The Python/C API
Release 2.6.1

Guido van Rossum

Fred L. Drake, Jr., editor

December 27, 2008

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Include Files. o e e 3
1.2 Objects, Typesand Reference Counts i i i i ittt 4
1.3 EXCEPLONS. o e e e e e e e e 7
1.4 Embedding Python 9
1.5 Debugging Builds. e 9
The Very High Level Layer 11
Reference Counting 15
Exception Handling 17
4.1 Standard EXceptions L e e e e 21
4.2 Deprecation of String EXceptions L e e e 22
Utilities 23
5.1 Operating System Utilities e e e 23
5.2 System FunClions. e e e 23
5.3 ProcessControl. e 24
5.4 Importing Modules 25
5.5 Datamarshalling suppart. e 27
5.6 Parsingarguments and buildingvalues. 28
5.7 String conversionand formatting e e 34
5.8 Reflection 35
Abstract Objects Layer 37
6.1 Object Protocol e e 37
6.2 Number Protocol e 41
6.3 Sequence Protocal L 44
6.4 Mapping Protocol. e e 46
6.5 Iterator Protocol. e a7
6.6 Buffer Protocol. e 48
Concrete Objects Layer 49
7.1 Fundamental Objects. e 49
7.2 Numeric ObJeCtS. e e e e e e e 50
7.3 Sequence ObjJeCtS. e e 55
7.4 Mapping Objects e e 72
75 OtherODbJects o e e e e e 74

8 Initialization, Finalization, and Threads 87
8.1 Thread State and the Global InterpreterLack, 90
8.2 Profilingand Tracing i e e e 94
8.3 Advanced Debugger SUPpOrt e 96

9 Memory Management 97
9.1 OVEIVIEW. . . o ot e e e e e e e e e e 97
9.2 MemoryInterface e e e e 98
9.3 ExXamples. e e e 98

10 Object Implementation Support 101
10.1 Allocating ObjectsontheHeap i 101
10.2 Common ObJeCt STrUCtUreS o e e e e e e e e e e e 102
10.3 Type Objects. e e e e e e e 104
10.4 Number Object Structures e e e 118
10.5 Mapping Object STrUCIUIeS. i e e e e e e 120
10.6 Sequence Object Structures. o e e e 120
10.7 Buffer Object Structures e e e e 121
10.8 Supporting Cyclic Garbage Collection i e 122

A Glossary 125

B About these documents 133
B.1 Contributors to the Python Documentation. 133

C History and License 135
C.1 Historyofthesoftware e 135
C.2 Terms and conditions for accessing or otherwise using Python 136
C.3 Licenses and Acknowledgements for Incorporated Software. 139

D Copyright 147

Index 149

The Python/C API, Release 2.6.1

Release?2.6
Date December 06, 2008

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. Itis a companion textending and Embedding the Python InterprdterExtending and Embedding Python
which describes the general principles of extension writing but does not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 2.6.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headerssstdio.h> , <string.h> |, <errno.h>
<limits.h> , and<stdlib.h> (if available).

systems, youustincludePython.h before any standard headers are included.

Warning: Since Python may define some pre-processor definitions which affect the standard headers Tn some

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixesPy or _Py. Names beginning withPy are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that beginRyitor _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/ , where prefix
and exec_prefix are defined by the corresponding parameters to Pythoaoidfigure script and version is

The Python/C API, Release 2.6.1

sys.version[:3] . On Windows, the headers are installecpirefix/include , Whereprefix is the instal-
lation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest. plaxe
the parent directories on the search path and thertinstude <pythonX.Y/Python.h> ; this will break on
multi-platform builds since the platform independent headers umdix include the platform specific headers from
exec_prefix

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Biftypgct* . This type is

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typgObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicalyTstpa©bject

objects.

All Python objects (even Python integers) havg@eand areference countAn object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as expldihedtandard type
hierarchy(in The Python Language Referejcd-or each of the well-known types there is a macro to check whether
an object is of that type; for instancByList_Check(a) is true if (and only if) the object pointed to kyis a
Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object,
or a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes
zero, the object is deallocated. If it contains references to other objects, their reference count is decremented. Those
other objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on.
(There’s an obvious problem with objects that reference each other here; for now, the solution is “don’'t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the Pya¢tkiCREF to increment

an object’s reference count by one, @hyd DECRERo decrement it by one. THey DECRERmMacro is considerably

more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The
type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object if
this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assumasigeof(Py_ssize_t) >= sizeof(void*)). Thus,

the reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

4 Chapter 1. Introduction

The Python/C API, Release 2.6.1

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user fgnD& CREF: so

almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begirRy@iiject
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility tofallDECREFwhen they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in teowsefship of references
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py _DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling®y DECREFor Py XDECREFwhen it's no longer needed—or passing on this
responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said

to receive anewreference. When no ownership is transferred, the caller is shiofrtowthe reference. Nothing needs

to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the dterison

a reference to the object, or it does nStealing a referencmeans that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer. Few functions steal
references; the two notable exceptionsRyeist Setltem andPyTuple Setltem , which steal a reference to

the item (but not to the tuple or list into which the item is put!). These functions were designed to steal a reference
because of a common idiom for populating a tuple or list with newly created objects; for example, the code to create
the tuple(1, 2, "three") could look like this (forgetting about error handling for the moment; a better way to
code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyiInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt_FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString("three "));

Here,Pyint_FromLong returns a new reference which is immediately stolePpyuple Setltem . When you
want to keep using an object although the reference to it will be stolerPus@&CREF to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple Setltem is the only way to set tuple items; PySequence Setltem and
PyObject_Setltem refuse to do this since tuples are an immutable data type. You should only use
PyTuple_Setltem for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiyg.ist New andPyList Setltem

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue , that can create most common objects from C values, directedfidayreat string For
example, the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py Buildvalue("(is) ", 1, 2, "three ");
list = Py Buildvalue("[is] ", 1, 2, "three "),

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.6.1

It is much more common to useyObject Setltem and friends with items whose references you are only bor-
rowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject * jtem)
{ .
int i, n;
n = PyObject_Length(target);
if (n <0)
return -1;
for (i =0;i <n; i ++) {
PyObject *index = PyInt_FromLong(i);
if (!index)
return -1,
if (PyObject_Setltem(target, index, item) < 0)
return -1;
Py_DECREF(index);
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_Getltem andPySequence_Getltem , always return a new reference (the caller becomes the owner

of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumagdthe type of the object passed as an argument to the funcaegn’t enter into itlThus, if you

extract an item from a list usingyList_Getltem , you don’t own the reference — but if you obtain the same item

from the same list usingySequence_Getltem (which happens to take exactly the same arguments), you do own

a reference to the returned object. Here is an example of how you could write a function that computes the sum of the
items in a list of integers; once usiiyList_Getltem , and once usingySequence_Getltem

long
sum_list (PyObject *list)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i =0;1 <n;i ++){
item = PyList_Getltem(list, i); [* Can't fail */
if (! PyInt_Check(item)) continue ; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

6 Chapter 1. Introduction

The Python/C API, Release 2.6.1

long
sum_sequence (PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n <0)
return - 1; /* Has no length */
for (i =0;i <n;i ++){
item = PySequence_Getltem(sequence, i);
if (tem == NULL
return - 1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PylInt_AsLong(item);
Py DECREF(item); /* Discard reference ownership */
}
return total,
}
1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrduch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback. For C programmers, however, error checking
always has to be explicit. All functions in the Python/C API can raise exceptions, unless an explicit claim is made
otherwise in a function’s documentation. In general, when a function encounters an error, it sets an exception, discards
any object references that it owns, and returns an error indicator — uguidlly. or -1 . A few functions return

a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errordAwifhr_Occurred . Exception state is
maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application). A thread can
be in one of two states: an exception has occurred, or not. The furiggiorm_Occurred can be used to check for

this: it returns a borrowed reference to the exception type object when an exception has occuiédl, laatherwise.

There are a number of functions to set the exception staterr SetString is the most common (though not the

most general) function to set the exception state,Rytdrr Clear clears the exception state. The full exception

state consists of three objects (all of which canNigLL): the exception type, the corresponding exception value,

and the traceback. These have the same meanings as the Pythonolgents type , sys.exc_value , and
sys.exc_traceback ; however, they are not the same: the Python objects represent the last exception being
handled by a Pythotry ... except statement, while the C level exception state only exists while an exception is
being passed on between C functions until it reaches the Python bytecode interpreter's main loop, which takes care of
transferring it tosys.exc_type and friends. Note that starting with Python 1.5, the preferred, thread-safe way to
access the exception state from Python code is to call the fureygexc_info() , Which returns the per-thread
exception state for Python code. Also, the semantics of both ways to access the exception state have changed so that
a function which catches an exception will save and restore its thread’s exception state so as to preserve the exception

1.3. Exceptions 7

The Python/C API, Release 2.6.1

state of its caller. This prevents common bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects that are
referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error. A simple example of detecting
exceptions and passing them on is shown inghm_sequence example above. It so happens that that example
doesn’t need to clean up any owned references when it detects an error. The following example function shows some
error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key)
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item (PyObject *dict, PyObject *key)
{
[* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL *const one = NULL *incremented_item = NULL
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_Getltem(dict, key);
if (tem == NULD {
/* Handle KeyError only: */
if (! PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
[* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (tem == NULD
goto error;
}
const_ one = PyInt_FromLong(1L);
if (const_one == NULD
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;
if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;
rv. = 0; /* Success */
[* Continue with cleanup code */
error:

8 Chapter 1. Introduction

The Python/C API, Release 2.6.1

[* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py _XDECREF(item);

Py _XDECREF(const_one);

Py XDECREF(incremented_item);

return rv; [* -1 for error, O for success */

}

This example represents an endorsed use of godo statement in C! It illustrates the use of
PyErr_ExceptionMatches andPyErr_Clear to handle specific exceptions, and the usé’pf XDECREF

to dispose of owned references that mayNddl L (note the’X' in the namePy DECRERwould crash when con-
fronted with aNULL reference). It is important that the variables used to hold owned references are initialized to
NULL for this to work; likewise, the proposed return value is initializedXo(failure) and only set to success after

the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized. The basic initialization funcklgnlistialize

This initializes the table of loaded modules, and creates the fundamental modhiekin_ , main__ ,sys,
andexceptions . It also initializes the module search pasy¢.path). Py Initialize does not set the

“script argument list” §ys.argv). If this variable is needed by Python code that will be executed later, it must be

set explicitly with a call tdPySys_SetArgv(argc, argv) subsequent to the call oy _Initialize

On most systems (in particular, on Unix and Windows, although the details are slightly différgeni)jtialize

calculates the module search path based upon its best guess for the location of the standard Python interpreter ex-
ecutable, assuming that the Python library is found in a fixed location relative to the Python interpreter executable.
In particular, it looks for a directory namédith/pythonX.Y relative to the parent directory where the executable
namedpython is found on the shell command search path (the environment vaRabld).

For instance, if the Python executable is foundusr/local/bin/python , it will assume that the libraries
are in/usr/local/lib/pythonX.Y . (In fact, this particular path is also the “fallback” location, used when
no executable file namedython is found alongPATH.) The user can override this behavior by setting the
environment variablYTHONHOME , or insert additional directories in front of the standard path by setting
PYTHONPATH . The embedding application can steer the search by caftyingetProgramName(file) be-

fore calling Py _Initialize . Note thatPYTHONHOME still overrides this andPYTHONPATH s still in-
serted in front of the standard path. An application that requires total control has to provide its own implementa-
tion of Py_GetPath , Py _GetPrefix , Py _GetExecPrefix , andPy_GetProgramFullPath (all defined

in Modules/getpath.c). Sometimes, it is desirable to “uninitialize” Python. For instance, the application may
want to start over (make another callRg_Initialize) or the application is simply done with its use of Python
and wants to free memory allocated by Python. This can be accomplished by éallifgnalize . The func-

tion Py_lsInitialized returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice tigt Finalize doesnot free all memory allocated by the Python
interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

1.4. Embedding Python 9

The Python/C API, Release 2.6.1

A full list of the various types of debugging builds is in the flésc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of
this section.

Compiling the interpreter with they DEBUGMacro defined produces what is generally meant by “a debug build”
of Python.Py_DEBUGSs enabled in the Unix build by addingwith-pydebug to theconfigure command. It

is also implied by the presence of the not-Python-specBEBUGNacro. WherPy DEBUGS enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:

» Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
« Downcasts from wide types to narrow types are checked for loss of information.

« A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
atest_c_api() method.

« Sanity checks of the input arguments are added to frame creation.

» The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
» Low-level tracing and extra exception checking are added to the runtime virtual machine.

» Extra checks are added to the memory arena implementation.

« Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

DefiningPy_TRACE_REFSnables reference tracing. When defined, a circular doubly linked list of active objects

is maintained by adding two extra fields to evétyObject . Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG

Please refer tMisc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER
TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py eval input , Py file_input , andPy_single input . These are described following the functions
which accept them as parameters.

Note also that several of these functions tBkEE* parameters. On particular issue which needs to be handled
carefully is that the=ILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (intargc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argcandargv parameters should be prepared exactly as those which are passed to a C pnogianfishction.
It is important to note that the argument list may be modified (but the contents of the strings pointed to by the
argument list are not). The return value will be the integer passed teythexit() function, 1 if the
interpreter exits due to an exception,if the parameter list does not represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, const char *filenamg
This is a simplified interface t&yRun_AnyFileExFlags below, leavingcloseitset to0 andflagsset to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
This is a simplified interface tByRun_AnyFileExFlags below, leaving theloseitargument set to.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int clos@it
This is a simplified interface t8yRun_AnyFileExFlags below, leaving thélagsargument set ttNULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value oPyRun_InteractiveLoop , otherwise return the result 6fyRun_SimpleFile . If
filenameis NULL, this function use8???" as the filename.

int PyRun_SimpleString (const char *command
This is a simplified interface tByRun_SimpleStringFlags below, leaving thé?yCompilerFlags*argu-
ment set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags
Executes the Python source code froommandn the__main__ module according to thiéagsargument. If
__main__ does not already exist, it is created. Retudran success oil if an exception was raised. If there
was an error, there is no way to get the exception information. For the mearfiag®tee below.

int PyRun_SimpleFile (FILE *fp, const char *filenamp

11

The Python/C API, Release 2.6.1

This is a simplified interface t8yRun_SimpleFileExFlags below, leavingcloseitset to0 andflagsset
to NULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
This is a simplified interface tByRun_SimpleFileExFlags below, leavingcloseitset to0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closéit
This is a simplified interface tByRun_SimpleFileExFlags below, leavinglagsset toNULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
Similar to PyRun_SimpleStringFlags , but the Python source code is read frépinstead of an in-
memory string. filenameshould be the name of the file. Hloseitis true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filenamp
This is a simplified interface tByRun_InteractiveOneFlags below, leavinglagsset toNULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
Read and execute a single statement from a file associated with an interactive device accordirftags the
argument. Ifflenameis NULL, "???" is used instead. The user will be prompted usiyg.ps1 and
sys.ps2 . ReturnsO when the input was executed successfully, if there was an exception, or an error
code from theerrcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is notincluded byPython.h , so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filenamp
This is a simplified interface tByRun_InteractiveLoopFlags below, leavinglagsset toNULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
Read and execute statements from a file associated with an interactive device until EOF is reditbedmi
isNULL, "???" is used instead. The user will be prompted usipgpsl andsys.ps2 . Returnd at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start
This is a simplified interface t®yParser_SimpleParseStringFlagsFilename below, leavindfile-
nameset toNULL andflagsset to0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags
This is a simplified interface t®yParser_SimpleParseStringFlagsFilename below, leavindfile-
nameset toNULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-

name, int start, int flags
Parse Python source code fratn using the start tokestart according to thdlagsargument. The result can

be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int stayt
This is a simplified interface tByParser_SimpleParseFileFlags below, leavinglagsset to0

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flayis
Similar toPyParser_SimpleParseStringFlagsFilename , but the Python source code is read from
fpinstead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *lochls
Return value: New reference.
This is a simplified interface t8yRun_StringFlags below, leavinglagsset toNULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-

erFlags *flag9
Return value: New reference.

Execute Python source code frasir in the context specified by the dictionariglobals andlocals with the
compiler flags specified bffags The parametestart specifies the start token that should be used to parse the
source code.

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.6.1

Returns the result of executing the code as a Python objelsitJbt. if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface tByRun_FileExFlags below, leavingcloseitset to0 andflagsset toNULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObiject *locals, int

closeid
Return value: New reference.

This is a simplified interface tByRun_FileExFlags below, leavinglagsset toNULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags
Return value: New reference.
This is a simplified interface tByRun_FileExFlags below, leavingcloseitset to0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-
cals, int closeit, PyCompilerFlags *flajjs
Return value: New reference.
Similar toPyRun_StringFlags , but the Python source code is read fripinstead of an in-memory string.
filenameshould be the name of the file. ¢foseitis true, the file is closed befofeyRun_FileExFlags
returns.

PyObject* Py _CompileString (const char *str, const char *filename, int start
Return value: New reference.
This is a simplified interface t8y_CompileStringFlags below, leavinglagsset toNULL.

PyObject* Py _CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags

Return value: New reference. 9
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shotd beal input
Py file_input , or Py _single_input . The filename specified Hilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retuMBLL if the code
cannot be parsed or compiled.

PyObject* PyEval EvalCode (PyCodeObject*co, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface t®@yEval EvalCodeEx , with just the code object, and the dictionaries of
global and local variables. The other arguments are 9¢ttol.

PyObject* PyEval EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,

PyObiject *closurg
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists

of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of
cells.

PyObject* PyEval_EvalFrame (PyFrameObiject *j
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEXx, for backward compatibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object
associated with the execution frarhés executed, interpreting bytecode and executing calls as needed. The
additionalthrowflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for ththrow() methods of generator objects.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cj
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input

13

The Python/C API, Release 2.6.1

int

int

The start symbol from the Python grammar for isolated expressions; for us@witbompileString

Py _file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy _CompileString . This is the symbol to use when compiling arbitrarily long Python source code.

Py_single_input
The start symbol from the Python grammar for a single statement; for us@witGompileString . Thisis
the symbol used for the interactive interpreter loop.

PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as

int flags , and in cases where code is being executed, it is passegGampilerFlags *flags . In
this casefrom _ future__ import can modifyflags

WhenevePyCompilerFlags *flags isNULL, cf_flags istreated as equal @, and any modification
due tofrom __ future__ import is discarded.

struct PyCompilerFlags {

int cf_flags;
}
int CO_FUTURE_DIVISION
This bit can be set iflagsto cause division operatdr to be interpreted as “true division” according R&P
238
14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER
THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

void

Py_INCREF(PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren't sure that it isn'NULL,
usePy XINCREF.

Py_XINCREHK PyObiject *q
Increment the reference count for objectThe object may b&IULL, in which case the macro has no effect.

Py_DECREFR PyObject *q
Decrement the reference count for object he object must not bULL; if you aren’t sure that it isn'NULL,
usePy XDECREFIf the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when & class
instance witha del () method is deallocated). While exceptions in such code are not propagatdd, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state béfgréd)ECREHSs invoked. For example, code tp
delete an object from a list should copy a reference to the deleted object in a temporary variable, upflate the
list data structure, and then caély DECREHor the temporary variable.

Py_XDECREF PyObiject *q
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asfyr DECREFR and the same warning applies.

Py_CLEAR PyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asfgr DECREF except that the argument is also seNldLL. The warning
for Py _DECREFdoes not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argumenMNbULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection. New in version 2.4.

The following functions are for runtime dynamic embedding of PythoRy_ IncRef(PyObject *o) ,
Py_DecRef(PyObject *0) . They are simply exported function versionsiRof XINCREF andPy XDECREF
respectively.

The

following functions or macros are only for use within the interpreter corePy Dealloc

_Py ForgetReference , Py NewReference , as well as the global variabld®y RefTotal

15

The Python/C API, Release 2.6.1

16 Chapter 3. Reference Counting

CHAPTER
FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like thectmiax variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidllly if they are supposed to

return a pointer, orl if they return an integer (exception: tiRyArg_* functions returnl for success an@ for

failure).

When a function must fail because some function it called failed, it generally doesn't set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); inshoatdinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C
API may not behave as intended and may fail in mysterious ways. The error indicator consists of three Python
objects corresponding to the Python varialdgs.exc_type , sys.exc_value andsys.exc_traceback

API functions exist to interact with the error indicator in various ways. There is a separate error indicator for each
thread.

void PyErr_Print ()
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr_Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the excepfige(the first argument to the last call to one
of thePyErr_Set* functions or toPyErr_Restore). If not set, returlNULL. You do not own a reference
to the return value, so you do not needtp DECREHFt.

Note: Do not compare the return value to a specific exception;Rygar ExceptionMatches instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exg
Equivalent toPyErr_GivenExceptionMatches(PyErr_Occurred(), exc) . This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclasseKcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returne@ydyrr_Fetch below can be “unnormalized”, meaning
that*exc is a class object bivval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is

17

The Python/C API, Release 2.6.1

void

void

void

void

void

implemented to improve performance.

PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables ttNULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may REILL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

PyErr_Restore (PyObiject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
areNULL, the error indicator is cleared. Do not passldLL type and norNULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don't understand this, don’t
use this function. | warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily;
usePyErr_Fetch to save the current exception state.

PyErr_SetString (PyObiject *type, const char *messgge
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc_RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

PyErr_SetObject (PyObject *type, PyObject *valye

This function is similar tdPyErr_SetString but lets you specify an arbitrary Python object for the “value”
of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format)...

Return value: Always NULL.

This function sets the error indicator and retuNidLL. exceptiorshould be a Python exception (class, not an
instance).formatshould be a string, containing format codes, similaptiatf . Thewidth.precision

before a format code is parsed, but the width part is ignored.

18

Chapter 4. Exception Handling

The Python/C API, Release 2.6.1

void

int

Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent tgrintf("%u")
signed
int
%Id long Exactly equivalent t@rintf("%Ild")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py_ssize Bxactly equivalent terintf("%zd")
%zu size t | Exactly equivalent t@rintf("%zu")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemiriotf("%p") except that
it is guaranteed to start with the litef@ regardless of what the platformgsintf
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

PyErr_SetNone (PyObject *type
This is a shorthand fdPyErr_SetObject(type, Py_None)
PyErr_BadArgument ()

This is a shorthand faPyErr_SetString(PyExc_TypeError, message) , Wheremessagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()

Return value: Always NULL.
This is a shorthand fdPyErr_SetNone(PyExc_MemoryError) ; it returnsNULL so an object allocation
function can writeeturn PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *typé

Return value: Always NULL.

This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the intezyano value and whose second item

is the corresponding error message (gotten fetrarror), and then call®yErr_SetObject(type,

object) . On Unix, when theerrno value iSEINTR, indicating an interrupted system call, this calls
PyErr_CheckSignals , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wetern PyErr_SetFromErrno(type);

when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObiject *type, const char *filenape

Return value: Always NULL.

Similar toPyErr_SetFromErrno , with the additional behavior that filenameis notNULL, it is passed to
the constructor ofypeas a third parameter. In the case of exceptions sut@Bsor andOSError , thisis
used to define thélename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr (intierr)

Return value: Always NULL.

This is a convenience function to raigéindowsError . If called withierr of O, the error code returned by a
calltoGetLastError is used instead. It calls the Win32 functiBormatMessage to retrieve the Windows
description of error code given bgrr or GetLastError , then it constructs a tuple object whose first item

19

The Python/C API, Release 2.6.1

is theierr value and whose second item is the corresponding error message (gottefoftoatMessage),
and then callfyErr_SetObject(PyExc_WindowsError, object) . This function always returns
NULL. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int iery

Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr , with an additional parameter specifying the exception type to be
raised. Availability: Windows. New in version 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilename (intierr, const char *filenampg

void

Return value: Always NULL.
Similar to PyErr_SetFromWindowsErr , with the additional behavior that filenameis not NULL, it is
passed to the constructorWfindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObiject *type, int ierr, char *filenanje
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErrWithFilename , with an additional parameter specifying the ex-
ception type to be raised. Availability: Windows. New in version 2.3.
PyErr_BadInternalCall 0
This is a shorthand fdPyErr_SetString(PyExc_TypeError, message) , wheremessagéndicates

int

int

int

that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

PyErr_WarnEx (PyObject *category, char *message, int stacklgvel

Issue a warning message. Toategoryargument is a warning category (see belowNasLL; the message
argument is a message strirsgacklevels a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack framstagklevebf 1 is the function calling
PyErr_WarnEx , 2 is the function above that, and so forth.

This function normally prints a warning messageste.stdery however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valueisf no exception is raised, of

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for exampley DECREFowned references and return an error value).

Warning categories must be subclasseS\arning ; the default warning category RuntimeWarning
The standard Python warning categories are available as global variables whose nanfyd&Exare
followed by the Python exception name. These have the fyp@bject* ; they are all class ob-
jects. Their names ardPyExc_Warning , PyExc_UserWarning , PyExc_UnicodeWarning
PyExc_DeprecationWarning ., PyExc_SyntaxWarning , PyExc_RuntimeWarning , and
PyExc_FutureWarning . PyExc_Warning is a subclass oPyExc Exception ; the other warn-
ing categories are subclassefyExc_Warning .

For information about warning control, see the documentation fowtdraings module and theW option in
the command line documentation. There is no C API for warning control.

PyErr_Warn (PyObiject *category, char *message

Issue a warning message. Toategoryargument is a warning category (see belowNasLL; the message
argument is a message string. The warning will appear to be issued from the function EgtingWarn ,
equivalent to callindg®’yErr_WarnEx with a stacklevebf 1.

Deprecated; useyErr_WarnEx instead.

PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObject *regist)y

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper

around the Python functiowarnings.warn_explicit() , see there for more information. Tineodule

andregistryarguments may be set MULL to get the default effect described there.

20

Chapter 4. Exception Handling

The Python/C API, Release 2.6.1

int

int

void

int

PyErr_WarnPy3k (char *message, int stackleyel
Issue aDeprecationWarning with the givenmessagandstackleveif the Py_Py3kWarningFlag flag
is enabled. New in version 2.6.

PyErr_CheckSignals ()

This function interacts with Python'’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSBBINT is to raise theKeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function returngherwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr_Setinterrupt 0
This function simulates the effect of SIGINT signal arriving — the next tim@yErr_CheckSignals is
called,Keyboardinterrupt will be raised. It may be called without holding the interpreter lock.

PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which@ byte will be written whenever a signal is received.
It returns the previous such file descriptor. The valliedisables the feature; this is the initial state. This is
equivalent tosignal.set_wakeup_fd() in Python, but without any error checkinfd should be a valid
file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObiject *dict

void

Return value: New reference.

This utility function creates and returns a new exception object. nEmeargument must be the name of the
new exception, a C string of the foormodule.class . Thebaseanddict arguments are normalMULL. This
creates a class object derived frémception (accessible in C aByExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) afidhgeargument,
and the class name is set to the last part (after the last dot)badeargument can be used to specify alternate
base classes; it can either be only one class or a tuple of classeslicThegument can be used to specify a
dictionary of class variables and methods.

PyErr_WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedys.stderr ~ when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del_ () method.

The function is called with a single argumentij that identifies the context in which the unraisable exception
occurred. The repr abj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose naniasgEare followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the
variables:

4.1. Standard Exceptions 21

The Python/C API, Release 2.6.1

C Name Python Name Notes
PyExc_BaseException BaseException @), @
PyExc_Exception Exception Q)
PyExc_StandardError StandardError Q)
PyExc_ArithmeticError ArithmeticError Q)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError

PyExc_EOFError EOFError

PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError

EnvironmentError
FloatingPointError
IOError

PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_Keyboardinterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError

PyExc_NotlmplementedError
PyExc_OSError

PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_WindowsError
PyExc_ZeroDivisionError

NotlmplementedError
OSError

WindowsError
ZeroDivisionError

(1)

3)

Notes:

1. This is a base class for other standard exceptions.

2. This is the same aseakref.ReferenceError

3. Only defined on Windows; protect code that uses this by testing that the preprocessoMBatNDOWS

defined.

4. New in version 2.5.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived BaseException

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

22 Chapter 4. Exception Handling

CHAPTER
FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Ultilities

int Py_FdisInteractive (FILE *fp, const char *filenamp
Return true (nonzero) if the standard I/O fipawith namefilenames deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag?y_InteractiveFlag is true, this function

also returns true if théilenamepointer iSNULL or if the name is equal to one of the stringstdin>’ or
2?77

long PyOS_GetLastModificationTime (char *filenamé
Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functithtme .

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECIKs defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHEQKill be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (inti)
Return the current signal handler for signalThis is a thin wrapper around eithsigaction or signal
Do not call those functions directhPyOS_sighandler_t is a typedef alias fovoid (*)(int)

PyOS_sighandler_t PyOS_setsig (inti, PyOS_sighandler_t)h
Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either

sigaction orsignal . Do not call those functions directh?yOS_sighandler_t is a typedef alias for
void (*)(int)

5.2 System Functions

These are utility functions that make functionality from #ys module accessible to C code. They all work with the
current interpreter thread&/s module’s dict, which is contained in the internal thread state structure.

23

The Python/C API, Release 2.6.1

PyObject * PySys GetObject (char *namg

Return value: Borrowed reference.
Return the objeahamefrom thesys module orNULL if it does not exist, without setting an exception.

FILE * PySys GetFile (char*name, FILE *dej

Return theFILE* associated with the objenaimein thesys module, ordef if nameis not in the module or is
not associated with BILE* .

int PySys SetObject (char *name, PyObject *
Setnamein thesys module tov unlessvis NULL, in which casenameis deleted from the sys module. Returns
0 on success,1 on error.

void PySys_ ResetWarnOptions (void)
Resetsys.warnoptions to an empty list.

void PySys_AddWarnOption (char *s)
Appendsto sys.warnoptions

void PySys_ SetPath (char *path
Setsys.path to alist object of paths found mathwhich should be a list of paths separated with the platform’s
search path delimiter (on Unix,; on Windows).

void PySys WriteStdout (const char *format, .).
Write the output string described Bgrmat to sys.stdout . No exceptions are raised, even if truncation
occurs (see below).
format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.
If a problem occurs, osys.stdout is unset, the formatted message is written to the real (C Istedut

void PySys WriteStderr (const char *format, .).
As above, but write teys.stderr or stderrinstead.

5.3 Process Control

void Py FatalError (const char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library fuslotidn is called
which will attempt to produce eore file.

void Py_Exit (intstatug

Exit the current process. This calBy Finalize and then calls the standard C library function
exit(status)

int Py _AtExit (void (*func) ()

Register a cleanup function to be called By Finalize . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulPy_AtExit returnsO; on failure, it returns1 . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be callefditgy

24 Chapter 5. Utilities

The Python/C API, Release 2.6.1

5.4 Importing Modules

PyObject* Pylmport_ImportModule (const char *namg
Return value: New reference.
This is a simplified interface tBylmport_ImportModuleEx below, leaving theylobalsandlocals argu-
ments set tdNULL andlevelset to 0. When theameargument contains a dot (when it specifies a submodule
of a package), thBomlistargument is set to the li§t’] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whemamein fact specifies a subpackage instead of a submodule: the submodules specified in the
package's all _ variable are loaded.) Return a new reference to the imported modul)lor with an
exception set on failure. Before Python 2.4, the module may still be created in the failure case — examine
sys.modules to find out. Starting with Python 2.4, a failing import of a module no longer leaves the module
in sys.modules . Changed in version 2.4: failing imports remove incomplete module objects.Changed in
version 2.6: always use absolute imports

PyObject* Pylmport_ImportModuleNoBlock (const char *namg
This version ofPylmport_ImportModule does not block. It's intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import lock.
The functionPylmport_ImportModuleNoBlock never blocks. It first tries to fetch the module from
sys.modules and falls back ylmport_ImportModule unless the lock is held, in which case the function
will raise animportError . New in version 2.6.

PyObject* Pylmport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return value: New reference.
Import a module. This is best described by referring to the built-in Python functionport__ () , as the
standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level packageLarwith an exception

set on failure (before Python 2.4, the module may still be created in this case). Likeifioport_ () , the

return value when a submodule of a package was requested is normally the top-level package, unless a non-
emptyfromlistwas given. Changed in version 2.4: failing imports remove incomplete module objects.Changed

in version 2.6: The function is an alias féyImport_ImportModuleLevel with -1 as level, meaning
relative import.
PyObject* Pylmport_ImportModuleLevel (char *name, PyObiject *globals, PyObject *locals, PyObject

*fromlist, int leve)
Import a module. This is best described by referring to the built-in Python functionport__ () , as the

standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level packageLarwith an exception
set on failure. Like for _import () , the return value when a submodule of a package was requested is
normally the top-level package, unless a non-enfimiylist was given. New in version 2.5.

PyObject* Pylmport_Import (PyObject *namg
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes tivaport__ ()
function from the__builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.grdxgc orihooks . Changed in version 2.6:
always use absolute imports

PyObject* Pylmport_ReloadModule (PyObject *m)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python fumetmad() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modiN&lLdr with
an exception set on failure (the module still exists in this case).

PyObject* Pylmport_AddModule (const char *namg

5.4. Importing Modules 25

The Python/C API, Release 2.6.1

Return value: Borrowed reference.

Return the module object corresponding to a module name. riElme argument may be of the form
package.module . First check the modules dictionary if there’s one there, and if not, create a new one
and insert it in the modules dictionary. RetiNbJLL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn't already loaded, you will get an
empty module object. Useylmport_ImportModule or one of its variants to import a module. Package
structures implied by a dotted name faameare not created if not already present.

PyObject* Pylmport_ExecCodeModule (char *name, PyObject *cp

long

Return value: New reference.

Given a module name (possibly of the foppackage.module) and a code object read from a Python
bytecode file or obtained from the built-in functimompile() , load the module. Return a new reference
to the module object, oNULL with an exception set if an error occurred. Before Python 2.4, the module
could still be created in error cases. Starting with Pythonr2afneis removed fronmsys.modules in error
cases, and eveniifamewas already irsys.modules on entry toPylmport ExecCodeModule . Leaving
incompletely initialized modules isys.modules is dangerous, as imports of such modules have no way to
know that the module object is an unknown (and probably damaged with respect to the module author’s intents)
state.

This function will reload the module if it was already imported. $B8eémport_ReloadModule for the
intended way to reload a module.

If namepoints to a dotted name of the foppackage.module , any package structures not already created
will still not be created. Changed in version 2rameis removed fronsys.modules in error cases.

Pylmport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.kyc and.pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport_GetModuleDict 0

Return value: Borrowed reference.
Return the dictionary used for the module administration (a.kys.modules). Note that this is a per-
interpreter variable.

PyObject* Pylmport_Getimporter (PyObject *path

void

void

void

Return an importer object for gys.path /pkg. _path__ item path possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traverssys.path_hooks until a hook is
found that can handle the path item. Retiione if no hook could; this tells our caller it should fall back to the
builtin import mechanism. Cache the resulsis.path_importer_cache . Return a new reference to the
importer object. New in version 2.6.

_Pylmport_Init 0
Initialize the import mechanism. For internal use only.

Pylmport_Cleanup ()
Empty the module table. For internal use only.

_Pylmport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport_FindExtension (char *, char *)

For internal use only.

PyObject* _Pylmport_FixupExtension (char *, char *)

For internal use only.

int Pylmport_ImportFrozenModule (char *namg
Load a frozen module namethme Returnl for successQ if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport_ImportModule . (Note the misnomer — this function would reload the module if it was already
26 Chapter 5. Utilities

The Python/C API, Release 2.6.1

imported.)

_frozen
This is the structure type definition for frozen module descriptors, as generated Iiedhe utility (see
Tools/freeze/ in the Python source distribution). Its definition, foundmiclude/import.h ,Is:
struct _frozen {

char *name;
unsigned char *code;

int size;
h
struct _frozen* Pylmport_FrozenModules
This pointer is initialized to point to an array sifuct _frozen records, terminated by one whose members

are alINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport_Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport_Extendlnittab , returning-1 if the table could not be extended. The new module can be
imported by the namaame and uses the functioimitfunc as the initialization function called on the first at-
tempted import. This should be called befére Initialize

_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array

of these structures in conjunction wittylmport_ExtendInittab to provide additional built-in modules.
The structure is defined imclude/import.h as:
struct _inittab {

char *name;
void (*initfunc)(void);

J3

int Pylmport_ExtendInittab (‘struct _inittab *newtap
Add a collection of modules to the table of built-in modules. Hegvtabarray must end with a sentinel entry
which containadNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success otl if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Bgfargtialize

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data formansarshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python 2.4)
shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format for
floating point numbers?y MARSHAL_VERSIONdicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int versiohp
Marshal along integer,value to file. This will only write the least-significant 32 bits ehlue regardless of
the size of the nativeong type. Changed in version 2.4ersionindicates the file format.

5.5. Data marshalling support 27

The Python/C API, Release 2.6.1

void PyMarshal WriteObjectToFile (PyObject *value, FILE *file, int versign
Marshal a Python objectalug tofile. Changed in version 2.4rersionindicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version
Return value: New reference.
Return a string object containing the marshalled representatiasloé Changed in version 2.4version
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won't be handled properly when there’s no
error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a dong from the data stream inILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native sizdamig .

int PyMarshal_ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in BILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizsldrt .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream iRlIBE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returnNULL.

PyObject* PyMarshal_ReadLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in FALE* opened for reading. Unlike
PyMarshal _ReadObjectFromFile , this function assumes that no further objects will be read from the

file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data
in memory rather than reading a byte at a time from the file. Only use these variant if you are certain that
you won't be reading anything else from the file. On error, sets the appropriate excdp@éit(ror or
TypeError) and returngNULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize tlgn
Return value: New reference.
Return a Python object from the data stream in a character buffer conténihgtes pointed to bgtring. On
error, sets the appropriate excepti®@©OFError or TypeError) and returnsNULL.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python InterprdtarExtending and Embedding PythHon

The first three of these functions describ&JArg_ParseTuple , PyArg_ParseTupleAndKeywords , and
PyArg_Parse , all useformat stringswhich are used to tell the function about the expected arguments. The format
strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
guoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into the character

28 Chapter 5. Utilities

The Python/C API, Release 2.6.1

pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded NUL bytes; if it does,TgypeError exception is raised. Unicode objects are converted to C strings
using the default encoding. If this conversion fail$)icodeError s raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (orPy_ssize t , see below)]
This variant ons stores into two C variables, the first one a pointer to a character string, the second one its
length. In this case the Python string may contain embedded null bytes. Unicode objects pass back a pointer to
the default encoded string version of the object if such a conversion is possible. All other read-buffer compatible
objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE T_CLEANbefore includingPython.h . If the macro is defined, length isRy_ssize t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] Similar to s#, this code fills a Py_buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use the buffer even
inside aPy BEGIN_ALLOW_THREADSBIock; the caller is responsible for callifigyBuffer_Release
with the structure after it has processed the data. New in version 2.6.

z (string or None) [const char *] Like s, but the Python object may also bione, in which case the C pointer is
set toNULL.

z# (string or None or any read buffer compatible object) [const char *, int] This is tos# asz istos.

z* (string or None or any buffer compatible object) [Py_buffer*] Thisistos* asz istos.
New in version 2.6.

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As with, there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored intoflye UNICODEpointer variable whose address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant oru stores into two C variables, the first one a pointer to a
Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer
pointer as pointer to By UNICODEarray.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant ons is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and musbtinstachar* which points

to the name of an encoding as a NUL-terminated strindydt.L, in which case the default encoding is used.

An exception is raised if the named encoding is not known to Python. The second argument nulstie a;

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg_ParseTuple will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust*buffer to reference the newly allocated storage. The caller is responsible for cailiigm_Free to
free the allocated buffer after use.

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] Same
ases except that 8-bit string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant ons# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike thees format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustdoest char* which points to the
name of an encoding as a NUL-terminated stringNalLL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument makab# a;

5.6. Parsing arguments and building values 29

The Python/C API, Release 2.6.1

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and setbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffefjyArg ParseTuple will use this
location as the buffer and interpret the initial value*btiffer_lengthas the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enoudaluaError will be
set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ags# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [char] Convert a Python integer to a tiny int, stored in al@r .

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

h (integer) [short int] Convert a Python integer to asbort int

H (integer) [unsigned short int] Convert a Python integer to au®signed short int , without overflow check-
ing. New in version 2.3.

i (integer) [int] Convert a Python integer to a plaini@ .

| (integer) [unsigned int] Convert a Python integer to a @hsigned int , without overflow checking. New in
version 2.3.

I (integer) [long int] Convert a Python integer to aléng int

k (integer) [unsigned long] Convert a Python integer or long integer to au@signed long without overflow
checking. New in version 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to aléng long . This format is only available on
platforms that suppotong long (or_int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to au@signed long
long without overflow checking. This format is only available on platforms that suppwigned long
long (orunsigned _int64 on Windows). New in version 2.3.

n (integer) [Py_ssize_t]Convert a Python integer or long integer to #¢ ssize_t . New in version 2.5.
c (string of length 1) [char] Convert a Python character, represented as a string of length 1, ¢tharC

f (float) [float] Convert a Python floating point number to di@at

d (float) [double] Convert a Python floating point number to alGuble .

D (complex) [Py_complex] Convert a Python complex number to @@ complex structure.

O(object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

30 Chapter 5. Utilities

The Python/C API, Release 2.6.1

O! (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is simila®tbut takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O&(object) [converter anything] Convert a Python object to a C variable througboaverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobjectis the Python object to be converted amtbressis thevoid* argument that was passed to the
PyArg Parse* function. The returnedtatusshould bel for a successful conversion afdf the conversion
has failed. When the conversion fails, ttenverterfunction should raise an exception and leave the content of
addressunmodified.

S (string) [PyStringObject *] Like Obut requires that the Python object is a string object. RaiyggError if
the object is not a string object. The C variable may also be declared@isject*

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declaféd@sject*

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepigeEError is raised for all others.

w (read-write character buffer) [char *] Similar tos, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by other means, a#isstead. Only single-
segment buffer objects are acceptégpeError s raised for all others.

w# (read-write character buffer) [char *, Py_ssize t] Like s#, but accepts any object which implements the read-
write buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite is set to
the length of the buffer. Only single-segment buffer objects are accepgpdError s raised for all others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is towwhats* istos. .. versionadded:: 2.6

(items) (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format
units initems The C arguments must correspond to the individual format unittems Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously caygetlirror to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg ParseTuple does not touch the contents of the corresponding C variable(s).

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thatArg ParseTuple raises).

; The list of format units ends here; the string after the semicolon is used as the error niestssgof the default
error message. Clearly,and; mutually exclude each other.

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.6.1

Note that any Python object references which are provided to the callboemvedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, g object must match the format and the format must be exhausted. On success,
thePyArg Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple (PyObject *args, const char *format,)..
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vajgs
Identical toPyArg ParseTuple , except that it accepts a va_list rather than a variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObiject *kw, const char *format, char *keywords],

)
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words|[], va_list varg$
Identical toPyArg ParseTupleAndKeywords , except that it accepts a va_list rather than a variable num-

ber of arguments.

int PyArg_Parse (PyObiject *args, const char *format,)..
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGgarameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be decladfed las VARARGS function
or method tables. The tuple containing the actual parameters should be passgd &smust actually be
a tuple. The length of the tuple must be at leash and no more thamax min and max may be equal.
Additional arguments must be passed to the function, each of which should be a pointBy@bgect*
variable; these will be filled in with the values froangs, they will contain borrowed references. The variables
which correspond to optional parameters not giveratgs will not be filled in; these should be initialized by
the caller. This function returns true on success and falsryffis not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources fortlakref helper module for
weak references:

static PyObject *
weakref ref (PyObject *self, PyObject *args)

{
PyObject *object;
PyObject *callback = NULL
PyObject *result = NULL
if (PyArg_UnpackTuple(args, "ref ", 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);

32 Chapter 5. Utilities

The Python/C API, Release 2.6.1

}

return result;

}

The call toPyArg_UnpackTuple inthis example is entirely equivalent to this calRgArg_ParseTuple
PyArg_ParseTuple(args, "O|O:ref ", &object, &callback)

New in version 2.2.

PyObject* Py Buildvalue (const char *format, .).
Return value: New reference.
Create a new value based on a format string similar to those accepted ByAhg Parse* family of func-
tions and a sequence of values. Returns the valdéiin in the case of an error; an exception will be raised if
NULL is returned.

Py BuildValue does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returbBne; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, assfanths# for-
mats, the required data is copied. Buffers provided by the caller are never referenced by the objects created

by Py Buildvalue . In other words, if your code invokewmalloc and passes the allocated memory to
Py BuildValue , your code is responsible for callifgee for that memory onc®y BuildValue re-
turns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.
s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointéisL, None

is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointebisL,
the length is ignored andone is returned.

z (string or None) [char *] Same as.
z# (string or None) [char *, int] Same as#.

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointeNIdLL, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length
to a Python Unicode object. If the Unicode buffer pointeNIJLL, the length is ignored andone is
returned.

i (integer) [int] Converta plain Gnt to a Python integer object.

b (integer) [char] Convert a plain @har to a Python integer object.

h (integer) [short int] Convert a plain Ghort int to a Python integer object.

| (integer) [long int] Converta dong int to a Python integer object.

B (integer) [unsigned char] Convert a Qunsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a Qunsigned short int to a Python integer object.

I (integer/long) [unsigned int] Convert a Cunsigned int to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.6.1

k (integer/long) [unsigned long] Convert a Qunsigned long to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

L (long) [PY_LONG_LONG] Convert a Clong long to a Python long integer object. Only available on
platforms that suppotong long

K (long) [unsighed PY_LONG_LONG] Convert a Qunsigned long long to a Python long integer ob-
ject. Only available on platforms that suppartsigned long long

n (int) [Py_ssize t] Converta CPy_ssize_t to a Python integer or long integer. New in version 2.5.
c (string of length 1) [char] Converta Gnt representing a character to a Python string of length 1.
d (float) [double] Convert a Cdouble to a Python floating point number.

f (float) [float] Same asl.

D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

O(object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in iSNULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. TherEfprBuildvValue will return
NULL but won't raise an exception. If no exception has been raisedystemError s set.

S (object) [PyObject *] Same a®.

N (object) [PyObject *] Same a©, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O&(object) [converter anything] Convertanythingto a Python object throughaonverterfunction. The func-
tion is called withanything(which should be compatible wittoid *) as its argument and should return
a “new” Python object, oNULL if an error occurred.

(items) (tuple) [matching-item$ Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (list) [matching-item$ Convert a sequence of C values to a Python list with the same number of
items.

{items} (dictionary) [matching-item$ Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tisystemError exception is set andULL returned.

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format) ...
Output not more thasizebytes tostr according to the format strinfprmat and the extra arguments. See the
Unix man pagesnprintf(2)

int PyOS_vsnprintf (char *str, size_t size, const char *format, va_lishva
Output not more thasizebytes tostr according to the format strinfiprmatand the variable argument liga
Unix man page/snprintf(2)

PyOS_snprintf andPyOS_vsnprintf wrap the Standard C library functiossprintf andvsnprintf
Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions do not.

The wrappers ensure thstr*[*size-1] is always\O’ upon return. They never write more thsizebytes (including
the trailing’\O’ into str. Both functions require thatr '= NULL ,size > 0 andformat !'= NULL

If the platform doesn’'t havesnprintf and the buffer size needed to avoid truncation exceesy more than
512 bytes, Python aborts withRy FatalError.

The return valuerg) for these functions should be interpreted as follows:

34 Chapter 5. Utilities

The Python/C API, Release 2.6.1

« WhenO <= rv < size ,the output conversion was successful andharacters were written &ir (exclud-
ing the trailing\O’ byte atstr*[*rv]).

« Whenrv >= size , the output conversion was truncated and a buffer witht 1 bytes would have been
needed to succeestr*[*size-1] is'\O’ in this case.

* Whenrv < 0, “something bad happenedstr*[*size-1] is'\O' in this case too, but the rest sff is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ ascii_strtod (const char *nptr, char **endpfy
Convert a string to double . This function behaves like the Standard C functtitod does in the C locale.
It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod should typically be used for reading configuration files or other non-user input that
should be locale independent. New in version 2.4. See the Unix marspéa(2) for details.

char * PyOS ascii_formatd (char *buffer, size_t buf_len, const char *format, doub)e d
Convert adouble to a string using the’ as the decimal separatdormatis aprintf -style format string
specifying the number format. Allowed conversion character&eare '’ ,’f' ,'F ,’g" and’'G’ .

The return value is a pointer bufferwith the converted string or NULL if the conversion failed. New in version
2.4.

double PyOS ascii_atof (const char *nptj
Convert a string to alouble in a locale-independent way. New in version 2.4. See the Unix man page
atof(2) for details.

char * PyOS stricmp (char*sl, char *s2
Case insensitive comparison of strings. The function works almost identicatyctop except that it ignores
the case. New in version 2.6.

char * PyOS strnicmp (char *s1, char *s2, Py_ssize t sjze
Case insensitive comparison of strings. The function works almost identicalignomp except that it ignores
the case. New in version 2.6.

5.8 Reflection

PyObject* PyEval_GetBuiltins 0
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no frame
is currently executing.

PyObject* PyEval _GetlLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution fram@&UirtlL if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution framBUdd if no frame is currently
executing.

PyFrameObject* PyEval _GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, whicNWLL if no frame is currently executing.

int PyEval_GetRestricted 0
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

5.8. Reflection 35

The Python/C API, Release 2.6.1

const char* PyEval_GetFuncName (PyObject *fung
Return the name dfincif it is a function, class or instance object, else the nanfeids type.

const char* PyEval_GetFuncDesc (PyObject *fung
Return a description string, depending on the typin€ Return values include “()” for functions and methods,
" constructor”, " instance”, and " object”. Concatenated with the resulydgtval GetFuncName , the result

will be a description ofunc

36 Chapter 5. Utilities

CHAPTER
SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created byPyList New , but whose items have not been set to some bl value yet.

6.1 Object Protocol

int

int

int

PyObject_Print (PyObject *o, FILE *fp, int flag®

Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supportedi®y_PRINT_RAWif given, thestr() of the object is written instead of
therepr()

PyObject_HasAttr (PyObject *o, PyObject *attr_name
Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression

hasattr(o, attr_name) . This function always succeeds.

PyObject_HasAttrString (PyObject *0, const char *attr_nane

Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObiject *attr_name

Return value: New reference.
Retrieve an attribute namedtr_namefrom objecto. Returns the attribute value on succes$\OLL on failure.
This is the equivalent of the Python expressioattr_name

PyObject* PyObject GetAttrString (PyObject *o, const char *attr_nanye

int

int

int

Return value: New reference.
Retrieve an attribute namedtr_namefrom objecto. Returns the attribute value on succes\OLL on failure.
This is the equivalent of the Python expressioattr_name

PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject)*v
Set the value of the attribute namatlr_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statememattr name = v

PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObjec)*v
Set the value of the attribute namatlr_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statemenattr_name = v

PyObject_DelAttr (PyObject *o, PyObject *attr_name

Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

37

The Python/C API, Release 2.6.1

int PyObject_DelAttrString (PyObject *0, const char *attr_nane
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject* PyObject RichCompare (PyObject *ol, PyObject *02, int op)d
Return value: New reference.
Compare the values a@fl ando2 using the operation specified bypid, which must be one d?y LT, Py LE,
Py EQ Py _NE, Py _GT, or Py_GE, corresponding t&, <=, ==, I= | >, or >= respectively. This is the equiv-
alent of the Python expressial op 02, whereop is the operator correspondingdpid. Returns the value
of the comparison on success,MULL on failure.

int PyObject_RichCompareBool (PyObject *01, PyObject *02, int op)d
Compare the values a@fl ando2 using the operation specified bypid, which must be one d?y LT, Py LE,
Py EQ Py _NE, Py _GT, or Py_GE, corresponding t&, <=, ==, I=, >, or >= respectively. Returnsl on
error,0 if the result is false]l otherwise. This is the equivalent of the Python expressibrop 02 , whereop
is the operator correspondingdpid.

int PyObject_ Cmp (PyObject *o1, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided hyl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returnedé@sult Returns-1 on failure. This is the equivalent of the
Python statemenesult = cmp(ol, 02)

int PyObject Compare (PyObject*ol, PyObject *oR
Compare the values afl and 02 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr_Occurred to detect an error. This is equivalent to the Python expressigi(ol, 02)

PyObject* PyObject Repr (PyObject*q
Return value: New reference.
Compute a string representation of objectReturns the string representation on succhi&s, L on failure.
This is the equivalent of the Python expressiepr(o) . Called by therepr() built-in function and by
reverse quotes.

PyObject* PyObject_Str (PyObject *9
Return value: New reference.
Compute a string representation of objectReturns the string representation on succhigfl, L on failure.
This is the equivalent of the Python expresssir(o) . Called by thestr() built-in function and by the
print statement.

PyObject* PyObject_Bytes (PyObject *q
Compute a bytes representation of obj@cin 2.x, this is just a alias foPyObject_Str

PyObject* PyObject_Unicode (PyObject*g
Return value: New reference.
Compute a Unicode string representation of obfecReturns the Unicode string representation on success,
NULL on failure. This is the equivalent of the Python expressinitode(o) . Called by theunicode()
built-in function.

int PyObject_IsInstance (PyObject *inst, PyObiject *cls
Returnsl if instis an instance of the clas$s or a subclass dfls, or 0 if not. On error, returnsl and sets an
exception. Ifclsis a type object rather than a class objéttObject_Isinstance returnsl if instis of
typecls. If clsis a tuple, the check will be done against every entrglén The result will bel when at least one
of the checks returns, otherwise it will be0. If instis not a class instance awt$is neither a type object, nor
a class object, nor a tupleistmust have a_class__ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1.Changed in version
2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object® is a subclass oA if it inherits from A

38 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.1

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testin@ifs a subclass o4, if Ais B, PyObject_IsSubclass returns true.

If AandB are different objectd's __bases__ attribute is searched in a depth-first fashion&er the presence of

the_ bases _ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *¢Js
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return®. In case of an
error, returnsl . If clsis a tuple, the check will be done against every entrglén The result will bel when
at least one of the checks returhsotherwise it will be0. If eitherderivedor clsis not an actual class object
(or tuple), this function uses the generic algorithm described above. New in version 2.1.Changed in version 2.3:
Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check (PyObject*g
Determine if the object is callable. Returrl if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject Jkw
Return value: New reference.

Call a callable Python objedatallable _object with arguments given by the tupkrgs and named argu-
ments given by the dictionagw. If no named arguments are needkd, may beNULL. args must not be
NULL, use an empty tuple if no arguments are needed. Returns the result of the call on sucbidis| or
on failure. This is the equivalent of the Python expressipply(callable_object, args, kw) or
callable_object(*args, **kw) . New in version 2.2.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *aryys
Return value: New reference.
Call a callable Python objedallable_object with arguments given by the tupdgs If no arguments are
needed, theargsmay beNULL. Returns the result of the call on succes\OILL on failure. This is the equiv-
alent of the Python expressiapply(callable_object, args) or callable_object(*args)

PyObject* PyObject_CallFunction (PyObiject *callable, char *format,).
Return value: New reference.
Call a callable Python objectllable, with a variable number of C arguments. The C arguments are described
using aPy_BuildValue style format string. The format may BeULL, indicating that no arguments are
provided. Returns the result of the call on succes$\NGLL on failure. This is the equivalent of the Python
expressiorapply(callable, args) or callable(*args) . Note that if you only pasByObject *
args,PyObject_CallFunctionObjArgs is a faster alternative.

PyObject* PyObject_CallMethod (PyObiject *o, char *method, char *format,)...
Return value: New reference.
Call the method namethethodof objecto with a variable number of C arguments. The C arguments are
described by &y _BuildValue format string that should produce a tuple. The format majbi.L, indi-
cating that no arguments are provided. Returns the result of the call on succhiédl, loon failure. This is

the equivalent of the Python expressimmethod(args) . Note that if you only pasByObject * args,
PyObject_CallMethodObjArgs is a faster alternative.
PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL

Return value: New reference.

Call a callable Python objectllable, with a variable number dPyObject* arguments. The arguments are
provided as a variable number of parameters followedNby L. Returns the result of the call on success, or
NULL on failure. New in version 2.2.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL
Return value: New reference.
Calls a method of the objea; where the name of the method is given as a Python string objeeane It is
called with a variable number éfyObject* arguments. The arguments are provided as a variable number of
parameters followed biULL. Returns the result of the call on successNai_L on failure. New in version
2.2.

6.1. Object Protocol 39

The Python/C API, Release 2.6.1

long PyObject Hash (PyObject*q
Compute and return the hash value of an objedDn failure, returnl . This is the equivalent of the Python
expressiorhash(o)

long PyObject HashNotimplemented (PyObject *9
Set aTypeError indicating thattype(o) is not hashable and returd . This function receives special
treatment when stored intp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable. New in version 2.6.

int PyObject IsTrue (PyObject*9
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
not not o . On failure, returnl .

int PyObject Not (PyObject*qg
Returns0 if the objecto is considered to be true, addotherwise. This is equivalent to the Python expression
not o . On failure, returnl .

PyObject* PyObject Type (PyObject*q
Return value: New reference.
Wheno is nonNULL, returns a type object corresponding to the object type of oloje€@n failure, raises
SystemError and returndNULL. This is equivalent to the Python expressigpe(o) . This function incre-
ments the reference count of the return value. There’s really no reason to use this function instead of the common
expressioro->ob_type , which returns a pointer of typ@yTypeObject* , except when the incremented
reference count is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeat is of typetypeor a subtype otype Both parameters must be ndHJLL. New in
version 2.2.

Py ssize 't PyObject_Length (PyObject*q

Py ssize t PyObject_Size (PyObject *g
Return the length of object If the objecto provides either the sequence and mapping protocols, the sequence
length is returned. On errof] is returned. This is the equivalent to the Python expredsiofo)

PyObject* PyObject_Getltem (PyObject *o, PyObject *kgy
Return value: New reference.
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

int PyObject_Setltem (PyObject *o, PyObject *key, PyObject)v
Map the objeckeyto the values. Returns1 on failure. This is the equivalent of the Python statenokey]
= V.

int PyObject_Delltem (PyObject *o, PyObject *kgy
Delete the mapping fdteyfrom o. Returns-1 on failure. This is the equivalent of the Python statentmit
o[key]

int PyObject_AsFileDescriptor (PyObject *g
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject_Dir (PyObject*g
Return value: New reference.
This is equivalent to the Python express@ir(o) , returning a (possibly empty) list of strings appropriate for
the object argument, AMULL if there was an error. If the argumentNRILL, this is like the Pythordir()
returning the names of the current locals; in this case, if no execution frame is activélhéris returned but
PyErr_Occurred will return false.

PyObject* PyObject_Getlter (PyObject *9

40 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.1

Return value: New reference.

This is equivalent to the Python expressitar(o) . It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. RaiSgpeError and returndNULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of addirg@l ando2, or NULL on failure. This is the equivalent of the Python expressibn
+ 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *op
Return value: New reference.
Returns the result of subtracting from o1, or NULL on failure. This is the equivalent of the Python expression
ol - o2 .

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
ol * o2 .

PyObject* PyNumber_Divide (PyObject*ol, PyObject *opR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expressibn
/ 02.

PyObject* PyNumber_FloorDivide (PyObject *o1, PyObject *oP
Return value: New reference.
Return the floor ob1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of integers.
New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *oR
Return value: New reference.
Return a reasonable approximation for the mathematical valod divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
New in version 2.2.

PyObject* PyNumber_Remainder (PyObject*ol, PyObject *oR
Return value: New reference.
Returns the remainder of dividirgil by 02, or NULL on failure. This is the equivalent of the Python expression
0l % o2

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *opR
Return value: New reference.
See the built-in functiodivmod() . ReturnadNULL on failure. This is the equivalent of the Python expression
divmod(ol, 02)

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return value: New reference.
See the built-in functiopow() . ReturnsNULL on failure. This is the equivalent of the Python expression
pow(ol, 02, 03) ,whereo3is optional. Ifo3is to be ignored, pasdy None in its place (passinglULL
for o3would cause an illegal memory access).

6.2. Number Protocol 41

The Python/C API, Release 2.6.1

PyObject* PyNumber_Negative (PyObject *9
Return value: New reference.
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressmn

PyObject* PyNumber_Positive (PyObject *9
Return value: New reference.
Returnso on success, dMULL on failure. This is the equivalent of the Python expression

PyObject* PyNumber_Absolute (PyObject *9
Return value: New reference.
Returns the absolute value @for NULL on failure. This is the equivalent of the Python expressibs(o) .

PyObject* PyNumber_Invert (PyObject *g
Return value: New reference.
Returns the bitwise negation obn success, ddULL on failure. This is the equivalent of the Python expression
~0.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressiornl << 02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *oR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressiorol >> 02.

PyObject* PyNumber_And (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the “bitwise and” 061 ando2 on success andULL on failure. This is the equivalent of the Python
expressiornl & 02.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressionl " 02 .

PyObject* PyNumber_Or (PyObject *o1, PyObject *op
Return value: New reference.
Returns the “bitwise or” obl ando2 on success, oONULL on failure. This is the equivalent of the Python
expressiorol | 02 .

PyObject* PyNumber_InPlaceAdd (PyObiject *01, PyObject *op
Return value: New reference.
Returns the result of addirgl ando2, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python statemeht += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *01, PyObiject *oR
Return value: New reference.
Returns the result of subtractima® from 01, or NULL on failure. The operation is dorie-place when ol
supports it. This is the equivalent of the Python stateroént= 02 .

PyObject* PyNumber_InPlaceMultiply (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of multiplyingl and 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python staternént= 02 .

PyObject* PyNumber_InPlaceDivide (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. The operation is done-placewhenol supports

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.1

it. This is the equivalent of the Python statemeht /= 02 .

PyObject* PyNumber_InPlaceFloorDivide (PyObject *01, PyObject *op
Return value: New reference.
Returns the mathematical floor of dividild. by 02, or NULL on failure. The operation is dorie-placewhen
ol supports it. This is the equivalent of the Python staternénf/= 02 . New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *01, PyObiject *oR
Return value: New reference.
Return a reasonable approximation for the mathematical valod divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
The operation is donia-placewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObiject *o1, PyObject *oR
Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python staternén®6= 02.

PyObject* PyNumber_InPlacePower (PyObject *ol1, PyObject *02, PyObject *p3
Return value: New reference.
See the built-in functiopow() . ReturnsNULL on failure. The operation is dorne-placewhenol supports
it. This is the equivalent of the Python statemefit **= 02 when 03 isPy None, or an in-place variant
of pow(ol, 02, 03) otherwise. Ifo3is to be ignored, pasdy None in its place (passin§ULL for 03
would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, ddULL on failure. The operation is dore-placewhen
olsupports it. This is the equivalent of the Python stateroénk<= 02 .

PyObject* PyNumber_InPlaceRshift (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, oNULL on failure. The operation is dorie-place
whenolsupports it. This is the equivalent of the Python stateroént->= 02 .

PyObject* PyNumber_InPlaceAnd (PyObiject *ol1, PyObject *oR
Return value: New reference.
Returns the “bitwise and” od1 ando2 on success andULL on failure. The operation is dorie-placewhen
ol supports it. This is the equivalent of the Python staternén®&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *ol1, PyObject *oR
Return value: New reference.
Returns the “bitwise exclusive or” @fl by 02 on success, dlULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python stateroént'= 02 .

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *op
Return value: New reference.
Returns the “bitwise or” 061 ando2 on success, dlULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python staternén{= 02 .

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byp®@bject* . If the objects pointed to bypl and
*p2 have the same type, increment their reference count and i@isurccess). If the objects can be converted
to a common numeric type, replatigl and*p2 by their converted value (with ‘new’ reference counts), and
return0. If no conversion is possible, or if some other error occurs, retlr(failure) and don’t increment the
reference counts. The c#lyNumber_Coerce(&01, &02) s equivalent to the Python statemeit, 02
= coerce(ol, 02)

int PyNumber_CoerceEx (PyObject **p1, PyObject **p2

6.2. Number Protocol 43

The Python/C API, Release 2.6.1

This function is similar ta®?yNumber_Coerce , except that it returng when the conversion is not possible
and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int (PyObject *g
Return value: New reference.
Returns theo converted to an integer object on successNOLL on failure. If the argument is outside the
integer range a long object will be returned instead. This is the equivalent of the Python expraésjon .

PyObject* PyNumber_Long (PyObject *g
Return value: New reference.
Returns theo converted to a long integer object on succes$\OLL on failure. This is the equivalent of the
Python expressiotlong(o)

PyObject* PyNumber_Float (PyObject*g
Return value: New reference.
Returns theo converted to a float object on successNafiLL on failure. This is the equivalent of the Python
expressioriloat(o)

PyObject* PyNumber_Index (PyObject*g
Returns theo converted to a Python int or long on succesdNaiLL with a TypeError exception raised on
failure. New in version 2.5.

PyObject* PyNumber_ToBase (PyObject *n, int basgp
Returns the the integerconverted tdaseas a string with a base marker’6b’ ,’00’ , or’'0x’ if appended
applicable. Whetaseis not 2, 8, 10, or 16, the formatis#num’ where x is the base. fis not an int object,
it is converted withiPyNumber_Index first. New in version 2.6.

Py ssize 't PyNumber_AsSsize t (PyObject *o, PyObject *eXc
Returnso converted to a Py_ssize_t valuaitan be interpreted as an integeroléan be converted to a Python
int or long but the attempt to convert to a Py_ssize_t value would raigevanflowError , then theexc
argument is the type of exception that will be raised (usualtiexError or OverflowError). If excis
NULL, then the exception is cleared and the value is clipped¥oSSIZE_T_MINor a negative integer or
PY_SSIZE_T_MAJ¥or a positive integer. New in version 2.5.

int Pylndex_Check (PyObject*qg
Returns True ifo is an index integer (has the nb_index slot of the tp_as_number structure filled in). New in
version 2.5.

6.3 Sequence Protocol

int PySequence_Check (PyObject*q
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

Py ssize 't PySequence_Size (PyObject*q
Returns the number of objects in sequenaan success, and on failure. For objects that do not provide
seguence protocol, this is equivalent to the Python expretesiga)

Py ssize 't PySequence_Length (PyObject*q
Alternate name foPySequence_Size

PyObject* PySequence_Concat (PyObject *ol, PyObject *op
Return value: New reference.
Return the concatenation ofl ando2 on success, andULL on failure. This is the equivalent of the Python
expressiorol + 02.

PyObject* PySequence_Repeat (PyObject*o, Py _ssize_t coynt
Return value: New reference.
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of the

44 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.1

Python expression * count

PyObject* PySequence_InPlaceConcat (PyObject *o1, PyObject *op
Return value: New reference.
Return the concatenation ofl ando2 on success, andULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python expressibrn+= 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize t coynt
Return value: New reference.
Return the result of repeating sequence olgemiunttimes, orNULL on failure. The operation is doiie-place
wheno supports it. This is the equivalent of the Python expressior+ count

PyObject* PySequence_Getltem (PyObject *o, Py_ssize }Yi
Return value: New reference.
Return the*th element of *g or NULL on failure. This is the equivalent of the Python expressiph .

PyObject* PySequence_GetSlice (PyObject *o, Py_ssize_til, Py _ssize }ti2
Return value: New reference.
Return the slice of sequence objedietweeril andi2, or NULL on failure. This is the equivalent of the Python
expressioro[il:i2]

int PySequence_Setltem (PyObject *o, Py_ssize ti, PyObject)*v
Assign objecty to thei*th element of *0 Returns-1 on failure. This is the equivalent of the Python statement
o[i] = v . Thisfunctiondoes nosteal a reference t

int PySequence_Delltem (PyObject *o, Py_ssize Yi
Delete the*th element of object *oReturns-1 on failure. This is the equivalent of the Python statenukaht
ofi]

int PySequence_SetSlice (PyObject *o, Py _ssize_til, Py _ssize ti2, PyObjegt *v
Assign the sequence objecto the slice in sequence objexfromil toi2. This is the equivalent of the Python
statemeno[il:i2] = v

int PySequence_DelSlice (PyObject *o, Py_ssize_til, Py _ssize)ti2
Delete the slice in sequence objedrom il toi2. Returns-1 on failure. This is the equivalent of the Python
statemendel o[il:i2]

Py ssize 't PySequence_Count (PyObject *o, PyObject *value
Return the number of occurrencesva@luein o, that is, return the number of keys for whidfkey] ==
value . On failure, returnl . This is equivalent to the Python expressmoount(value)

int PySequence_Contains (PyObject *o, PyObiject *value
Determine ifo containsvalue If an item ino is equal tovalue returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressi@iue in o

Py ssize 't PySequence_Index (PyObject *o, PyObject *value
Return the first index for which o[i] == value . On error, returnl . This is equivalent to the Python
expressioro.index(value)

PyObject* PySequence_List (PyObject *g
Return value: New reference.
Return a list object with the same contents as the arbitrary seqoefbe returned list is guaranteed to be new.

PyObject* PySequence_Tuple (PyObject*q
Return value: New reference.
Return a tuple object with the same contents as the arbitrary seqo@md¢ULL on failure. Ifo is a tuple,
a new reference will be returned, otherwise a tuple will be constructed with the appropriate contents. This is
equivalent to the Python expressituple(o)

PyObject* PySequence_Fast (PyObject *o, const char *m
Return value: New reference.

6.3. Sequence Protocol 45

The Python/C API, Release 2.6.1

Returns the sequenae as a tuple, unless it is already a tuple or list, in which cadge returned. Use
PySequence Fast GET ITEM to access the members of the result. Retitb& L on failure. If the object
is not a sequence, rais€gpeError with mas the message text.

PyObject* PySequence_Fast GET_ITEM (PyObject *o, Py _ssize }i
Return value: Borrowed reference.
Return tha*th element of *q assuming thab was returned byySequence Fast , ois notNULL, and that
i is within bounds.

PyObject** PySequence_Fast ITEMS (PyObject*g
Return the underlying array of PyObject pointers. Assumestthats returned byPySequence_Fast ando
is notNULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change. New in version 2.4.

PyObject* PySequence_ ITEM (PyObject *o, Py_ssize }i
Return value: New reference.
Return the*th element of *oor NULL on failure. Macro form oPySequence_Getltem but without check-
ing thatPySequence_Check(o) is true and without adjustment for negative indices. New in version 2.3.

Py ssize 't PySequence Fast GET_SIZE (PyObject*g
Returns the length af, assuming that was returned byySequence_Fast and thato is notNULL. The
size can also be gotten by callilySequence_Size ono, butPySequence Fast GET SIZE is faster
because it can assurés a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check (PyObject*9
Returnl if the object provides mapping protocol, aBtherwise. This function always succeeds.

Py ssize t PyMapping_Length (PyObject *9
Returns the number of keys in objexbn success, and on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python express@an(o)

int PyMapping_DelltemString (PyObject *o, char *key
Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statemendel o[key]

int PyMapping_Delltem (PyObject *o, PyObject *key
Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statemendel o[key]

int PyMapping_HasKeyString (PyObiject *o, char *key
On success, returh if the mapping object has the kégeyandO otherwise. This is equivalent tfkey] ,
returningTrue on success andalse on an exception. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *kgy
Returnl if the mapping object has the ké&gyandO otherwise. This is equivalent tifkey] , returningTrue
on success andalse on an exception. This function always succeeds.

PyObject* PyMapping_Keys (PyObject *q
Return value: New reference.
On success, return a list of the keys in objectOn failure, returnrNULL. This is equivalent to the Python
expressioro.keys()

PyObject* PyMapping_Values (PyObject*g
Return value: New reference.
On success, return a list of the values in objcOn failure, returrNULL. This is equivalent to the Python

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.1

expressioro.values()

PyObject* PyMapping_ltems (PyObject *g
Return value: New reference.
On success, return a list of the items in objectvhere each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expressmitems()

PyObject* PyMapping_GetltemString (PyObject *o, char *key
Return value: New reference.
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

int PyMapping_SetltemString (PyObject *o, char *key, PyObject jv
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statemeno[key] = v

6.5 Iterator Protocol

New in version 2.2. There are only a couple of functions specifically for working with iterators.

int Pylter_Check (PyObject*q
Return true if the objeab supports the iterator protocol.

PyObject* Pylter_Next (PyObject*9
Return value: New reference.
Return the next value from the iteratian If the object is an iterator, this retrieves the next value from the
iteration, and returnslULL with no exception set if there are no remaining items. If the object is not an iterator,
TypeError israised, orif there is an error in retrieving the item, retlMbi_L and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_Getlter(obj);
PyObject *item;
if (iterator == NULD {
[* propagate error */
}
while (item = Pylter_Next(iterator)) {
[* do something with item */
[* release reference when done */
Py_DECREF(item);
}

Py DECREF(iterator);

if (PyErr_Occurred()) {
[* propagate error */

}
else {

[* continue doing useful work */
}

6.5. Iterator Protocol 47

The Python/C API, Release 2.6.1

6.6 Buffer Protocol

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize t *buffer Jen
Returns a pointer to a read-only memory location usable as character-based inpuibj Bhgument must
support the single-segment character buffer interface. On success, ftaatsbufferto the memory location
andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.

int PyObject AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer Jen
Returns a pointer to a read-only memory location containing arbitrary data.ofjrergument must support
the single-segment readable buffer interface. On success, ré&pusetsbuffer to the memory location and
buffer_lento the buffer length. Returnd and sets d&ypeError on error. New in version 1.6.

int PyObject_CheckReadBuffer (PyObject *9
Returnsl if o supports the single-segment readable buffer interface. Otherwise rétuxdasv in version 2.2.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len
Returns a pointer to a writeable memory location. ©hgargument must support the single-segment, character
buffer interface. On success, retussetshufferto the memory location anbuffer_lento the buffer length.
Returns1 and sets &ypeError on error. New in version 1.6.

48

Chapter 6. Abstract Objects Layer

CHAPTER
SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionargyizet Check . The chapter is
structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check f&MULL being passed instead of a valid object. AllowiNYLL to be passed i
can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dbjeet.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same objedyps andtypes.TypeType in the Python
layer.

int PyType_Check (PyObject *q
Return true if the objead is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject*q
Return true if the objeat is a type object, but not a subtype of the standard type object. Return false in all other
cases. New in version 2.2.

unsigned int PyType_ClearCache (void)
Clear the internal lookup cache. Return the current version tag. New in version 2.6.

void PyType_Modified (PyTypeObject *type
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after any
manual modification of the attributes or base classes of the type. New in version 2.6.

int PyType_HasFeature (PyObject *o, int featurg
Return true if the type objectsets the featurfeature Type features are denoted by single bit flags.

int PyType_IS_GC (PyObject *g

49

The Python/C API, Release 2.6.1

Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS HAVE_GNew in version 2.0.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject)b
Return true ifais a subtype ob. New in version 2.2.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitdms
Return value: New reference.
New in version 2.2.

PyObject* PyType_GenericNew (PyTypeObiject *type, PyObject *args, PyObject *kyvds
Return value: New reference.
New in version 2.2.

int PyType_Ready (PyTypeObiject *type
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Rétamsuccess, or returl and sets an
exception on error. New in version 2.2.

7.1.2 The None Object

Note that thePyTypeObject for None is not directly exposed in the Python/C API. Sindene is a singleton,
testing for object identity (using= in C) is sufficient. There is nByNone_Check function for the same reason.

PyObject* Py _None
The PythorNone object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py _RETURN_NONE
Properly handle returningy_None from within a C function. New in version 2.4,

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint_Type
This instance oPyTypeObject represents the Python plain integer type. This is the same objet asnd
types.IntType

int Pylnt_Check (PyObject*q
Return true ifo is of type PyInt_Type or a subtype oPyIint Type . Changed in version 2.2: Allowed
subtypes to be accepted.

int PyInt_CheckExact (PyObject*9
Return true ifo is of typePyInt_Type , but not a subtype dPyint_Type . New in version 2.2.

PyObject* PyInt_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyIntObject ~ or PyLongObject based on the string value &tr, which is interpreted accord-
ing to the radix inbase If pendis nonNULL, *pend will point to the first character istr which follows the
representation of the number. daseis 0, the radix will be determined based on the leading charactest:of
if str starts with'0Ox’ or’0X’ , radix 16 will be used; istr starts with’0’ , radix 8 will be used; otherwise
radix 10 will be used. Ibaseis notO, it must be betwee@ and36, inclusive. Leading spaces are ignored.
If there are no digitsyalueError will be raised. If the string represents a number too large to be contained

50 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

within the machine’dong int type and overflow warnings are being suppressétjlaongObject will be
returned. If overflow warnings are not being suppresisidl. L will be returned in this case.

PyObject* PyInt_FromLong (long ival)
Return value: New reference.
Create a new integer object with a valueal.

The current implementation keeps an array of integer objects for all integers bevesemd 256, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value df. | suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_FromSsize t (Py_ssize tival
Return value: New reference.
Create a new integer object with a valueigdl. If the value exceedsONG_MAXa long integer object is
returned. New in version 2.5.

long Pyint_AsLong (PyObject *ig
Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value. If
there is an errorl is returned, and the caller should chd@kErr_Occurred() to find out whether there
was an error, or whether the value just happened to be -1.

long PyInt_ AS LONG (PyObject *ig
Return the value of the objeidt. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask (PyObiject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and then
return its value as unsigned long. This function does not check for overflow. New in version 2.3.

unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and then
return its value as unsigned long long, without checking for overflow. New in version 2.3.

Py ssize 't PyInt_AsSsize t (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject |, if it is not already one, and then
return its value aPy_ssize_t . New in version 2.5.

long PyInt_GetMax ()
Return the system’s idea of the largest integer it can hah@&G_MAXas defined in the system header files).

int PyInt_ClearFreeList (void)
Clear the integer free list. Return the number of items that could not be freed. New in version 2.6.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two bdejeamsse and
Py True . As such, the normal creation and deletion functions don’t apply to booleans. The following macros
are available, however.

int PyBool_Check (PyObject*qg
Return true ifo is of typePyBool_Type . New in version 2.3.

PyObject* Py False
The PythonFalse object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py _True
The PythonTrue object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py _RETURN_FALSE
ReturnPy_False from a function, properly incrementing its reference count. New in version 2.4,

7.2. Numeric Objects 51

The Python/C API, Release 2.6.1

Py _RETURN_TRUE
ReturnPy_True from a function, properly incrementing its reference count. New in version 2.4.

PyObject* PyBool _FromLong (longV)
Return value: New reference.
Return a new reference oy True orPy False depending on the truth value wf New in version 2.3.

7.2.3 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance oPyTypeObject represents the Python long integer type. This is the same objlrtgsand
types.LongType

int PyLong_Check (PyObject *p
Return true if its argument is R&yLongObject or a subtype ofPyLongObject . Changed in version 2.2:
Allowed subtypes to be accepted.

int PyLong_CheckExact (PyObject*p
Return true if its argument isRyLongObject , but not a subtype d?yLongObject . New in version 2.2.

PyObject* PyLong_FromLong (longV)
Return value: New reference.
Return a newPyLongObject object fromv, or NULL on failure.

PyObject* PyLong_FromUnsignedLong (unsigned long)
Return value: New reference.
Return a newPyLongObject object from a Qunsigned long , or NULL on failure.

PyObject* PyLong_FromSsize t (Py_ssize tV
Return a newyLongObject object from a CPy_ssize t , or NULL on failure. New in version 2.5.

PyObject* PyLong_FromSize t (size_ty
Return a newPyLongObject object from a Gsize_t , or NULL on failure. New in version 2.5.

PyObject* PyLong_FromLongLong (PY_LONG_LONG)y
Return value: New reference.
Return a newPyLongObject object from a dong long , or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONQG v
Return value: New reference.
Return a newPyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong_FromDouble (doubley
Return value: New reference.
Return a newPyLongObject object from the integer part of or NULL on failure.

PyObject* PyLong_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyLongObject based on the string value &ir, which is interpreted according to the radix in
base If pendis nonNULL, *pend will point to the first character istr which follows the representation of
the number. Itbaseis 0, the radix will be determined based on the leading charactess:oif str starts with
'0x’” or’0X' , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10 will be
used. Ifbaseis not0, it must be betweeB and36, inclusive. Leading spaces are ignored. If there are no digits,
ValueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_tlength, int base
Return value: New reference.

52 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Convert a sequence of Unicode digits to a Python long integer value. The first paramptents to the first
character of the Unicode stringngthgives the number of characters, drakeis the radix for the conversion.
The radix must be in the range [2, 36]; if it is out of rany@JueError will be raised. New in version 1.6.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference.
Create a Python integer or long integer from the poiptérhe pointer value can be retrieved from the resulting
value usingPyLong_AsVoidPtr . New in version 1.5.2.Changed in version 2.5: If the integer is larger than
LONG_MAX, a positive long integer is returned.

long PyLong_AsLong (PyObject *pylong
Return a Clong representation of the contents pylong If pylongis greater tharLONG_MAXan
OverflowError is raised andl will be returned.

Py ssize 't PyLong AsSsize t (PyObject *pylony
Return a CPy_ssize t representation of the contents gfylong If pylong is greater than
PY _SSIZE T _MAX anOverflowError is raised andl will be returned. New in version 2.5.

unsigned long PyLong_AsUnsignedLong (PyObiject *pylong
Return a Qunsigned long representation of the contentsmflong If pylongis greater thatULONG_MAX
anOverflowError is raised.

PY_LONG_LONG@yLong_AsLongLong (PyObject *pylong
Return a Clong long from a Python long integer. Ifylongcannot be represented asoag long , an
OverflowError will be raised. New in version 2.2.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLong (PyObject *pylony
Return a Cunsigned long long from a Python long integer. Ipylongcannot be represented as an
unsigned long long , an OverflowError will be raised if the value is positive, or BypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong_AsUnsignedLongMask (PyObject *ig
Return a Qunsigned long from a Python long integer, without checking for overflow. New in version 2.3.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *ig
Return a Cunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong_AsDouble (PyObject *pylong
Return a Gdouble representation of the contentsmflong If pylongcannot be approximately represented as
adouble , anOverflowError exception is raised and.0 will be returned.

void* PyLong_AsVoidPtr (PyObject *pylong
Convert a Python integer or long integgylongto a Cvoid pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usablé pointer for values created with
PyLong_FromVoidPtr . New in version 1.5.2.Changed in version 2.5: For values outside 0..LONG_MAX,
both signed and unsigned integers are accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat_Type
This instance oPyTypeObject represents the Python floating point type. This is the same objdlcisas
andtypes.FloatType

int PyFloat Check (PyObject*p
Return true if its argument isRyFloatObject or a subtype oPyFloatObject . Changed in version 2.2:

7.2. Numeric Objects 53

The Python/C API, Release 2.6.1

Allowed subtypes to be accepted.

int PyFloat_CheckExact (PyObject *p
Return true if its argument is RByFloatObject , but not a subtype dPyFloatObject . New in version
2.2.

PyObject* PyFloat_FromString (PyObject *str, char **pengl
Return value: New reference.
Create &PyFloatObject object based on the string valuestr, or NULL on failure. Thependargument is
ignored. It remains only for backward compatibility.

PyObject* PyFloat_FromDouble (doubley
Return value: New reference.
Create &PyFloatObject object fromv, or NULL on failure.

double PyFloat AsDouble (PyObiject *pyfloat
Return a Gdouble representation of the contentsmffloat If pyfloatis not a Python floating point object but
hasa float () method, this method will first be called to convpyffloatinto a float.

double PyFloat AS_DOUBLE (PyObject *pyfloat
Return a Gdouble representation of the contentsmffloat but without error checking.

PyObject* PyFloat _Getinfo (void)
Return a structseq instance which contains information about the precision, minimum and maximum values of
a float. It's a thin wrapper around the headerfitat.h . New in version 2.6.

double PyFloat_GetMax (void)
Return the maximum representable finite flb&L_MAXas Cdouble . New in version 2.6.

double PyFloat GetMin (void)
Return the minimum normalized positive fldaBL_MIN as Cdouble . New in version 2.6.

int PyFloat_ClearFreeList (void)
Clear the float free list. Return the number of items that could not be freed. New in version 2.6.

7.2.5 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as resblysvdtusmather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py complex _Py c_sum(Py_complex left, Py_complex right
Return the sum of two complex numbers, using théyCcomplex representation.

54 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Py complex Py c diff (Py_complex left, Py _complex right
Return the difference between two complex numbers, using the Complex representation.

Py complex Py c_neg (Py_complex complgx
Return the negation of the complex numbemplexusing the GPy_complex representation.

Py complex _Py c prod (Py_complex left, Py _complex right
Return the product of two complex numbers, using thieéyCcomplex representation.

Py complex Py c _quot (Py _complex dividend, Py _complex divisor
Return the quotient of two complex numbers, using theyCcomplex representation.

Py complex _Py c pow (Py_complex num, Py _complex gxp
Return the exponentiation afimby exp using the GPy_complex representation.

Complex Numbers as Python Objects

PyComplexObiject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance ofPyTypeObject represents the Python complex number type. It is the same object as
complex andtypes.ComplexType

int PyComplex_Check (PyObject *p
Return true if its argument isRyComplexObject or a subtype oPyComplexObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyComplex_CheckExact (PyObject*p
Return true if its argument is ByComplexObject , but not a subtype oPyComplexObject . New in
version 2.2.

PyObject* PyComplex_FromCComplex (Py _complex)y
Return value: New reference.
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex_FromDoubles (double real, double imgg
Return value: New reference.
Return a newyComplexObject object fromreal andimag

double PyComplex_RealAsDouble (PyObject *op
Return the real part afp as a Cdouble .

double PyComplex_ImagAsDouble (PyObject *op
Return the imaginary part @p as a Cdouble .

Py_complex PyComplex_AsCComplex (PyObiject *op
Return thePy_complex value of the complex numbep. Changed in version 2.6: Wp is not a Python
complex number object but has acomplex__ () method, this method will first be called to conveptto a
Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3. Sequence Objects 55

The Python/C API, Release 2.6.1

7.3.1 Byte Array Objects

New in version 2.6.

PyByteArrayObject
This subtype oPyObject represents a Python bytearray object.
PyTypeObject PyByteArray Type
This instance oPyTypeObject represents the Python bytearray type; it is the same objdnttaarray
in the Python layer.
int PyByteArray Check (PyObject*g
Return true if the objeab is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact (PyObject*g

Return true if the objeab is a bytearray object, but not an instance of a subtype of the bytearray type.
PyObject* PyByteArray FromObject (PyObject *9

Return a new bytearray object from any objextthat implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize_tlen
Create a new bytearray object fratring and its lengthlen. On failure,NULL is returned.

Py ssize t PyByteArray_Size (PyObject *bytearray
Return the size dbytearrayafter checking for &lULL pointer.
Py ssize t PyByteArray GET_SIZE (PyObject *bytearray
Macro version oPyByteArray Size that doesn’t do pointer checking.

char* PyByteArray AsString (PyObject *bytearray
Return the contents difytearrayas a char array after checking foN&JLL pointer.

char* PyByteArray AS_STRING (PyObject *bytearray
Macro version oPyByteArray AsString that doesn't check pointers.

PyObject* PyByteArray Concat (PyObject *a, PyObject *p
Concat bytearraya andb and return a new bytearray with the result.
PyObject* PyByteArray Resize (PyObject *bytearray, Py _ssize tlen
Resize the internal buffer difytearrayto len.

7.3.2 String/Bytes Objects

These functions raisypeError when expecting a string parameter and are called with a non-string parameter.

Note: These functions have been renamed to PyBytes_* in Python 3.x. The PyBytes names are also available in 2.6.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString_Type
This instance ofPyTypeObject represents the Python string type; it is the same objecttias and
types.StringType in the Python layer. .

int PyString_Check (PyObject*q
Return true if the objead is a string object or an instance of a subtype of the string type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyString_CheckExact (PyObject *g
Return true if the objeab is a string object, but not an instance of a subtype of the string type. New in version
2.2.

56 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

PyObject* PyString_FromString (const char *y
Return value: New reference.
Return a new string object with a copy of the strings value on success, aNdJLL on failure. The parameter
v must not beNULL; it will not be checked.

PyObject* PyString_FromStringAndSize (const char *v, Py_ssize tlgn
Return value: New reference.
Return a new string object with a copy of the strings value and lengtlen on success, andULL on failure.
If vis NULL, the contents of the string are uninitialized.

PyObject* PyString_FromFormat (const char *format, .).
Return value: New reference.
Take a Cprintf -style format string and a variable number of arguments, calculate the size of the resulting
Python string and return a string with the values formatted into it. The variable arguments must be C types
and must correspond exactly to the format characters ifotimeat string. The following format characters are

allowed:
Format Type Comment
Charac-
ters
%% n/a The literal % character.
%c int A single character, represented as an C int.
%d int Exactly equivalent tgrintf("%d")
%u un- Exactly equivalent t@rintf("%u")
signed
int
%Id long Exactly equivalent tgrintf("%Ild")
%lu un- Exactly equivalent tgrintf("%lu™)
signed
long
%zd Py _ssize BExactly equivalent tgrintf("%zd")
%zu size_t | Exactly equivalent terintf("%zu")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemiriotf("%p") except that
it is guaranteed to start with the litef@k regardless of what the platfornysintf
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

PyObject* PyString_FromFormatV (const char *format, va_list vargs
Return value: New reference.
Identical toPyString_FromFormat ~ except that it takes exactly two arguments.

Py ssize t PyString_Size (PyObject *string
Return the length of the string in string objetting.

Py ssize t PyString_ GET_SIZE (PyObject *string
Macro form ofPyString_Size but without error checking.

char* PyString_AsString (PyObject *string
Return a NUL-terminated representation of the contentstiofig. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString_FromStringAndSize(NULL, size) . It must not be deallocated. #tring is a Unicode
object, this function computes the default encodingtahg and operates on that. $fringis not a string object
at all, PyString_AsString returnsNULL and raiseSypeError

7.3. Sequence Objects 57

The Python/C API, Release 2.6.1

char* PyString_ AS_STRING (PyObiject *string
Macro form of PyString_AsString but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length
Return a NUL-terminated representation of the contents of the alipgtiirough the output variablésifferand
length

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. Ifengthis NULL, the resulting buffer may not contain NUL characters; if it does, the
function returns1 and aTypeError is raised.

The buffer refers to an internal string bufferaj, not a copy. The data must not be modified in any way, unless
the string was just created usiRyString_FromStringAndSize(NULL, size) . It must not be deal-
located. Ifstringis a Unicode object, this function computes the default encodistriofy and operates on that.

If stringis not a string object at alRyString_AsStringAndSize returns-1 and raiseSypeError

void PyString_Concat (PyObject **string, PyObject *newpalt
Create a new string object fistring containing the contents alewpartappended tatring; the caller will own
the new reference. The reference to the old valustrfig will be stolen. If the new string cannot be created,
the old reference tetring will still be discarded and the value &$tring will be set toNULL; the appropriate
exception will be set.

void PyString_ConcatAndDel (PyObject **string, PyObject *newpalt
Create a new string object irstring containing the contents afewpartappended testring. This version
decrements the reference counnefvpart

int _PyString_Resize (PyObject **string, Py_ssize_t newsjze
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object as an
Ivalue (it may be written into), and the new size desired. On suctsgsig holds the resized string object and
0 is returned; the address tetring may differ from its input value. If the reallocation fails, the original string
object at*string is deallocated*string is set toNULL, a memory exception is set, arH is returned.

PyObject* PyString_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object froformatandargs Analogous tdormat % args . Theargsargument must
be a tuple.

void PyString_InterninPlace (PyObject **string
Intern the argumentstring in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the sanistasg, it sets*string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leave3string alone and interns it (incrementing its reference count). (Clarification: even though
there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object
after the call if and only if you owned it before the call.)

PyObject* PyString_InternFromString (const char *y
Return value: New reference.
A combination ofPyString_FromsString and PyString_InterninPlace , returning either a new
string object that has been interned, or a new (“owned”) reference to an earlier interned string object with the
same value.

PyObject* PyString_Decode (constchar*s, Py_ssize_t size, const char *encoding, const char *@rrors
Return value: New reference.
Create an object by decodisgebytes of the encoded buffeusing the codec registered fancoding encoding
anderrors have the same meaning as the parameters of the same nameuimidbée() built-in function.
The codec to be used is looked up using the Python codec registry. Rétlinif an exception was raised by
the codec.

58 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

PyObject* PyString_AsDecodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Decode a string object by passing it to the codec registereghfomdingand return the result as Python object.
encodingand errors have the same meaning as the parameters of the same name in thesstiioig()
method. The codec to be used is looked up using the Python codec registry. REftLLnf an exception was
raised by the codec.

PyObject* PyString_Encode (constchar *s, Py_ssize_t size, const char *encoding, const char *@rrors
Return value: New reference.
Encode thehar buffer of the given size by passing it to the codec registeredriopdingand return a Python
object.encodinganderrors have the same meaning as the parameters of the same name in therstadg()
method. The codec to be used is looked up using the Python codec registry. REturrif an exception was
raised by the codec.

PyObject* PyString_ AsEncodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Encode a string object using the codec registere@ffiandingand return the result as Python objemtcoding
anderrors have the same meaning as the parameters of the same name in therstodg() method. The
codec to be used is looked up using the Python codec registry. Rétilrh if an exception was raised by the
codec.

7.3.3 Unicode Objects and Codecs

Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode ordinals.
Python’s default builds use a 16-bit type 8y UNICODEand store Unicode values internally as UCS2. It is
also possible to build a UCS4 version of Python (most recent Linux distributions come with UCS4 builds of
Python). These builds then use a 32-bit type Fgr UNICODEand store Unicode data internally as UCS4.
On platforms wherevchar_t is available and compatible with the chosen Python Unicode build variant,
Py UNICODEIis a typedef alias fowchar_t to enhance native platform compatibility. On all other plat-
forms,Py_UNICODEis a typedef alias for eithamsigned short (UCS2) orunsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing extensions
or interfaces.

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode Type
This instance ofPyTypeObject represents the Python Unicode type. It is exposed to Python code as
unicode andtypes.UnicodeType

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject*g
Return true if the objeab is a Unicode object or an instance of a Unicode subtype. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyUnicode_CheckExact (PyObject*q
Return true if the objeatb is a Unicode object, but not an instance of a subtype. New in version 2.2.

Py ssize 't PyUnicode_GET_SIZE (PyObject*g
Return the size of the objeat.has to be &yUnicodeObject (not checked).

7.3. Sequence Objects 59

The Python/C API, Release 2.6.1

Py ssize t PyUnicode GET_DATA_SIZE (PyObject *9
Return the size of the object’s internal buffer in bytefias to be &yUnicodeObject (not checked).

Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *9
Return a pointer to the intern&ly UNICODEDbuffer of the object.o has to be @yUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA (PyObject *9
Return a pointer to the internal buffer of the objexhas to be @yUnicodeObject (not checked).

int PyUnicode_ClearFreeList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE Py_UNICODE ch
Return 1 or 0 depending on whetteris a whitespace character.

int Py _UNICODE_ISLOWERPy_UNICODE ch
Return 1 or 0 depending on whetlddris a lowercase character.

int Py_UNICODE_ISUPPERPy_UNICODE ch
Return 1 or 0 depending on whetletris an uppercase character.

int Py _UNICODE_ISTITLE (Py_UNICODE ch
Return 1 or O depending on whetledris a titlecase character.

int Py_UNICODE_ISLINEBREAK Py_UNICODE ch
Return 1 or 0 depending on whettetris a linebreak character.

int Py _UNICODE_ISDECIMAL Py_UNICODE ch
Return 1 or 0 depending on whettdris a decimal character.

int Py_UNICODE_ISDIGIT (Py_UNICODE ch
Return 1 or 0 depending on whettetris a digit character.

int Py _UNICODE_ISNUMERICPy_UNICODE ch
Return 1 or 0 depending on whetteéris a numeric character.

int Py_UNICODE_ISALPHA Py_UNICODE ch
Return 1 or 0 depending on whetteris an alphabetic character.

int Py _UNICODE_ISALNUNIPy_UNICODE ch
Return 1 or 0 depending on whettdris an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py _UNICODE Py_UNICODE_TOLOWERY UNICODE ch
Return the characteh converted to lower case.

Py_UNICODE Py_UNICODE_TOUPPERPY_UNICODE ch
Return the characteh converted to upper case.

Py _UNICODE Py_UNICODE_TOTITLH Py_UNICODE ch
Return the characteh converted to title case.

int Py _UNICODE_TODECIMALPY_UNICODE ch
Return the charactath converted to a decimal positive integer. Retttnif this is not possible. This macro
does not raise exceptions.

int Py _UNICODE_TODIGIT(Py_UNICODE ch
Return the characteh converted to a single digit integer. Retufn if this is not possible. This macro does not
raise exceptions.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

double Py_UNICODE_TONUMERI(®y_UNICODE ch
Return the charactesh converted to a double. Returh.0 if this is not possible. This macro does not raise
exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize t gjize
Return value: New reference.
Create a Unicode Object from the Py_UNICODE bufiesf the given sizeu may beNULL which causes the
contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the
new object. If the buffer is ndllULL, the return value might be a shared object. Therefore, modification of the
resulting Unicode object is only allowed whars NULL.

Py UNICODE* PyUnicode_AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s intefial UNICODEDbuffer, NULL if unicodeis not a
Unicode object.

Py ssize t PyUnicode GetSize (PyObject *unicodg
Return the length of the Unicode object.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errprs
Return value: New reference.
Coerce an encoded objemij to an Unicode object and return a reference with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the error
handling defined by errors. Both can B&JLL to have the interface use the default values (see the next section
for details).

All other objects, including Unicode objects, caustypeError to be set.
The API returndNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode_FromObject (PyObject *ob)
Return value: New reference.
Shortcut forPyUnicode_FromEncodedObject(obj, NULL, "strict") which is used throughout
the interpreter whenever coercion to Unicode is needed.

If the platform supportsvchar_t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python's odyn UNICODEtype is identical to the system’s
wchar_t .

PyObject* PyUnicode_FromWideChar (constwchar_t *w, Py_ssize_t sjze
Return value: New reference.
Create a Unicode object from techar_t bufferw of the given size. ReturNULL on failure.

Py ssize t PyUnicode_AsWideChar (PyUnicodeObiject *unicode, wchar_t *w, Py_ssize t)size
Copy the Unicode object contents into twehar t bufferw. At mostsizewchar_ t characters are copied
(excluding a possibly trailing O-termination character). Return the numbexcbér_t characters copied or
-1 in case of an error. Note that the resultiwghar_t string may or may not be O-terminated. It is the
responsibility of the caller to make sure that thehar_t string is O-terminated in case this is required by the
application.

Built-in Codecs
Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have the
same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding ttNULL causes the default encoding to be used which is ASCII. The file system calls should use

7.3. Sequence Objects 61

The Python/C API, Release 2.6.1

Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-
only: On some systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the
application invokes setlocale).

Error handling is set by errors which may also be selltlL meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “stric¢alueError s raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.
These are the generic codec APls:

PyObject* PyUnicode_Decode (constchar*s, Py ssize t size, const char *encoding, const char *@rrors
Return value: New reference.
Create a Unicode object by decodisigebytes of the encoded strirgy encodingand errors have the same
meaning as the parameters of the same name imniede() builtin function. The codec to be used is
looked up using the Python codec registry. ReMtsLL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py UNICODE *s, Py ssize t size, const char *encoding, const char

*errors)
Return value: New reference.

Encode the®’y UNICODEDuffer of the given size and return a Python string objeacodinganderrors have
the same meaning as the parameters of the same name in the Uaimmtke() method. The codec to be
used is looked up using the Python codec registry. RetlhL if an exception was raised by the codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *erjors
Return value: New reference.
Encode a Unicode object and return the result as Python string olgecbdingand errors have the same
meaning as the parameters of the same name in the Unemoole() method. The codec to be used is
looked up using the Python codec registry. ReMtLL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (constchar *s, Py ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the UTF-8 encoded strirsgg ReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py ssize t size, const char *errors,
Py_ssize t *consumgd
Return value: New reference.
If consumeds NULL, behave likePyUnicode DecodeUTF8 . If consumeds notNULL, trailing incomplete
UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and the number of bytes
that have been decoded will be stored@msumedNew in version 2.4.

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode the>y UNICODEbuffer of the given size using UTF-8 and return a Python string object. Rt
if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF8String (PyObject *unicodg
Return value: New reference.

Encode a Unicode object using UTF-8 and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the UTF-32 codec APls:

PyObject* PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *bytedrder
Decodéengthbytes from a UTF-32 encoded buffer string and return the corresponding Unicode ebjerd.
(if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

*byteorder == -1: little endian
*pbyteorder == 0: native order
*byteorder == 1: big endian

and then switches if the first four bytes of the input data are a byte order mark (BOM) and the specified byte
order is native order. This BOM is not copied into the resulting Unicode string. After compl&tigieorderis
set to the current byte order at the end of input data.

In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.
If byteorderis NULL, the codec starts in native order mode.
ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_DecodeUTF32Stateful (constchar *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize_t *consumed
If consumedis NULL, behave like PyUnicode DecodeUTF32 . If consumedis not NULL,

PyUnicode DecodeUTF32Stateful will not treat trailing incomplete UTF-32 byte sequences (such as a
number of bytes not divisible by four) as an error. Those bytes will not be decoded and the nhumber of bytes that
have been decoded will be storeccimnsumedNew in version 2.6.

PyObject* PyUnicode_EncodeUTF32 (const Py _UNICODE *s, Py_ssize _t size, const char *errors, int byte-

order
Return a Python bytes object holding the U)FF-32 encoded value of the Unicode dathligteorderis notO,
output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_W!IDHs not defined, surrogate pairs will be output as a single codepoint.
ReturnNULL if an exception was raised by the codec. New in version 2.6.
PyObject* PyUnicode_AsUTF32String (PyObject *unicodg

Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec. New in version 2.6.

These are the UTF-16 codec APls:

PyObject* PyUnicode_DecodeUTF16 (constchar*s, Py_ssize_t size, const char *errors, int *bytedrder
Return value: New reference.
Decoddengthbytes from a UTF-16 encoded buffer string and return the corresponding Unicode ebjers.
(if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*pbyteorder == 1: big endian

and then switches if the first two bytes of the input data are a byte order mark (BOM) and the specified byte
order is native order. This BOM is not copied into the resulting Unicode string. After compl&tigteorderis
set to the current byte order at the.

If byteorderis NULL, the codec starts in native order mode.
ReturnNULL if an exception was raised by the codec.

7.3. Sequence Objects 63

The Python/C API, Release 2.6.1

PyObject* PyUnicode_DecodeUTF16Stateful (constchar *s, Py_ssize_t size, const char *errors, int *by-

teorder, Py_ssize t *consumed
Return value: New reference.

If consumedis NULL, behave like PyUnicode DecodeUTF16 . If consumedis not NULL,
PyUnicode_DecodeUTF16Stateful will not treat trailing incomplete UTF-16 byte sequences (such as

an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the number of
bytes that have been decoded will be storedansumedNew in version 2.4.

PyObject* PyUnicode_EncodeUTF16 (const Py _UNICODE *s, Py_ssize_t size, const char *errors, int byte-

order)
Return value: New reference.

Return a Python string object holding the UTF-16 encoded value of the Unicode datéliyteorderis not0,
output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_UNICODE_WIDEHs defined, a singl®y UNICODEvalue may get represented as a surrogate pair. If it
is not defined, eacRy UNICODEvalues is interpreted as an UCS-2 character.

ReturnNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF16String (PyObject *unicodg
Return value: New reference.
Return a Python string using the UTF-16 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APlIs:

PyObject* PyUnicode_DecodeUnicodeEscape (constchar *s, Py ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodigigebytes of the Unicode-Escape encoded steéndReturnNULL if an
exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py UNICODE *s, Py ssize t gize
Return value: New reference.
Encode thePy UNICODEDbuffer of the given size using Unicode-Escape and return a Python string object.
ReturnNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APlIs:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char*s, Py ssize t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodisigebytes of the Raw-Unicode-Escape encoded stirigeturnNULL if
an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py UNICODE *s, Py_ssize t size, const char

*errors)
Return value: New reference.

Encode thé>y UNICODEbuffer of the given size using Raw-Unicode-Escape and return a Python string object.
ReturnNULL if an exception was raised by the codec.

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error han-
dling is “strict”. ReturnNULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode_DecodelLatinl (const char *s, Py_ssize t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodisigebytes of the Latin-1 encoded strirsg ReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodelLatinl (const Py _UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode thé>y UNICODEbuffer of the given size using Latin-1 and return a Python string object. Risfutrh.
if an exception was raised by the codec.

PyObject* PyUnicode_AsLatin1String (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Latin-1 and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCIl (const char *s, Py_ssize_t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodisigebytes of the ASCII encoded strirgy ReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodeASCIl (const Py_UNICODE *s, Py _ssize_t size, const char *ejrors
Return value: New reference.
Encode thé’y UNICODEbuffer of the given size using ASCII and return a Python string object. Rétuirl.
if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using ASCII and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included ingheodings package). The codec uses mapping to encode and
decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then inter-
preted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then inter-
preted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which
map characters to different code points.

PyObject* PyUnicode_DecodeCharmap (constchar*s, Py _ssize_t size, PyObject *mapping, const char *er-

rors)
Return value: New reference.

Create a Unicode object by decodisigebytes of the encoded strirggusing the givemmappingobject. Return

7.3. Sequence Objects 65

The Python/C API, Release 2.6.1

NULL if an exception was raised by the codecméppingis NULL latin-1 decoding will be done. Else it can

be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values greater that
the length of the string and U+FFFE “characters” are treated as “undefined mapping”. Changed in version 2.4:
Allowed unicode string as mapping argument.

PyObject* PyUnicode_EncodeCharmap (const Py UNICODE *s, Py ssize t size, PyObject *mapping,

const char *error$
Return value: New reference.

Encode theé®?y UNICODEDbuffer of the given size using the givenappingobject and return a Python string
object. ReturrNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mappihg
Return value: New reference.
Encode a Unicode object using the givaappingobject and return the result as Python string object. Error
handling is “strict”. ReturrNULL if an exception was raised by the codec.

The following codec APl is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *table,

const char *error$
Return value: New reference.

Translate &y UNICODEDbuffer of the given length by applying a character mappaigeto it and return the
resulting Unicode object. RetuMULL when an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeckupError) are left untouched and are copied as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the MBCS encoded strisg ReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful ~ (const char *s, int size, const char *errors, int *consurped
If consumed is NULL, behave like PyUnicode DecodeMBCS. If consumedis not NULL,
PyUnicode DecodeMBCSStateful will not decode trailing lead byte and the number of bytes that
have been decoded will be storeccionsumedNew in version 2.5.

PyObject* PyUnicode_EncodeMBCS (const Py _UNICODE *s, Py_ssize t size, const char *ejrors
Return value: New reference.
Encode the’y UNICODEbuffer of the given size using MBCS and return a Python string object. RBHUEri
if an exception was raised by the codec.

PyObject* PyUnicode_AsMBCSString (PyObiject *unicodg
Return value: New reference.
Encode a Unicode object using MBCS and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all returnrNULL or -1 if an exception occurs.

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxpplit
Return value: New reference.
Split a string giving a list of Unicode strings. If sepNSJLL, splitting will be done at all whitespace substrings.
Otherwise, splits occur at the given separator. At rmaaksplitsplits will be done. If negative, no limit is set.
Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObiject *s, int keepend
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line

break. Ifkeepends 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errgrs
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeckupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayNd#l_L which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *sgq
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

int PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize t end, int dirgction
Return value: New reference.
Return 1 ifsubstrmatchesstr*[*start :end at the given tail enddirection== -1 means to do a prefix match,
direction== 1 a suffix match), 0 otherwise. Retuh if an error occurred.

Py ssize 't PyUnicode Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-

tion)
Return the first position ofubstrin str*[*start :end using the giverdirection (direction== 1 means to do a
forward searchgirection== -1 a backward search). The return value is the index of the first match; a value of

-1 indicates that no match was found, adindicates that an error occurred and an exception has been set.

Py ssize 't PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize } end
Return the number of non-overlapping occurrencesulfstrin str[start:end] . Return-1 if an error
occurred.

PyObject* PyUnicode_Replace (PyObiject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxgount
Return value: New reference.
Replace at mostaxcountoccurrences ofubstrin str with replstr and return the resulting Unicode object.

maxcount= -1 means replace all occurrences.

int PyUnicode_Compare (PyObiject *left, PyObject *right
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare (PyObject *left, PyObject *right, int op
Rich compare two unicode strings and return one of the following:
*NULLIn case an exception was raised
*Py True orPy False for successful comparisons
*Py Notimplemented in case the type combination is unknown

7.3. Sequence Objects 67

The Python/C API, Release 2.6.1

Note thatPy EQ and Py_NE comparisons can causeUnicodeWarning in case the conversion of the
arguments to Unicode fails with@nicodeDecodeError

Possible values fasp arePy_GT, Py_GE Py _EQ, Py NE Py LT, andPy_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object froformatandargs, this is analogous tformat % args . Theargsargument
must be a tuple.

int PyUnicode_Contains (PyObject *container, PyObject *elemént
Check whetheelemenis contained ircontainerand return true or false accordingly.

elementas to coerce to a one element Unicode striigis returned if there was an error.

7.3.4 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should be noted that
array elements may be multi-byte values.

An example user of the buffer interface is the file objeatste() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg_ParseTuple that operate against an object’s buffer interface, returning data from the target object. More
information on the buffer interface is provided in the sectitufer Object Structurgsunder the description for
PyBufferProcs

A “buffer object” is defined in théufferobject.h header (included b¥ython.h). These objects look very
similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and some
other standard string operations. However, their data can come from one of two sources: from a block of memory, or
from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is
possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a
C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

PyTypeObject PyBuffer_Type
The instance oPyTypeObject which represents the Python buffer type; it is the same objdmifisr and
types.BufferType in the Python layer. .

int Py END_OF_BUFFER
This constant may be passed as theize parameter to PyBuffer FromObject or
PyBuffer FromReadWriteObject . It indicates that the newPyBufferObject should refer to
baseobject from the specifiedffsetto the end of its exported buffer. Using this enables the caller to avoid
querying thebaseobiject for its length.

int PyBuffer_Check (PyObject™*p
Return true if the argument has typgBuffer Type

PyObject* PyBuffer_FromObject (PyObject *base, Py_ssize_t offset, Py_ssize_} size
Return value: New reference.

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Return a new read-only buffer object. This raiSegeError if basedoesn't support the read-only buffer
protocol or doesn’t provide exactly one buffer segment, or it raigdgeError if offsetis less than zero. The
buffer will hold a reference to thbaseobject, and the buffer's contents will refer to thaseobject’s buffer
interface, starting as positiaifsetand extending fosizebytes. Ifsizeis Py END_OF BUFFERhen the new
buffer's contents extend to the length of theseobject’s exported buffer data.

PyObject* PyBuffer_FromReadWriteObject (PyObject *base, Py_ssize t offset, Py _ssize } size
Return value: New reference.

Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer_FromObject . If the baseobject does not export the writeable buffer protocol, thgpeError
is raised.

PyObject* PyBuffer_FromMemory (void *ptr, Py_ssize_t size
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a specified size. The
caller is responsible for ensuring that the memory buffer, passedgtr,ds not deallocated while the returned
buffer object exists. RaiségalueError if sizeis less than zero. Note they END_OF BUFFERnaynot
be passed for theizeparameterValueError will be raised in that case.

PyObject* PyBuffer_FromReadWriteMemory (void *ptr, Py_ssize_t size
Return value: New reference.
Similar toPyBuffer FromMemory , but the returned buffer is writable.

PyObject* PyBuffer_ New (Py_ssize tsije
Return value: New reference.
Return a new writable buffer object that maintains its own memory buffesizé bytes. ValueError
is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer) is not specifically aligned.

7.3.5 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance ofPyTypeObject represents the Python tuple type; it is the same objeduple and
types.TupleType in the Python layer..

int PyTuple_Check (PyObject*p
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyTuple_CheckExact (PyObject*p
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple_New (Py_ssize tlen
Return value: New reference.
Return a new tuple object of siten, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn,).
Return value: New reference.
Return a new tuple object of size, or NULL on failure. The tuple values are initialized to the
subsequenn C arguments pointing to Python objectsPyTuple Pack(2, a, b) is equivalent to
Py_Buildvalue("(00)", a, b) . New in version 2.4.

Py ssize 't PyTuple_Size (PyObject*p
Take a pointer to a tuple object, and return the size of that tuple.

Py ssize t PyTuple_GET_SIZE (PyObject *p

7.3. Sequence Objects 69

The Python/C API, Release 2.6.1

Return the size of the tupfg which must be noNULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_Getltem (PyObject *p, Py_ssize_t pps
Return value: Borrowed reference.
Return the object at positignosin the tuple pointed to byp. If posis out of bounds, returflULL and sets an
IndexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize t pps
Return value: Borrowed reference.
Like PyTuple_Getltem , but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_tlow, Py_ssize t high
Return value: New reference.
Take a slice of the tuple pointed to pyfrom low to high and return it as a new tuple.

int PyTuple_Setltem (PyObject *p, Py_ssize_t pos, PyObjec) *o
Insert a reference to objeatat positionposof the tuple pointed to bp. Return0 on success.

Note: This function “steals” a reference o

void PyTuple_SET_ITEM (PyObject *p, Py_ssize t pos, PyObjec) *o
Like PyTuple_Setltem , but does no error checking, and shoatdy be used to fill in brand new tuples.

Note: This function “steals” a reference o

int _PyTuple Resize (PyObject**p, Py_ssize_t news)ze
Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplessarpposedo be
immutable, this should only be used if there is only one reference to the objeahotse this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. R8tomsuccess. Client
code should never assume that the resulting valde afill be the same as before calling this function. If the
object referenced b¥p is replaced, the origingb is destroyed. On failure, return$ and set$p to NULL,
and raisedMemoryError or SystemError . Changed in version 2.2: Removed unused third parameter,
last_is_sticky

int PyTuple_ClearFreelList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

7.3.6 List Objects

PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList Type
This instance ofPyTypeObject represents the Python list type. This is the same objedisas and
types.ListType in the Python layer.

int PyList Check (PyObject*p
Return true ifp is a list object or an instance of a subtype of the list type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyList CheckExact (PyObject*p
Return true ifp is a list object, but not an instance of a subtype of the list type. New in version 2.2.

PyObject* PyList New (Py_ssize_tlen
Return value: New reference.
Return a new list of lengthken on success, ddULL on failure.

Note: If lengthis greater than zero, the returned list object’s items are shfitbl. Thus you cannot use
abstract API functions such &ySequence_Setltem or expose the object to Python code before setting all
items to a real object witRyList Setltem

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Py ssize t PyList_Size (PyObject *lis}
Return the length of the list object list; this is equivalent téen(list) on a list object.

Py ssize t PyList GET_SIZE (PyObject *lis)
Macro form ofPyList_Size without error checking.

PyObject* PyList_Getltem (PyObject *list, Py_ssize_t indgx
Return value: Borrowed reference.
Return the object at positigrosin the list pointed to by. The position must be positive, indexing from the end
of the list is not supported. [fosis out of bounds, returNULL and set aiindexError exception.

PyObject* PyList GET_ITEM (PyObject *list, Py_ssize }i
Return value: Borrowed reference.
Macro form ofPyList_Getltem without error checking.

int PyList_Setltem (PyObiject *list, Py_ssize_t index, PyObject *ifem
Set the item at indedexin list to item ReturnO on success orl on failure.

Note: This function “steals” a reference temand discards a reference to an item already in the list at the
affected position.

void PyList SET_ITEM (PyObject *list, Py_ssize ti, PyObject)o
Macro form ofPyList_Setltem without error checking. This is normally only used to fill in new lists where
there is no previous content.

Note: This function “steals” a reference tiem, and, unlikePyList Setltem , doesnotdiscard a reference
to any item that it being replaced; any referencéshat positioni will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *ifem
Insert the itemteminto list list in front of indexindex Return0 if successful; retural and set an exception if
unsuccessful. Analogous ligt.insert(index, item)

int PyList Append (PyObject *list, PyObject *itefn
Append the objecitem at the end of listist. Return0 if successful; retural and set an exception if unsuc-
cessful. Analogous tlist.append(item)

PyObject* PyList GetSlice (PyObiject *list, Py_ssize_t low, Py_ssize_t high
Return value: New reference.
Return a list of the objects iist containing the objectsetween lovandhigh. ReturnNULL and set an exception
if unsuccessful. Analogous tst[low:high]

int PyList_SetSlice (PyObiject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itejnlist
Set the slice ofist betweenlow and high to the contents oitemlist Analogous tdist[low:high] =
itemlist . Theitemlistmay beNULL, indicating the assignment of an empty list (slice deletion). Reburn
on success;l on failure.

int PyList Sort (PyObject *lis}
Sort the items ofist in place. Retur® on success,1 on failure. This is equivalent tlist.sort()

int PyList Reverse (PyObiject *lis)
Reverse the items ofist in place. Return0 on success;1 on failure. This is the equivalent of
list.reverse()

PyObject* PyList_AsTuple (PyObject *lis)
Return value: New reference.
Return a new tuple object containing the contentsbf equivalent tauple(list)

7.3. Sequence Objects 71

The Python/C API, Release 2.6.1

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python programs
asdict andtypes.DictType

int PyDict_Check (PyObject*p
Return true ifp is a dict object or an instance of a subtype of the dict type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyDict_CheckExact (PyObject*pn
Return true ifp is a dict object, but not an instance of a subtype of the dict type. New in version 2.4.

PyObject* PyDict_New ()
Return value: New reference.
Return a new empty dictionary, tULL on failure.

PyObject* PyDictProxy_New (PyObject *dic)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a proxy
to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict_Clear (PyObject*p
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key
Determine if dictionaryp containskey: If an item inp is matchekey returnl, otherwise retur®. On error,
return-1 . This is equivalent to the Python expressi@y in p . New in version 2.4.

PyObject* PyDict Copy (PyObject*p
Return value: New reference.
Return a new dictionary that contains the same key-value pajpsihew in version 1.6.

int PyDict_Setltem (PyObject *p, PyObject *key, PyObject *yal
Insertvalueinto the dictionanyp with a key ofkey keymust behashableif itisn’t, TypeError will be raised.
ReturnO on success o1l on failure.

int PyDict_SetltemString (PyObject *p, const char *key, PyObject *yal
Insertvalueinto the dictionaryp usingkeyas a key.keyshould be ahar* . The key object is created using
PyString_FromString(key) . ReturnO on success ol on failure.

int PyDict Delltem (PyObject *p, PyObject *key
Remove the entry in dictionagywith key key. keymust be hashable; if it isn'TypeError is raised. Return
0 on success ol on failure.

int PyDict_DelltemString (PyObject *p, char *key
Remove the entry in dictionany which has a key specified by the strikgy ReturnO on success orl on
failure.

PyObject* PyDict_Getltem (PyObject *p, PyObject *kgy
Return value: Borrowed reference.
Return the object from dictionagywhich has a kekey ReturnNULL if the keykeyis not present, buvithout
setting an exception.

PyObject* PyDict_GetltemString (PyObject *p, const char *kgy

72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Return value: Borrowed reference.
This is the same aByDict_Getltem , butkeyis specified as ahar* , rather than &yObject*

PyObject* PyDict_Items (PyObject *p
Return value: New reference.

Return aPyListObject containing all the items from the dictionary, as in the dictionary method
dict.items()

PyObject* PyDict_Keys (PyObject*p
Return value: New reference.
Return a PyListObject containing all the keys from the dictionary, as in the dictionary method
dict.keys()

PyObject* PyDict Values (PyObject*p
Return value: New reference.

Return aPyListObject containing all the values from the dictionagy as in the dictionary method
dict.values()

Py ssize t PyDict Size (PyObject*p
Return the number of items in the dictionary. This is equivalefeén@p) on a dictionary.

int PyDict Next (PyObject*p, Py ssize t*ppos, PyObject **pkey, PyObject **pvplue
Iterate over all key-value pairs in the dictiongry Theint referred to bypposmust be initialized td prior
to the first call to this function to start the iteration; the function returns true for each pair in the dictionary, and
false once all pairs have been reported. The parampkensand pvalueshould either point té’yObject*
variables that will be filled in with each key and value, respectively, or maykL. Any references returned
through them are borrowegposshould not be altered during iteration. Its value represents offsets within the
internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.

For example:

PyObject *key, *value;
Py ssize t pos = 0;

while (PyDict_Next(self - >dict, &pos, &key, &value)) {
[* do something interesting with the values... */

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;

Py ssize t pos = 0;
while (PyDict_Next(self - >dict, &pos, &key, &value)) {
int i = Pylnt_ AS_LONG(value) + 1;
PyObject *o = PyInt_FromLong(i);
if (0o == NULD
return -1;
if ~ (PyDict_Setltem(self - >dict, key, 0) < 0) {
Py _DECREF(0);
return - 1;
}

Py_DECREF(0);

7.4. Mapping Objects 73

The Python/C API, Release 2.6.1

int PyDict_Merge (PyObject*a, PyObject *b, int override
Iterate over mapping objedt adding key-value pairs to dictionasy b may be a dictionary, or any object
supportingPyMapping_Keys() andPyObject_Getltem() . If overrideis true, existing pairs i will
be replaced if a matching key is foundbinotherwise pairs will only be added if there is not a matching key in
a. Return0 on success oil if an exception was raised. New in version 2.2.

int PyDict Update (PyObject*a, PyObject *p
This is the same a3yDict_Merge(a, b, 1) in C, ora.update(b) in Python. Retur® on success or
-1 if an exception was raised. New in version 2.2.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int overrijle
Update or merge into dictionamp; from the key-value pairs iseq2 seq2must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the lastavasideis true,
else the first wins. Returfl on success ofl if an exception was raised. Equivalent Python (except for the
return value):

def PyDict MergeFromSeq2(a, seq2, override)
for key, value in seq2:

if override or key not in a
alkey] = value

New in version 2.2.

7.5 Other Objects

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When creating
new types for extension modules, you will want to work with type objects (seGtipa Objects

PyClassObject
The C structure of the objects used to describe built-in classes.

PyObject* PyClass_Type
This is the type object for class objects; it is the same objettEs.ClassType in the Python layer.
int PyClass_Check (PyObject*q

Return true if the objeab is a class object, including instances of types derived from the standard class object.
Return false in all other cases.

int PyClass_IsSubclass (PyObject *klass, PyObject *baye
Return true itklassis a subclass dfase Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject Pylnstance_Type
Type object for class instances.

int Pylnstance_Check (PyObject *ob)
Return true ifobjis an instance.

PyObject* Pylnstance_New (PyObject *class, PyObject *arg, PyObject *kw
Return value: New reference.
Create a new instance of a specific class. The paramegendkw are used as the positional and keyword
parameters to the object’s constructor.

PyObject* Pylnstance_NewRaw (PyObject *class, PyObject *dirt
Return value: New reference.

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

Create a new instance of a specific class without calling its constretassis the class of new object. Tlict
parameter will be used as the object'dict__ ; if NULL, a new dictionary will be created for the instance.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance oPyTypeObject and represents the Python function type. It is exposed to Python
programmers agypes.FunctionType

int PyFunction_Check (PyObject *q
Return true ifo is a function object (has typeyFunction_Type). The parameter must not BEJLL.

PyObject* PyFunction_New (PyObject *code, PyObject *glob3gls
Return value: New reference.
Return a new function object associated with the code objeaé globalsmust be a dictionary with the global
variables accessible to the function.

The function’s docstring, name and module__are retrieved from the code object, the argument defaults and
closure are set thlULL.

PyObject* PyFunction_GetCode (PyObject *op
Return value: Borrowed reference.
Return the code object associated with the function olgjpct

PyObject* PyFunction_GetGlobals (PyObiject *op
Return value: Borrowed reference.
Return the globals dictionary associated with the function olgjpct
PyObject* PyFunction_GetModule (PyObject *op
Return value: Borrowed reference.
Return the__module__attribute of the function objeatp. This is hormally a string containing the module
name, but can be set to any other object by Python code.
PyObject* PyFunction_GetDefaults (PyObject *op
Return value: Borrowed reference.
Return the argument default values of the function objectThis can be a tuple of argumentshiLL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults
Set the argument default values for the function objgridefaultsmust bePy Noneor a tuple.

RaisesSystemError and returnsl on failure.

PyObject* PyFunction_GetClosure (PyObiject *op
Return value: Borrowed reference.
Return the closure associated with the function obpgctThis can beNULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closuye
Set the closure associated with the function obpgciclosuremust bePy_Noneor a tuple of cell objects.

RaisesSystemError and returnsl on failure.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

7.5. Other Objects 75

The Python/C API, Release 2.6.1

PyTypeObject PyMethod_Type
This instance oPyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType

int PyMethod_Check (PyObject *g
Return true ifo is a method object (has typg/Method_Type). The parameter must not bEJLL.

PyObject* PyMethod_New (PyObject *func, PyObject *self, PyObject *cl3ss
Return value: New reference.
Return a new method object, wittinc being any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instaetfeshould be the instance anthssshould
be the class ofelf otherwiseself should beNULL andclassshould be the class which provides the unbound
method..

PyObject* PyMethod_Class (PyObject *meth
Return value: Borrowed reference.
Return the class object from which the methmdthwas created,; if this was created from an instance, it will be
the class of the instance.

PyObject* PyMethod_GET_CLASS PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod_Class which avoids error checking.

PyObject* PyMethod_Function (PyObject *meth
Return value: Borrowed reference.
Return the function object associated with the metimadh

PyObject* PyMethod_GET_FUNCTION PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod_Function which avoids error checking.

PyObject* PyMethod_Self (PyObject *meth
Return value: Borrowed reference.
Return the instance associated with the metimedhif it is bound, otherwise returhNULL.

PyObject* PyMethod_GET_SELF(PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod_Self which avoids error checking.

int PyMethod_ClearFreelList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on FHeE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.

PyFileObject
This subtype oPyObject represents a Python file object.

PyTypeObject PyFile_Type
This instance oPyTypeObject represents the Python file type. This is exposed to Python progrdiites as
andtypes.FileType

int PyFile_Check (PyObject*p
Return true if its argument is RyFileObject or a subtype oPyFileObject . Changed in version 2.2:
Allowed subtypes to be accepted.

int PyFile_CheckExact (PyObject*p
Return true if its argument isRyFileObject , but not a subtype dPyFileObject . New in version 2.2.

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

PyObject* PyFile_FromString (char *filename, char *mode
Return value: New reference.
On success, return a new file object that is opened on the file giviilebgme with a file mode given bynode
wheremodehas the same semantics as the standard C rdigee . On failure, returrNULL.

PyObject* PyFile_FromFile (FILE *fp, char *name, char *mode, int (*close)(FILE})
Return value: New reference.
Create a newyFileObject from the already-open standard C file poinfier, The functionclosewill be
called when the file should be closed. RetNdLL on failure.

FILE* PyFile_AsFile (PyObject*p
Return the file object associated wiitas aFILE* .

If the caller will ever use the returneldlLE* object while the GIL is released it must also call tRg-
File_IncUseCounandPyFile_DecUseCourfunctions described below as appropriate.

void PyFile_IncUseCount (PyFileObject *p
Increments the PyFileObject’s internal use count to indicate that the undeRiliitf is being used. This
prevents Python from calling f_close() on it from another thread. Callers of this mustygalé_DecUseCount
when they are finished with tHeLE* . Otherwise the file object will never be closed by Python.

The GIL must be held while calling this function.
The suggested use is to call this afeiFile_AsFilejust before you release the GIL. New in version 2.6.

void PyFile_DecUseCount (PyFileObject *p
Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its own
use of theFILE* . This may only be called to undo a prior callRyFile_IncUseCount

The GIL must be held while calling this function. New in version 2.6.

PyObject* PyFile_GetLine (PyObject *p, intr)
Return value: New reference.
Equivalent top.readline([n]) , this function reads one line from the objgctp may be a file object or
any object with aeadline() method. Ifnis 0, exactly one line is read, regardless of the length of the line.
If nis greater that®, no more tham bytes will be read from the file; a partial line can be returned. In both
cases, an empty string is returned if the end of the file is reached immediatelg. I#ss tharD, however, one
line is read regardless of length, l®FError is raised if the end of the file is reached immediately.

PyObject* PyFile_Name (PyObject*p
Return value: Borrowed reference.
Return the name of the file specified pyws a string object.

void PyFile_SetBufSize (PyFileObject *p, int)
Available on systems witeetvbuf only. This should only be called immediately after file object creation.

int PyFile_SetEncoding (PyFileObject *p, const char *ernc
Set the file’s encoding for Unicode outputdac Return 1 on success and 0 on failure. New in version 2.3.

int PyFile_SetEncodingAndErrors (PyFileObject *p, const char *enc, *errojs
Set the file’s encoding for Unicode outputdng and its error mode terr. Return 1 on success and 0 on failure.
New in version 2.6.

int PyFile_SoftSpace (PyObject *p, int newflap
This function exists for internal use by the interpreter. Sestifespace attribute ofp to newflagand return
the previous valuep does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if theoftspace attribute can be set). This function clears any errors, and will
returnO as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags
Write objectobj to file objectp. The only supported flag fdtagsis Py_PRINT_RAWif given, thestr() of
the object is written instead of thepr() . ReturnO on success ol on failure; the appropriate exception

7.5. Other Objects 77

The Python/C API, Release 2.6.1

int

will be set.

PyFile_WriteString (const char *s, PyObject *p
Write stringsto file objectp. ReturnO on success o1l on failure; the appropriate exception will be set.

7.5.5 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type

int

int

This instance oPyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType

PyModule_Check (PyObject *p
Return true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed subtypes
to be accepted.

PyModule_CheckExact (PyObject*p
Return true ifp is a module object, but not a subtyperdfModule_Type . New in version 2.2.

PyObject* PyModule_New (const char *namg

Return value: New reference.
Return a new module object with the name___ attribute set tmame Only the module’s _doc__ and
__hame___ attributes are filled in; the caller is responsible for providing éile__ attribute.

PyObject* PyModule_GetDict (PyObject *module

char*

char*

int

int

int

int

int

Return value: Borrowed reference.

Return the dictionary object that implemem®dulés namespace; this object is the same as thdict
attribute of the module object. This function never fails. It is recommended extensions useyteztule *
andPyObject_* functions rather than directly manipulate a module’slict

PyModule_GetName (PyObject *modulg
Returnmodulés __name___ value. If the module does not provide one, or if it is not a strisgstemError
is raised andNULL is returned.

PyModule_GetFilename (PyObject *moduli
Return the name of the file from whichodulewas loaded usinghodulés __ file_ attribute. If this is not
defined, or if it is not a string, raiseystemError and returrNULL.

PyModule_AddObject (PyObject *module, const char *name, PyObject *value
Add an object tanoduleasname This is a convenience function which can be used from the module’s initial-
ization function. This steals a referencevdue Return-1 on error,0 on success. New in version 2.0.

PyModule AddIntConstant (PyObject *module, const char *name, long value
Add an integer constant tmoduleasname This convenience function can be used from the module’s initial-
ization function. Returrl on error,0 on success. New in version 2.0.

PyModule AddStringConstant (PyObject *module, const char *name, const char *value
Add a string constant tmoduleasname This convenience function can be used from the module’s initialization
function. The stringraluemust be null-terminated. Returfh on error,0 on success. New in version 2.0.

PyModule_AddIntMacro (PyObject *module, macjo

Add an int constant tomodule The name and the value are taken framacra For example
PyModule_AddConstant(module, AF_INET) adds the int constanAF_INET with the value of
AF_INETto module Return-1 on error,0 on success. New in version 2.6.

PyModule_AddStringMacro (PyObject *module, macjo
Add a string constant tmodule

New in version 2.6.

78

Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

7.5.6 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the _getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqlter_Type
Type object for iterator objects returned BySeqlter New and the one-argument form of tlier()
built-in function for built-in sequence types. New in version 2.2.

int PySeqlter_Check (op)
Return true if the type obpis PySeqlter_Type . New in version 2.2.

PyObject* PySeqlter_New (PyObject *sej
Return value: New reference.
Return an iterator that works with a general sequence olgeqt,The iteration ends when the sequence raises
IndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCalllter_Type
Type obiject for iterator objects returned ByCalllter New and the two-argument form of thter()
built-in function. New in version 2.2.

int PyCalllter_Check (op)
Return true if the type abpis PyCalllter_Type . New in version 2.2.

PyObject* PyCalllter New (PyObject *callable, PyObject *sentinel
Return value: New reference.
Return a new iterator. The first parametallable, can be any Python callable object that can be called with no
parameters; each call to it should return the next item in the iteration. \&éi&ble returns a value equal to
sentine] the iteration will be terminated. New in version 2.2.

7.5.7 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr_NewGetSet (PyTypeObiject *type, struct PyGetSetDef *gétset
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMember (PyTypeObiject *type, struct PyMemberDef *njeth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMethod (PyTypeObiject *type, struct PyMethodDef *mieth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewClassMethod (PyTypeObiject *type, PyMethodDef *method
Return value: New reference.
New in version 2.3.

int PyDescr_IsData (PyObject *descy
Return true if the descriptor objealescrdescribes a data attribute, or false if it describes a metthestrmust

7.5. Other Objects 79

The Python/C API, Release 2.6.1

be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper_New (PyObject *, PyObject ¥
Return value: New reference.
New in version 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the samslace andtypes.SliceType

int PySlice_Check (PyObject *ol)
Return true ifobis a slice objectpb must not beNULL.

PyObject* PySlice_New (PyObiject *start, PyObject *stop, PyObject *s)ep
Return value: New reference.
Return a new slice object with the given values. Bhert, stop andstepparameters are used as the values of
the slice object attributes of the same names. Any of the values migyhk, in which case th&lone will be
used for the corresponding attribute. RethdLL if the new object could not be allocated.

int PySlice_Getlndices (PySliceObject *slice, Py_ssize t length, Py _ssize t *start, Py _ssize t *stop,
Py _ssize t*stép
Retrieve the start, stop and step indices from the slice objieet assuming a sequence of lengghgth Treats
indices greater thalengthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices Masenand failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior to
2.3, you would probably do well to incorporate the sourc®pflice GetindicesEx , Suitably renamed,
in the source of your extension.

int PySlice_GetIndicesEx (PySliceObject *slice, Py_ssize t length, Py_ssize_t *start, Py_ssize_t *stop,
Py ssize t*step, Py_ssize_t *slicelength
Usable replacement fdrySlice Getindices . Retrieve the start, stop, and step indices from the slice
objectsliceassuming a sequence of lendghgth and store the length of the sliceshicelength Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set. New in version 2.3.

7.5.9 Weak Reference Objects

Python supportsveak referenceas first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check (ob)
Return true ifobis either a reference or proxy object. New in version 2.2.

int PyWeakref_CheckRef (ob)
Return true ifobis a reference object. New in version 2.2.

int PyWeakref _CheckProxy (ob)
Return true ifobis a proxy object. New in version 2.2.

PyObject* PyWeakref NewRef (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference object for the objaat This will always return a new reference, but is not guaranteed
to create a new object; an existing reference object may be returned. The second pacaitietek, can be a
callable object that receives notification whamis garbage collected; it should accept a single parameter, which

80 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

will be the weak reference object itsetfallbackmay also béNone or NULL. If obis not a weakly-referencable
object, or ifcallbackis not callableNone, or NULL, this will returnNULL and raiseTypeError . New in
version 2.2.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference proxy object for the objget This will always return a new reference, but is not
guaranteed to create a new object; an existing proxy object may be returned. The second pasdinatircan
be a callable object that receives notification wiens garbage collected,; it should accept a single parameter,
which will be the weak reference object itselfallback may also beNone or NULL. If ob is not a weakly-
referencable object, or dfallbackis not callableNone, or NULL, this will returnNULL and raise€l'ypeError
New in version 2.2.

PyObject* PyWeakref GetObject (PyObiject *ref)
Return value: Borrowed reference.
Return the referenced object from a weak refererefe]f the referent is no longer live, returidone. New in
version 2.2.

PyObject* PyWeakref GET_OBJECT(PyObiject *ref)
Return value: Borrowed reference.
Similar toPyWeakref GetObject , butimplemented as a macro that does no error checking. New in version
2.2.

7.5.10 CObjects

Refer toProviding a C API for an Extension Modu(@ Extending and Embedding Pythdior more information on
using these objects.

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (aswid* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject_Check (PyObject*p
Return true if its argument isRyCObject .

PyObject* PyCObject_ FromVoidPtr (void* cobj, void (*destr)(void *)
Return value: New reference.
Create &?yCObject from thevoid * cobj. Thedestrfunction will be called when the object is reclaimed,
unless it iSNULL.

PyObject* PyCObject FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void ¥)
Return value: New reference.
Create &?yCObject from thevoid * cobj Thedestrfunction will be called when the object is reclaimed.
Thedescargument can be used to pass extra callback data for the destructor function.
void* PyCObject_AsVoidPtr (PyObject* selj
Return the objectoid * thatthePyCObject self was created with.

void* PyCObject_GetDesc (PyObject* selj
Return the descriptiomoid * that thePyCObject self was created with.

int PyCObject_SetVoidPtr (PyObject* self, void* cob)j
Set the void pointer insidself to cobj. ThePyCObject must not have an associated destructor. Return true
on success, false on failure.

7.5. Other Objects 81

The Python/C API, Release 2.6.1

7.5.11 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true ifobis a cell objectpb must not beNULL.

PyObject* PyCell_New (PyObject *ol)

Return value: New reference.

Create and return a new cell object containing the valuerhe parameter may BéULL.
PyObject* PyCell_Get (PyObject *cel)

Return value: New reference.

Return the contents of the cekll.
PyObject* PyCell GET (PyObject *cel)

Return value: Borrowed reference.

Return the contents of the cekll, but without checking thatell is nonNULL and a cell object.

int PyCell_Set (PyObject*cell, PyObject *value
Set the contents of the cell objemll to value This releases the reference to any current content of the cell.
valuemay beNULL. cell must be norNULL; if it is not a cell object-1 will be returned. On succes8,will
be returned.

void PyCell SET (PyObject *cell, PyObject *value
Sets the value of the cell objecell to value No reference counts are adjusted, and no checks are made for
safety;cell must be norNULL and must be a cell object.

7.5.12 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly callfigGen _New

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects

int PyGen_Check(ob)
Return true ifobis a generator objectib must not beNULL.

int PyGen_CheckExact (ob)
Return true ifob's type isPyGen_Typés a generator objectib must not beNULL.

PyObject* PyGen_New(PyFrameObject *framg
Return value: New reference.
Create and return a new generator object based ofrdhee object. A reference térameis stolen by this
function. The parameter must not B&JLL.

82 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

7.5.13 DateTime Objects

Various date and time objects are supplied by dlagetime module. Before using any of these functions, the
header filedatetime.h must be included in your source (note that this is not include@®ytyon.h), and the
macroPyDateTime_IMPORT must be invoked. The macro puts a pointer to a C structure into a static variable,
PyDateTimeAPI , that is used by the following macros.

Type-check macros:

int PyDate Check (PyObject *ob
Return true ifob is of typePyDateTime_DateType or a subtype oPyDateTime_DateType . ob must
not beNULL. New in version 2.4.

int PyDate CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_DateType . obmust not beNULL. New in version 2.4.

int PyDateTime_Check (PyObject *of
Return true ibbis of typePyDateTime_DateTimeType or asubtype oPyDateTime_DateTimeType
obmust not beNULL. New in version 2.4.

int PyDateTime_CheckExact (PyObject *ob)
Return true ifobis of typePyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.

int PyTime_Check (PyObject *ob
Return true ifob is of typePyDateTime_TimeType or a subtype oPyDateTime_TimeType . obmust
not beNULL. New in version 2.4.

int PyTime_CheckExact (PyObject *oh
Return true ifobis of typePyDateTime_TimeType . obmust not beNULL. New in version 2.4,

int PyDelta_Check (PyObject*ol)
Return true ifob is of type PyDateTime_DeltaType or a subtype oPyDateTime_DeltaType . ob
must not beNULL. New in version 2.4.

int PyDelta_CheckExact (PyObiject *ob
Return true ifobis of typePyDateTime_DeltaType . obmust not beNULL. New in version 2.4.

int PyTZInfo_Check (PyObject*ob)
Return true ifob is of typePyDateTime_TZInfoType or a subtype oPyDateTime_TZInfoType . ob
must not beNULL. New in version 2.4.

int PyTZInfo_CheckExact (PyObject *ol)
Return true ifobis of typePyDateTime_TZInfoType . obmust not beNULL. New in version 2.4.

Macros to create objects:

PyObject* PyDate FromDate (intyear, int month, int day
Return value: New reference.
Return adatetime.date object with the specified year, month and day. New in version 2.4.

PyObject* PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second, int

usecon{l
Return value: New reference.

Return adatetime.datetime object with the specified year, month, day, hour, minute, second and mi-
crosecond. New in version 2.4.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecgnd
Return value: New reference.
Return adatetime.time object with the specified hour, minute, second and microsecond. New in version
2.4,

PyObject* PyDelta_ FromDSU (int days, int seconds, int usecofds
Return value: New reference.

7.5. Other Objects 83

The Python/C API, Release 2.6.1

Return adatetime.timedelta object representing the given number of days, seconds and microseconds.
Normalization is performed so that the resulting number of microseconds and seconds lie in the ranges docu-
mented fordatetime.timedelta objects. New in version 2.4.

Macros to extract fields from date objects. The argument must be an instaRg®afeTime _Date , including
subclasses (such 8yDateTime_DateTime). The argument must not IdULL, and the type is not checked:

int PyDateTime_GET_YEAR(PyDateTime_Date *p
Return the year, as a positive int. New in version 2.4.

int PyDateTime_GET_MONTH PyDateTime_Date *p
Return the month, as an int from 1 through 12. New in version 2.4.

int PyDateTime_GET_DAY (PyDateTime_Date *p
Return the day, as an int from 1 through 31. New in version 2.4.

Macros to extract fields from datetime objects. The argument must be an instaRgBateTime_DateTime
including subclasses. The argument must ndilbe L, and the type is not checked:

int PyDateTime_DATE_GET_HOUR PyDateTime_DateTime o
Return the hour, as an int from 0 through 23. New in version 2.4,

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime jo
Return the minute, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_SECONDPyDateTime_DateTime jo
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_MICROSECONPyDateTime_DateTime jo
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros to extract fields from time objects. The argument must be an instafydateTime_Time , including
subclasses. The argument must notNbé L, and the type is not checked:

int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o
Return the minute, as an int from O through 59. New in version 2.4.

int PyDateTime_TIME_GET_SECONL PyDateTime_Time *o
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_MICROSECONDPyDateTime_Time *o
Return the microsecond, as an int from 0 through 999999. New in version 2.4,

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *arg$
Return value: New reference.
Create and return a nedatetime.datetime object given an argument tuple suitable for passing to
datetime.datetime.fromtimestamp() . New in version 2.4.

PyObject* PyDate FromTimestamp (PyObject *arg$
Return value: New reference.

Create and return a newlatetime.date object given an argument tuple suitable for passing to
datetime.date.fromtimestamp() . New in version 2.4.

7.5.14 Set Objects

New in version 2.5. This section details the public API feet and frozenset objects. Any
functionality not listed below is best accessed using the either the abstract object protocol (includ-

84 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.1

ing PyObject_CallMethod , PyObject_RichCompareBool , PyObject Hash , PyObject Repr
PyObject_IsTrue , PyObject Print , andPyObject Getlter) or the abstract number protocol (includ-
ing PyNumber_And, PyNumber_Subtract , PyNumber_Or, PyNumber_Xor , PyNumber_InPlaceAnd
PyNumber_InPlaceSubtract , PyNumber_InPlaceOr , andPyNumber_InPlaceXor).

PySetObject
This subtype ofPyObject is used to hold the internal data for batt andfrozenset objects. It is like
aPyDictObject inthatitis a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields
of this structure should be considered public and are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet Type
This is an instance dPyTypeObject representing the Pythaet type.

PyTypeObject PyFrozenSet_Type
This is an instance dPyTypeObject representing the Pythdrozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject*p
Return true ifpis aset object or an instance of a subtype. New in version 2.6.

int PyFrozenSet_Check (PyObject*pn
Return true ifp is afrozenset object or an instance of a subtype. New in version 2.6.

int PyAnySet_Check (PyObiject*p
Return true ifpis aset object, afrozenset object, or an instance of a subtype.

int PyAnySet CheckExact (PyObject*p
Return true ifpis aset object or afrozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject*p
Return true ifpis afrozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObiject *iterablg
Return value: New reference.
Return a neveet containing objects returned by thierable Theiterablemay beNULL to create a new empty
set. Return the new set on succes®bi_L on failure. Raisel'ypeError if iterableis not actually iterable.
The constructor is also useful for copying a sstget(s)).

PyObject* PyFrozenSet_New (PyObiject *iterabl¢
Return value: New reference.
Return a newfrozenset containing objects returned by tliterable Theiterable may beNULL to create
a new empty frozenset. Return the new set on succebBJbt on failure. RaiselypeError if iterable
is not actually iterable. Changed in version 2.6: Now guaranteed to return a brandezewset . For-
merly, frozensets of zero-length were a singleton. This got in the way of building-up new frozensets with
PySet_Add()

The following functions and macros are available for instancegbfor frozenset or instances of their subtypes.

Py _ssize 't PySet_Size (PyObject *anysét
Return the length of aset or frozenset object. Equivalent tolen(anyset) . Raises a
PyExc_SystemError if anysetis not aset , frozenset , or an instance of a subtype.

Py ssize 't PySet GET_SIZE (PyObject *anysét
Macro form ofPySet_Size without error checking.

int PySet Contains (PyObject *anyset, PyObject *kpy
Return 1 if found, O if not found, and -1 if an error is encountered. Unlike the Pythaontains__ ()

7.5. Other Objects 85

The Python/C API, Release 2.6.1

method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the keyis unhashable. RaideyExc_SystemError if anysetis not aset , frozenset
or an instance of a subtype.

int PySet Add (PyObject *set, PyObject *kgy
Add keyto aset instance. Does not apply foozenset instances. Return 0 on success or -1 on failure.
Raise aTypeError if the keyis unhashable. RaiseMemoryError if there is no room to grow. Raise a
SystemError if setis an not an instance afet or its subtype. Changed in version 2.6: Now works with
instances ofrozenset or its subtypes. LikéyTuple_Setltem in that it can be used to fill-in the values
of brand new frozensets before they are exposed to other code.

The following functions are available for instancessef or its subtypes but not for instancesfafzenset or its
subtypes.

int PySet Discard (PyObject *set, PyObject *kgy
Return 1 if found and removed, O if not found (no action taken), and -1 if an error is encountered. Does
not raiseKeyError for missing keys. Raise &ypeError if the keyis unhashable. Unlike the Python
discard() method, this function does not automatically convert unhashable sets into temporary frozensets.
RaisePyExc_SystemError if setis an not an instance gkt or its subtype.

PyObject* PySet_Pop (PyObject *set
Return value: New reference.
Return a new reference to an arbitrary object ingbeand removes the object from teet ReturnNULL on
failure. RaiseKeyError if the set is empty. Raise @ystemError if setis an not an instance skt or its
subtype.

int PySet Clear (PyObject*se}t
Empty an existing set of all elements.

86 Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

INITIALIZATION, FINALIZATION, AND
THREADS

void Py_lInitialize 0
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception Bf SetProgramName , PyEval InitThreads ,
PyEval_ReleaseLock , and PyEval_AcquireLock . This initializes the table of loaded modules
(sys.modules), and creates the fundamental modulebuiltin__ , _ main__ andsys. It also ini-
tializes the module search pa#ly§.path). It does not sesys.argv ; usePySys_SetArgv for that. This
is a no-op when called for a second time (without callihg Finalize first). There is no return value; itis a
fatal error if the initialization fails.

void Py_lInitializeEx (int initsigs)
This function works likePy _Initialize if initsigsis 1. If initsigsis 0, it skips initialization registration of
signal handlers, which might be useful when Python is embedded. New in version 2.4.

int Py_lIslnitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if noRAfténalize
is called, this returns false unflly Initialize is called again.

void Py_Finalize ()
Undo all initializations made by _Initialize and subsequent use of Python/C API functions, and destroy
all sub-interpreters (seey_Newlnterpreter below) that were created and not yet destroyed since the last
call to Py _Initialize . Ideally, this frees all memory allocated by the Python interpreter. This is a no-op
when called for a second time (without calliRy _Initialize again first). There is no return value; errors

during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveatsThe destruction of modules and objects in modules is done in random order; this may cause
destructors (_del__ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls?y _Initialize andPy Finalize more than once.

PyThreadState* Py _Newlnterpreter 0
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the

87

The Python/C API, Release 2.6.1

void

void

char*

char*

fundamental modules builtin__ , _main__ andsys . The table of loaded modulesys.modules)
and the module search palyé.path) are also separate. The new environment hasysargv variable.
It has new standard I/O stream file objests.stdin |, sys.stdout andsys.stderr (however these
refer to the same underlyirfg)LE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation of
the new interpreter is unsuccesshLJLL is returned; no exception is set since the exception state is stored in the
current thread state and there may not be a current thread state. (Like all other Python/C API functions, the global
interpreter lock must be held before calling this function and is still held when it returns; however, unlike most
other Python/C API functions, there needn’t be a current thread state on entry.) Extension modules are shared
between (sub-)interpreters as follows: the first time a particular extension is imported, it is initialized normally,
and a (shallow) copy of its module’s dictionary is squirreled away. When the same extension is imported by
another (sub-)interpreter, a new module is initialized and filled with the contents of this copy; the extension’s
init function is not called. Note that this is different from what happens when an extension is imported after
the interpreter has been completely re-initialized by callyg Finalize ~ andPy_Initialize ; in that

case, the extensionisitmodule functionis called againBugs and caveatsBecause sub-interpreters (and

the main interpreter) are part of the same process, the insulation between them isn't perfect — for example,
using low-level file operations likes.close() they can (accidentally or maliciously) affect each other’s

open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when the extension makes use of (static) global variables, or when the
extension manipulates its module’s dictionary after its initialization. It is possible to insert objects created in
one sub-interpreter into a namespace of another sub-interpreter; this should be done with great care to avoid
sharing user-defined functions, methods, instances or classes between sub-interpreters, since import operations
executed by such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is

a hard-to-fix bug that will be addressed in a future release.)

Also note that the use of this functionality is incompatible with extension modules such as PyObjC and ctypes
that use thePyGlLState_ * APIs (and this is inherent in the way tiyGILState_* functions work).
Simple things may work, but confusing behavior will always be near.

Py_EndInterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thre&d Hthte is
All thread states associated with this interpreter are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returnsBy Finalize will destroy all sub-interpreters that
haven't been explicitly destroyed at that point.

Py SetProgramName (char *namg

This function should be called befofey_Initialize is called for the first time, if it is called at all. It
tells the interpreter the value of tlaegv[0] argument to thenain function of the program. This is used by
Py_GetPath and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value’'mython’ . The argument should point to a zero-terminated character string
in static storage whose contents will not change for the duration of the program’s execution. No code in the
Python interpreter will change the contents of this storage.

Py_GetProgramName ()
Return the program name set witly_SetProgramName , or the default. The returned string points into static
storage; the caller should not modify its value.

Py _GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated rules
from the program name set witty SetProgramName and some environment variables; for example, if the
program name i§ustr/local/bin/python’ , the prefix is/usr/local’ . The returned string points
into static storage; the caller should not modify its value. This corresponds to the :makevar:‘prefix' variable
in the top-levelMakefile and the--prefix argument to theonfigure script at build time. The value is
available to Python code ays.prefix . Itis only useful on Unix. See also the next function.

88

Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.1

char* Py _GetExecPrefix ()
Return theexec-prefixfor installed platformdependenfiles. This is derived through a number of compli-
cated rules from the program name set with SetProgramName and some environment variables; for
example, if the program name 'fsisr/local/bin/python’ , the exec-prefix igusr/local’ . The
returned string points into static storage; the caller should not modify its value. This corresponds to the :make-
var:‘exec_prefix' variable in the top-levéakefile and the--exec-prefix argument to theonfigure
script at build time. The value is available to Python codsyassexec_prefix . Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may
be installed in théusr/local/plat subtree while platform independent may be installedign/local

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure theunt or automount programs to sharkisr/local
between platforms while havingsr/local/plat be a different filesystem for each platform.

char* Py _GetProgramFullPath ()

Return the full program name of the Python executable; this is computed as a side-effect of deriving the de-
fault module search path from the program name (sétyySetProgramName above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable

char* Py _GetPath ()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName above) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter chatactesndJnix
and Mac OS X;;” on Windows. The returned string points into static storage; the caller should not modify its
value. The value is available to Python code as theslistpath , which may be modified to change the future
search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python codsyasversion

const char* Py _GetBuildNumber ()
Return a string representing the Subversion revision that this Python executable was built from. This number
is a string because it may contain a trailing ‘M’ if Python was built from a mixed revision source tree. New in
version 2.5.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which is
also known as SunOS 5.x, the valuésisnos5’ . On Mac OS X, itisdarwin’ . On Windows, it iswin’
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.platform

89

The Python/C API, Release 2.6.1

const char* Py GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’ The returned
string points into static storage; the caller should not modify its value. The value is available to Python code as
sys.copyright

const char* Py _GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2] "

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

const char* Py_GetBuildinfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

void PySys SetArgv (intargc, char **argv)
Setsys.argv based orargc andargv. These parameters are similar to those passed to the progreaims
function with the difference that the first entry should refer to the script file to be executed rather than the exe-
cutable hosting the Python interpreter. If there isn’t a script that will be run, the first ersrg\ican be an empty
string. If this function fails to initializesys.argv , a fatal condition is signalled usirigy FatalError

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count could end up being incremented only once instead
of twice. Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on
Python objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter
regularly releases and reacquires the lock — by default, every 100 bytecode instructions (this can be changed with
sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking 1/0O operations
like reading or writing a file, so that other threads can run while the thread that requests the I/O is waiting for the I/O
operation to complete. The Python interpreter needs to keep some bookkeeping information separate per thread
— for this it uses a data structure callegThreadState . There’s one global variable, however: the pointer to

the currentPyThreadState structure. While most thread packages have a way to store “per-thread global data,”
Python's internal platform independent thread abstraction doesn’t support this yet. Therefore, the current thread state
must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.

...Do some blocking | / O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

920 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.1

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking | / O operation...
Py _END_ALLOW_THREADS

The Py BEGIN _ALLOW THREADSnacro opens a new block and declares a hidden local variable; the

Py END_ALLOW_THREADSacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and lock manipula-
tions.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking | / O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState Swap(NULL);
PyEval_ReleaseLock();

...Do some blocking | / O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particulrizval RestoreThread saves and restores the value of the
global variableerrno , since the lock manipulation does not guarantee dhato is left alone. Also, when thread
support is disabled?yEval SaveThread andPyEval RestoreThread don’t manipulate the lock; in this
case,PyEval_ReleaseLock andPyEval_AcquireLock are not available. This is done so that dynamically
loaded extensions compiled with thread support enabled can be loaded by an interpreter that was compiled with
disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving
the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread
could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring
the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves into
existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread state
pointer, before they can start using the Python/C API. When they are done, they should reset the thread state pointer,
release the lock, and finally free their thread state data structure.

Beginning with version 2.3, threads can now take advantage dfyldL State_* functions to do all of the above
automatically. The typical idiom for calling into Python from a C thread is now:

PyGILState_ STATE gstate;
gstate = PyGlILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();

8.1. Thread State and the Global Interpreter Lock 91

The Python/C API, Release 2.6.1

[* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState Release(gstate);

Note that thePyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize). Python still supports the creation of additional interpreters (uBingNewlInterpreter),
but mixing multiple interpreters and tliyGILState * APl is unsupported.

PylnterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PylnterpreterState * interp , which points to this thread’s interpreter state.

void PyEval_InitThreads 0
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-
ating a second thread or engaging in any other thread operations suélyEasi Releaselock

or PyEval_ReleaseThread(tstate) . It is not needed before callingyEval SaveThread or
PyEval_RestoreThread . This is a no-op when called for a second time. It is safe to call this function
before callingPy_Initialize . When only the main thread exists, no lock operations are needed. This is a

common situation (most Python programs do not use threads), and the lock operations slow the interpreter down
a bit. Therefore, the lock is not created initially. This situation is equivalent to having acquired the lock: when
there is only a single thread, all object accesses are safe. Therefore, when this function initializes the lock, it
also acquires it. Before the Pyththiread module creates a new thread, knowing that either it has the lock or

the lock hasn't been created yet, it cafigEval InitThreads . When this call returns, it is guaranteed that

the lock has been created and that the calling thread has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_Threadslnitialized 0
Returns a non-zero value ifyEval_InitThreads has been called. This function can be called without
holding the lock, and therefore can be used to avoid calls to the locking API when running single-threaded. This
function is not available when thread support is disabled at compile time. New in version 2.4.

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval_ReleaselLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available when
thread support is disabled at compile time.

void PyEval_AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and set the current thread statat® which should not béNULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is not
available when thread support is disabled at compile time.

void PyEval ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNULL and release the global interpreter lock. The lock must have been created

92 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.1

earlier and must be held by the current thread. Wtateargument, which must not BdULL, is only used
to check that it represents the current thread state — if it isn’t, a fatal error is reported. This function is not
available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state to
NULL, returning the previous thread state (which is NotLL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval RestoreThread (PyThreadState *tstaje
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the threddtstate to
which must not beNULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

void PyEval_RelnitThreads 0
This function is called froniPyOS AfterFork to ensure that newly created child processes don't hold locks
referring to threads which are not running in the child process.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOW_THREADS
This macro expands fo PyThreadState * save; _save = PyEval SaveThread(); . Note that
it contains an opening brace; it must be matched with a follovAiggEND_ALLOW_THREAD®acro. See
above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py _END_ALLOW_THREADS
This macro expands tByEval_RestoreThread(_save); } . Note that it contains a closing brace; it
must be matched with an earliely BEGIN_ALLOW_THREAD®acro. See above for further discussion of
this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS

This macro expands to PyEval_RestoreThread(_save); : it is equivalent to
Py END_ALLOW_THREAD®Iithout the closing brace. It is a no-op when thread support is disabled at
compile time.
Py_UNBLOCK_THREADS
This macro expands to _save = PyEval_SaveThread(); : it is equivalent to

Py BEGIN_ALLOW_THREAD#ithout the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the interpreter lock has been created.

PylInterpreterState* PylInterpreterState New 0
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it is necessary to
serialize calls to this function.

void PylnterpreterState_Clear (PyInterpreterState *interp
Reset all information in an interpreter state object. The interpreter lock must be held.

void PylnterpreterState Delete (PyInterpreterState *interp
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have been
reset with a previous call tByInterpreterState_Clear

PyThreadState* PyThreadState_New (PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The interpreter lock need not be held,
but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstaje
Reset all information in a thread state object. The interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 93

The Python/C API, Release 2.6.1

void PyThreadState Delete (PyThreadState *tstaje
Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset with
a previous call ta’yThreadState Clear

PyThreadState* PyThreadState_Get ()
Return the current thread state. The interpreter lock must be held. When the current thread\&fate this
issues a fatal error (so that the caller needn’t checiNfatL).

PyThreadState* PyThreadState_ Swap (PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstegtwhich may beNULL. The
interpreter lock must be held.

PyObject* PyThreadState GetDict 0
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should use
a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is
available. If this function returnslULL, no exception has been raised and the caller should assume no current
thread state is available. Changed in version 2.3: Previously this could only be called when a current thread is
active, andNULL meant that an exception was raised.

int PyThreadState SetAsyncExc (long id, PyObject *exg
Asynchronously raise an exception in a thread. ithargument is the thread id of the target threextis the
exception object to be raised. This function does not steal any referenees i prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; this is normally one, but will be zero if the thread id isn't foundxdis NULL, the pending
exception (if any) for the thread is cleared. This raises no exceptions. New in version 2.3.

PyGILState STATE PyGILState Ensure ()
Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of its thread lock. This may be called as many times as desired by a thread as long as each call is
matched with a call t®PyGILState Release . In general, other thread-related APIs may be used be-
tweenPyGlILState Ensure andPyGILState Release calls as long as the thread state is restored to
its previous state before the Release(). For example, normal usageRof tBEGIN_ALLOW THREADand
Py END ALLOW_ THREAD®Bacros is acceptable.

The return value is an opaque “handle” to the thread state W&l State Ensure was called, and must

be passed t®yGlLState _Release to ensure Python is left in the same state. Even though recursive calls
are allowed, these handleannotbe shared - each unique callRgGILState Ensure must save the handle

for its call toPyGILState_Release

When the function returns, the current thread will hold the GIL. Failure is a fatal error. New in version 2.3.
void PyGlLState Release (PyGILState STATE
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior to the

correspondingPyGILState_Ensure call (but generally this state will be unknown to the caller, hence the
use of the GILState API.)

Every call toPyGILState Ensure must be matched by a call feyGILState Release on the same
thread. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the

94 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.1

interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the
same as had been reported to the Python-level trace functions in previous versions.

(*Py_tracefunc)

int

int

int

int

int

int

int

void

void

The type of the trace function registered usig=val SetProfile andPyEval_SetTrace . The first
parameter is the object passed to the registration functioobgsframeis the frame object to which the
event pertainswhat is one of the constant8yTrace CALL , PyTrace EXCEPTION, PyTrace LINE ,
PyTrace_ RETURN, PyTrace_C_CALL , PyTrace_C_EXCEPTION, or PyTrace_C_RETURN, andarg
depends on the value afat

Value of what Meaning of arg

PyTrace CALL Always NULL.

PyTrace_EXCEPTION Exception information as returned Bys.exc_info()
PyTrace_LINE Always NULL.

PyTrace_ RETURN Value being returned to the caller.
PyTrace_C_CALL Name of function being called.
PyTrace_C_EXCEPTION | AlwaysNULL.

PyTrace_C_RETURN Always NULL.

PyTrace CALL

The value of thewhat parameter to &y_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is
not reported as there is no control transfer to the Python bytecode in the corresponding frame.

PyTrace_EXCEPTION

The value of thevhatparameter to &y _tracefunc function when an exception has been raised. The call-
back function is called with this value fevhatwhen after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propagation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace
functions receives these events; they are not needed by the profiler.

PyTrace_LINE
The value passed as tivhat parameter to a trace function (but not a profiling function) when a line-number
event is being reported.

PyTrace_RETURN
The value for thavhat parameter td’y _tracefunc functions when a call is returning without propagating
an exception.

PyTrace_C_CALL
The value for thevhatparameter t¢’y_tracefunc functions when a C function is about to be called.

PyTrace_C_EXCEPTION
The value for thavhatparameter t&’y tracefunc functions when a C function has thrown an exception.

PyTrace_C_RETURN
The value for thavhatparameter té’y_tracefunc functions when a C function has returned.

PyEval_SetProfile (Py_tracefunc func, PyObject *gbj
Set the profiler function tdunc The obj parameter is passed to the function as its first parameter, and may
be any Python object, dAMULL. If the profile function needs to maintain state, using a different valuebpr
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

PyEval_SetTrace (Py_tracefunc func, PyObject *gbj
Set the tracing function tlunc This is similar toPyEval_SetProfile , except the tracing function does
receive line-number events.

PyObject* PyEval GetCallStats (PyObject *selj

Return a tuple of function call counts. There are constants defined for the positions within the tuple:

8.2. Profiling and Tracing 95

The Python/C API, Release 2.6.1

Name Value
PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP 10

PCALL_FAST_FUNCTIONmeans no argument tuple needs to be create@ALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

If there is a method call where the call can be optimized by changing the argument tuple and calling the function
directly, it gets recorded twice.

©oo~NOYULh WNEO

This function is only present if Python is compiled wilALL_PROFILE defined.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PylInterpreterState Head 0
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PylInterpreterState* PylInterpreterState_Next (PyInterpreterState *interp
Return the next interpreter state object afiteerp from the list of all such objects. New in version 2.2.

PyThreadState * PylInterpreterState_ ThreadHead (PyInterpreterState *interp
Return the a pointer to the firBtyThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState Next (PyThreadState *tstaje
Return the next thread state object aftetate from the list of all such objects belonging to the same
PyInterpreterState object. New in version 2.2.

96 Chapter 8. Initialization, Finalization, and Threads

CHAPTER
NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally byRiphon memory managefThe Python memory manager

has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

Itis important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document. To avoid memory corruption, extension writers
should never try to operate on Python objects with the functions exported by the C libnafioc , calloc

realloc andfree . This will result in mixed calls between the C allocator and the Python memory manager
with fatal consequences, because they implement different algorithms and operate on different heaps. However, one
may safely allocate and release memory blocks with the C library allocator for individual purposes, as shown in the
following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for 11O */

if (buf == NULL
return PyErr_NoMemory();
...Do some | /O operation involving buf...
res = PyString_FromsString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the 1/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with
new object types written in C. Another reason for using the Python heap is the deisifertothe Python memory

97

The Python/C API, Release 2.6.1

manager about the memory needs of the extension module. Even when the requested memory is used exclusively for
internal, highly-specific purposes, delegating all memory requests to the Python memory manager causes the inter-
preter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances,
the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction
or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the
allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc (size_tn
Allocatesn bytes and returns a pointer of typeid* to the allocated memory, MULL if the request fails.
Requesting zero bytes returns a distinct DL pointer if possible, as iPyMem_Malloc(1l) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_th
Resizes the memory block pointed to pyto n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. pfis NULL, the call is equivalent tyMem_Malloc(n) ; else ifn is equal to
zero, the memory block is resized but is not freed, and the returned pointer NWion-Unlessp is NULL,
it must have been returned by a previous calPtdvlem_Malloc or PyMem_Realloc . If the request fails,
PyMem_Realloc returnsNULL andp remains a valid pointer to the previous memory area.

void PyMem_Free(void *p)
Frees the memory block pointed to pywhich must have been returned by a previous cdfytilem Malloc
or PyMem_Realloc . Otherwise, or ifPyMem_Free(p) has been called before, undefined behavior occurs.
If pis NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Notd WRErefers to any C type.

TYPE* PyMem_NeWTYPE, size_th
Same a®yMem_Malloc , but allocategn * sizeof(TYPE)) bytes of memory. Returns a pointer cast to
TYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t)n
Same a?’yMem_Realloc , but the memory block is resized (o * sizeof(TYPE)) bytes. Returns a
pointer cast tarYPE*. On returnp will be a pointer to the new memory area,MULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del(void *p)
Same a®yMem_Free.

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

PyMem_MALLO®yMem_REALLOMPyMem_FREE
PyMem_NEWyMem_RESIZE PyMem_DEL

9.3 Examples

Here is the example from secti@wverview rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

98 Chapter 9. Memory Management

The Python/C API, Release 2.6.1

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); [* for 1/O */

if (buf == NULD
return PyErr_NoMemory();
/¥ ..Do some 1/O operation involving buf... */
res = PyString_FromsString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_Newthar , BUFSIZ); /* for 1/O */

if (buf == NULL
return PyErr_NoMemory();
/* ...Do some |/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); [* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is lalag¢ted as
because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New€har , BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
PyMem_Del(buf3); [* Wrong -- should be PyMem_ Free() */
free(buf2); [* Right -- allocated via malloc() */
free(bufl); [* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released witRyObject New , PyObject NewVar andPyObject Del

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 99

The Python/C API, Release 2.6.1

100 Chapter 9. Memory Management

CHAPTER
TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject New (PyTypeObject *type
Return value: New reference.

PyVarObject* ~ _PyObject_NewVar (PyTypeObiject *type, Py_ssize _t 3ize
Return value: New reference.

void _PyObject_Del (PyObject *op

PyObject* PyObiject_Init (PyObject *op, PyTypeObject *tyjpe
Return value: Borrowed reference.
Initialize a newly-allocated objeap with its type and initial reference. Returns the initialized objectytfe
indicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of observed
objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar (PyVarObiject *op, PyTypeObject *type, Py_ssize t)size
Return value: Borrowed reference.
This does everythingyObject_Init does, and also initializes the length information for a variable-size
object.

TYPE* PyObject New (TYPE, PyTypeObject *type
Return value: New reference.
Allocate a new Python object using the C structure typd?Eand the Python type objetgpe Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of the
memory allocation is determined from the basicsize field of the type object.

TYPE* PyObject NewVar (TYPE, PyTypeObject *type, Py_ssize tkize
Return value: New reference.
Allocate a new Python object using the C structure typ@’Eand the Python type objetype Fields not
defined by the Python object header are not initialized. The allocated memory allows oY Biestructure
plussizefields of the size given by thig _itemsize field of type This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into the
same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject Del (PyObject*op
Releases memory allocated to an object usig@bject New or PyObject NewVar . This is normally
called from thetp_dealloc ~ handler specified in the object’s type. The fields of the object should not be

101

The Python/C API, Release 2.6.1

accessed after this call as the memory is no longer a valid Python object.

PyObject* Py _InitModule (char *name, PyMethodDef *methgds
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object. Changed
in version 2.3: Older versions of Python did not suppddLL as the value for thenethodsargument.

PyObject* Py _InitModule3 (char *name, PyMethodDef *methods, char *gloc
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module algject. If
is nonNULL, it will be used to define the docstring for the module. Changed in version 2.3: Older versions of
Python did not suppoNULL as the value for thenethodsargument.

PyObject* Py _InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module atject. If
is nonNULL, it will be used to define the docstring for the moduleséif is nonNULL, it will passed to the
functions of the module as their (otherwiN&ILL) first parameter. (This was added as an experimental feature,
and there are no known uses in the current version of Pythongpeer, the only value which should be passed
is defined by the constaftY THON_API_VERSION

Note: Most uses of this function should probably be using fye InitModule3 instead; only use this if
you are sure you need it. Changed in version 2.3: Older versions of Python did not sMpjharas the value
for themethodsargument.

PyObject Py NoneStruct
Object which is visible in Python ddone. This should only be accessed using Bhe None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object's representation in memory.
These are represented by thgObject andPyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference count
and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion of the
PyObject HEAD macro.

PyVarObject
This is an extension dPyObject that adds th@b_size field. This is only used for objects that have some
notion oflength This type does not often appear in the Python/C API. It corresponds to the fields defined by
the expansion of thByObject VAR_HEAD macro.

These macros are used in the definitioriPgDbject andPyVarObject

PyObject_ HEAD
This is a macro which expands to the declarations of the fields ¢fylEbject type; itis used when declaring
new types which represent objects without a varying length. The specific fields it expands to depend on the
definition of Py TRACE_REFSBY default, that macro is not defined, aRgObject HEAD expands to:

Py ssize t ob_refcnt;
PyTypeObject *ob_type;

102 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

WhenPy_TRACE_REFSs defined, it expands to:

PyObject * _ob _next, *_ob_prev;
Py ssize t ob_refcnt;
PyTypeObject *ob_type;

PyObject VAR_HEAD
This is a macro which expands to the declarations of the fields oPyhé&arObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject HEAD
Py ssize t ob_size;

Note thatPyObject HEAD is part of the expansion, and that its own expansion varies depending on the
definition of Py_ TRACE_REFS

PyObject_HEAD_INIT

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return val®is, an exception shall have been
set. If notNULL, the return value is interpreted as the return value of the function as exposed in Python. The
function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:
Field C Type Meaning \
ml_name char * name of the method
ml_meth PyCFunction| pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

Theml_meth is a C function pointer. The functions may be of different types, but they always rey@bject*

If the function is not of thePyCFunction , the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter BgObject* , it is common that the method implementation uses a the
specific C type of theelf object.

Theml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, bithfH_VARARG&dIMETH_KEYWORDS
can be combined (but note thaETH_KEYWORIR®Ne is equivalent tMETH_VARARGS | METH_KEYWORDS
Any of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have theRypg-unction . The function expects
two PyObject* values. The first one is ttelf object for methods; for module functions, it has the value given
to Py_InitModule4 (or NULLif Py_InitModule was used). The second parameter (often callgd) is
a tuple object representing all arguments. This parameter is typically processedPusing ParseTuple
or PyArg_UnpackTuple

METH_KEYWORDS
Methods with these flags must be of typgCFunctionWithKeywords . The function expects three pa-
rameters: self args and a dictionary of all the keyword arguments. The flag is typically combined with
METH_VARARG&Nd the parameters are typically processed uBimyg_ParseTupleAndKeywords

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGHag. They need to be of typeyCFunction . When used with object methods, the first

10.2. Common Object Structures 103

The Python/C API, Release 2.6.1

parameter is typically nameself and will hold a reference to the object instance. In all cases the second
parameter will beNULL.

METH_O
Methods with a single object argument can be listed with METH Oflag, instead of invoking
PyArg ParseTuple with a"O" argument. They have the typg/CFunction , with the self parameter,
and aPyObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be of Byg&-unction . The second argument is
NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this convention to distinguish between a call
with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to createclass methodssimilar to what is created when using ttlassmethod() built-in function. New in

version 2.3.
METH_STATIC
The method will be passédULL as the first parameter rather than an instance of the type. This is used to create
static methodssimilar to what is created when using ttaticmethod() built-in function. New in version
2.3.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. WithMETH_COEXISTthe default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existesgecohtains
slot, for example, would generate a wrapped method namedntains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls. New in version 2.4.

PyObject* Py _FindMethod (PyMethodDef table[], PyObject *ob, char *name
Return value: New reference.
Return a bound method object for an extension type implemented in C. This can be useful in the implemen-
tation of atp_getattro or tp_getattr handler that does not use tRgObject_GenericGetAttr
function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any oP§@bject * or PyType * functions,

but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s
functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintob-
jargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc,

104 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

reprfunc, hashfunc

The structure definition foPyTypeObject can be found innclude/object.h . For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; [* For allocation */

[* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

[* Flags to define presence of optional/lexpanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

[* Assigned meaning in release 2.0 */
[* call function for all accessible objects */
traverseproc tp_traverse,

[* delete references to contained objects */
inquiry tp_clear;

[* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

10.3. Type Objects 105

The Python/C API, Release 2.6.1

[* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

[* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *{p_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; [* Low-level free-memory routine */
inquiry tp_is_gc; [* For PyObject IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

The type object structure extends thgVarObject structure. Theob_size field is used for dynamic types (cre-
ated bytype new() , usually called from a class statement). Note thatype Type (the metatype) initializes
tp_itemsize , which means that its instances (i.e. type objects$thave theob size field.

PyObject* _ob_next

PyObject* _ob_prev
These fields are only present when the ma@yo TRACE_REFSs defined. Their initialization ttNULL is
taken care of by th®yObject HEAD_INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-linked
list of all live objects on the heap. This could be used for various debugging purposes; currently the only use is
to print the objects that are still alive at the end of a run when the environment vaPidbldONDUMPREFS
is set.

These fields are not inherited by subtypes.

Py ssize t ob_refcnt
This is the type object’s reference count, initialized tby thePyObject HEAD_INIT macro. Note that for
statically allocated type objects, the type’s instances (objects wiinsgpe points back to the type) daoot
count as references. But for dynamically allocated type objects, the ins@mceant as references.

This field is not inherited by subtypes.

PyTypeObject* ob_type
This is the type's type, in other words its metatype. It is initialized by the argument to the
PyObject HEAD_INIT macro, and its value should normally B®yType_Type . However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pii# L to thePyObject HEAD_INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

106 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

Foo_Type.ob_type = &PyType Type;

This should be done before any instances of the type are creBietype Ready checks ifob type is
NULL, and if so, initializes it: in Python 2.2, it is set ®PyType Type ; in Python 2.2.1 and later it is
initialized to theob_type field of the base clas®yType_Ready will not change this field if it is non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by subtypes.

Py ssize t ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type namel&fined in moduléMin subpackag®in packageP
should have thép_name initializer "P.Q.M.T"

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for keéy module__’

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as themodule__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

If no dot is present, the entiren_name field is made accessible as thename__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle.

This field is not inherited by subtypes.

Py ssize t tp_basicsize

Py ssize t tp_itemsize
These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have dzédtemsize field, types with
variable-length instances have a non-zgroitemsize field. For a type with fixed-length instances, all
instances have the same size, givetpirbasicsize

For a type with variable-length instances, the instances must hawe arize field, and the instance size

is tp_basicsize plus N timestp_itemsize , where N is the “length” of the object. The value of N is
typically stored in the instancelsb_size field. There are exceptions: for example, long ints use a negative
ob_size toindicate a negative number, and Nalss(ob_size) there. Also, the presence of ah_size

field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaoingfuke field).

The basic size includes the fields in the instance declared by the nfagtibject HEAD or
PyObject VAR _HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp_basicsize is to use thesizeof operator on the struct used to declare the instance layout.

The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC header size
was included irip_basicsize).

These fields are inherited separately by subtypes. If the base type has a nom-#erosize , it is gen-
erally not safe to setp itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by

the value oftp_basicsize . Example: suppose a type implements an arragiaatble . tp_itemsize
is sizeof(double) . It is the programmer’s responsibility thap basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirementdouble).

10.3. Type Objects 107

The Python/C API, Release 2.6.1

destructor tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singldtoresandEllipsis).

The destructor function is called by tRg DECREFandPy XDECREFMmMacros when the new reference count

is zero. At this point, the instance is still in existence, but there are no references to it. The destructor function
should free all references which the instance owns, free all memory buffers owned by the instance (using the free-
ing function corresponding to the allocation function used to allocate the buffer), and finally (as its last action)
call the type'stp_free function. If the type is not subtypable (doesn’t have fthye TPFLAGS BASETYPE

flag bit set), it is permissible to call the object deallocator directly instead ofoviliee . The object deal-

locator should be the one used to allocate the instance; this is norfallpject_Del if the instance was
allocated using’yObject New or PyObject VarNew , or PyObject GC Del if the instance was allo-

cated using’yObject_ GC_New or PyObject GC_VarNew .

This field is inherited by subtypes.

printfunc tp_print
An optional pointer to the instance print function.

The print function is only called when the instance is printed teal file; when it is printed to a pseudo-file
(like a StringlO instance), the instancels_repr ortp_str function is called to convert it to a string.
These are also called when the typg'sprint field isNULL. A type should never implemetyi_print in

a way that produces different output th@anrepr ortp_str would.

The print function is called with the same signaturePg®©bject Print : int tp_print(PyObject

*self, FILE *file, int flags) . Theself argument is the instance to be printed. Titmargument

is the stdio file to which it is to be printed. THegsargument is composed of flag bits. The only flag bit
currently defined i®y_PRINT_RAWWhen thePy PRINT_RAWflag bit is set, the instance should be printed
the same way a®_str would format it; when thd®y PRINT_RAWflag bit is clear, the instance should be
printed the same was §s repr would format it. It should retural and set an exception condition when an
error occurred during the comparison.

It is possible that thep_print field will be deprecated. In any case, it is recommended not to define
tp_print , butinstead to rely otp_repr andtp_str for printing.

This field is inherited by subtypes.

getattrfunc tp_getattr
An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the samgoagtiettro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as foPyObject_GetAttrString

This field is inherited by subtypes together with getattro . a subtype inherits bottp_getattr and
tp_getattro from its base type when the subtypgis getattr andtp_getattro are bothNULL.

setattrfunc tp_setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the samgoas ¢ettro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as foPyObject_SetAttrString

This field is inherited by subtypes together with setattro . a subtype inherits bottp_setattr and
tp_setattro from its base type when the subtyp#dls setattr andtp_setattro are bothNULL.

cmpfunc tp_compare
An optional pointer to the three-way comparison function.

The signature is the same as RyyObject_Compare . The function should returh if self greater thamther,
0 if selfis equal toother, and-1 if self less tharother. It should returnl and set an exception condition when
an error occurred during the comparison.

108 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

This field is inherited by subtypes together with richcompare and tp_hash : a subtypes inher-
its all three oftp_compare , tp_richcompare , andtp _hash when the subtype'sp compare ,
tp_richcompare , andtp_hash are allNULL.

reprfunc tp_repr
An optional pointer to a function that implements the built-in functiepr()

The signature is the same as foyObject_Repr ; it must return a string or a Unicode object. Ideally, this
function should return a string that, when passedual() , given a suitable environment, returns an object
with the same value. If this is not feasible, it should return a string starting'withand ending withi>" from
which both the type and the value of the object can be deduced.

When this field is not set, a string of the forfos object at %p> is returned, wheréosis replaced by the
type name, an8opby the object's memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documentedinmber Object Structures

Thetp_as number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documentedizquence Object Structures

Thetp_as sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods* tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented/iapping Object Structures

Thetp_as mapping field is not inherited, but the contained fields are inherited individually.

hashfunc tp_hash
An optional pointer to a function that implements the built-in functi@ash() .

The signature is the same as f@yObject Hash ; it must return a C long. The valud should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and retufn.

This field can be set explicitly t&yObject HashNotimplemented to block inheritance of the hash
method from a parent type. This is interpreted as the equivalentlidish_ = None at the Python level,
causingsinstance(o, collections.Hashable) to correctly returriFalse . Note that the converse
is also true - setting_hash__ = None on a class at the Python level will result in ttpe hash slot being
set toPyObject_HashNotimplemented

When this field is not set, two possibilities exist: if thi|e compare andtp_richcompare fields are both
NULL, a default hash value based on the object’s address is returned; otherWypeEaror is raised.

This field is inherited by subtypes together with richcompare and tp_compare : a subtypes in-
herits all three oftp_compare , tp_richcompare , andtp_hash , when the subtype’sp_compare ,
tp_richcompare andtp_hash are allINULL.

ternaryfunc tp_call
An optional pointer to a function that implements calling the object. This shouWlelL if the object is not
callable. The signature is the same asAgObject_Call

This field is inherited by subtypes.

reprfunc tp_str
An optional pointer to a function that implements the built-in operasi) . (Note thatstr is a type now,
andstr() calls the constructor for that type. This constructor cBf®bject Str to do the actual work,
andPyObject_Str will call this handler.)

10.3. Type Objects 109

The Python/C API, Release 2.6.1

The signature is the same as fayObject_Str ; it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used by the
print statement.

When this field is not seRyObject Repr is called to return a string representation.
This field is inherited by subtypes.

getattrofunc tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as fByObject GetAttr . It is usually convenient to set this field to
PyObject_GenericGetAttr , Which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with getattr ~ : a subtype inherits bottp _getattr and
tp_getattro from its base type when the subtypégis getattr andtp_getattro are bothNULL.

setattrofunc tp_setattro
An optional pointer to the set-attribute function.
The signature is the same as fByObject_SetAttr . It is usually convenient to set this field to
PyObject_GenericSetAttr , which implements the normal way of setting object attributes.

This field is inherited by subtypes together with setattr . a subtype inherits bottp_setattr and
tp_setattro from its base type when the subtyp#ls setattr andtp_setattro are bothNULL.

PyBufferProcs* tp_as_buffer

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer inter-
face. These fields are documentedinfer Object Structures

Thetp_as_buffer field is not inherited, but the contained fields are inherited individually.

long tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number ,tp_as sequence ,tp_as _mapping ,andtp_as buffer) that were historically not
always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zeroWtJLL value instead.
Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the
subtype together with a pointer to the extension structure. IShefPFLAGS HAVE_Gdlag bit is inher-
ited together with thép traverse andtp_clear fields, i.e. if thePy TPFLAGS HAVE_Gdlag bit is
clear in the subtype and thip_traverse andtp_clear fields in the subtype exist (as indicated by the
Py TPFLAGS_HAVE_RICHCOMPAHE&g bit) and havéNULL values.
The following bit masks are currently defined; these can be ORed together usihgofierator to form the
value of thetp_flags field. The macrd®yType_HasFeature takes a type and a flags valdpandf, and
checks whethetp->tp_flags & f is non-zero.
Py TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp _as buffer has the
bf getcharbuffer field.
Py_TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, thePySequenceMethods struct referenced byp as sequence has the
sqg_contains field.
Py TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.
Py _TPFLAGS_HAVE_INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced bytp as sequence
and the PyNumberMethods structure referenced bytp_as number contain the fields
110 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

for in-place operators. In particular, this means that tRgNumberMethods structure
has the fields nb_inplace_add , nb_inplace subtract , hb_inplace_multiply ,
nb_inplace_divide , nb_inplace_remainder , nb_inplace_power
nb_inplace_Ishift . nhb_inplace_rshift , nhb_inplace_and , nb_inplace xor
andnb_inplace_or ; and thePySequenceMethods struct has the fieldsg_inplace _concat
andsq_inplace_repeat

Py TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in tAhgNumberMethods structure refer-
enced bytp as number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies tonb_add, nb_subtract , nb_multiply , nb_divide , nb_remainder , nb_divmod ,
nb_power , nb_Ishift ,nb_rshift ,nb_and,nb_xor ,andnb_or .

Py_TPFLAGS_HAVE_RICHCOMPARE
If this bit is set, the type object has the richcompare field, as well as thép_traverse and the
tp_clear fields.

Py TPFLAGS_HAVE_WEAKREFS
If this bit is set, thep_weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’stp_weaklistoffset field has a value greater than zero.

Py TPFLAGS HAVE_ITER
If this bit is set, the type object has the iter andtp_iternext fields.

Py _TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Pythorp2.2ethods
tp_members , tp_getset , tp _base , tp_dict , tp_descr get , tp _descr set ,
tp_dictoffset ,tp_init ,tp alloc ,tp _new,tp free ,tp_is gc ,tp _bases ,tp_mro ,
tp_cache ,tp_subclasses , andtp_weaklist

Py TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this cas&) thgoe field of its
instances is considered a reference to the type, and the type object is INCREF'ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s ob_type gets INCREF'ed or DECREF’ed).

Py TPFLAGS BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).

Py TPFLAGS_ READY
This bit is set when the type object has been fully initializedPlyyype Ready .

Py_TPFLAGS_READYING
This bit is set whilePyType Ready is in the process of initializing the type object.

Py _TPFLAGS_HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject GC_New and destroyed using§yObject GC Del . More information in section
Supporting Cyclic Garbage CollectiorThis bit also implies that the GC-related fielgls traverse
andtp_clear are present in the type object; but those fields also exist WiyefPFLAGS HAVE_GC
is clear butty TPFLAGS_HAVE_RICHCOMPAIRRESet.

Py TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in

the type object and its extension structures. Currently, it includes the following
bits: Py TPFLAGS_HAVE_GETCHARBUFFER Py TPFLAGS_ HAVE_SEQUENCE_JN
Py TPFLAGS_HAVE_INPLACEOPRS Py TPFLAGS HAVE_RICHCOMPARE

Py TPFLAGS_HAVE_WEAKREFA®y TPFLAGS_HAVE_ITERandPy TPFLAGS HAVE_CLASS

10.3. Type Objects 111

The Python/C API, Release 2.6.1

char*

tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the__doc__ attribute on the type and instances of the type.

This field isnotinherited by subtypes.

The following three fields only exist if they TPFLAGS HAVE_RICHCOMPAMRE&g bit is set.

traverseproc tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_Gd(lag bit is set. More information about Python’s garbage collection scheme can
be found in sectiosupporting Cyclic Garbage Collection

Thetp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementa-
tion of atp_traverse function simply calls?y_VISIT on each of the instance’s members that are Python

objects. For example, this is functidecal_traverse from thethread extension module:
static int

local_traverse (localobject *self, visitproc visit, void *arg)

{

Py _VISIT(self - >args);
Py _VISIT(self - >kw);
Py VISIT(self - >dict);
return 0,

}

Note thatPy VISIT is called only on those members that can participate in reference cycles. Although there is
also aself->key = member, it can only bBIULL or a Python string and therefore cannot be part of a reference
cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so thgc module’sget_referents() function will include it.

Note thatPy VISIT requires thevisitandarg parameters ttocal_traverse to have these specific names;
don’t name them just anything.

This field is inherited by subtypes together withclear andthePy TPFLAGS HAVE_Gflag bit: the flag
bit, tp_traverse , andtp_clear are all inherited from the base type if they are all zero in the subdynge
the subtype has they TPFLAGS HAVE_ RICHCOMPAHRE&g bit set.

inquiry tp_clear

An optional pointer to a clear function for the garbage collector. This is only used if the
Py TPFLAGS HAVE_Gfdag bit is set.

Thetp clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, alb _clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply@a clear function. For example, the tuple type does not implement
atp_clear function, because it's possible to prove that no reference cycle can be composed entirely of tuples.
Therefore thep_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn't immediately obvious, and there’s rarely a good reason to avoid implemeptingpar

Implementations ofp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those membea¥did., as in the following example:

static int
local_clear (localobject * self)
{

Py _CLEAR(self - >key);
Py _CLEAR(self - >args);
Py CLEAR(self ->kw);

112

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

Py CLEAR(self - >dict);
return 0;

}

ThePy_CLEARmMacro should be used, because clearing references is delicate: the reference to the contained
object must not be decremented until after the pointer to the contained object iSN#gL ko This is because
decrementing the reference count may cause the contained object to become trash, triggering a chain of reclama-
tion activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated
with the contained object). If it's possible for such code to referaetfeagain, it's important that the pointer to

the contained object bdULL at that time, so thagelf knows the contained object can no longer be used. The

Py CLEARmMmacro performs the operations in a safe order.

Because the goal dp_clear functions is to break reference cycles, it's not necessary to clear contained
objects like Python strings or Python integers, which can't participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the tgpelsalloc function to invoke

tp_clear

More information about Python’s garbage collection scheme can be found in s@afiporting Cyclic Garbage
Collection

This field is inherited by subtypes together wijh traverse and thePy TPFLAGS_ HAVE_Gflag bit: the

flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in the subtype
andthe subtype has tHey TPFLAGS HAVE_RICHCOMPARE&g bit set.

richcmpfunc tp_richcompare

An optional pointer to the rich comparison function, whose signature RyObject
*tp_richcompare(PyObject *a, PyObject *b, int op)

The function should return the result of the comparison (usillyTrue or Py _False). If the comparison
is undefined, it must returRy_Notimplemented , if another error occurred it must retulNULL and set an
exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sense{eagd
1=, but not< and friends), directly rais€ypeError in the rich comparison function.

This field is inherited by subtypes together with compare andtp_hash : a subtype inherits all three of
tp_compare ,tp_richcompare ,andtp_hash ,whenthe subtype® compare ,tp_richcompare
andtp_hash are alINULL.

The following constants are defined to be used as the third argumerip fachcompare and for
PyObject_RichCompare

Constant | Comparison
Py LT <

Py LE <=

Py_EQ ==

Py NE 1=

Py GT >

Py _GE >=

The next field only exists if they TPFLAGS HAVE_WEAKREHM&g bit is set.

long

tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs and thePyWeakref * functions. The instance structure needs to include a
field of typePyObject* which is initialized toNULL.

Do not confuse this field wittp_weaklist ; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
viatp_weaklistoffset , this should not be a problem.

10.3. Type Objects 113

The Python/C API, Release 2.6.1

When a type defined by a class statementhas stots_ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance
layout and setting thenweaklistoffset of that slot’s offset.

When a type's _slots_ declaration contains a slot namedweakref | that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in theipypeésaklistoffset

When a type’s_slots declaration does not contain a slot namedveakref |, the type inherits its
tp_weaklistoffset from its base type.

The next two fields only exist if they TPFLAGS_HAVE_CLASS8ag bit is set.

getiterfunc tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function, and classic instances
always have this function, even if they don’t define ariter__ () method).

This function has the same signaturePg®bject Getlter
This field is inherited by subtypes.

iternextfunc tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it must
returnNULL; a Stoplteration exception may or may not be set. When another error occurs, it must return

NULL too. Its presence normally signals that the instances of this type are iterators (although classic instances
always have this function, even if they don't defineext() method).

Iterator types should also define tie iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signaturePgster Next
This field is inherited by subtypes.

The next fields, up to and includirig_weaklist , only exist if thePy TPFLAGS_HAVE_CLAS8ag bit is set.

struct PyMethodDef* tp_methods
An optional pointer to a statidULL-terminated array oPyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionary(seiet below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp_members
An optional pointer to a statiblULL-terminated array oPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary(seiet below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp_getset
An optional pointer to a statiblULL-terminated array oPyGetSetDef structures, declaring computed at-
tributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionarysdet below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(* getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

114 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

typedef struct PyGetSetDef {

char *name; [* attribute name */

getter get; [* C function to get the attribute */

setter set; [* C function to set the attribute */

char *doc; /* optional doc string */

void *closure; [* optional additional data for getter and setter */

} PyGetSetDef;

PyTypeObject* tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defauli&RyBaseObject_Type (which to Python
programmers is known as the typbject).

PyObject* tp_dict

The type’s dictionary is stored here By Type Ready .

This field should normally be initialized tNULL before PyType Ready is called; it may also be initialized

to a dictionary containing initial attributes for the type. Ortglype Ready has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like _add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp_descr_get

An optional pointer to a “descriptor get” function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

XXX explain.
This field is inherited by subtypes.

descrsetfunc tp_descr_set

long

An optional pointer to a “descriptor set” function.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

This field is inherited by subtypes.
XXX explain.

tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr

Do not confuse this field witkp_dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset frometh@of the instance structure. A negative offset is

more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtysts obr tuple . Note that the
tp_basicsize field should account for the dictionary added to the end in that case, even though the dictionary

10.3. Type Objects 115

The Python/C API, Release 2.6.1

is not included in the basic object layout. On a system with a pointer size of 4 hytelé;toffset should
be setto4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negjatisietoffset as follows:
dictoffset = tp_basicsize + abs(ob_size) *tp_itemsize + tp_dictoffset

if dictoffset is not aligned on sizeof (void *):

round up to sizeof (void *)

where tp_basicsize , tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because long ints use theosigaiod

to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is

always found vigp_dictoffset , this should not be a problem.
When a type defined by a class statement has rafots ~ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout aipd thetoffset is setto

that slot’s offset.

When a type defined by a class statementhasséots ~ declaration, the type inherits i)s_dictoffset
from its base type.

(Adding a slot named _dict _ to the _slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just Weakref _ though.)

initproc tp_init
An optional pointer to an instance initialization function.
This function corresponds to the init_ () method of classes. Like init_ () , it is possible to
create an instance without calling init__ () , and it is possible to reinitialize an instance by calling its
__init__() method again.

The function signature is
int tp_init(PyObject *self, PyObject *args, PyObject * kwds)

The self argument is the instance to be initialized;atgsandkwdsarguments represent positional and keyword
arguments of the call to_init_ ()

Thetp_init function, if notNULL, is called when an instance is created normally by calling its type, after
the type’stp_new function has returned an instance of the type. Iftthenew function returns an instance of
some other type that is not a subtype of the original typepnmit ~ function is called; iftp_new returns an
instance of a subtype of the original type, the subtype’snit is called. (VERSION NOTE: described here

is what is implemented in Python 2.2.1 and later. In Python 2.2pthieit of the type of the object returned
by tp_new was always called, if ndtlULL.)

This field is inherited by subtypes.

allocfunc tp_alloc
An optional pointer to an instance allocation function.

The function signature is
PyObject *tp_alloc(PyTypeObject *self, Py_ssize t nitems)
The purpose of this function is to separate memory allocation from memory initialization. It should return a

pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt settol andob_type setto the type argument. If the typé’s itemsize is non-zero, the

116 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

object'sob_size field should be initialized taitemsand the length of the allocated memory block should be
tp_basicsize + nitems*tp_itemsize , rounded up to a multiple dizeof(void*) ; otherwise,
nitemsis not used and the length of the block shouldbébasicsize

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bip_new .

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is always set B/ Type GenericAlloc , to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc tp_new
An optional pointer to an instance creation function.

If this function isNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject * kwds)

The subtype argument is the type of the object being createdrgisendkwdsarguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn't have to equal the typmwhose
function is called; it may be a subtype of that type (but not an unrelated type).

Thetp _new function should calsubtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely
be ignored or repeated should be placed intthénit ~ handler. A good rule of thumb is that for immutable
types, all initialization should take place ip_new , while for mutable types, most initialization should be
deferred tap_init

This field is inherited by subtypes, except it is not inherited by static types wiposmse is NULL or
&PyBaseObject_Type . The latter exception is a precaution so that old extension types don’t become
callable simply by being linked with Python 2.2.

destructor tp_free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signalestrisctor
void tp_free(PyObject *)

In Python 2.3 and beyond, its signaturdrisefunc

void tp_free(void *)

The only initializer that is compatible with both versions ByObject_Del , whose definition has suitably
adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is set to a deallocator suitable to m&tghype_GenericAlloc and the value of the
Py _TPFLAGS_HAVE_Gdag bit.

inquiry tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type'sp _flags field, and check th&y TPFLAGS HAVE_Gdlag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should retuior a collectible instance, aréifor a
non-collectible instance. The signature is

10.3. Type Objects 117

The Python/C API, Release 2.6.1

int tp_is_gc(PyObject * self)

(The only example of this are types themselves. The metaBypeype Type , defines this function to distin-
guish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. Itis inherited in 2.2.1
and later versions.)

PyObject* tp_bases
Tuple of base types.
This is set for types created by a class statement. It shou\tLlhé for statically defined types.
This field is not inherited.

PyObject* tp_mro
Tuple containing the expanded set of base types, starting with the type itself and endirgbjeith , in
Method Resolution Order.

This field is not inherited; it is calculated fresh By Type Ready .

PyObject* tp_cache
Unused. Not inherited. Internal use only.

PyObject* tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test m&DWNT_ALLOCES defined, and are for internal use
only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py ssize t tp_allocs
Number of allocations.

Py ssize t tp_frees
Number of frees.

Py ssize t tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp_next
Pointer to the next type object with a non-zépoallocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is called
will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects from
some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which called
tp_dealloc will not violate any assumptions of the library.

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Almost
every function below is used by the function of similar name documented iNuh&er Protocosection.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;

118 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod,;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero; /* Used by PyObiject IsTrue */
unaryfunc nb_invert;
binaryfunc nb_lIshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
coercion nb_coerce; /* Used by the coerce() function */
unaryfunc nb_int;
unaryfunc nb_long;
unaryfunc nb_float;
unaryfunc nb_oct;
unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add,;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace power;
binaryfunc nb_inplace_lIshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and,;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

[* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;
} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py TPFLAGS_CHECKTYPES

« If Py TPFLAGS CHECKTYPES not set, the function arguments are guaranteed to be of the object’s type;
the caller is responsible for calling the coercion method specified byttheoerce member to convert the
arguments:

coercion nb_coerce
This function is used biyNumber_CoerceEx and has the same signature. The first argument is always
a pointer to an object of the defined type. If the conversion to a common “larger” type is possible, the

10.4. Number Object Structures 119

The Python/C API, Release 2.6.1

function replaces the pointers with new references to the converted objects and@etfithe conversion
is not possible, the function returts If an error condition is set, it will returrl .

« If the Py TPFLAGS CHECKTYPEffag is set, binary and ternary functions must check the type of all their
operands, and implement the necessary conversions (at least one of the operands is an instance of the defined
type). This is the recommended way; with Python 3.0 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return
Py_Notimplemented , if another error occurred they must retiMb/LL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc mp_length
This function is used byMapping_Length andPyObject_Size , and has the same signature. This slot
may be set ttNULL if the object has no defined length.

binaryfunc mp_subscript
This function is used byyObject_Getltem and has the same signature. This slot must be filled for the
PyMapping_Check function to returrl, it can beNULL otherwise.

objobjargproc mp_ass_subscript
This function is used byyObject_Setltem and has the same signature. If this sloNIJLL, the object
does not support item assignment.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc sqg_length
This function is used bySequence Size andPyObject Size , and has the same signature.

binaryfunc sq_concat
This function is used biySequence_Concat and has the same signature. It is also used by-tbeerator,
after trying the numeric addition via thp_as_number.nb_add slot.

ssizeargfunc sq_repeat
This function is used bf?ySequence_Repeat and has the same signature. It is also used by thgerator,
after trying numeric multiplication via thgp_as_number.nb_mul slot.

ssizeargfunc sq_item
This function is used by?ySequence_Getltem and has the same signature. This slot must be filled for the
PySequence_Check function to returri, it can beNULL otherwise.

Negative indexes are handled as follows: if tlig length slot is filled, it is called and the sequence length is
used to compute a positive index which is passezhtdtem . If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc sg_ass_item
This function is used byPySequence_Setltem and has the same signature. This slot may be laftud L
if the object does not support item assignment.

120 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

objobjproc sq_contains
This function may be used iyySequence_Contains and has the same signature. This slot may be left to
NULL, in this casé’ySequence_Contains simply traverses the sequence until it finds a match.

binaryfunc sq_inplace_concat
This function is used b¥PySequence_InPlaceConcat and has the same signature. It should modify its
first operand, and return it.

ssizeargfunc sq_inplace_repeat
This function is used byySequence_InPlaceRepeat and has the same signature. It should modify its
first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data, where each
chunk is specified as a pointer/length pair. These chunks are safipdentand are presumed to be non-contiguous
in memory.

If an object does not export the buffer interface, thertsas buffer member in thé?yTypeObject structure
should beNULL. Otherwise, thép_as_buffer will point to a PyBufferProcs structure.

Note: It is very important that youPyTypeObject structure use®y TPFLAGS DEFAULTor the value of the
tp_flags member rather tha@. This tells the Python runtime that yoBiyBufferProcs structure contains the

bf getcharbuffer slot. Older versions of Python did not have this member, so a new Python interpreter using an
old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.

The first slot isbf _getreadbuffer , of typegetreadbufferproc . If this slot iSNULL, then the object
does not support reading from the internal data. This is non-sensical, so implementors should fill this in, but
callers should test that the slot contains a INukL value.

The next slot idf_getwritebuffer having typegetwritebufferproc . This slot may béNULL if the
object does not allow writing into its returned buffers.

The third slot isbf_getsegcount , with type getsegcountproc . This slot must not b&lULL and is

used to inform the caller how many segments the object contains. Simple objects sucBtiaisg Type

and PyBuffer_Type objects contain a single segment. The last sldvfiggetcharbuffer , of type
getcharbufferproc . This slot will only be present if thé’y TPFLAGS HAVE_GETCHARBUFFER

flag is present in thép flags field of the object'sPyTypeObject . Before using this slot, the caller
should test whether it is present by using thgType HasFeature function. If the flag is present,

bf _getcharbuffer may beNULL, indicating that the object’s contents cannot be use8-bi& charac-

ters The slot function may also raise an error if the object’s contents cannot be interpreted as 8-bit characters.
For example, if the object is an array which is configured to hold floating point values, an exception may be
raised if a caller attempts to ubé getcharbuffer to fetch a sequence of 8-bit characters. This notion of
exporting the internal buffers as “text” is used to distinguish between objects that are binary in nature, and those
which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies that a
buffer size ofN does not mean there axecharacters present.

Py_TPFLAGS_HAVE_GETCHARBUFFER

Flag bit set in the type structure to indicate that tfiegetcharbuffer slot is known. This being set does
not indicate that the object supports the buffer interface or thaifthgetcharbuffer slot is nonNULL.
(*readbufferproc)

Return a pointer to a readable segment of the buff&ptirptr . This function is allowed to raise an exception,
in which case it must retursl . Thesegmentvhich is specified must be zero or positive, and strictly less than

10.7. Buffer Object Structures 121

The Python/C API, Release 2.6.1

the number of segments returned by kifiegetsegcount slot function. On success, it returns the length of
the segment, and sefgtrptr to a pointer to that memory.

(*writebufferproc)
Return a pointer to a writable memory bufferpirptr , and the length of that segment as the function return
value. The memory buffer must correspond to buffer segmeginentMust return-1 and set an exception on
error. TypeError should be raised if the object only supports read-only buffers SystemError should
be raised whesegmenspecifies a segment that doesn't exist.

(*segcountproc)
Return the number of memory segments which comprise the buffenpfis not NULL, the implementation
must report the sum of the sizes (in bytes) of all segmentieitp . The function cannot fail.

(*charbufferproc)
Return the size of the segmesggmenthatptrptr is set to.*ptrptr is set to the memory buffer. Returrk
on error.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the flags field of the type object must include tiiey TPFLAGS HAVE_G@nd
provide an implementation of thip_traverse handler. If instances of the type are mutabl& aclear imple-
mentation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usitygpbject GC_New or PyObject GC_VarNew .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_ GC_Track

TYPE* PyObject_ GC_New (TYPE, PyTypeObiject *type
Analogous tdPyObject_New but for container objects with thiey TPFLAGS HAVE_Gf(lag set.
TYPE* PyObject GC_NewVar (TYPE, PyTypeObject *type, Py_ssize tkize
Analogous taPyObject_NewVar but for container objects with they TPFLAGS_HAVE_Gflag set.
PyVarObject * PyObject GC_Resize (PyVarObject *op, Py_ssize) t
Resize an object allocated ByyObject NewVar . Returns the resized object MtJLL on failure.
void PyObject GC_Track (PyObiject*op
Adds the objecbpto the set of container objects tracked by the collector. The collector can run at unexpected
times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp_traverse handler become valid, usually near the end of the constructor.
void _PyObject_ GC_TRACK (PyObject *op
A macro version oPyObject GC Track . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidafgd)bject GC_UnTrack must be called.

122 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.1

2. The object’s memory must be deallocated usty@bject GC_ Del

void PyObject GC_Del (void *op)
Releases memory allocated to an object usip@bject GC_New or PyObject GC_NewVar .

void PyObject GC_UnTrack (void *op)
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject_ GC_Track can be called again on this object to add it back to the set of tracked objects.
The deallocatortp dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject_ GC_UNTRACK(PyObiject *op)
A macro version oPyObject GC_UnTrack . It should not be used for extension modules.

Thetp_traverse handler accepts a function parameter of this type:

(*visitproc)
Type of the visitor function passed to the traverse handler. The function should be called with an object
to traverse asbjectand the third parameter to the traverse handler asrg. The Python core uses several
visitor functions to implement cyclic garbage detection; it's not expected that users will need to write their own
visitor functions.

Thetp_traverse handler must have the following type:

(*traverseproc)
Traversal function for a container object. Implementations must caligiefunction for each object directly
contained byself with the parameters ta@sit being the contained object and g value passed to the handler.
Thevisit function must not be called with/dULL object argument. I¥isit returns a non-zero value that value
should be returned immediately.

To simplify writing tp_traverse handlers, aPy VISIT macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exadit andarg:

void Py VISIT (PyObject*g
Call thevisit callback, with arguments andarg. If visit returns a non-zero value, then return it. Using this
macro,tp_traverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, void *arg)
{

Py VISIT(self - >foo);
Py_VISIT(self - >bar);
return 0;

}

New in version 2.4.

Thetp_clear handler must be of thequiry type, orNULL if the object is immutable.

(*inquiry)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling this
method (don't just calPy DECREFon a reference). The collector will call this method if it detects that this
object is involved in a reference cycle.

10.8. Supporting Cyclic Garbage Collection 123

The Python/C API, Release 2.6.1

124 Chapter 10. Object Implementation Support

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed inter-
actively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within a
pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library d®2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{onThe Python Library Refer-
encs.

abstract base classAbstract Base Classes (abbreviated ABCs) complehgzk-typingby providing a way to define
interfaces when other techniques likasattr() would be clumsy. Python comes with many builtin ABCs
for data structures (in theollections module), numbers (in theumbers module), and streams (in tie
module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A function
or method may have both positional arguments and keyword arguments in its definition. Positional and keyword
arguments may be variable-length:accepts or passes (if in the function definition or call) several positional
arguments in a list, whil&* does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example, if
an object has an attributa it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the inter-
preter. The bytecode is also cachedgyc and.pyo files so that executing the same file is faster the second
time (recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a
virtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which oper-
ate on instances of the class.

classic classAny class which does not inherit froobject . Seenew-style classClassic classes will be removed in
Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two argu-
ments of the same type. For exampig(3.15) converts the floating point number to the inte§ebut in
3+4.5 , each argument is of a different type (one int, one float), and both must be converted to the same type be-
fore they can be added or it will raiséfgpeError . Coercion between two operands can be performed with the

125

http://www.python.org/~{}guido/

The Python/C API, Release 2.6.1

coerce builtin function; thus3+4.5 is equivalent to callingpperator.add(*coerce(3, 4.5)) and
results inoperator.add(3.0, 4.5) . Without coercion, all arguments of even compatible types would
have to be normalized to the same value by the programmerfleay(3)+4.5 rather than jusB+4.5 .

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of -1), often writteni in mathematics of in engineering. Python has builtin support for complex numbers,
which are written with this latter notation; the imaginary part is written with suffix, e.g.,3+1j . To get
access to complex equivalents of thath module, usemath . Use of complex numbers is a fairly advanced
mathematical feature. If you're not aware of a need for them, it's almost certain you can safely ignore them.

context manager An object which controls the environment seen iwith statement by defining_enter__ ()
and__exit () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in con-
texts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation usir@\happer
syntax. Common examples for decorators@asssmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiva-
lent:

def f(...):
f = staticmethod(f)

@staticmethod
def f(...):

Seethe documentation for function definiti¢im The Python Language Referehé@ more about decorators.

descriptor Any new-styleobject which defines the methodsget () , set () ,or_ delete_ () .When
a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using
a.bto get, set or delete an attribute looks up the object namirethe class dictionary faa, but if bis a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, baplementing Descriptor§in The Python Language
Reference

dictionary An associative array, where arbitrary keys are mapped to values. The dist oftlosely resembles that
forlist , but the keys can be any object with ahash__ () function, not just integers. Called a hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tdlec___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or attribute
signature rather than by explicit relationship to some type object (“If it looks like a duck and quacks like a duck,
it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its
flexibility by allowing polymorphic substitution. Duck-typing avoids tests usyme() orisinstance()
(Note, however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr() tests olEAFP programming.

126 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python/C API, Release 2.6.1

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized
by the presence of martyy andexcept statements. The technique contrasts withltB¥ L style common
to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. Theresiateaieus
which cannot be used as expressions, sugrias orif . Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

_ future__ A pseudo module which programmers can use to enable new language features which are not compatible
with the current interpreter. For example, the expres&ibd currently evaluates t@. If the module in which
it is executed had enablédie divisionby executing:

from _ future__ import division

the expressioil/4 would evaluate t®.75 . By importing the_ future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the default:

>>> jmport __ future
>>> _ future__.division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, 'alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to the
caller using ayield statement instead ofraturn statement. Generator functions often contain one or more
for orwhile loopswhichyield elements back to the caller. The function execution is stopped yiglie
keyword (returning the result) and is resumed there when the next element is requested by catiénxg(jhe
method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followedoby a
expression defining a loop variable, range, and an optibnaxpression. The combined expression generates
values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executesORyttimon
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter
to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much finer
granularity), but so far none have been successful because performance suffered in the common single-processor
case.

127

The Python/C API, Release 2.6.1

hashable An objectishashablef it has a hash value which never changes during its lifetime (it needbash__ ()
method), and can be compared to other objects (it needseq () or__cmp__ () method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is thed()

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekkiéncurrently eval-
uates to2 in contrast to the&.75 returned by float division. Also callefiioor division When dividing two
integers the outcome will always be another integer (having the floor function applied to it). However, if one of
the operands is another numeric type (such#saa), the result will be coerced (seeercion to a common
type. For example, an integer divided by a float will result in a float value, possibly with a decimal fraction.
Integer division can be forced by using thie operator instead of thie operator. See also future_ .

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just faytham with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (rementiadp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry
because of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. Sedetsctive

iterable A container object capable of returning its members one at a time. Examples of iterables include all sequence
types (such abst , str , andtuple) and some non-sequence types liket andfile and objects of any
classes you define with an iter__ () or __getitem__ () method. Iterables can be used ifoa loop
and in many other places where a sequence is neef®dl (, map() , ...). When an iterable object is passed
as an argument to the builtin functider() , it returns an iterator for the object. This iterator is good for one
pass over the set of values. When using iterables, it is usually not necessarytey@all or deal with iterator
objects yourself. Théor statement does that automatically for you, creating a temporary unnamed variable to
hold the iterator for the duration of the loop. See atstator, sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the iteraat(3 method return successive
items in the stream. When no more data are availalltoplteration exception is raised instead. At this
point, the iterator object is exhausted and any further calls ex$() method just rais&toplteration
again. lterators are required to have arter_ () method that returns the iterator object itself so every
iterator is also iterable and may be used in most places where other iterables are accepted. One notable exception
is code which attempts multiple iteration passes. A container object (suclishs § produces a fresh new
iterator each time you pass it to titer() function or use it in dor loop. Attempting this with an iterator
will just return the same exhausted iterator object used in the previous iteration pass, making it appear like an
empty container.

More information can be found itterator Typegin The Python Library Referenge
keyword argument Arguments which are preceded wittvariable_name= in the call. The variable name des-

ignates the local name in the function to which the value is assigtieds used to accept or pass a dictionary
of keyword arguments. Seggument

128 Appendix A. Glossary

The Python/C API, Release 2.6.1

lambda An anonymous inline function consisting of a singlepressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolammbda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with thEAFP approach and is characterized by the presence of iharsfatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked list
since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results.result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a list of
strings containing even hex numbers (0x..) in the range from 0 to 255if Tlséause is optional. If omitted, all
elements irrange(256) are processed.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its faggumentwhich is usually calledgelf). Seefunctionandnested
scope

mutable Mutable objects can change their value but keep tdéir . See alsammutable

named tuple Any tuple subclass whose indexable elements are also accessible using named attributes (for example,
time.localtime() returns a tuple-like object where tlyear is accessible either with an index such as
t[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such #@se.struct time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a self-
documenting representation liEamployee(name='jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and builtin namespaces as well as nested hamespaces in objects (in methods). Namespaces support mod-
ularity by preventing naming conflicts. For instance, the functiortsuiltin__.open() andos.open()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writragdom.seed() or itertools.izip()
makes it clear that those functions are implemented byghdom anditertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likdist and dict
Only new-style classes can use Python’s newer, versatile features If#fets , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class

129

The Python/C API, Release 2.6.1

positional argument The arguments assigned to local names inside a function or method, determined by the order
in which they were given in the call* is used to either accept multiple positional arguments (when in the
definition), or pass several arguments as a list to a functiona®eenent

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable usinfpa statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food))
print food[i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key elemer@Bf/then
implementation. Theys module defines getrefcount() function that programmers can call to return
the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterablewhich supports efficient element access using integer indices via thegitem__ () special
method and defineslan() method that returns the length of the sequence. Some built-in sequence types are
list ,str ,tuple ,andunicode . Note thatdict also supports getitem__ () and__len_ () ,but
is considered a mapping rather than a sequence because the lookups use artnttaaplekeys rather than

integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[with colons between numbers when several are given, such waariable_name[1:3:5] . The
bracket (subscript) notation useice objects internally (or in older versions, getslice_ () and

__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
Special method naméim The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexanessioror a one of several
constructs with a keyword, such #és, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(). While they don'’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved withipe(obj)

virtual machine A computer defined entirely in software. Python’s virtual machine executds/tbeodeemitted by
the bytecode compiler.

130 Appendix A. Glossary

The Python/C API, Release 2.6.1

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typirighport this " at the interactive prompt.

131

The Python/C API, Release 2.6.1

132 Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated frerBtructuredTexsources bySphinx a document processor specifically written
for the Python documentation.

In the online version of these documents, you can submit comments and suggest changes directly on the documentation
pages.

Development of the documentation and its toolchain takes place afotte@python.orgnailing list. We're always
looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« theDocutilsproject for creating reStructuredText and the Docutils suite;

» Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably not complete
— if you feel that you or anyone else should be on this list, please let us know (send edwaikt@python.ong and
we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, Amoroso, Pehr Anderson, Oliver Andrich, Heidi
Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander Belopolsky,
Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl, Keith Briggs, lan
Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario, Mike Clarkson, Steve
Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, Peter Deutsch, Robert Donohue,
Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson, Carey Evans, Martijn Faassen,
Carl Feynman, Dan Finnie, Hernan Martinez Foffani, Stefan Franke, Jim Fulton, Peter Funk, Lele Gaifax, Matthew
Gallagher, Ben Gertzfield, Nadim Ghaznavi, Jonathan Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas
Guettler, Anders Hammarquist, Mark Hammond, Harald Hanche-Olsen, Manus Hand, Gerhard Héring, Travis B.
Hartwell, Tim Hatch, Janko Hauser, Thomas Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan
Hoffmeister, Albert Hofkamp, Gregor Hoffleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian
Hooper, Randall Hopper, Michael Hudson, Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen,
Pedro Diaz Jimenez, Kent Johnson, Lucas de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski,
Guido Kollerie, Peter A. Koren, Daniel Kozan, Andrew M. Kuchling, Dave Kuhiman, Erno Kuusela, Thomas Lamb,
Detlef Lannert, Piers Lauder, Glyph Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren,
Everett Lipman, Mirko Liss, Martin von Lowis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Maclintyre,

133

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python/C API, Release 2.6.1

Vladimir Marangozov, Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo
Milani, Skip Montanaro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner,
Tomas Oppelstrup, Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa,
Harri Pasanen, Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois
Pinard, Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes
Rishel, Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse Il, Mark Russell, Nick Russo, Chris
Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sernbrant,
Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith, Roy Smith,
Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter Stoehr, Mark
Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn Vries, Charles G.
Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Welbourne, Jeff Wheeler,
Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe, Steven Work, Thomas
Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

134 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.con)! In 2001, the Python Software Foundation (PSF,rgge//www.python.org/psjf/was formed,

a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

135

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python/C API, Release 2.6.1

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2| n/a 1991-1995| CWI yes
1.3thrul.5.2| 1.2 1995-1999| CNRI yes
1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com| no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 2.2.2 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 23.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 2.3.3 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 24.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
244 243 2006 PSF yes
2.5 24 2006 PSF yes
251 25 2007 PSF yes
252 251 2008 PSF yes
2.5.3 252 2008 PSF yes
2.6 25 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.1

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python 2.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.1 alone or in any derivative version, provided, however,
that PSF'’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2008 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.1 alone or in any derivative version prepared by
Licensee.

136 Appendix C. History and License

The Python/C API, Release 2.6.1

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.6.1.

. PSF is making Python 2.6.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.6.1, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,
Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee
a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-
SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.htmmay be used according to the permissions granted on that web page.

c.2.

Terms and conditions for accessing or otherwise using Python 137

http://www.pythonlabs.com/logos.html

The Python/C API, Release 2.6.1

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office

at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI's notice of copyright, i.e., “Copyright © 1995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URIip://hdl.handle.net/1895.22/1013

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS 1S” basis. CNRI MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, including

without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,
and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,

Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995, Stichting
Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or

138

Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python/C API, Release 2.6.1

CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdmtp://www.math.keio.ac.jp/ matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_ array(init_key, key length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

C.3. Licenses and Acknowledgements for Incorporated Software 139

http://www.math.keio.ac.jp/

The Python/C API, Release 2.6.1

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3.2 Sockets

The socket module uses the functiongetaddrinfo() , andgetnameinfo() , which are coded in separate
source files from the WIDE Projediitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. |

Permission to use, copy, modify, and distribute this software for [
any purpose without fee is hereby granted, provided that this en- |

140 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 2.6.1

tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |

This software was prepared as an account of work sponsored by an |
agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |
ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its use would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

C.3. Licenses and Acknowledgements for Incorporated Software 141

The Python/C API, Release 2.6.1

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.
1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

142 Appendix C. History and License

The Python/C API, Release 2.6.1

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 143

The Python/C API, Release 2.6.1

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

144 Appendix C. History and License

The Python/C API, Release 2.6.1

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be

C.3. Licenses and Acknowledgements for Incorporated Software 145

The Python/C API, Release 2.6.1

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

146 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licenséor complete license and permissions information.

147

The Python/C API, Release 2.6.1

148 Appendix D. Copyright

Symbols

..,125
_Pylmport_FindExtension (C functior)
_Pylmport_Fini (C function)26
_Pylmport_FixupExtension (C functior§6
_Pylmport_Init (C function)26
_PyObject_Del (C function),01
PyObject GC_TRACK (C function},22
PyObject GC_UNTRACK (C function),23
_PyObject_New (C function),01
_PyObject_NewVar (C function},01
_PyString_Resize (C functiorj3
_PyTuple_Resize (C functionjp
_Py_NoneStruct (C variable)p2
_Py_c_diff (C function) 55
_Py ¢ _neg (C functionh5
_Py _c_pow (C function$5
_Py c_prod (C functiong5
_Py _c_quot (C function)5
_Py _c_sum (C functionh4
__all__ (package variableg)5
__builtin_

module,9, 87
__dict__ (module attributey,8
__doc__ (module attributej3
__file__ (module attribute),8
__ future__ 127
__import__

built-in function, 25
__main__

module,9, 87
__name__ (module attribute)3
__slots__ 130
_frozen (C type)27
_inittab (C type)27
_ob_next (C member),06
_ob_prev (C member),06
>>> 125
2t03,125

INDEX

A

abort(),24
abs

built-in function,42
abstract base clask?25
apply

built-in function, 39
argument125
argv (in module sysy0
attribute, 125

B

BaseException (built-in exceptior)2
BDFL, 125
buffer
object,68
buffer interface£8
BufferType (in module typesi8
built-in function
__import__ 25
abs,42
apply,39
bytes,38
classmethodl 04
cmp,38
coerce43
compile,26
divmod, 41
float,44
hash40, 109
int, 44
len, 40, 44, 46,71, 73, 85
long, 44
pow, 41, 43
reload,25
repr,38, 109
staticmethod]104
str, 38
tuple,45, 71
type,40
unicode,38

149

The Python/C API, Release 2.6.1

bytearray

object,56
bytecode 125
bytes

built-in function, 38

C

calloc(),97
charbufferproc (C type), 22
class,125

object, 74
classic class] 25
classmethod

built-in function, 104
ClassType (in module typesj4
cleanup function24
close() (in module os}8
cmp

built-in function, 38
CO_FUTURE_DIVISION (C variable). 4
CObject

object,81
coerce

built-in function,43
coercion,125
compile

built-in function, 26
complex number]26

object,54
context managefi,26
copyright (in module sysp0
CPython,126

D

decorator;126
descriptor, 126
dictionary,126

object,72
DictionaryType (in module typesy,2
DictType (in module types);2
divmod

built-in function,41
docstring,126
duck-typing,126

E

EAFP,126

environment variable
exec_prefix3, 4
PATH, 9
prefix, 3, 4
PYTHONDUMPREFS,106
PYTHONHOME,9
PYTHONPATH,9

EOFError (built-in exception)7
errno,91
exc_info() (in module sys),
exc_traceback (in module sys3),17
exc_type (in module sysy, 17
exc_value (in module sysJ, 17
exceptions

module,9
exec_prefix3, 4
executable (in module sys)9
exit(), 24
expression]127
extension modulel27

F
file
object,76
FileType (in module typesY,6
float
built-in function, 44
floating point
object,53
FloatType (in modules types)3
fopen(),77
free(),97
freeze utility,27
frozenset
object,84
function,127
object,75

G

garbage collection,27
generator]l27

generator expressiofh27

GIL, 127

global interpreter lock90, 127

H

hash
built-in function, 40, 109
hashable]l27

IDLE, 128
ihooks

module,25
immutable, 128
incr_item(),8, 9
inquiry (C type),123
instance

object,74
int

built-in function, 44

150

Index

The Python/C API, Release 2.6.1

integer

object,50
integer division, 128
interactive, 128
interpreted;128
interpreter lock90
IntType (in modules typesh0
iterable,128
iterator,128

K

KeyboardInterrupt (built-in exception},1
keyword argument].28

L

lambda,128
LBYL, 129
len

built-in function, 40, 44, 46, 71, 73, 85
list, 129

object,70
list comprehensior,29
ListType (in module types);0
lock, interpreter90
long

built-in function,44
long integer

object,52
LONG_MAX, 51,53
LongType (in modules types)2

M

main(),88, 90
malloc(),97
mapping,129

object,72
metaclass] 29
METH_CLASS (built-in variable)104
METH_COEXIST (built-in variable);104
METH_KEYWORDS (built-in variable)103
METH_NOARGS (built-in variable)103
METH_O (built-in variable), 104
METH_OLDARGS (built-in variable)104
METH_STATIC (built-in variable), 104
METH_VARARGS (built-in variable);103
method,129

object,75
MethodType (in module typesJ5, 76
module

__builtin__,9, 87

__main__9, 87

exceptions9

ihooks,25

object,78

rexec,25

search path), 87, 89

signal,21

sys,9, 87

thread, 92
modules (in module sys}5, 87
ModuleType (in module types),8
mp_ass_subscript (C membet}0
mp_length (C member),20
mp_subscript (C member)20
mutable,129

N

named tuple129
namespace,29
nb_coerce (C member)19
nested scopé,29
new-style class]29
None

object,50
numeric

object,50

O

ob_refcent (C member),06
ob_size (C member),07
ob_type (C member),06
object,129
buffer, 68
bytearray56
class,74
CObject,81
complex numberb4
dictionary,72
file, 76
floating point,53
frozensetg4
function, 75
instance/4
integer,50
list, 70
long integer52
mapping,72
method,75
module,78
None,50
numeric,50
sequence;s
set,84
string,56
tuple,69
type,4, 49

OverflowError (built-in exception),3

Index

151

The Python/C API, Release 2.6.1

P

package variable
_all__ 25

PATH, 9

path

module search, 87, 89
path (in module sys}y, 87, 89
platform (in module sys}B9
positional argument,29
pow

built-in function, 41, 43
prefix, 3, 4
Py_AtEXxit (C function),24
Py_BEGIN_ALLOW_THREADS91

Py_BEGIN_ALLOW_THREADS (C macrof3

Py _BLOCK_THREADS (C macrop3
Py_BuildValue (C function)33
Py_CLEAR (C function),15
Py_CompileString (C function),3
Py_CompileString()14
Py_CompileStringFlags (C functiorn)3
Py _complex (C typeh4

Py_DECREF (C function)l 5
Py_DECREF()4

Py END_ALLOW_THREADS91

Py _END_ALLOW_THREADS (C macro3
Py _END_OF_BUFFER (C variablej8
Py _EndIinterpreter (C functionyg
Py_eval_input (C variable},3

Py_Exit (C function)24

Py _False (C variableh1

Py _FatalError (C functionR4
Py_FatalError()90
Py_Fdlsinteractive (C function}3
Py_file_input (C variable)14
Py_Finalize (C function)37
Py_Finalize()24, 87, 88
Py_FindMethod (C function)104
Py_GetBuildinfo (C function)90
Py_GetBuildNumber (C function}9
Py_GetCompiler (C function0
Py_GetCopyright (C functiong9

Py _GetExecPrefix (C functiond3
Py_GetExecPrefix(p

Py_GetPath (C function®9
Py_GetPath()9, 88

Py_GetPlatform (C functiong9

Py _GetPrefix (C function8
Py_GetPrefix()9
Py_GetProgramFullPath (C functioy
Py_GetProgramFullPath,
Py_GetProgramName (C functio®g
Py_GetVersion (C functiong9

Py INCREF (C function)15

Py_INCREF()4

Py_lInitialize (C function)87

Py _Initialize(),9, 88, 92

Py _InitializeEx (C function)87

Py_InitModule (C function)102

Py _InitModule3 (C function)102

Py_InitModule4 (C function)102

Py_lIsInitialized (C function)37

Py _lsInitialized() 9

Py_Main (C function),L1

Py Newlnterpreter (C function,7

Py _None (C variable;0

Py PRINT_RAW,77

Py_RETURN_FALSE (C macroj1

Py _RETURN_NONE (C macro}0

Py_RETURN_TRUE (C macroj?2

Py_SetProgramName (C functioBg

Py_SetProgramNamef), 87-89

Py_single_input (C variable)4

PY_SSIZE_T_MAX,53

Py_TPFLAGS_BASETYPE (built-in variable),11

Py_TPFLAGS_CHECKTYPES (built-in variable),
111

Py_TPFLAGS_DEFAULT (built-in variable), 11

Py _TPFLAGS_GC (built-in variable),10

Py_TPFLAGS_HAVE_CLASS (built-in variable),11

Py_TPFLAGS_HAVE_GC (built-in variable),11

Py_TPFLAGS_HAVE_GETCHARBUFFER (built-in
variable),110, 121

Py_TPFLAGS_HAVE_INPLACEOPS (built-in vari-
able),110

Py_TPFLAGS_HAVE_ITER (built-in variable),11

Py_TPFLAGS_HAVE_RICHCOMPARE (built-in
variable),111

Py TPFLAGS_ HAVE_SEQUENCE_IN (built-in
variable),110

Py_TPFLAGS_HAVE_WEAKREFS (built-in vari-
able),111

Py _TPFLAGS_HEAPTYPE (built-in variable),11

Py_TPFLAGS_READY (built-in variable),11

Py _TPFLAGS_READYING (built-in variable),11

Py _tracefunc (C typep5

Py_True (C variablep 1

Py UNBLOCK_THREADS (C macrof3

Py _UNICODE (C type)59

Py_UNICODE_ISALNUM (C function)50

Py_UNICODE_ISALPHA (C function)60

Py_UNICODE_ISDECIMAL (C function)60

Py_UNICODE_ISDIGIT (C function)60

Py UNICODE_ISLINEBREAK (C function)g0

Py_UNICODE_ISLOWER (C functiong0

Py_UNICODE_ISNUMERIC (C function};0

Py_UNICODE_ISSPACE (C function$0

Py_UNICODE_ISTITLE (C function)60

152

Index

The Python/C API, Release 2.6.1

Py_UNICODE_ISUPPER (C functiony0
Py_UNICODE_TODECIMAL (C function)g0
Py_UNICODE_TODIGIT (C function)60

Py _UNICODE_TOLOWER (C function}0
Py_UNICODE_TONUMERIC (C function);0
Py_UNICODE_TOTITLE (C function)60
Py_UNICODE_TOUPPER (C functionj0
Py_VISIT (C function),123

Py XDECREF (C function)15

Py XDECREF()9

Py_XINCREF (C function)15
PyAnySet_Check (C function®5
PyAnySet_CheckExact (C functior§5
PyArg_Parse (C functionj2
PyArg_ParseTuple (C function}?
PyArg_ParseTupleAndKeywords (C functio3},
PyArg_UnpackTuple (C functionj2
PyArg_VaParse (C function}2
PyArg_VaParseTupleAndKeywords (C functiof),
PyBool_Check (C functionf1
PyBool_FromLong (C functionj2
PyBuffer_Check (C function8

PyBuffer FromMemory (C function}j9
PyBuffer_FromObject (C function}8
PyBuffer_FromReadWriteMemory (C functior§)9
PyBuffer_FromReadWriteObject (C functiog
PyBuffer_New (C function)69
PyBuffer_Type (C variable8
PyBufferObject (C type)p8

PyBufferProcst8

PyBufferProcs (C type)21

PyByteArray AS_STRING (C function)6
PyByteArray_AsString (C functionj6
PyByteArray_Check (C functionh6
PyByteArray _CheckExact (C functiorfp
PyByteArray _Concat (C function}6
PyByteArray FromObject (C function)6
PyByteArray FromStringAndSize (C functiorf
PyByteArray_GET_SIZE (C functionp6
PyByteArray_Resize (C functiono
PyByteArray_Size (C function6
PyByteArray_Type (C variableh6
PyByteArrayObject (C typek6
PyCallable_Check (C function39
PyCalllter_Check (C function},9
PyCalllter_New (C function)79
PyCalllter_Type (C variable),9
PyCell_Check (C function2

PyCell_GET (C function)32

PyCell_Get (C function)32

PyCell_New (C function)32

PyCell_SET (C function)32

PyCell_Set (C function§2

PyCell_Type (C variable§2

PyCellObject (C type)32
PyCFunction (C type)1 03
PyClass_Check (C functionj4
PyClass_IsSubclass (C functiofi}}
PyClass_Type (C variablej4
PyClassObject (C typey4
PyCObject (C type)31
PyCObject_AsVoidPtr (C functioni1
PyCObject_Check (C functiony1
PyCObject_FromVoidPtr (C function§,1
PyCObject_FromVoidPtrAndDesc (C functio®)l
PyCObject_GetDesc (C functior§l
PyCObject_SetVoidPtr (C functiorf1
PyCompilerFlags (C type),4
PyComplex_AsCComplex (C functior§s
PyComplex_Check (C function)s
PyComplex_CheckExact (C functiory)s
PyComplex_FromCComplex (C functiory’
PyComplex_FromDoubles (C functiors
PyComplex_ImagAsDouble (C functior§5
PyComplex_RealAsDouble (C functiords
PyComplex_Type (C variable}s
PyComplexObject (C typeR5
PyDate_Check (C function$3
PyDate_CheckExact (C functior§3
PyDate FromDate (C function;3
PyDate_FromTimestamp (C functio@y
PyDateTime_Check (C functior3
PyDateTime_CheckExact (C functio®)3
PyDateTime_DATE_GET_HOUR (C functiorfj4
PyDateTime_DATE_GET_MICROSECOND (C func-
tion), 84
PyDateTime_DATE_GET_MINUTE (C function®4
PyDateTime_DATE_GET_SECOND (C functio@/
PyDateTime_FromDateAndTime (C functioBg
PyDateTime_FromTimestamp (C functioB}
PyDateTime_GET_DAY (C function4
PyDateTime_GET_MONTH (C function®4
PyDateTime_GET_YEAR (C function4
PyDateTime_TIME_GET_HOUR (C functior§}4
PyDateTime_TIME_GET_MICROSECOND (C func-
tion), 84
PyDateTime_TIME_GET_MINUTE (C functionj4
PyDateTime_TIME_GET_SECOND (C functiorgy}
PyDelta_Check (C functiong3
PyDelta_CheckExact (C functiorf3
PyDelta_FromDSU (C function33
PyDescr_IsData (C function}9
PyDescr_NewClassMethod (C functioy
PyDescr_NewGetSet (C functiom)9
PyDescr_NewMember (C functionj9
PyDescr_NewMethod (C functionj9
PyDescr_NewWrapper (C functior)9
PyDict_Check (C function)72

Index

153

The Python/C API, Release 2.6.1

PyDict_CheckExact (C function},2
PyDict_Clear (C function)/2
PyDict_Contains (C function);2
PyDict_Copy (C function)y2
PyDict_Delltem (C function)72
PyDict_DelltemString (C function){2
PyDict_Getltem (C function)72
PyDict_GetltemString (C functionY,2
PyDict_Items (C function)/3
PyDict_Keys (C function)73
PyDict_Merge (C function)73
PyDict_MergeFromSeq2 (C functio4
PyDict_New (C function)y2
PyDict_Next (C function)73
PyDict_Setltem (C function);2
PyDict_SetltemString (C functiony,2
PyDict_Size (C function)73
PyDict_Type (C variable);2
PyDict_Update (C function);4
PyDict_Values (C function){3
PyDictObject (C type)72
PyDictProxy_New (C function)72
PyErr_BadArgument (C function).9
PyErr_BadInternalCall (C function)0
PyErr_ChecksSignals (C functiorj).l
PyErr_Clear (C function)18
PyErr_Clear()7, 9
PyErr_ExceptionMatches (C functiorl)/
PyErr_ExceptionMatches(9,
PyErr_Fetch (C function).8
PyErr_Format (C function).8
PyErr_GivenExceptionMatches (C functiofy,
PyErr_NewException (C function®,1
PyErr_NoMemory (C function)l9
PyErr_NormalizeException (C functior)/
PyErr_Occurred (C function),7
PyErr_Occurred()7
PyErr_Print (C function)17
PyErr_Restore (C function),8
PyErr_SetExcFromWindowsErr (C functiorz))
PyErr_SetExcFromWindowsErrWithFilename (e
function),20
PyErr_SetFromErrno (C function)9
PyErr_SetFromErrnoWithFilename (C functioh}
PyErr_SetFromWindowsErr (C functior)9
PyErr_SetFromWindowsErrWithFilename (C func-
tion), 20
PyErr_Setinterrupt (C function,1
PyErr_SetNone (C function),9
PyErr_SetObject (C function),8
PyErr_SetString (C function),8
PyErr_SetString()7
PyErr_Warn (C function)20
PyErr_WarnEx (C function)20

PyErr_WarnExplicit (C function)20
PyErr_WarnPy3k (C functionp1
PyErr_WriteUnraisable (C function),1
PyEval_AcquireLock (C functionf?2
PyEval_AcquireLock()87, 91

PyEval _AcquireThread (C functior?
PyEval_EvalCode (C function),3
PyEval_EvalCodeEx (C function),3
PyEval_EvalFrame (C function)3
PyEval_EvalFrameEx (C function)3
PyEval_GetBuiltins (C function35
PyEval GetCallStats (C functior)b
PyEval_GetFrame (C function}b
PyEval_GetFuncDesc (C functior®6
PyEval_GetFuncName (C functior®6
PyEval_GetGlobals (C function}b
PyEval_GetLocals (C function}5
PyEval_GetRestricted (C functiords
PyEval_InitThreads (C function)2
PyEval_InitThreads(B7
PyEval_MergeCompilerFlags (C functiori)3
PyEval_RelnitThreads (C functior)3
PyEval_ReleaseLock (C functior2
PyEval_ReleaseLock(®7, 91, 92
PyEval_ReleaseThread (C functiofip,
PyEval_ReleaseThread?
PyEval_RestoreThread (C functiofj
PyEval RestoreThread@i, 92
PyEval_SaveThread (C functior9)3
PyEval_SaveThread().1, 92
PyEval_SetProfile (C function®5
PyEval_SetTrace (C functiords
PyEval_Threadslnitialized (C functior§2
PyExc_ArithmeticError22
PyExc_AssertionErrog?2
PyExc_AttributeError22
PyExc_BaseExceptio2
PyExc_EnvironmentErrog2
PyExc_EOFError22
PyExc_Exception?22
PyExc_FloatingPointErrog2
PyExc_ImportError22
PyExc_IndexError22
PyExc_IOError22
PyExc_KeyboardInterrupg?2
PyExc_KeyError22
PyExc_LookupError22
PyExc_MemoryError22
PyExc_NameErrof22
PyExc_NotimplementedErro22
PyExc_OSError22
PyExc_OverflowError22
PyExc_ReferenceErraz2
PyExc_RuntimeErroR?2

154

Index

The Python/C API, Release 2.6.1

PyExc_StandardErro?2
PyExc_SyntaxErro22
PyExc_SystemErrof?2
PyExc_SystemExit22
PyExc_TypeError22
PyExc_ValueError22
PyExc_WindowsError22
PyExc_ZeroDivisionError2
PyFile_AsFile (C function)77
PyFile_Check (C function);6
PyFile_CheckExact (C functionj6
PyFile_DecUseCount (C functionjy
PyFile_FromFile (C function)/7
PyFile_FromString (C functiony,6
PyFile_GetLine (C function);7
PyFile_IncUseCount (C functionj,”
PyFile_Name (C function);7
PyFile_SetBufSize (C functiony,7
PyFile_SetEncoding (C functionj,/
PyFile_SetEncodingAndErrors (C functio);
PyFile_SoftSpace (C functionj,y
PyFile_Type (C variable)[6
PyFile_WriteObject (C function)]7
PyFile_WriteString (C function){8
PyFileObject (C type)76

PyFloat_ AS_DOUBLE (C functionh4
PyFloat_AsDouble (C functionj4
PyFloat_Check (C functionj3
PyFloat_CheckExact (C functiorj4
PyFloat_ClearFreeList (C functiorf4
PyFloat_FromDouble (C functionj4
PyFloat_FromString (C function}4
PyFloat_GetInfo (C functiong4
PyFloat_GetMax (C functionj4
PyFloat_GetMin (C function};4
PyFloat_Type (C variableh3
PyFloatObject (C typeh3
PyFrozenSet_Check (C functio®f
PyFrozenSet_CheckExact (C functio@l,
PyFrozenSet_New (C functiorf)p
PyFrozenSet_Type (C variabl&p
PyFunction_Check (C functionjb
PyFunction_GetClosure (C functioms
PyFunction_GetCode (C function)s
PyFunction_GetDefaults (C functior)s
PyFunction_GetGlobals (C functiory)
PyFunction_GetModule (C functionjs
PyFunction_New (C function),5
PyFunction_SetClosure (C functiomf
PyFunction_SetDefaults (C functiom$
PyFunction_Type (C variablej5
PyFunctionObject (C type),5
PyGen_Check (C functiony2
PyGen_CheckExact (C functiorg?2

PyGen_New (C function2

PyGen_Type (C variable}2

PyGenObiject (C typeR2

PyGlLState Ensure (C functiorf4
PyGILState Release (C functioy}
Pylmport_AddModule (C function5
Pylmport_AppendInittab (C function},7
Pylmport_Cleanup (C function6
Pylmport_ExecCodeModule (C functior)f
Pylmport_Extendlnittab (C function®,7
Pylmport_FrozenModules (C variabl@)/
Pylmport_Getlmporter (C function6
Pylmport_GetMagicNumber (C functior§s
Pylmport_GetModuleDict (C functionp6
Pylmport_Import (C function)25
Pylmport_ImportFrozenModule (C functiord6
Pylmport_ImportModule (C function®5
Pylmport_ImportModuleEx (C function®5
Pylmport_ImportModuleLevel (C function®5
Pylmport_ImportModuleNoBlock (C function?5
Pylmport_ReloadModule (C function}5
PyIndex_Check (C functionji4
PyInstance_Check (C functiori)4
Pylnstance_New (C functionj4
Pylnstance_NewRaw (C function)4
Pylnstance_Type (C variable)4
PyInt_AS_LONG (C function)51
PyInt_AsLong (C function)51
PyInt_AsSsize t (C functionhl
PyInt_AsUnsignedLonglLongMask (C functio)|
PyInt_AsUnsignedLongMask (C functiorjl
PyInt_Check (C function$0
PyInt_CheckExact (C function}0
PyInt_ClearFreeList (C functionpl1
PyInt_FromLong (C function}y1
PyInt_FromSsize_t (C function}1
PyInt_FromString (C function0
PyInt_GetMax (C function);1

PyInt_Type (C variable);0
PylInterpreterState (C type)?2
PylInterpreterState_Clear (C functioA}
PylInterpreterState_Delete (C functiof}
PyinterpreterState_Head (C functiof}
PylInterpreterState_ New (C functio)3
PylInterpreterState_Next (C functio®)p
PylInterpreterState_ThreadHead (C functi@®),
PyIntObject (C type)50

Pylter_Check (C function}}7

Pylter_Next (C function)47

PyList_Append (C function)/1
PyList_AsTuple (C function)71
PyList_Check (C function)70
PyList_CheckExact (C function),0

PyList. GET_ITEM (C function)71

Index

155

The Python/C API, Release 2.6.1

PyList. GET_SIZE (C function)/1
PyList_Getltem (C function)71
PyList_Getltem()6

PyList_GetSlice (C function){1

PyList_Insert (C function)71

PyList_New (C function)70

PyList_Reverse (C functiony,1
PyList_SET_ITEM (C function)71
PyList_Setltem (C function);1
PyList_Setltem()5

PyList_SetSlice (C functiony,1

PyList_Size (C function)70

PyList_Sort (C function)71

PyList_Type (C variable)70

PyListObject (C type)70

PyLong_AsDouble (C functionj3
PyLong_AsLong (C function};3
PyLong_AsLongLong (C functionh3
PyLong_AsSsize_t (C functionj3
PyLong_AsUnsignedLong (C functiorf3
PyLong_AsUnsignedLonglLong (C functio)3
PyLong_AsUnsignedLonglLongMask (C functioB}
PyLong_AsUnsignedLongMask (C functiol)3
PyLong_AsVoidPtr (C function3
PyLong_Check (C functionj2
PyLong_CheckExact (C functiorf2
PyLong_FromDouble (C function}2
PyLong_FromLong (C functionj2
PyLong_FromLongLong (C function}2
PyLong_FromSize_t (C functionj2
PyLong_FromSsize_t (C functiorf2
PyLong_FromsString (C functionh2
PyLong_FromUnicode (C function}2
PyLong_FromUnsignedLong (C functiorp?
PyLong_FromUnsignedLongLong (C functiosf,
PyLong_FromVoidPtr (C functionj3
PyLong_Type (C variable)2

PyLongObject (C type)h2

PyMapping_Check (C function},6
PyMapping_Delltem (C function}i6
PyMapping_DelltemString (C functiond6
PyMapping_GetltemString (C functior)y
PyMapping_HasKey (C function},6
PyMapping_HasKeyString (C function)6
PyMapping_Items (C function}7
PyMapping_Keys (C function}i6
PyMapping_Length (C function).6
PyMapping_SetltemString (C function)y
PyMapping_Values (C function},6
PyMappingMethods (C type),20
PyMarshal_ReadLastObjectFromFile (C functicif),
PyMarshal_ReadLongFromFile (C functio&g
PyMarshal_ReadObjectFromFile (C functioa®,
PyMarshal_ReadObjectFromString (C functicz,

PyMarshal _ReadShortFromFile (C functioa®,
PyMarshal_WriteLongToFile (C function,’
PyMarshal_WriteObjectToFile (C functiorf)y
PyMarshal_WriteObjectToString (C functior®)3
PyMem_Del (C function)98

PyMem_Free (C functionp8
PyMem_Malloc (C function)98
PyMem_New (C function)98
PyMem_Realloc (C function8
PyMem_Resize (C function)8
PyMethod_Check (C function),6
PyMethod_Class (C functionj6
PyMethod_ClearFreeList (C functiory)6
PyMethod_Function (C function},6
PyMethod GET_CLASS (C functionj6
PyMethod_GET_FUNCTION (C function}6
PyMethod GET_SELF (C functionj6
PyMethod_New (C function);6
PyMethod_Self (C function);6
PyMethod_Type (C variable}5
PyMethodDef (C type)103

PyModule _AddIntConstant (C functionj3
PyModule_AddIntMacro (C function),8
PyModule _AddObject (C function},8
PyModule_AddStringConstant (C functiom3
PyModule_AddStringMacro (C functionj3
PyModule_Check (C functiony,3
PyModule_CheckExact (C functionj3
PyModule_GetDict (C function);8
PyModule_GetFilename (C functiorj)3
PyModule_GetName (C functionj3
PyModule_New (C function)/8
PyModule_Type (C variable),8
PyNumber_Absolute (C functionj2
PyNumber_Add (C function}}1
PyNumber_And (C function}}2
PyNumber_AsSsize_t (C functior)4
PyNumber_Check (C function},1
PyNumber_Coerce (C functio)3
PyNumber_CoerceEx (C functior)3
PyNumber_Divide (C function}}1
PyNumber_Divmod (C function}1
PyNumber_Float (C function}i4
PyNumber_FloorDivide (C functionji1
PyNumber_Index (C function}4
PyNumber_InPlaceAdd (C functiom2
PyNumber_InPlaceAnd (C functior)3
PyNumber_InPlaceDivide (C functior)2
PyNumber_InPlaceFloorDivide (C functio®)3
PyNumber_InPlaceLshift (C functiord,;3
PyNumber_InPlaceMultiply (C functionj,2
PyNumber_InPlaceOr (C functio)3
PyNumber_InPlacePower (C functiod)3
PyNumber_InPlaceRemainder (C functiof3,

156

Index

The Python/C API, Release 2.6.1

PyNumber_InPlaceRshift (C functior)3
PyNumber_InPlaceSubtract (C functioa},
PyNumber_InPlaceTrueDivide (C functiod)3
PyNumber_InPlaceXor (C functior) 3
PyNumber_Int (C functiony4
PyNumber_Invert (C functioni2
PyNumber_Long (C function}4
PyNumber_Lshift (C function)i2
PyNumber_Multiply (C function)41
PyNumber_Negative (C functiom;L
PyNumber_Or (C function)}2
PyNumber_Positive (C function}2
PyNumber_Power (C functionj,1
PyNumber_Remainder (C functior)]
PyNumber_Rshift (C function}i2
PyNumber_Subtract (C functiom1
PyNumber_ToBase (C function)4
PyNumber_TrueDivide (C function),1
PyNumber_Xor (C function)2
PyNumberMethods (C type),18

PyObject (C type)102
PyObject_AsCharBuffer (C function}3
PyObject_AsFileDescriptor (C functior))
PyObject_AsReadBuffer (C functiom)8
PyObject_AsWriteBuffer (C function)|8
PyObject_Bytes (C functionj8
PyObject_Call (C function}39
PyObject_CallFunction (C function}9
PyObject_CallFunctionObjArgs (C functiorg9
PyObject_CallMethod (C function}9
PyObject_CallMethodObjArgs (C functior§9
PyObject_CallObject (C function$9
PyObject_CheckReadBuffer (C functiod}
PyObject_Cmp (C function}38
PyObject_Compare (C functior§g
PyObject_Del (C function)101
PyObject_DelAttr (C function)37
PyObject_DelAttrString (C functiong7
PyObject_Delltem (C function}0

PyObject HEAD (C macro) 02
PyObiject_Init (C function)101
PyObiject_lInitVar (C function)]101
PyObiject_IsInstance (C functiord3
PyObject_IsSubclass (C functiordp
PyObject_IsTrue (C function)0
PyObject_Length (C function),0
PyObject_New (C function), 01
PyObject_NewVar (C function),01
PyObject_Not (C function)0
PyObject_Print (C function37
PyObject_Repr (C functionR8
PyObject_RichCompare (C functior3g
PyObject_RichCompareBool (C functio®g
PyObject_SetAttr (C functiong7
PyObject_SetAttrString (C function3,/
PyObject_Setltem (C function}0
PyObject_Size (C function}0
PyObject_Str (C function38
PyObject_Type (C function}i0
PyObject_TypeCheck (C functiom))
PyObject_Unicode (C function}8
PyObject VAR_HEAD (C macro),03
PyOS_AfterFork (C function)?3
PyOS_ascii_atof (C function}5
PyOS_ascii_formatd (C functior}p
PyOS_ascii_strtod (C function}s
PyOS_CheckStack (C functior)3
PyOS_GetLastModificationTime (C functior®)3
PyOS_getsig (C function}3

PyOS_setsig (C function}3
PyOS_snprintf (C functionj34
PyOS_stricmp (C function5
PyOS_strnicmp (C functionj5
PyOS_vsnprintf (C function34
PyParser_SimpleParseFile (C functioh,
PyParser_SimpleParseFileFlags (C functidR),
PyParser_SimpleParseString (C functidd),

PyParser_SimpleParseStringFlags (C functiag),

(C func-

PyObject_Dir (C function)40 PyParser_SimpleParseStringFlagsFilename
PyObject_GC_Del (C function},23 tion), 12

PyObject_GC_New (C function),22 PyProperty_Type (C variablej9
PyObject_GC_NewVar (C function}22 PyRun_AnyFile (C function)]1

PyObject_ GC_Resize (C functiori)22 PyRun_AnyFileEx (C function)l 1
PyObject_GC_Track (C function}22 PyRun_AnyFileExFlags (C function),1
PyObject_GC_UnTrack (C function)23 PyRun_AnyFileFlags (C function),1
PyObject_GetAttr (C functiong7 PyRun_File (C function)13
PyObject_GetAttrString (C functiony7 PyRun_FileEx (C function)13
PyObject_Getltem (C function),0 PyRun_FileExFlags (C function),;3
PyObject_Getlter (C function},0 PyRun_FileFlags (C function),3
PyObject_HasAttr (C functiong7 PyRun_InteractiveLoop (C function)?
PyObject_HasAttrString (C function3,7 PyRun_InteractiveLoopFlags (C functioiy,
PyObject_Hash (C functionp9 PyRun_InteractiveOne (C functiori)2
PyObject_HashNotimplemented (C functiof, PyRun_InteractiveOneFlags (C functiofy,
Index 157

The Python/C API, Release 2.6.1

PyRun_SimpleFile (C function}),1
PyRun_SimpleFileEx (C function),2
PyRun_SimpleFileExFlags (C functiori)?
PyRun_SimpleFileFlags (C functior)?
PyRun_SimpleString (C function),1
PyRun_SimpleStringFlags (C functiori)l
PyRun_String (C function) 2
PyRun_StringFlags (C function)2
PySeqlter_Check (C functionj9
PySeglter_New (C function),9
PySeqlter_Type (C variablej9
PySequence_Check (C function)i
PySequence_Concat (C functiod),
PySequence_Contains (C functiof},
PySequence_Count (C functiod}
PySequence_Delltem (C functiodfp
PySequence_DelSlice (C functiod)
PySequence_Fast (C functiod)
PySequence_Fast GET_ITEM (C functiof,
PySequence_Fast GET_SIZE (C functiat9,
PySequence_Fast_ITEMS (C functio,
PySequence_Getltem (C functiod}
PySequence_Getltem@,
PySequence_GetSlice (C function}h
PySequence_Index (C functiodf
PySequence_InPlaceConcat (C functiat),
PySequence_InPlaceRepeat (C functidh),
PySequence_ ITEM (C function}6
PySequence_Length (C functiord)}
PySequence_List (C functiom5
PySequence_Repeat (C functiofy,
PySequence_Setltem (C functiod}
PySequence_SetSlice (C function},
PySequence_Size (C functiody}
PySequence_Tuple (C functiod)p
PySequenceMethods (C typép0
PySet_Add (C function)36

PySet Check (C function®5
PySet_Clear (C functionj6
PySet_Contains (C function}s
PySet_Discard (C function$6

PySet GET_SIZE (C function5
PySet_New (C functionB5

PySet_Pop (C function®6

PySet_Size (C functiong5

PySet_Type (C variable®5

PySetObject (C typeR5
PySignal_SetWakeupFd (C functiof),
PySlice_Check (C functionj0
PySlice_Getlndices (C functior§p
PySlice_GetIndicesEx (C functiorfp
PySlice_New (C function)30
PySlice_Type (C variable}0

PyString_ AS_STRING (C function})7

PyString_AsDecodedObject (C functioB))
PyString_ AsEncodedObiject (C functioby
PyString_AsString (C function)7
PyString_AsStringAndSize (C functior§3
PyString_Check (C functionh6
PyString_CheckExact (C functiorf6
PyString_Concat (C function}8
PyString_ConcatAndDel (C functior§3
PyString_Decode (C function}8
PyString_Encode (C function)9
PyString_Format (C functionh8
PyString_FromFormat (C functiorf),/
PyString_FromFormatV (C function},
PyString_FromString (C function}6
PyString_FromsString()72
PyString_FromStringAndSize (C functiory)y
PyString_ GET_SIZE (C function})7
PyString_InternFromString (C functior8
PyString_InterninPlace (C functiorj3
PyString_Size (C function)7
PyString_Type (C variableh6
PyStringObject (C type}6
PySys_AddWarnOption (C functiord4
PySys_GetFile (C functionp4
PySys_GetObject (C function}3
PySys_ResetWarnOptions (C functiohy,
PySys_SetArgv (C function0
PySys_SetArgv()9, 87
PySys_SetObject (C functiorp4
PySys_SetPath (C functior4
PySys_WriteStderr (C function}4
PySys_ WriteStdout (C function}4
Python 3000130
Python Enhancement Proposals

PEP 23814

PEP 343126
PYTHONDUMPREFS,106
PYTHONHOME,9
Pythonic,130
PYTHONPATH,9
PyThreadState&90
PyThreadState (C typed?2
PyThreadState_Clear (C functioj
PyThreadState_Delete (C functioA}
PyThreadState_Get (C functio®y}
PyThreadState_GetDict (C functio®y
PyThreadState_New (C functior$)3
PyThreadState Next (C functior))
PyThreadState_SetAsyncExc (C functiody,
PyThreadState_Swap (C functiof)}
PyTime_Check (C function3
PyTime_CheckExact (C function}3
PyTime_FromTime (C function33
PyTrace_C_CALL (C variablep5

158

Index

The Python/C API, Release 2.6.1

PyTrace_C_EXCEPTION (C variabl&)5
PyTrace_C_RETURN (C variabl&)b
PyTrace_CALL (C variableR5
PyTrace EXCEPTION (C variableds
PyTrace_LINE (C variableR5
PyTrace_ RETURN (C variable)5
PyTuple_Check (C function}9
PyTuple_CheckExact (C functiorj9
PyTuple_ClearFreeList (C functionjp
PyTuple_GET_ITEM (C function)70
PyTuple_GET_SIZE (C function}9
PyTuple_Getltem (C functiony,0
PyTuple_GetSlice (C function),0
PyTuple_New (C function39
PyTuple_Pack (C function}9
PyTuple_SET_ITEM (C function);0
PyTuple_Setltem (C functiony0
PyTuple_Setltem()$
PyTuple_Size (C function9
PyTuple_Type (C variable}9
PyTupleObject (C typek9
PyType_Check (C function}i9
PyType_ CheckExact (C functior)9
PyType_ClearCache (C functior)?
PyType_GenericAlloc (C function0
PyType_GenericNew (C functionjp
PyType_HasFeature (C functiod®
PyType HasFeature()21
PyType IS_GC (C function}9
PyType_IsSubtype (C functior§p
PyType_Modified (C function}9
PyType_Ready (C function}0
PyType_Type (C variable},9
PyTypeObiject (C type}i9
PyTZInfo_Check (C function)33
PyTZInfo_CheckExact (C function$3
PyUnicode_AS_DATA (C function)%;0
PyUnicode_AS UNICODE (C functiony0
PyUnicode_AsASCIIString (C function$5
PyUnicode_AsCharmapsString (C functiofj
PyUnicode_AsEncodedString (C functio},
PyUnicode_AsLatin1String (C functionjs
PyUnicode_AsMBCSString (C functior§s
PyUnicode_AsRawUnicodeEscapeString (C func-
tion), 64
PyUnicode_AsUnicode (C functiorj,L
PyUnicode_AsUnicodeEscapeString (C functidi),
PyUnicode_AsUTF16String (C functior§4
PyUnicode_AsUTF32String (C functior§3
PyUnicode_AsUTF8String (C functionj?2
PyUnicode_AsWideChar (C functiorfl
PyUnicode_Check (C function}9
PyUnicode_CheckExact (C functior)9
PyUnicode_ClearFreeList (C functiorg)

PyUnicode_Compare (C functiorgy
PyUnicode_Concat (C functionys
PyUnicode_Contains (C functiorf)3
PyUnicode_Count (C function$,7
PyUnicode_Decode (C functior§?
PyUnicode DecodeASCII (C functior§s
PyUnicode DecodeCharmap (C functio®,
PyUnicode_DecodeLatinl (C functior§s
PyUnicode_DecodeMBCS (C functior®);
PyUnicode_DecodeMBCSStateful (C functiof,
PyUnicode DecodeRawUnicodeEscape (C function),
64
PyUnicode_DecodeUnicodeEscape (C functiéH),
PyUnicode_DecodeUTF16 (C functio®3
PyUnicode_DecodeUTF16Stateful (C functiod3,
PyUnicode_DecodeUTF32 (C functio®)
PyUnicode DecodeUTF32Stateful (C functiob,
PyUnicode DecodeUTF8 (C functior)?
PyUnicode_DecodeUTF8Stateful (C functiofy,
PyUnicode_Encode (C functiorf)2
PyUnicode_EncodeASCII (C functior§s
PyUnicode EncodeCharmap (C functio®,
PyUnicode Encodelatinl (C functiorg,
PyUnicode_EncodeMBCS (C functior)g
PyUnicode_EncodeRawUnicodeEscape (C function),
64
PyUnicode_EncodeUnicodeEscape (C functiéd),
PyUnicode_EncodeUTF16 (C functiory}
PyUnicode_EncodeUTF32 (C functio®)3
PyUnicode_EncodeUTF8 (C functior§)?
PyUnicode_Find (C functionjj7
PyUnicode_Format (C functiond3
PyUnicode_FromEncodedObject (C functiofl,
PyUnicode_FromObject (C functiorgL
PyUnicode_FromUnicode (C functiorgl
PyUnicode_FromWideChar (C functior§)]
PyUnicode_ GET_DATA_SIZE (C function}9
PyUnicode GET_SIZE (C functiony9
PyUnicode_GetSize (C functiorf)1
PyUnicode_Join (C function}7
PyUnicode_Replace (C functior§7
PyUnicode_RichCompare (C functior)/
PyUnicode_Split (C function7
PyUnicode_Splitlines (C function,7
PyUnicode_Tailmatch (C functiong,’
PyUnicode_Translate (C functior§7
PyUnicode_TranslateCharmap (C functic®y),
PyUnicode_Type (C variable}9
PyUnicodeObiject (C typeR9
PyVarObiject (C type)102
PyWeakref_Check (C function§0
PyWeakref CheckProxy (C functior§)
PyWeakref CheckRef (C functior§)
PyWeakref GET_OBJECT (C functiorgl

Index

159

The Python/C API, Release 2.6.1

PyWeakref GetObject (C functiorgl
PyWeakref NewProxy (C functiony1
PyWeakref NewRef (C function$0
PyWrapper_New (C functiong0

R

readbufferproc (C type),21
realloc(),97
reference count,30
reload

built-in function, 25
repr

built-in function,38, 109
rexec

module,25

S

search

path, module9, 87, 89
segcountproc (C type),22
sequencel 30

object,55
set

object,84
set_all(),6
setcheckinterval() (in module sy$)Q
setvbuf(),77
SIGINT, 21
signal

module,21
slice, 130
SliceType (in module types$0
softspace (file attribute,7
special method] 30
sq_ass_item (C membef)20
sq_concat (C member)20
sq_contains (C member)20
sq_inplace_concat (C membetp1
sg_inplace_repeat (C membetp 1
sq_item (C member),20
sq_length (C member),20
sq_repeat (C member)20
statement]130
staticmethod

built-in function, 104
stderr (in module sysg7
stdin (in module sysy7
stdout (in module sysg7
str

built-in function, 38
strerror(),19
string

object,56
StringType (in module types)6

sum_list(),7
sum_sequence(], 8
Sys
module,9, 87
SystemError (built-in exception),8

T

thread

module,92
tp_alloc (C member)116
tp_allocs (C member),18
tp_as_buffer (C member),10
tp_as_mapping (C membef))9
tp_as_number (C membef))9
tp_as_sequence (C membén)9
tp_base (C member),15
tp_bases (C member)18
tp_basicsize (C member)p7
tp_cache (C member},18
tp_call (C member)109
tp_clear (C member),12
tp_compare (C member)08
tp_dealloc (C member),08
tp_descr_get (C membef)15
tp_descr_set (C membef)]5
tp_dict (C member)115
tp_dictoffset (C member),15
tp_doc (C member),11
tp_flags (C member),10
tp_free (C member), 17
tp_frees (C member),18
tp_getattr (C member),08
tp_getattro (C member),10
tp_getset (C member),14
tp_hash (C member},09
tp_init (C member)116
tp_is_gc (C member),17
tp_itemsize (C member),07
tp_iter (C member)114
tp_iternext (C member),14
tp_maxalloc (C member),18
tp_members (C member)14
tp_methods (C member),14
tp_mro (C member)]18
tp_name (C member),07
tp_new (C member), 17
tp_next (C member),18
tp_print (C member)108
tp_repr (C member),09
tp_richcompare (C member)13
tp_setattr (C member),08
tp_setattro (C member},10
tp_str (C member)109
tp_subclasses (C membet),8

160

The Python/C API, Release 2.6.1

tp_traverse (C member)12
tp_weaklist (C member),18
tp_weaklistoffset (C member),13
traverseproc (C type),23
triple-quoted string130
tuple
built-in function, 45, 71
object,69
TupleType (in module typesp9
type, 130
built-in function,40
object,4, 49
TypeType (in module types},9

U

ULONG_MAX, 53
unicode
built-in function, 38

Vv

version (in module sysR9, 90
virtual machine, 130
visitproc (C type),123

wW
writebufferproc (C type)122

Z
Zen of Python 130

Index 161

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Deprecation of String Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Thread State and the Global Interpreter Lock
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

