SET(d, a, b, c,  5, 12,  T6);
00216     SET(c, d, a, b,  6, 17,  T7);
00217     SET(b, c, d, a,  7, 22,  T8);
00218     SET(a, b, c, d,  8,  7,  T9);
00219     SET(d, a, b, c,  9, 12, T10);
00220     SET(c, d, a, b, 10, 17, T11);
00221     SET(b, c, d, a, 11, 22, T12);
00222     SET(a, b, c, d, 12,  7, T13);
00223     SET(d, a, b, c, 13, 12, T14);
00224     SET(c, d, a, b, 14, 17, T15);
00225     SET(b, c, d, a, 15, 22, T16);
00226 #undef SET
00227 
00228      /* Round 2. */
00229      /* Let [abcd k s i] denote the operation
00230           a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
00231 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
00232 #define SET(a, b, c, d, k, s, Ti)\
00233   t = a + G(b,c,d) + X[k] + Ti;\
00234   a = ROTATE_LEFT(t, s) + b
00235      /* Do the following 16 operations. */
00236     SET(a, b, c, d,  1,  5, T17);
00237     SET(d, a, b, c,  6,  9, T18);
00238     SET(c, d, a, b, 11, 14, T19);
00239     SET(b, c, d, a,  0, 20, T20);
00240     SET(a, b, c, d,  5,  5, T21);
00241     SET(d, a, b, c, 10,  9, T22);
00242     SET(c, d, a, b, 15, 14, T23);
00243     SET(b, c, d, a,  4, 20, T24);
00244     SET(a, b, c, d,  9,  5, T25);
00245     SET(d, a, b, c, 14,  9, T26);
00246     SET(c, d, a, b,  3, 14, T27);
00247     SET(b, c, d, a,  8, 20, T28);
00248     SET(a, b, c, d, 13,  5, T29);
00249     SET(d, a, b, c,  2,  9, T30);
00250     SET(c, d, a, b,  7, 14, T31);
00251     SET(b, c, d, a, 12, 20, T32);
00252 #undef SET
00253 
00254      /* Round 3. */
00255      /* Let [abcd k s t] denote the operation
00256           a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
00257 #define H(x, y, z) ((x) ^ (y) ^ (z))
00258 #define SET(a, b, c, d, k, s, Ti)\
00259   t = a + H(b,c,d) + X[k] + Ti;\
00260   a = ROTATE_LEFT(t, s) + b
00261      /* Do the following 16 operations. */
00262     SET(a, b, c, d,  5,  4, T33);
00263     SET(d, a, b, c,  8, 11, T34);
00264     SET(c, d, a, b, 11, 16, T35);
00265     SET(b, c, d, a, 14, 23, T36);
00266     SET(a, b, c, d,  1,  4, T37);
00267     SET(d, a, b, c,  4, 11, T38);
00268     SET(c, d, a, b,  7, 16, T39);
00269     SET(b, c, d, a, 10, 23, T40);
00270     SET(a, b, c, d, 13,  4, T41);
00271     SET(d, a, b, c,  0, 11, T42);
00272     SET(c, d, a, b,  3, 16, T43);
00273     SET(b, c, d, a,  6, 23, T44);
00274     SET(a, b, c, d,  9,  4, T45);
00275     SET(d, a, b, c, 12, 11, T46);
00276     SET(c, d, a, b, 15, 16, T47);
00277     SET(b, c, d, a,  2, 23, T48);
00278 #undef SET
00279 
00280      /* Round 4. */
00281      /* Let [abcd k s t] denote the operation
00282           a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
00283 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
00284 #define SET(a, b, c, d, k, s, Ti)\
00285   t = a + I(b,c,d) + X[k] + Ti;\
00286   a = ROTATE_LEFT(t, s) + b
00287      /* Do the following 16 operations. */
00288     SET(a, b, c, d,  0,  6, T49);
00289     SET(d, a, b, c,  7, 10, T50);
00290     SET(c, d, a, b, 14, 15, T51);
00291     SET(b, c, d, a,  5, 21, T52);
00292     SET(a, b, c, d, 12,  6, T53);
00293     SET(d, a, b, c,  3, 10, T54);
00294     SET(c, d, a, b, 10, 15, T55);
00295     SET(b, c, d, a,  1, 21, T56);
00296     SET(a, b, c, d,  8,  6, T57);
00297     SET(d, a, b, c, 15, 10, T58);
00298     SET(c, d, a, b,  6, 15, T59);
00299     SET(b, c, d, a, 13, 21, T60);
00300     SET(a, b, c, d,  4,  6, T61);
00301     SET(d, a, b, c, 11, 10, T62);
00302     SET(c, d, a, b,  2, 15, T63);
00303     SET(b, c, d, a,  9, 21, T64);
00304 #undef SET
00305 
00306      /* Then perform the following additions. (That is increment each
00307         of the four registers by the value it had before this block
00308         was started.) */
00309     pms->abcd[0] += a;
00310     pms->abcd[1] += b;
00311     pms->abcd[2] += c;
00312     pms->abcd[3] += d;
00313 }
00314 /*-----------------------------------------------------------------------------------*/ 
00315 void md5_init(md5_state_t *pms)
00316 {
00317     pms->count[0] = pms->count[1] = 0;
00318     pms->abcd[0] = 0x67452301;
00319     pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
00320     pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
00321     pms->abcd[3] = 0x10325476;
00322 }
00323 /*-----------------------------------------------------------------------------------*/ 
00324 void md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
00325 {
00326     const md5_byte_t *p = data;
00327     int left = nbytes;
00328     int offset = (pms->count[0] >> 3) & 63;
00329     md5_word_t nbits = (md5_word_t)(nbytes << 3);
00330 
00331     if (nbytes <= 0)
00332         return;
00333 
00334     /* Update the message length. */
00335     pms->count[1] += nbytes >> 29;
00336     pms->count[0] += nbits;
00337     if (pms->count[0] < nbits)
00338         pms->count[1]++;
00339 
00340     /* Process an initial partial block. */
00341     if (offset) {
00342         int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
00343 
00344         memcpy(pms->buf + offset, p, copy);
00345         if (offset + copy < 64)
00346             return;
00347         p += copy;
00348         left -= copy;
00349         md5_process(pms, pms->buf);
00350     }
00351 
00352     /* Process full blocks. */
00353     for (; left >= 64; p += 64, left -= 64)
00354         md5_process(pms, p);
00355 
00356     /* Process a final partial block. */
00357     if (left)
00358         memcpy(pms->buf, p, left);
00359 }
00360 /*-----------------------------------------------------------------------------------*/ 
00361 void md5_finish(md5_state_t *pms, md5_byte_t digest[16])
00362 {
00363     static const md5_byte_t pad[64] = {
00364         0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
00365         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
00366         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
00367         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
00368     };
00369     md5_byte_t data[8];
00370     int i;
00371 
00372     /* Save the length before padding. */
00373     for (i = 0; i < 8; ++i)
00374         data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
00375     /* Pad to 56 bytes mod 64. */
00376     md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
00377     /* Append the length. */
00378     md5_append(pms, data, 8);
00379     for (i = 0; i < 16; ++i)
00380         digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
00381 }
00382 /*-----------------------------------------------------------------------------------*/ 
00383 /* Hash d'une chaine de caract�res */
00384 /*-----------------------------------------------------------------------------------*/ 
00385 char *md5_str(char *p)
00386 {
00387         md5_state_t state;
00388         md5_byte_t digest[16];
00389         char *hex_output = (char *)MALLOC(33);
00390         int di;
00391 
00392         //hashage
00393         md5_init(&state);
00394         md5_append(&state, (const md5_byte_t *)p, (int)strlen(p));
00395         md5_finish(&state, digest);
00396 
00397         //output
00398         for (di = 0; di < 16; di++)
00399         {
00400                 sprintf(hex_output + di * 2, "%02x", digest[di]);
00401         }    
00402         return hex_output;
00403 }
00404 /*-----------------------------------------------------------------------------------*/ 
00405 /* Hash d'un fichier */
00406 /*-----------------------------------------------------------------------------------*/ 
00407 char *md5_file(FILE *fp)
00408 {
00409         md5_state_t state;
00410         md5_byte_t digest[16];
00411         char data[64];
00412         int di;
00413         size_t ln;
00414         char *hex_output = (char *)MALLOC(33);
00415 
00416         //hashage
00417         md5_init(&state);
00418         while(!feof(fp))
00419         {
00420                 ln = fread(data, 1, sizeof(data), fp);
00421                 md5_append(&state, (const md5_byte_t *)data, (int)ln);
00422         }
00423         md5_finish(&state, digest);
00424 
00425         //output
00426         for (di = 0; di < 16; di++)
00427         {
00428                 sprintf(hex_output + di * 2, "%02x", digest[di]);
00429         }    
00430         return hex_output;
00431 }
00432 /*-----------------------------------------------------------------------------------*/ 
00433 

Generated on Sun Mar 4 15:03:46 2007 for Scilab [trunk] by  doxygen 1.5.1