Extending and Embedding Python
Release 2.6.3

Guido van Rossum

Fred L. Drake, Jr., editor

October 06, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Extending Python with C or C++ 3
1.1 ASimple Example. e e e e e 3
1.2 Intermezzo: Errors and Exceptions. e 4
1.3 Backtothe Example e e 6
1.4 The Module’s Method Table and Initialization Function. 6
1.5 Compilationand Linkage. e 8
1.6 Calling Python Functionsfrom C e 8
1.7 Extracting Parameters in Extension Functions. 0. 10
1.8 Keyword Parameters for Extension Functions. 11
1.9 Building Arbitrary Values e e e e e 12
1.10 Reference CouNts. 0 e 13
1.11 Writing Extensions in C++ L e e 16
1.12 Providing a C API foran ExtensionModule 17
Defining New Types 21
2.1 TheBaSICS. o e e e 21
2.2 TypeMethods e e 49
Building C and C++ Extensions with distutils 61
3.1 Distributing your extensionmodules L e 62
Building C and C++ Extensions on Windows 63
4.1 ACookbook Approach e 63
4.2 Differences Between Unixand Windows oo 65
4.3 UsingDLLsIinPractice. e e e 66
Embedding Python in Another Application 67
5.1 VeryHighLevel Embedding e 67
5.2 Beyond Very High Level Embedding: Anoverview. 68
5.3 PureEmbedding e e 68
5.4 Extending Embedded Python L 71
55 Embedding Pythonin C++. L e 71
5.6 Linking Requirements. e e e e 71
Glossary 73
About these documents 79
B.1 Contributors to the Python Documentation. o e 79
History and License 81

C.1 Historyofthesoftware e e 81

C.2 Terms and conditions for accessing or otherwise using Python 82
C.3 Licenses and Acknowledgements for Incorporated Software. 84
D Copyright 93

Index 95

Extending and Embedding Python, Release 2.6.3

Release?2.6
Date October 06, 2009

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can define new functions but also new object types and their methods. The document also describes how to
embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the languEge P3g¢hon
Tutorial (in Python Tutoria). The Python Language Referen@e The Python Language Referehggves a more
formal definition of the languageThe Python Standard Librarfin The Python Library Referengeocuments the
existing object types, functions and modules (both built-in and written in Python) that give the language its wide
application range.

For a detailed description of the whole Python/C API, see the sepByat®n/C APl Reference Manuéh The
Python/C AP).

CONTENTS 1

Extending and Embedding Python, Release 2.6.3

2 CONTENTS

CHAPTER

ONE

EXTENDING PYTHON WITH C OR C++

It is quite easy to add new built-in modules to Python, if you know how to program in C.&tehsion modulesan
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C
library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the head#ython.h"

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

1.1 A Simple Example

Let’s create an extension module callgahm (the favorite food of Monty Python fans...) and let's say we want to
create a Python interface to the C library functaystem() . * This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> jmport spam
>>> gtatus = spam.system("lIs -l ")

Begin by creating a filsapammodule.c . (Historically, if a module is calledpam, the C file containing its imple-
mentation is calledpammodule.c ; if the module name is very long, likepammify , the module name can be just
spammify.c)

The first line of our file can be:
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you mustincludePython.h before any standard headers are included.

All user-visible symbols defined bigython.h have a prefix oPy or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python intefprgtesn.h” includes a few
standard header filesistdio.h> |, <string.h> |, <errno.h> , and<stdlib.h> . If the latter header file does
not exist on your system, it declares the functioraloc() ,free() andrealloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression
spam.system(string) is evaluated (we’ll see shortly how it ends up being called):

1 An interface for this function already exists in the standard modsile— it was chosen as a simple and straightforward example.

Extending and Embedding Python, Release 2.6.3

static PyObject *
spam_system (PyObject *self, PyObject *args)

{
const char *command;
int sts;
if (! PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return Py _Buildvalue("i", sts);
}

There is a straightforward translation from the argument list in Python (for example, the single expligssion)
to the arguments passed to the C function. The C function always has two arguments, conventionallyetfzaned
args

Theself argument is only used when the C function implements a built-in method, not a function. In the exsatiple,
will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the interpreter
doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call's argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The fun®iolrg ParseTuple() in the

Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg_ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function canNetukimmediately (as we saw in

the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usuallMW@LL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variableN&JLL no exception has occurred. A second global variable stores the
“associated value” of the exception (the second argumerdise). A third variable contains the stack traceback

in case the error originated in Python code. These three variables are the C equivalents of the Python variables
sys.exc_type , sys.exc_value andsys.exc_traceback (see the section on modusg's in the Python

Library Reference). It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one RyErr_SetString() . Its arguments are an exception object and a C string. The excep-
tion object is usually a predefined object liRgExc_ZeroDivisionError . The C string indicates the cause of
the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function i®yErr_SetFromErrno() , which only takes an exception argument and constructs the
associated value by inspection of the global variateo . The most general function ByErr_SetObject() ,
which takes two object arguments, the exception and its associated value. You don't igedN@€REF() the
objects passed to any of these functions.

You can test non-destructively whether an exception has been séty#tin Occurred() . This returns the current
exception object, oNULL if no exception has occurred. You normally don’t need to BglErr_Occurred() to
see whether an error occurred in a function call, since you should be able to tell from the return value.

4 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

When a functiorf that calls another functiog detects that the latter fails should itself return an error value (usually

NULL or-1). It shouldnot call one of thePyErr_*() functions — one has already been calledgby ‘s caller is

then supposed to also return an error indicatioitstoaller, agairwithoutcalling PyErr_*() , and so on — the most

detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’'s main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by callindPgEoth&()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear() . The only time C code should cdftyErr_Clear() is if it doesn’t want to pass the error on to

the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc() call must be turned into an exception — the direct callemafloc() (or realloc())
must callPyErr_NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
Pyint FromLong()) already do this, so this note is only relevant to those whomaalloc() directly.

Also note that, with the important exceptionf§Arg_ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for successlarfdr failure, like Unix system calls.

Finally, be careful to clean up garbage (by makiyg XDECREF() or Py_DECREF() calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such &Exc_ZeroDivisionError , which you can use directly. Of course, you should
choose exceptions wisely — don’t uBsExc_TypeError to mean that a file couldn’t be opened (that should
probably bePyExc _IOError). If something’s wrong with the argument list, tRgArg_ParseTuple() function

usually raise®PyExc_TypeError . If you have an argument whose value must be in a particular range or must satisfy
other conditionsPyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject * SpamError;

and initialize it in your module’s initialization functionnjtspam()) with an exception object (leaving out the error
checking for now):

PyMODINIT_FUNC
initspam (void)
{

PyObject *m;

m = Py_InitModule("spam", SpamMethods);
if (m == NULL
return ;

SpamError = PyErr_NewException("spam.error ", NULL NULD);
Py_INCREF(SpamError);
PyModule_AddObject(m, “error ", SpamError);

}

Note that the Python name for the exception objespam.error . ThePyErr_NewException() function may
create a class with the base class béirgeption (unless another class is passed in insteadWifL), described in
Built-in Exceptiongin The Python Library Referenge

1.2. Intermezzo: Errors and Exceptions 5

Extending and Embedding Python, Release 2.6.3

Note also that th&pamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, caus®gamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (! PyArg_ParseTuple(args, "s", &command))
return NULL;

It returnsNULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set ByArg_ParseTuple() . Otherwise the string value of the argument has been copied
to the local variableommand This is a pointer assignment and you are not supposed to modify the string to which
it points (so in Standard C, the varialdemmandshould properly be declared esnst char *command).

The next statement is a call to the Unix functimystem() , passing it the string we just got from
PyArg_ParseTuple()

sts = system(command);

Our spam.system() function must return the value sts as a Python object. This is done using the function
Py_BuildValue() , which is something like the inverse BiyArg_ParseTuple() . it takes a format string and
an arbitrary number of C values, and returns a new Python object. More iy dBuildValue() is given later.
return Py Buildvalue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function retunoidy), the corresponding Python
function must returiNone. You need this idiom to do so (which is implemented by lye RETURN_NONBacro):

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python objscine. Itis a genuine Python object rather thaNldLL pointer,
which means “error” in most contexts, as we have seen.

1.4 The Module’s Method Table and Initialization Function

| promised to show howpam_system() is called from Python programs. First, we need to list its name and address
in a “method table™:

static PyMethodDef SpamMethods][] = {

{"system ", spam_system, METH_VARARGS,
" Execute a shell command. "1,

{NULL NULL 0, NULL [* Sentinel */
I3
Note the third entry MIETH_VARARGSThis is a flag telling the interpreter the calling convention to be used for the

C function. It should normally always MdETH_VARARG& METH_VARARGS | METH_KEYWORD®&lue of
0 means that an obsolete variantRyfArg_ParseTuple() is used.

6 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

When using onWMETH_VARARG $e function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing vRyArg_ParseTuple() ; more information on this function is provided below.

The METH_KEYWORIDE may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a titg®Dbject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be passed to the interpreter in the module’s initialization function. The initialization function
must be namethitname() , wherenameis the name of the module, and should be the only static item
defined in the module file:

PyMODINIT_FUNC
initspam (void)

{
}

Note that PyMODINIT_FUNC declares the function\asd return type, declares any special linkage declarations
required by the platform, and for C++ declares the functioaxdasrn "C"

(void) Py_InitModule("spam", SpamMethods);

When the Python program imports modlgam for the first time,initspam() is called. (See below for com-
ments about embedding Python.) It cdMg InitModule() , Which creates a “module object” (which is inserted

in the dictionarysys.modules under the key'spam"), and inserts built-in function objects into the newly cre-
ated module based upon the table (an arrafPy¥lethodDef structures) that was passed as its second argument.
Py _InitModule() returns a pointer to the module object that it creates (which is unused here). It may abort with
a fatal error for certain errors, or retuRULL if the module could not be initialized satisfactorily.

When embedding Python, thaitspam() function is not called automatically unless there's an entry in the
_Pylmport_Inittab table. The easiest way to handle this is to statically initialize your statically-linked mod-
ules by directly callingnitspam() after the call tdPy_Initialize()
int
main (int argc, char *argv[)
{

[* Pass argv[0] to the Python interpreter */

Py SetProgramName(argv[0]);

[* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the filBemo/embed/demo.c in the Python source distribution.

Note: Removing entries fronsys.modules or importing compiled modules into multiple interpreters within a
process (or following dork() without an interveningexec()) can create problems for some extension mod-
ules. Extension module authors should exercise caution when initializing internal data structures. Note also that
the reload() function can be used with extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was loaded from a dynamically loadable
object file (so on Unix,.dll on Windows).

A more substantial example module is included in the Python source distributModides/xxmodule.c . This

file may be used as a template or simply read as an example. mbkelator.py script included in the source
distribution or Windows install provides a simple graphical user interface for declaring the functions and objects
which a module should implement, and can generate a template which can be filled in. The script lives in the
Tools/modulator/ directory; see th@EADMHile there for more information.

1.4. The Module’s Method Table and Initialization Function 7

Extending and Embedding Python, Release 2.6.3

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see
the chapters about building extension modules (chaptéding C and C++ Extensions with distut)lend additional
information that pertains only to building on Windows (chap®erilding C and C++ Extensions on Windoyfor

more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c for example) in theModules/ directory of an unpacked source distribution, add a line

to the fileModules/Setup.local describing your file:

spam spammodule.o

and rebuild the interpreter by runnimgake in the toplevel directory. You can also rumake in the Modules/
subdirectory, but then you must first rebuNthkefile there by runningrnake Makefile’. (This is necessary each
time you change th8etup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o - IX11

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won't dwell on how to call the Python parser with a particular string as input — if you're interested, have a look at
the implementation of thee command line option iModules/main.c ~ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful tBy INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL

static PyObject *
my_set callback (PyObject *dummy, PyObject *args)

{
PyObject *result = NULL
PyObject *temp;
if (PyArg_ParseTuple(args, " O:set_callback ", &emp)) {
if (! PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, " parameter must be callable ");
return NULL
}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); [* Dispose of previous callback */

8 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */

Py _INCREF(Py_None);

result = Py _None;

}

return result;

}

This function must be registered with the interpreter usingMETH_VARARGHg; this is described in sectidrhe
Module’s Method Table and Initialization FunctioiThe PyArg_ParseTuple() function and its arguments are
documented in sectioBxtracting Parameters in Extension Functions

The macrosPy XINCREF() and Py _XDECREF() increment/decrement the reference count of an object and
are safe in the presence BIULL pointers (but note thatemp will not be NULL in this context). More info

on them in sectionReference Counts Later, when it is time to call the function, you call the C function
PyObject_CallObject() . This function has two arguments, both pointers to arbitrary Python objects: the
Python function, and the argument list. The argument list must always be a tuple object, whose length is the number
of arguments. To call the Python function with no arguments, pass in NULL, or an empty tuple; to call it with one
argument, pass a singleton tup®y;_BuildValue() returns a tuple when its format string consists of zero or more
format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py Buildvalue(" (i) ", arg);

result = PyObject CallObject(my_callback, arglist);

Py DECREF(arglist);

PyObject_CallObject() returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new tuple

was created to serve as the argument list, whidtyisDECREF()-ed immediately after the call.

The return value oPyObject_CallObject() is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return valueNgaliL. If it is, the Python function
terminated by raising an exception. If the C code that caflg@bject_CallObject() is called from Python,

it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear() . For example:

if (result == NULL
return NULL;, /* Pass error back */
...use result...

Py DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject() . In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
is to callPy_BuildValue() . For example, if you want to pass an integral event code, you might use the following
code:

1.6. Calling Python Functions from C 9

Extending and Embedding Python, Release 2.6.3

PyObject *arglist;

arglist = Py_Buildvalue(" () ", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py DECREF(arglist);

if (result == NULL

return NULL /* Pass error back */
[* Here maybe use the result */
Py DECREF(result);

Note the placement d?y_DECREF(arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not compleRy_BuildValue() may run out of memory, and this should be checked.

You may also call a function with keyword arguments by udty®bject_Call() , which supports arguments and
keyword arguments. As in the above example, weRyseBuildValue() to construct the dictionary.

PyObject *dict;

dict = Py_Buildvalue("{s:i} ", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);

if (result == NULD

return ~ NULL, /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

1.7 Extracting Parameters in Extension Functions

ThePyArg_ParseTuple() function is declared as follows:
int PyArg_ParseTuple(PyObject *arg, char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The
format argument must be a format string, whose syntax is explaindgthising arguments and building valués

The Python/C ABIin the Python/C API Reference Manual. The remaining arguments must be addresses of variables
whose type is determined by the format string.

Note that whilePyArg_ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the callboemvedreferences; do not decrement
their reference count!

Some example calls:

int ok;

int i, j;

long Kk, I;

const char *s;

int size;

ok = PyArg_ParseTuple(args, ""); I* No arguments */

[* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); [* A string *
[* Possible Python call: fCwhoops!) */

10 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

ok = PyArg_ ParseTuple(args, "lls ", &, &, &s); [* Two longs and a string */
[* Possible Python call: f(1, 2, 'three’) */
ok = PyArg_ParseTuple(args, “(i)s# ", &, &, &s, &size);

/* A pair of ints and a string, whose size is also returned */
[* Possible Python call: f((1, 2), 'three’) */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg ParseTuple(args, "slsi ", &file, &mode, &bufsize);
[* A string, and optionally another string and an integer */
[* Possible Python calls:
f(spam’)
fCspam’, 'w’)
f(spam’, 'wb’, 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((in(in))(ii)
&left, &top, &right, &bottom, &h, &v);
[* A rectangle and a point */
[* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */

Py complex c;

ok = PyArg_ParseTuple(args, " D:myfunction ", &c);
[* a complex, also providing a function name for errors */
[* Possible Python call: myfunction(1+2)) */

1.8 Keyword Parameters for Extension Functions

ThePyArg_ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject * kwdict,
char *format, char *kwlist[], ...);

Thearg andformatparameters are identical to those of BygArg_ParseTuple() function. Thekwdictparameter

is the dictionary of keywords received as the third parameter from the Python runtimekwliseparameter is a
NULL-terminated list of strings which identify the parameters; the names are matched with the type information from
format from left to right. On succesRyArg_ParseTupleAndKeywords() returns true, otherwise it returns
false and raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in th&wlist will causeTypeError to be raised. Here is an example module which uses keywords, based
on an example by Geoff Philbricklilbrick@hks.conj

#include "Python.h"

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject * keywds)

1.8. Keyword Parameters for Extension Functions 11

mailto:philbrick@hks.com

Extending and Embedding Python, Release 2.6.3

{
int voltage;
char *state = "a stiff ";
char *action = "voom";
char *type = "Norwegian Blue ";
static char * kwlist]] = {"voltage ", "state ", "action ", "type ", NULL};
if (! PyArg_ParseTupleAndKeywords(args, keywds, "ilsss ", kwlist,
&voltage, &state, &action, &type))
return NULL
printf(" -- This parrot wouldn’'t %s if you put %i Volts through it. \n",
action, voltage);
printf(" -- Lovely plumage, the %s -- It's %s! \n", type, state);
Py_INCREF(Py_None);
return Py _None;
}
static PyMethodDef keywdarg_methods[] ={
[* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot() takes
* three.
*/
{"parrot ", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output. "1,
{NULL, NULL 0, NULL [* sentinel */
%
void
initkeywdarg ~ (void)
{

/* Create the module and add the functions */
Py_InitModule(" keywdarg ", keywdarg_methods);

}

1.9 Building Arbitrary Values

This function is the counterpart ®yArg_ParseTuple() . Itis declared as follows:
PyObject *Py Buildvalue(char *format, ...);

It recognizes a set of format units similar to the ones recognizedyl®yrg ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference witlPyArg_ParseTuple() : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internB{y)BuildValue() does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it rétones

if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a
tuple of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

12 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

Py_BuildValue(™) None
Py_BuildValue("i*, 123) 123
Py_BuildValue('iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello’
Py_BuildValue("ss", "hello”, "world") (hello’, 'world’)
Py BuildValue("s#", "hello", 4) "hell’
Py_BuildValue("()") 0
Py_BuildValue("(i)", 123) (123))
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]

Py BuildValue('{s:i,s:i}",

"abc", 123, "def", 456) {'abc’: 123, 'def: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) @, 2), (3, 4)), (5, 6)

1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functianalloc() andfree() . In C++, the operatoresew anddelete are
used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated witmalloc() should eventually be returned to the pool of available memory by
exactly one call tdree() . Itis important to callfree() at the right time. If a block’s address is forgotten but
free() is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leakOn the other hand, if a program cditee() for a block and then continues to use the block, it creates

a conflict with re-use of the block through anothealloc() call. This is calledising freed memoryit has the same

bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may
add a test to the calculation that detects an error condition and can return prematurely from the function. It's easy to
forget to free the allocated memory block when taking this premature exit, especially when it is added later to the code.
Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all
calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running
process that uses the leaking function frequently. Therefore, it's important to prevent leaks from happening by having
a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy usenadlloc() andfree() , it needs a strategy to avoid memory leaks as well as the

use of freed memory. The chosen method is cakéerence countingThe principle is simple: every object contains

a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is calleltomatic garbage collectionfSometimes, reference counting is also referred to as

a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need tdfie) explicitly. (Another claimed advantage is an improve-

ment in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc() andfree() are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are
the weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects

1.10. Reference Counts 13

Extending and Embedding Python, Release 2.6.3

which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which
is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects
in a reference cycle, or referenced from the objects in the cycle, even though there are no further references to the
cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers implemented
in Python (_del_ () methods). When there are such finalizers, the detector exposes the cycles throggh the
module (specifically, thgarbage variable in that module). Thgc module also exposes a way to run the detector
(thecollect() function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time
using the--without-cycle-gc option to theconfigure script on Unix platforms (including Mac OS X) or by
removing the definition oWITH_CYCLE_G@ thepyconfig.h header on other platforms. If the cycle detector is
disabled in this way, thgc module will not be available.

1.10.1 Reference Counting in Python

There are two macro®y INCREF(x) andPy_DECREF(x), which handle the incrementing and decrementing of
the reference counPy_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in the objégbs object For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to B¢ INCREF(xX) andPy_DECREF(x)? Let's first introduce some

terms. Nobody “owns” an object; however, you aamn a referencéo an object. An object’s reference count is now

defined as the number of owned references to it. The owner of a reference is responsible foPgalbiCREF()

when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or Bgll DECREF(). Forgetting to dispose of an owned reference creates

a memory leak.

It is also possible tdorrow ? a reference to an object. The borrower of a reference should nd®galECREF().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided corpletely.

The advantage of borrowing over owning a reference is that you don't need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don'’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in
fact disposed of it.

A borrowed reference can be changed into an owned reference by dJlindlCREF() . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, sucRgmt_FromLong() andPy_BuildValue() , pass ownership

to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For
instancePyInt_FromLong() maintains a cache of popular values and can return a reference to a cached item.

2 The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at leadbgs not work— the reference count itself could be in freed memory and may thus be reused
for another object!

14 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

Many functions that extract objects from other objects also transfer ownership with the reference, for in-

stance PyObject_GetAttrString() . The picture is less clear, here, however, since a few com-
mon routines are exceptionsPyTuple_ Getltem() , PyList_Getltem() , PyDict_Getltem() , and
PyDict_GetltemString() all return references that you borrow from the tuple, list or dictionary.

The functionPylmport_ AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is s&yediodules

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will usé’y INCREF() to become an independent owner. There are exactly two important
exceptions to this ruleP?yTuple_Setltem() andPyList_Setltem() . These functions take over ownership of

the item passed to them — even if they fail! (Note tRgDict_Setltem() and friends don't take over ownership

— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference RBycdNIGREF() .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is transferred from the function to its caller.

1.10.3 Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have
to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is usiggDECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *list)
{
PyObject *item = PyList Getltem(list, 0);
PyList_Setltem(list, 1, PyInt_FromLong(OL));
PyObject_Print(item, stdout, 0); /* BUG! */
}
This function first borrows a referenceltst[0] , then replacelst[1] with the value0, and finally prints the

borrowed reference. Looks harmless, right? But it's not!

Let’s follow the control flow intoPyList_Setltem() . The list owns references to all its items, so when item

1 is replaced, it has to dispose of the original item 1. Now let’'s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defingttl () method. If this class instance has a
reference count of 1, disposing of it will callits del__ () method.

Since it is written in Python, the del_ () method can execute arbitrary Python code. Could it perhaps do some-
thing to invalidate the reference tem in bug() ? You bet! Assuming that the list passed ibteg() is accessible
tothe__del () method, it could execute a statement to the effectedf list[0] , and assuming this was the
last reference to that object, it would free the memory associated with it, thereby invalidetmg

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void
no_bug (PyObject *list)

PyObject *item = PyList Getltem(list, 0);

1.10. Reference Counts 15

Extending and Embedding Python, Release 2.6.3

Py_INCREF(item);
PyList_Setltem(list, 1, PyiInt_FromLong(OL));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);

}

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why higlel_ () methods would falil...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’'t get in each other's way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the MgcBREGIN_ALLOW_THREADSnNd

to re-acquire it usindP’y END_ALLOW_THREADShis is common around blocking I/O calls, to let other threads

use the processor while waiting for the 1/0 to complete. Obviously, the following function has the same problem as

the previous one:

void
bug (PyObject *list)
{

PyObject *item = PyList Getltem(list, 0);
Py BEGIN_ALLOW_THREADS

...some blocking | /O call...

Py END_ALLOW_THREADS

PyObject_Print(item, stdout, 0); /* BUG! */

1.10.4 NULL Pointers

In general, functions that take object references as arguments do not expect you to pa¢dithaqmointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generalNieturn
only to indicate that an exception occurred. The reason for not testingWal arguments is that functions often
pass the objects they receive on to other function — if each function were to té¢tfdr, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test foNULL only at the “source:” when a pointer that may KeJLL is received, for example, from
malloc() or from a function that may raise an exception.

The macrosPy_INCREF() and Py DECREF() do not check forNULL pointers — however, their variants
Py_XINCREF() andPy_XDECREF() do.

The macros for checking for a particular object typgtype_Check()) don’t check forNULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variant$\Wwith. checking.

The C function calling mechanism guarantees that the argument list passed to C furatignsr(the examples) is
neverNULL — in fact it guarantees that it is always a tugle.

It is a severe error to ever leNUJLL pointer “escape” to the Python user.

1.11 Writing Extensions in C++

Itis possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter)
is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in

4 These guarantees don't hold when you use the “old” style calling convention — this is still found in much existing code.

16 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

particular, module initialization functions) have to be declared usitgrn "C" . It is unnecessary to enclose the
Python header files iaxtern "C" {...} — they use this form already if the symbolcplusplus is defined
(all recent C++ compilers define this symbol).

1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type “collection” which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions for
direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring gtatit , of course), provide an appro-

priate header file, and document the C API. And in fact this would work if all extension modules were always linked
statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one
module may not be visible to another module. The details of visibility depend on the operating system; some systems
use one global namespace for the Python interpreter and all extension modules (Windows, for example), whereas oth-
ers require an explicit list of imported symbols at module link time (AlX is one example), or offer a choice of different
strategies (most Unices). And even if symbols are globally visible, the module whose functions one wishes to call
might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declasgatic , except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in sd@d¢tioiodule’s Method Table and Initialization Funct)on

And it means that symbols thsihouldbe accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: CObjects. A CObject is a Python data type which stores a poirdgit ¢). CObjects can only be created

and accessed via their C API, but they can be passed around like any other Python object. In particular, they can
be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the CObject.

There are many ways in which CObjects can be used to export the C API of an extension module. Each name could get
its own CObiject, or all C API pointers could be stored in an array whose address is published in a CObject. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing
the code and the client modules.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array ofvoid pointers which becomes the value of a CObject. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of tlgpam module from sectionA Simple Example The function
spam.system() does not call the C library functiosystem() directly, but a functiorPySpam_System() ,

which would of course do something more complicated in reality (such as adding “spam” to every command). This
functionPySpam_System() is also exported to other extension modules.

The functionPySpam_System() is a plain C function, declarestatic like everything else:
static int
PySpam_System(const char *command)

return system(command);

}

The functionspam_system() is modified in a trivial way:

1.12. Providing a C API for an Extension Module 17

Extending and Embedding Python, Release 2.6.3

static PyObject *
spam_system (PyObject *self, PyObject *args)

{
const char *command,
int sts;
if (! PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = PySpam_System(command);
return Py Buildvalue("i", sts);
}

In the beginning of the module, right after the line
#include "Python.h"
two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The#define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC
initspam (void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;
m = Py_InitModule(" spam", SpamMethods);
if (m == NULD
return ;
[* Initialize the C API pointer array */
PySpam_API[PySpam_System NUM] = (void *)PySpam_System;
[* Create a CObject containing the API pointer array’s address */
C_api_object = PyCObject_FromVoidPtr((void *)PySpam_API, NULL);
if (c_api_object I'= NULD
PyModule_AddObject(m, " C_API", c_api_object);
}

Note thatPySpam_API is declaredstatic ; otherwise the pointer array would disappear witspam()
terminates!

The bulk of the work is in the header figgammodule.h , which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __ cplusplus

extern "C' {

#endif

/* Header file for spammodule */

18 Chapter 1. Extending Python with C or C++

Extending and Embedding Python, Release 2.6.3

/¥ C API functions */

#define PySpam_System NUM 0

#define PySpam_System RETURN int

#define PySpam_System_PROTO (const char *command)
/* Total number of C API pointers */

#define PySpam_API_pointers 1

#ifdef SPAM_MODULE

[* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;

#else
/* This section is used in modules that use spammodule’s APl */

static void **PySpam_API;

#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])

[* Return -1 and set exception on error, O on success. */

static int
import_spam (void)
{
PyObject *module = Pylmport_ImportModule(" spam");
if (module = NULLD ({
PyObject *c_api_object = PyObject_GetAttrString(module, " C_API");
if (c_api_object == NULL

return -1,
if (PyCObject_Check(c_api_object))

PySpam_API = (void **)PyCObject AsVoidPtr(c_api_object);
Py _DECREF(c_api_object);

}

return 0;
}
#endif

#ifdef __ cplusplus

}
#endif

#endif /* ldefined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the funéySpam_System() is to call the function
(or rather macrojmport_spam() in its initialization function:

PyMODINIT_FUNC
initclient (void)
{

PyObject *m;

1.12. Providing a C API for an Extension Module 19

Extending and Embedding Python, Release 2.6.3

m = Py _InitModule("client ", ClientMethods);
if (m == NULL

return ;
if (import_spam() < 0)

return ;

[* additional initialization can happen here */

}

The main disadvantage of this approach is that thesplemmodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that CObjects offer additional functionality, which is especially useful for mem-
ory allocation and deallocation of the pointer stored in a CObject. The details are described in the Python/C API
Reference Manual in the sectig®@Objects(in The Python/C ABland in the implementation of CObjects (files
Include/cobject.h andObjects/cobject.c in the Python source code distribution).

20 Chapter 1. Extending Python with C or C++

CHAPTER

TWO

DEFINING NEW TYPES

As mentioned in the last chapter, Python allows the writer of an extension module to define new types that can be
manipulated from Python code, much like strings and lists in core Python.

This is not hard; the code for all extension types follows a pattern, but there are some details that you need to understand
before you can get started.

Note: The way new types are defined changed dramatically (and for the better) in Python 2.2. This document
documents how to define new types for Python 2.2 and later. If you need to support older versions of Python, you will
need to refer twlder versions of this documentation

2.1 The Basics

The Python runtime sees all Python objects as variables oRy@bject* . A PyObject is not a very magnificent

object - it just contains the refcount and a pointer to the object’s “type object”. This is where the action is; the type
object determines which (C) functions get called when, for instance, an attribute gets looked up on an object or it
is multiplied by another object. These C functions are called “type methods” to distinguish them from things like
[l.append (which we call “object methods”).

So, if you want to define a new object type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type:

#include <Python.h>

typedef struct {

PyObject HEAD

[* Type-specific fields go here. */
} noddy NoddyObiject;

static PyTypeObject noddy NoddyType = {
PyObject HEAD_INIT(NULL
0, /*ob_size*/
" noddy.Noddy ", [*tp_name*/
sizeof (noddy_ NoddyObiject), [*tp_basicsize*/

, [*tp_itemsize*/
, [*tp_dealloc*/

, [*tp_print*/

. [*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/

[cNeoNeoNoNeoNe

21

http://www.python.org/doc/versions/

Extending and Embedding Python, Release 2.6.3

0, [*tp_repr*/
0, [*tp_as_number*/
0, [*tp_as_sequence*/
0, [*tp_as_mapping*/
0, [*tp_hash */
0, [*tp_call*/
0, [*tp_str*/
0, [*tp_getattro*/
0, [*tp_setattro*/
0, [*tp_as_buffer*/
Py _TPFLAGS_DEFAULT, [*tp_flags*/
"Noddy objects ", [* tp_doc */
I3
static PyMethodDef noddy_ methods[] = {
{NULL /* Sentinel */
2
#ifndef PyMODINIT_FUNC [* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif

PyMODINIT_FUNC
initnoddy (void)

{
PyObject * m;
noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy NoddyType) < 0)
return ;
m = Py_InitModule3("noddy ", noddy_methods,
"Example module that creates an extension type. ");
Py INCREF(&noddy_ NoddyType);
PyModule_AddObject(m, “Noddy", (PyObject *) &noddy_NoddyType);
}

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the last chapter.
The first bit that will be new is:

typedef struct {
PyObject_ HEAD
} noddy_NoddyObject;

This is what a Noddy object will contain—in this case, nothing more than every Python object contains, namely a
refcount and a pointer to a type object. These are the fieldBybject HEAD macro brings in. The reason for

the macro is to standardize the layout and to enable special debugging fields in debug builds. Note that there is no
semicolon after th&yObject HEAD macro; one is included in the macro definition. Be wary of adding one by
accident; it's easy to do from habit, and your compiler might not complain, but someone else’s probably will! (On
Windows, MSVC is known to call this an error and refuse to compile the code.)

For contrast, let’s take a look at the corresponding definition for standard Python integers:

typedef struct {
PyObject_ HEAD
long ob_ival;

22 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

} PyiIntObject;
Moving on, we come to the crunch — the type object.

static PyTypeObject noddy_ NoddyType = {

PyObject HEAD_INIT(NULL

0, /*ob_size*/

" noddy.Noddy ", [*tp_name*/

sizeof (noddy_NoddyObiject), I*tp_basicsize*/
[*tp_itemsize*/
[*tp_dealloc*/
[*tp_print*/
[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
[*tp_repr*/
[*tp_as_number*/
[*tp_as_sequence*/
[*tp_as_mapping*/
[*tp_hash */
[*tp_call*/
[*tp_str*/
[*tp_getattro*/
[*tp_setattro*/
, [*tp_as_buffer*/
Py TPFLAGS_DEFAULT, I*tp_flags*/
"Noddy objects ", /* tp_doc */

o

elejelelolojolojojojojojoloNe)

h
Now if you go and look up the definition ¢ty TypeObject in object.h you'll see that it has many more fields

that the definition above. The remaining fields will be filled with zeros by the C compiler, and it's common practice to
not specify them explicitly unless you need them.

This is so important that we're going to pick the top of it apart still further:
PyObject HEAD_INIT(NULL)

This line is a bit of a wart; what we'd like to write is:

PyObject HEAD_INIT(&PyType_Type)

as the type of a type object is “type”, but this isn’t strictly conforming C and some compilers complain. Fortunately,
this member will be filled in for us bPyType_Ready()

0, [* ob_size */

Theob_size field of the header is not used; its presence in the type structure is a historical artifact that is maintained
for binary compatibility with extension modules compiled for older versions of Python. Always set this field to zero.

"noddy.Noddy ", I* tp_name */

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + noddy.new_noddy()
Traceback (most recent call last)
File "<stdin> ", line 1, in ?

TypeError: cannot add type "noddy.Noddy " to string

Note that the name is a dotted hame that includes both the module name and the name of the type within the module.
The module in this case ioddy and the type idNoddy, so we set the type nameoddy.Noddy .

2.1. The Basics 23

Extending and Embedding Python, Release 2.6.3

sizeof (noddy_NoddyObiject), [* tp_basicsize */
This is so that Python knows how much memory to allocate when yotPgélbject New()

Note: If you want your type to be subclassable from Python, and your type has thesadnasicsize as its base

type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type
firstinits__bases _ , or else it will not be able to call your type’s new_ () method without getting an error.

You can avoid this problem by ensuring that your type has a larger valtie foasicsize than its base type does.
Most of the time, this will be true anyway, because either your base type wilbjeet , or else you will be adding

data members to your base type, and therefore increasing its size.

0, [* tp_itemsize */

This has to do with variable length objects like lists and strings. Ignore this for now.

Skipping a number of type methods that we don'’t provide, we set the class flegs T®FLAGS_DEFAULT
Py TPFLAGS_DEFAULT, I*tp_flags*/

All types should include this constant in their flags. It enables all of the members defined by the current version of
Python.

We provide a doc string for the type fp_doc .
"Noddy objects ", [* tp_doc */

Now we get into the type methods, the things that make your objects different from the others. We aren’t going
to implement any of these in this version of the module. We'll expand this example later to have more interesting
behavior.

For now, all we want to be able to do is to create ri¢addy objects. To enable object creation, we have to provide
atp_new implementation. In this case, we can just use the default implementation provided by the API function
PyType_GenericNew() . We'd like to just assign this to thigw_new slot, but we can't, for portability sake,

On some platforms or compilers, we can't statically initialize a structure member with a function defined in an-
other C module, so, instead, we’ll assign tbenew slot in the module initialization function just before calling
PyType_Ready()

noddy_NoddyType.tp_new = PyType_GenericNew;
if (PyType_Ready(&noddy_NoddyType) < 0)
return

All the other type methods alULL, so we’ll go over them later — that'’s for a later section!
Everything else in the file should be familiar, except for some codiatimoddy()

if (PyType_Ready(&noddy_NoddyType) < 0)
return ;

This initializes theNoddy type, filing in a number of members, includind_type that we initially set taNULL.
PyModule_AddObject(m, "Noddy", (PyObject *) &noddy_NoddyType);
This adds the type to the module dictionary. This allows us to cidatiely instances by calling thdoddy class:

>>> import noddy
>>> mynoddy = noddy.Noddy()

That's it! All that remains is to build it; put the above code in a file calbeddy.c and

from distutils.core import setup, Extension
setup(name ="noddy", version ="1.0",
ext_modules =[Extension("noddy", ["noddy.c "])])

in a file calledsetup.py ;then typing

24 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

$ python setup.py build

at a shell should produce a fi®ddy.so in a subdirectory; move to that directory and fire up Python — you should
be able tamport noddy and play around with Noddy objects.

That wasn'’t so hard, was it?

Of course, the current Noddy type is pretty uninteresting. It has no data and doesn’t do anything. It can’'t even be
subclassed.

2.1.1 Adding data and methods to the Basic example

Let's expend the basic example to add some data and methods. Let’s also make the type usable as a base class. We'll
create a new moduleoddy?2 that adds these capabilities:

#include <Python.h>

#include "structmember.h"

typedef struct {
PyObject_ HEAD

PyObject *first; [* first name */
PyObject *last; [* last name */
int number;

} Noddy;

static void
Noddy dealloc (Noddy * self)

{

Py XDECREF(self - >first);

Py XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

static PyObject *
Noddy_ new (PyTypeObject *type, PyObject *args, PyObject * kwds)

{
Noddy * self;
self = (Noddy *)type - >tp_alloc(type, 0);
it (self 1= NULD {
self ->first = PyString_FromString("y
if (self - >first == NULL)
{

Py DECREF(self);
return NULL;

}
self ->last = PyString_FromString(",
if (self ->last == NULD

{

Py _DECREF(self);
return NULL

}

self ->number = 0;

2.1. The Basics 25

Extending and Embedding Python, Release 2.6.3

}

return (PyObject *)self;

}

static int
Noddy _init
{

(Noddy *self, PyObject *args, PyObject

PyObject *first =NULL *last =NULL, *tmp;

static char *kwlist]] = {"first ", "last ",

if (! PyArg_ParseTupleAndKeywords(args, kwds,

&first,

"number",

* kwds)

"|00i ", kwlist,
&last,

&self - >number))

return -1;

if (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py XDECREF(tmp);

}

if (last) {
tmp = self - >last;
Py_INCREF(last);
self ->last = last;
Py_XDECREF(tmp);

}

return 0;

static PyMemberDef Noddy members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first),
"first name "},

{"last ", T_OBJECT_EX, offsetof(Noddy, last),
"last name "},

{"number", T_INT, offsetof(Noddy, number),
"noddy number "},

{NULL /* Sentinel */

2

static PyObject *

Noddy _name(Noddy * self)

{

*format = NULL
*result;

static
PyObject

PyObject
*args,

if (format == NULLD {
format = PyString_FromString(
if (format == NULL

" %S %S);

NULL;

26

Chapter 2.

Defining New Types

Extending and Embedding Python, Release 2.6.3

return NULL;

}

if (self ->first == NULD {
PyErr_SetString(PyExc_AttributeError, “first ");
return NULL

}

if (self ->last == NULL {
PyErr_SetString(PyExc_AttributeError, "last ");
return NULL

}

args = Py Buildvalue("0O, self - >first, self - >last);

if (args == NULD
return NULL

result = PyString_Format(format, args);

Py_DECREF(args);

return result;
}
static PyMethodDef Noddy methods][] ={
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name "
3
{NULLG /* Sentinel */
I3
static PyTypeObject NoddyType = {
PyObject HEAD_INIT(NULL
0, /*ob_size*/
" noddy.Noddy ", [*tp_name*/
sizeof (Noddy), [*tp_basicsize*/
0, [*tp_itemsize*/
(destructor)Noddy_dealloc, [*tp_dealloc*/
0, [*tp_print*/
0, [*tp_getattr*/
0, [*tp_setattr*/
0, [*tp_compare*/
0, [*tp_repr*/
0, [*tp_as_number*/
0, [*tp_as_sequence?*/
0, [*tp_as_mapping*/
0, [*tp_hash */
0, [*tp_call*/
0, [*tp_str*/
0, [*tp_getattro*/
0, [*tp_setattro*/
0 [*tp_as_buffer*/

Py_TPFLAGS_DEFAULT]|

"Noddy objects ,
0!

Py TPFLAGS_BASETYPE, /*tp_flags*/

/* tp_doc */
[* tp_traverse */

2.1. The Basics

27

Extending and Embedding Python, Release 2.6.3

0, [* tp_clear */
0, [* tp_richcompare */
0, [* tp_weaklistoffset */
0, [* tp_iter */
0, [* tp_iternext */
Noddy methods, /* tp_methods */
Noddy members, [* tp_members */
0, I* tp_getset */
0, [* tp_base */
0, [* tp_dict */
0, /* tp_descr_get */
0, [* tp_descr_set */
0, [* tp_dictoffset */
(initproc)Noddy_init, [* tp_init */
0, /* tp_alloc */
Noddy new, /* tp_new */
2
static PyMethodDef module_methods]] ={
{NULLZ /* Sentinel */
h
#ifndef PyMODINIT_FUNC [* declarations for DLL import/export */
#define PyMODINIT_FUNC void
#endif

PyMODINIT_FUNC
initnoddy2 (void)

{

PyObject * m;

if (PyType_Ready(&NoddyType) < 0)

return ;
m = Py_InitModule3("noddy2 ", module_methods,
"Example module that creates an extension type. ");
if (m == NULD
return

Py INCREF(&NoddyType);

PyModule_AddObiject(m, “Noddy", (PyObiject *) &NoddyType);
}

This version of the module has a number of changes.

We've added an extra include:

#include "structmember.h"

This include provides declarations that we use to handle attributes, as described a bit later.

The name of théoddy object structure has been shortened\tmidy. The type object name has been shortened to
NoddyType .

The Noddy type now has three data attributéisst, last, andnumber Thefirst andlast variables are Python strings
containing first and last names. Themberattribute is an integer.

28 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

The object structure is updated accordingly:

typedef struct {
PyObject_ HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Noddy dealloc (Noddy * self)

{

Py XDECREF(self - >first);

Py_XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

which is assigned to thip_dealloc member:
(destructor)Noddy_dealloc, [*tp_dealloc*/

This method decrements the reference counts of the two Python attributes. \Wg IBECREF() here because
thefirst andlast members could bBIULL. It then calls thdp_free member of the object’s type to free the
object’s memory. Note that the object’s type might notNmdyType , because the object may be an instance of a
subclass.

We want to make sure that the first and last names are initialized to empty strings, so we provide a new method:

static PyObject *
Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)
{

Noddy * self;

self = (Noddy *)type ->tp_alloc(type, 0);
if (self !'= NULD {
self - >first = PyString_FromString(")
if (self - >first == NULL
{
Py_DECREF(self);
return NULL;

}

self ->last = PyString_FromString(",
if (self ->last == NULL
{
Py_DECREF(self);
return NULL

}

self ->number = 0;

}

return (PyObject *)self;

2.1. The Basics 29

Extending and Embedding Python, Release 2.6.3

and install it in thetp_new member:
Noddy_new, I* tp_new *

The new member is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python as
the__new__ () method. See the paper titled “Unifying types and classes in Python” for a detailed discussion of the
__new__ () method. One reason to implement a new method is to assure the initial values of instance variables. In
this case, we use the new method to make sure that the initial values of the mémsbersandlast are notNULL.

If we didn’t care whether the initial values welbJLL, we could have useByType GenericNew() as our new
method, as we did befor®yType_GenericNew() initializes all of the instance variable members\toLL.

The new method is a static method that is passed the type being instantiated and any arguments passed when the type
was called, and that returns the new object created. New methods always accept positional and keyword arguments, but
they often ignore the arguments, leaving the argument handling to initializer methods. Note that if the type supports
subclassing, the type passed may not be the type being defined. The new method calls the tp_alloc slot to allocate
memory. We don't fill thep_alloc slot ourselves. Rathé&yType Ready() fills it for us by inheriting it from

our base class, which abject by default. Most types use the default allocation.

Note: If you are creating a co-operatitp_new (one that calls a base typelp_new or __new_ ()), you
mustnot try to determine what method to call using method resolution order at runtime. Always statically determine
what type you are going to call, and call tfs new directly, or viatype->tp_base->tp_new . If you do not

do this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses without géstpedaror .)

We provide an initialization function:

static int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{ PyObject *first =NULL, *last =NULL, *tmp;
static char *kwlist]] = {"first ", "last ", "number", NULL};
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|00i ", kwilist,

&first, &last,
&self - >number))
return -1;

it (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_XDECREF(tmp);

}

if (last) {
tmp = self - >last;
Py_INCREF(last);
self ->last = last;
Py_XDECREF(tmp);

}

return 0O,

}
by filling thetp_init slot.
(initproc)Noddy _init, [* tp_init */

30 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

Thetp_init slotis exposed in Python as theinit__ () method. Itis used to initialize an object after it's created.
Unlike the new method, we can’t guarantee that the initializer is called. The initializer isn’t called when unpickling
objects and it can be overridden. Our initializer accepts arguments to provide initial values for our instance. Initializers
always accept positional and keyword arguments.

Initializers can be called multiple times. Anyone can call thénit__ () method on our objects. For this reason,
we have to be extra careful when assigning the new values. We might be tempted, for example to afisggn the
member like this:

if (first) {
Py XDECREF(self - >first);
Py_INCREF(first);
self - >first = first;

}

But this would be risky. Our type doesn't restrict the type offilg =~ member, so it could be any kind of object.

It could have a destructor that causes code to be executed that tries to acdass themember. To be paranoid

and protect ourselves against this possibility, we almost always reassign members before decrementing their reference
counts. When don’t we have to do this?

» when we absolutely know that the reference count is greater than 1
« when we know that deallocation of the objéatill not cause any calls back into our type’s code
« when decrementing a reference count ip adealloc handler when garbage-collections is not suppotted

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Noddy members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first), o,
"first name "},
{"last ", T_OBJECT_EX, offsetof(Noddy, last), 0,
"last name "},
{" number", T_INT, offsetof(Noddy, number), 0,
"noddy number "},
{NULLG /* Sentinel */

I3

and put the definitions in thp_members slot:

Noddy _members, [* tp_members */

Each member definition has a member name, type, offset, access flags and documentation string. See the “Generic
Attribute Management” section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointé&sltd.. Even though we can make sure the members are
initialized to nonNULL values, the members can be seNtdLL if the attributes are deleted.

We define a single methodame() , that outputs the objects name as the concatenation of the first and last names.

static PyObject *
Noddy name(Noddy * self)

{
static PyObject *format = NULL

1 This is true when we know that the object is a basic type, like a string or a float.

2 \We relied on this in thép_dealloc handler in this example, because our type doesn’t support garbage collection. Even if a type supports
garbage collection, there are calls that can be made to “untrack” the object from garbage collection, however, these calls are advanced and not
covered here.

2.1. The Basics 31

Extending and Embedding Python, Release 2.6.3

PyObject *args, *result;

if (format == NULD {
format = PyString_FromString("%s %S$);
if (format == NULL

return NULL

}

if (self - >first == NULD {
PyErr_SetString(PyExc_AttributeError, “first ");
return NULL

}

if (self ->last == NULD {
PyErr_SetString(PyExc_AttributeError, "last ");
return NULL

}

args = Py Buildvalue("0O, self - >first, self - >last);

if (args == NULL
return NULL

result = PyString_Format(format, args);

Py_DECREF(args);

return result;

}

The method is implemented as a C function that takB®ddy (or Noddy subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as
well, but in this cased we don't take any and don't need to accept a positional argument tuple or keyword argument
dictionary. This method is equivalent to the Python method:

def name(self)
return " %s %$ % (self.first, self.last)

Note that we have to check for the possibility that fitst ~ andlast members ar&lULL. This is because they can
be deleted, in which case they are seltdLL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We'll see how to do that in the next section.

Now that we've defined the method, we need to create an array of method definitions:

static PyMethodDef Noddy methods][] ={
{" name", (PyCFunction)Noddy name, METH_NOARGS,
" Return the name, combining the first and last name
}

{,NULL} [* Sentinel */

2

and assign them to thp_methods slot:

Noddy_ methods, [* tp_methods */

Note that we used thelETH_NOARGH(g to indicate that the method is passed no arguments.

Finally, we’'ll make our type usable as a base class. We've written our methods carefully so far so that they don’t
make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py TPFLAGS_BASETYPHoO our class flag definition:

32 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

Py _TPFLAGS_DEFAULT| Py_TPFLAGS_BASETYPE, /*tp_flags*/
We renamenitnoddy() to initnoddy2() and update the module name passe@tolnitModule3()
Finally, we update ousetup.py file to build the new module:

from distutils.core import setup, Extension
setup(name ="noddy", version ="1.0",
ext_modules =[
Extension("noddy", ["noddy.c "]),
Extension("noddy2 ", ["noddy2.c "]),

D

2.1.2 Providing finer control over data attributes

In this section, we’ll provide finer control over how tfiesst ~ andlast attributes are set in tHdoddy example. In
the previous version of our module, the instance varialiies andlast could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject HEAD
PyObject *first;
PyObject *last;
int number;

} Noddy;

static void
Noddy dealloc (Noddy * self)

{

Py_XDECREF(self - >first);

Py_XDECREF(self - >last);

self ->ob_type - >tp_free((PyObject *)self);
}

static PyObject *
Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)

{
Noddy * self;
self = (Noddy *)type ->tp_alloc(type, 0);
if (self = NULD {
self - >first = PyString_FromString(")
if (self ->first == NULD
{

Py DECREF(self);
return NULL;

}
self ->last = PyString_FromString(")
if (self ->last == NULL

{

Py_DECREF(self);

2.1. The Basics 33

Extending and Embedding Python, Release 2.6.3

return NULL;
}
self ->number = O;
}
return (PyObject *)self;
}
static int
Noddy init (Noddy *self, PyObject *args, PyObject * kwds)
{
PyObject *first =NULL *last =NULL, *tmp;
static char *kwlist]] = {"first ", "last ", "number", NULL;
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|SSi ", kwilist,
&first, &last,
&self - >number))
return -1;
if (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py_DECREF(tmp);
}
if (last) {
tmp = self ->last;
Py_INCREF(last);
self ->last = last;
Py_DECREF(tmp);
}
return 0;
}
static PyMemberDef Noddy _members[] = {
{" number", T_INT, offsetof(Noddy, number), 0,
“noddy number "},
{NULL /* Sentinel */
h
static PyObject *
Noddy_getfirst (Noddy *self, void *closure)
{
Py INCREF(self - >first);
return self - >first;
}
static int
Noddy_setfirst (Noddy *self, PyObject *value, void *closure)
{
34 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

if (value == NULL {
PyErr_SetString(PyExc_TypeError, " Cannot delete the first attribute ");
return -1;

}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string ");
return - 1;

}

Py DECREF(self - >first);
Py_INCREF(value);
self - >first = value;

return 0;

}

static PyObject *
Noddy getlast (Noddy *self, void *closure)

{
Py INCREF(self - >last);
return self - >last;
}
static int
Noddy setlast (Noddy *self, PyObject *value, void *closure)
{
if (value == NULD {
PyErr_SetString(PyExc_TypeError, " Cannot delete the last attribute ");
return - 1;
}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The last attribute value must be a string ");
return - 1;

}

Py_DECREF(self - >last);
Py _INCREF(value);
self ->last = value;

return 0;

}

static PyGetSetDef Noddy_getseters|] = {
{"first ",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name ",
NULL},
{"last ",
(getter)Noddy_getlast, (setter)Noddy_setlast,

"last name ",

2.1. The Basics

Extending and Embedding Python, Release 2.6.3

NULLY},
{NULLG /* Sentinel */
I3

static PyObject *
Noddy name(Noddy * self)

{
static PyObject *format = NULL
PyObject *args, *result;
if (format == NULL {
format = PyString_FromString("%s %S$);
if (format == NULL
return NULL
}
args = Py Buildvalue("0O, self ->first, self - >last);
if (args == NULD
return NULL;
result = PyString_Format(format, args);
Py DECREF(args);
return result;
}
static PyMethodDef Noddy_ methods]] = {
{"name", (PyCFunction)Noddy name, METH_NOARGS,
"Return the name, combining the first and last name "
3
{NULL /* Sentinel */
h
static PyTypeObject NoddyType = {
PyObject HEAD INIT(NULL)
0 /*ob_size*/

"noddy.Noddy ", [*tp_name*/
sizeof (Noddy), [*tp_basicsize*/
0, [*tp_itemsize*/
(destructor)Noddy_dealloc, [*tp_dealloc*/

0, [*tp_print*/
[*tp_getattr*/
[*tp_setattr*/
[*tp_compare*/
I*tp_repr*/
[*tp_as_number*/
[*tp_as_sequence*/
[*tp_as_mapping*/
[*tp_hash */
[*tp_call*/
[*tp_str*/
[*tp_getattro*/
[*tp_setattro*/
[*tp_as_buffer*/

OO0 00000O00O00O00O0O00OO0oO

36 Chapter 2.

Defining New Types

Extending and Embedding Python, Release 2.6.3

Py _TPFLAGS_DEFAULT|

"Noddy objects ",

o

0,
0,

0,

0,

0,
Noddy_methods,
Noddy_members,
Noddy getseters,

0,
0,
0,
0,
0,
(initproc)Noddy _init,
0,
Noddy_new,
%
static
{NULLG /* Sentinel */
I3

#ifndef PyMODINIT_FUNC

Py _TPFLAGS_BASETYPE, /*tp_flags*/

[* tp_doc */
[* tp_traverse */
[* tp_clear */
[* tp_richcompare */
[* tp_weaklistoffset */
[* tp_iter */
[* tp_iternext */

/* tp_methods */

/* tp_members */

/* tp_getset */

[* tp_base */

[* tp_dict */

[* tp_descr_get */

/* tp_descr_set */

/* tp_dictoffset */

[* tp_init */

[* tp_alloc */

I* tp_new */

PyMethodDef module_methods][] = {

[* declarations for DLL import/export */

#define PyMODINIT_FUNC void

#endif
PyMODINIT_FUNC
initnoddy3 (void)
{

PyObject * m;

if (PyType_Ready(&NoddyType)

return ;

m = Py_InitModule3(

if (m == NULL)
return

< 0)

"noddy3 ", module_methods,
"Example module that creates an extension type. ");

Py_INCREF(&NoddyType);

PyModule _AddObject(m,

}

To provide greater control, over tiiest
are the functions for getting and setting first

Noddy_getfirst(Noddy

{
Py_INCREF(self

return self - >first;

* self, void

"Noddy", (PyObject *) &NoddyType);

andlast
attribute:

*closure)

- >first);

2.1. The Basics

37

attributes, we’ll use custom getter and setter functions. Here

Extending and Embedding Python, Release 2.6.3

static int
Noddy_setfirst(Noddy *self, PyObject *value, void *closure)
{
if (value == NULD {
PyErr_SetString(PyExc_TypeError, " Cannot delete the first attribute ");
return - 1;
}

if (! PyString_Check(value)) {
PyErr_SetString(PyExc_TypeError,
"The first attribute value must be a string ");
return -1;

}

Py DECREF(self - >first);
Py INCREF(value);
self - >first = value;

return 0;

}

The getter function is passedaddy object and a “closure”, which is void pointer. In this case, the closure is ignored.

(The closure supports an advanced usage in which definition data is passed to the getter and setter. This could, for
example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed tNeddy object, the new value, and the closure. The new value majtid., in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if the attribute value is
not a string.

We create an array ¢fyGetSetDef structures:

static PyGetSetDef Noddy_getseters[] = {
{"first ",
(getter)Noddy_getfirst, (setter)Noddy_setfirst,
"first name ",
NULL,
{"last ",
(getter)Noddy_getlast, (setter)Noddy_setlast,
"last name ",
NULL},
{NULLG /* Sentinel */
2
and register itin thép_getset slot:
Noddy_getseters, [* tp_getset */
to register our attribute getters and setters.

The last item in @yGetSetDef structure is the closure mentioned above. In this case, we aren't using the closure,
so we just pasbsIULL.

We also remove the member definitions for these attributes:

static PyMemberDef Noddy members[] = {
{"number", T_INT, offsetof(Noddy, number), 0,
"noddy number "},

38 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

{NULLG /* Sentinel */

h

We also need to update the init handler to only allow string$to be passed:

static int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{
PyObject *first =NULL *last =NULL, *tmp;
static char *kwlist]] = {"first ", "last ", "number", NULL;
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|SSi ", kwilist,

&first, &last,
&self - >number))
return -1;

it (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;
Py DECREF(tmp);

}

if (last) {
tmp = self - >last;
Py_INCREF(last);
self ->last = last;
Py DECREF(tmp);

}

return 0,

}

With these changes, we can assure thaffiise andlast members are nevéMULL so we can remove checks

for NULL values in almost all cases. This means that most ofRfheXDECREF() calls can be converted to

Py DECREF() calls. The only place we can't change these calls is in the deallocator, where there is the possibility
that the initialization of these members failed in the constructor.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to thetup.py file.

2.1.3 Supporting cyclic garbage collection

Python has a cyclic-garbage collector that can identify unneeded objects even when their reference counts are not zero.
This can happen when objects are involved in cycles. For example, consider:

>>> | =]
>>> |.append(l)
>>> del |

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic-garbage collector will eventually figure out that the list is

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,
however, we accept instances of string subclasses. Even though deallocating normal strings won't call back into our objects, we can't guarantee that
deallocating an instance of a string subclass won't call back into our objects.

2.1. The Basics 39

Extending and Embedding Python, Release 2.6.3

garbage and free it.

In the second version of thdoddy example, we allowed any kind of object to be stored infire or last
attributes* This means thakloddy objects can participate in cycles:

>>> import noddy2

>>> n = noddy2.Noddy()
>>> | = [n]

>>> n.first = |

This is pretty silly, but it gives us an excuse to add support for the cyclic-garbage collectoNodbyg example. To
support cyclic garbage collection, types need to fill two slots and set a class flag that enables these slots:

#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_ HEAD
PyObject *first;
PyObject *last;

int number;
} Noddy;
static int
Noddy traverse (Noddy *self, visitproc visit, void *arg)
{
int vret;
if (self ->first) {
vret = visit(self - >first, arg);
if (vret 1= 0)
return vret;
if (self ->last) {
vret = visit(self - >last, arg);
if (vret 1= 0)
return vret;
}
return O;
}
static int
Noddy _clear (Noddy *self)
{

PyObject *tmp;

tmp = self - >first;
self - >first = NULL
Py_XDECREF(tmp);

tmp = self ->last;
self ->last = NULL
Py _XDECREF(tmp);

4 Even in the third version, we aren’t guaranteed to avoid cycles. Instances of string subclasses are allowed and string subclasses could allow
cycles even if normal strings don't.

40 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

}

static

return 0;

void

Noddy dealloc (Noddy * self)

{

}

static

Noddy_clear(self);
self ->ob_type - >tp_free((PyObject *)self);

PyObject *

Noddy new (PyTypeObject *type, PyObject *args, PyObject * kwds)

{

}

static

Noddy * self;
self = (Noddy *)type ->tp_alloc(type, 0);
if (self = NULD {
self - >first = PyString_FromString(")
if (self - >first == NULL
{

Py DECREF(self);
return NULL;

}
self ->last = PyString_FromString(")
if (self ->last == NULL)

{

Py DECREF(self);
return NULL;

}

self ->number = 0;

}

return (PyObject *)self;

int

Noddy init (Noddy *self, PyObject *args, PyObject * kwds)

{

PyObject *first =NULL *last =NULL, *tmp;
static char * kwlist]] = {"first ", "last ", "number", NULL};

if (! PyArg_ParseTupleAndKeywords(args, kwds, "|00i ", kwilist,
&first, &last,
&self - >number))
return -1;

if (first) {
tmp = self - >first;
Py_INCREF(first);
self - >first = first;

2.1. The Basics

41

Extending and Embedding Python, Release 2.6.3

Py XDECREF(tmp);
}

if (last) {
tmp = self ->last;
Py_INCREF(last);
self ->last = last;
Py_XDECREF(tmp);

}

return 0;

static PyMemberDef Noddy members[] = {
{"first ", T_OBJECT_EX, offsetof(Noddy, first), o,
"first name "},
{"last ", T_OBJECT_EX, offsetof(Noddy, last), 0,
"last name "},
{"number", T_INT, offsetof(Noddy, number), 0,
"noddy number "},
{NULL /* Sentinel */

2

static PyObject *

Noddy _name(Noddy * self)

{
static PyObject *format = NULL
PyObject *args, *result;

if (format == NULD {
format = PyString_FromString("0%0s %S);
if (format == NULL
return NULL;
}

if (self - >first == NULD {
PyErr_SetString(PyExc_AttributeError, "first ");
return NULL;

}

if (self ->last == NULD {
PyErr_SetString(PyExc_AttributeError, "last ");
return NULL;

}
args = Py Buildvalue("0O, self - >first, self - >last);
if (args == NULD

return NULL;

result = PyString_Format(format, args);
Py _DECREF(args);

return result;

42 Chapter 2.

Defining New Types

Extending and Embedding Python, Release 2.6.3

}
static PyMethodDef Noddy methods][] ={
{"name", (PyCFunction)Noddy_name, METH_NOARGS,
"Return the name, combining the first and last name
h
{NULL /* Sentinel */
I3
static PyTypeObject NoddyType = {
PyObject HEAD_INIT(NULL
0, /*ob_size*/
" noddy.Noddy ", [*tp_name*/
sizeof (Noddy), [*tp_basicsize*/
0, [*tp_itemsize*/
(destructor)Noddy_dealloc, /*tp_dealloc*/
0, [*tp_print*/
0, [*tp_getattr*/
0, [*tp_setattr*/
0, [*tp_compare*/
0, [*tp_repr*/
0, [*tp_as_number*/
0, [*tp_as_sequence*/
0, [*tp_as_mapping*/
0, /*tp_hash */
0, [*tp_call*/
0, [*tp_str*/
0, [*tp_getattro*/
0, [*tp_setattro*/
0, [*tp_as_buffer*/
Py TPFLAGS_DEFAULT| Py _TPFLAGS_BASETYPE Py TPFLAGS_HAVE_GC,/*ip_flags*/
"Noddy objects ", /* tp_doc */
(traverseproc)Noddy_traverse, [* tp_traverse */
(inquiry)Noddy_clear, [* tp_clear */
0, [* tp_richcompare */
0, [* tp_weaklistoffset */
0, [* tp_iter */
0, [* tp_iternext */
Noddy_ methods, /* tp_methods */
Noddy_members, [* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
o, [* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Noddy _init, /* tp_init */
0, /* tp_alloc */
Noddy_ new, /* tp_new */
2

static PyMethodDef module_methods]]
{NULLG /* Sentinel */

{
3

2.1. The Basics

Extending and Embedding Python, Release 2.6.3

#ifndef PyMODINIT_FUNC [* declarations for DLL import/export */
#define PyMODINIT_FUNC void

#endif

PyMODINIT_FUNC

initnoddy4 (void)

{

PyObject * m;

if (PyType_Ready(&NoddyType) < 0)

return ;
m = Py_InitModule3("noddy4 ", module_methods,
"Example module that creates an extension type. ");
if (m == NULD
return

Py _INCREF(&NoddyType);

PyModule_AddObject(m, “Noddy", (PyObject *) &NoddyType);
}
The traversal method provides access to subobjects that could participate in cycles:
static int
Noddy traverse (Noddy *self, visitproc visit, void *arg)
{

int vret;

if (self ->first) {
vret = visit(self - >first, arg);
if (vret = 0)
return vret;

}
if (self ->last) {

vret = visit(self - >last, arg);
if (vret = 0)
return vret;
}
return 0;

}

For each subobject that can participate in cycles, we need to calligh@ function, which is passed to the
traversal method. Thesit() function takes as arguments the subobject and the extra arganggrassed to the
traversal method. It returns an integer value that must be returned if it is non-zero.

Python 2.4 and higher provideRy_VISIT() macro that automates calling visit functions. WRl_VISIT()
Noddy _traverse() can be simplified:

static int
Noddy traverse (Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self - >first);
Py VISIT(self - >last);
return O;

44 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

}

Note: Note that thep_traverse implementation must name its arguments exaeittjt andarg in order to use
Py_VISIT() . Thisis to encourage uniformity across these boring implementations.

We also need to provide a method for clearing any subobjects that can participate in cycles. We implement the method
and reimplement the deallocator to use it:

static int
Noddy_clear (Noddy *self)
{

PyObject *tmp;

tmp = self - >first;
self - >first = NULL
Py_XDECREF(tmp);

tmp = self ->last;
self ->last = NULL
Py_XDECREF(tmp);

return 0;

}

static void
Noddy_dealloc (Noddy * self)
{
Noddy_clear(self);
self ->ob_type - >tp_free((PyObject *)self);
}

Notice the use of a temporary variableNioddy clear() . We use the temporary variable so that we can set each
member tdNULL before decrementing its reference count. We do this because, as was discussed earlier, if the reference
count drops to zero, we might cause code to run that calls back into the object. In addition, because we now support
garbage collection, we also have to worry about code being run that triggers garbage collection. If garbage collection
is run, ourtp_traverse handler could get called. We can’t take a chance of haMioddy _traverse() called

when a member’s reference count has dropped to zero and its value hasn’t beexildet to

Python 2.4 and higher provideRy CLEAR() that automates the careful decrementing of reference counts. With
Py _CLEAR(), theNoddy clear() function can be simplified:

static int
Noddy clear (Noddy *self)
{

Py _CLEAR(self - >first);
Py _CLEAR(self - >last);
return 0;

}
Finally, we add th&?y TPFLAGS_HAVE_Gflag to the class flags:

Py _TPFLAGS_DEFAULT| Py TPFLAGS_BASETYPE| Py TPFLAGS_HAVE_GC,/*ip_flags*/

That's pretty much it. If we had written custaip_alloc ortp_free slots, we'd need to modify them for cyclic-
garbage collection. Most extensions will use the versions automatically provided.

2.1. The Basics 45

Extending and Embedding Python, Release 2.6.3

2.1.4 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the
built in types, since an extension can easily useRg&ypeObject it needs. It can be difficult to share these
PyTypeObject structures between extension modules.

In this example we will create 8hoddy type that inherits from the builtitist ~ type. The new type will be com-
pletely compatible with regular lists, but will have an additioimedrement() method that increases an internal
counter.

>>> import shoddy

>>> s = shoddy.Shoddy(range(3))
>>> s.extend(s)

>>> print len(s)

6

>>> print s.increment()

1

>>> print s.increment()

2

#include <Python.h>

typedef struct {
PyListObject list;
int state;

} Shoddy;

static PyObject *
Shoddy_increment (Shoddy *self, PyObject *unused)

{
self - >state ++;
return PyInt_FromLong(self - >state);
}
static PyMethodDef Shoddy_ methods] = {
{"increment ", (PyCFunction)Shoddy_increment, METH_NOARGS,
PyDoc_STR("increment state counter "
{ NULL, NULL},
3
static int
Shoddy_init (Shoddy *self, PyObject *args, PyObject * kwds)
{
if (PyList_Type.tp_init((PyObject *)self, args, kwds) < 0)
return -1;
self ->state = O;
return O;
}
static PyTypeObject ShoddyType = {
PyObject HEAD INIT(NULLD
0, [* ob_size */

46 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

" shoddy.Shoddy ", I*
sizeof (Shoddy), I*
| !
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
: I*
y_TPFLAGS_DEFAULT]|
Py TPFLAGS BASETYPE, /*
/*
/*
/*
/~k
/*
/*
/*
hoddy _methods, I*
/*
/*
/*
/*
/*
/*
/*
initproc)Shoddy _init, I*
) I*
, I*

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
p

cNeoNoNoNoNoNeoN/) NololNelNelNolNo o)

oo™

3

PyMODINIT_FUNC
initshoddy ~ (void)

{
PyObject *m;

tp_name */
tp_basicsize */
tp_itemsize */
tp_dealloc */
tp_print */
tp_getattr */
tp_setattr */
tp_compare */
tp_repr */
tp_as_number */
tp_as_sequence */
tp_as_mapping */
tp_hash */
tp_call */

tp_str */
tp_getattro */
tp_setattro */
tp_as_buffer */

tp_flags */
tp_doc */
tp_traverse */
tp_clear */
tp_richcompare */
tp_weaklistoffset */
tp_iter */
tp_iternext */
tp_methods */
tp_members */
tp_getset */
tp_base */
tp_dict */
tp_descr_get */
tp_descr_set */
tp_dictoffset */
tp_init */

tp_alloc */
tp_new */

ShoddyType.tp_base = &Pylist Type;
if (PyType_Ready(&ShoddyType) < 0)

return ;

m = Py_InitModule3(" shoddy "

if (m == NULL)
return

Py INCREF(&ShoddyType);

, NULL " Shoddy module ");

2.1. The Basics

47

Extending and Embedding Python, Release 2.6.3

PyModule AddObject(m, " Shoddy ", (PyObject *) &ShoddyType);
}

As you can see, the source code closely resembleddddy examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} Shoddy;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include th®yObject HEAD() at the beginning of its structure.

When a Python object is 8hoddy instance, itsPyObject* pointer can be safely cast to boftyListObject*and
Shoddy*

static int
Shoddy _init (Shoddy *self, PyObject *args, PyObject * kwds)
{

if (PyList_Type.tp_init((PyObject *)self, args, kwds) < 0)

return - 1;

self ->state = 0;

return 0;
}
Inthe__init_ method for our type, we can see how to call through to thait method of the base type.

This pattern is important when writing a type with custoew anddealloc methods. Th@ew method should not
actually create the memory for the object wifh alloc , that will be handled by the base class when calling its
tp_new .

When filling out thePyTypeObject() for theShoddy type, you see a slot fap_base() . Due to cross platform
compiler issues, you can't fill that field directly with thiyList_Type() ; it can be done later in the module’s
init() function.

PyMODINIT_FUNC
initshoddy (void)

{
PyObject *m;
ShoddyType.tp_base = &PyList_Type;
if (PyType_Ready(&ShoddyType) < 0)
return ;
m = Py_InitModule3("shoddy ", NULL " Shoddy module ");
if (m == NULD
return ;
Py INCREF(&ShoddyType);
PyModule_AddObject(m, " Shoddy ", (PyObject *) &ShoddyType);
}
Before callingPyType_Ready() , the type structure must have tte base slot filled in. When we are deriving
a new type, it is not necessary to fill out ttpe alloc ~ slot with PyType GenericNew() — the allocate function

from the base type will be inherited.

After that, callingPyType_Ready() and adding the type object to the module is the same as with theNaddy
examples.

48 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

2.2 Type Methods

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition oPyTypeObject , with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; [* For allocation */

[* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

[* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */
[* Assigned meaning in release 2.0 */
[* call function for all accessible objects */

traverseproc tp_traverse,

[* delete references to contained objects */
inquiry tp_clear;

[* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */

2.2. Type Methods

49

Extending and Embedding Python, Release 2.6.3

long tp_weaklistoffset;

/* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

[* Attribute descriptor and subclassing stuff */
struct ~ PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

Now that's alot of methods. Don't worry too much though - if you have a type you want to define, the chances are
very good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers.
We won't go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the
ordering of the fields; be sure your type initialization keeps the fields in the right order! It's often easiest to find an
example that includes all the fields you need (even if they're initialize®) tand then change the values to suit your

new type.

char *tp_name; /* For printing */

The name of the type - as mentioned in the last section, this will appear in various places, almost entirely for diagnostic
purposes. Try to choose something that will be helpful in such a situation!

int tp_basicsize, tp_itemsize; [* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, lists) which is whertpthitemsize field comes in.
This will be dealt with later.

char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script refebgnce®c_ to
retrieve the doc string.

Now we come to the basic type methods—the ones most extension types will implement.

50 Chapter 2. Defining New Types

Extending and Embedding Python, Release 2.6.3

2.2.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python
inter