The Python/C API
Release 2.6.3

Guido van Rossum

Fred L. Drake, Jr., editor

October 06, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Include Files. o e e 3
1.2 Objects, Typesand Reference Counts i i i i ittt 4
1.3 EXCEPLONS. o e e e e e e e e 7
1.4 Embedding Python 9
1.5 Debugging Builds. e 9
The Very High Level Layer 11
Reference Counting 15
Exception Handling 17
4.1 Standard EXceptions L e e e e 21
4.2 Deprecation of String EXceptions L e e e 22
Utilities 23
5.1 Operating System Utilities e e e 23
5.2 System FunClions. e e e 24
5.3 ProcessControl. e 24
5.4 Importing Modules 25
5.5 Datamarshalling suppart. e 27
5.6 Parsingarguments and buildingvalues. 28
5.7 String conversionand formatting e e 35
5.8 Reflection 36
Abstract Objects Layer 37
6.1 Object Protocol e e 37
6.2 Number Protocol e 41
6.3 Sequence Protocal L 45
6.4 Mapping Protocol e e e e 47
6.5 Iterator Protocol. e 48
6.6 Old Buffer Protocol e 48
Concrete Objects Layer 51
7.1 Fundamental Objects. e 51
7.2 Numeric ObJeCtS. e e e e e e e 52
7.3 Sequence ObjJeCtS. e e 58
7.4 Mapping Objects e e 79
7.5 OtherODbJeCtS o e e 82

8 Initialization, Finalization, and Threads 95

8.1 Thread State and the Global InterpreterLack, 98
8.2 Profilingand Tracing e 103
8.3 Advanced Debugger SUppOrt e e 104
9 Memory Management 107
9.1 OVEIVIEW. . . o ot e e e e e e e e e e 107
9.2 MemoryInterface e e 108
9.3 ExXamples. e e e 108
10 Object Implementation Support 111
10.1 Allocating ObjectsontheHeap e 111
10.2 Common ObJeCt STrUCtUreS o e e e e e e e e e e e 112
10.3 Type Objects. e e e e e e e 115
10.4 Number Object StrUCtUreS o e e 130
10.5 Mapping Object STrUCIUIeS. i e e e e e e 132
10.6 Sequence ObjeCt SIrUCtUreS. i i i e e e e e e e e e e e 132
10.7 Buffer Object Structures e e e e 133
10.8 Supporting Cyclic Garbage Collection 134
A Glossary 137
B About these documents 143
B.1 Contributors to the Python Documentation. 143
C History and License 145
C.1 Historyofthesoftware e 145
C.2 Terms and conditions for accessing or otherwise using Python 146
C.3 Licenses and Acknowledgements for Incorporated Software. 148
D Copyright 157
Index 159

The Python/C API, Release 2.6.3

Release?2.6
Date October 06, 2009

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. Itis a companion textending and Embedding the Python InterprdterExtending and Embedding Python
which describes the general principles of extension writing but does not document the API functions in detail.

CONTENTS 1

The Python/C API, Release 2.6.3

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to aembeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headerssstdio.h> , <string.h> , <errno.h>
<limits.h> , and<stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you mustincludePython.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixesPy or _Py. Names beginning withPy are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that beginRyjtor _Py. This confuses the reader, and jeopardizes
the portability of the user code to future Python versions, which may define additional names beginning with one of
these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/ , where prefix

and exec_prefix are defined by the corresponding parameters to Pythoorsfigure script and version is
sys.version[:3] . On Windows, the headers are installedpirefix/include , Whereprefix is the instal-

lation directory specified to the installer.

The Python/C API, Release 2.6.3

To include the headers, place both directories (if different) on your compiler’s search path for includest. dlxce
the parent directories on the search path and the#instude <pythonX.Y/Python.h> ; this will break on
multi-platform builds since the platform independent headers umedix include the platform specific headers from
exec_prefix

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bftypgect* . This type is

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typg/Object , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicalyTstp©bject

objects.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as expldihedstandard type
hierarchy(in The Python Language Referehcd-or each of the well-known types there is a macro to check whether
an object is of that type; for instancByList Check(a) is true if (and only if) the object pointed to kyis a
Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s
an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”) Reference
counts are always manipulated explicitly. The normal way is to use the RgctdlCREF() to increment an object’s
reference count by one, aly DECREF() to decrement it by one. THey DECREF() macro is considerably more

complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’s
deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this
is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s no
chance that the reference count can overflow; at least as many bits are used to hold the reference count as there are
distinct memory locations in virtual memory (assumsigeof(Py_ssize_t) >= sizeof(void*)). Thus,

the reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference

4 Chapter 1. Introduction

The Python/C API, Release 2.6.3

count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user fgnD&ECREF(),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begirRy@iject
PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of the
object they return. This leaves the caller with the responsibility torRalIDECREF() when they are done with the
result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C APl is best explained in teowsefship of references
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py _DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling’y DECREF() or Py_XDECREF() when it’s no longer needed—or passing on

this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: thedteattion

a reference to the object, or it does n@tealing a referenceneans that when you pass a reference to a function,
that function assumes that it now owns that reference, and you are not responsible for it any longer. Few functions
steal references; the two notable exceptionsPaiest Setltem() andPyTuple_Setltem() , Which steal a
reference to the item (but not to the tuple or list into which the item is put!). These functions were designed to steal a
reference because of a common idiom for populating a tuple or list with newly created objects; for example, the code

to create the tuplél, 2, "three") could look like this (forgetting about error handling for the moment; a better
way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyiInt_FromLong(1L));

PyTuple_Setltem(t, 1, PyInt_FromLong(2L));

PyTuple_Setltem(t, 2, PyString_FromString("three "));

Here, PyInt_FromLong() returns a new reference which is immediately stolenFyy uple_Setltem()
When you want to keep using an object although the reference to it will be stolelyus€CREF() to grab
another reference before calling the reference-stealing function.

Incidentally, PyTuple_Setltem() is the only way to set tuple items;PySequence_Setltem() and
PyObject_Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiyg.ist New() andPyList_Setltem()

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue() , that can create most common objects from C values, directedfbsmeat string

For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py Buildvalue("(is) ", 1, 2, "three ");
list = Py_Buildvalue("[is] ", 1, 2, "three ");
It is much more common to ugeyObject _Setltem() and friends with items whose references you are only

borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.6.3

reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject * item)
{ .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1,
for (i =0;i <n i ++){
PyObject *index = PyInt_FromLong(i);
if (!index)
return - 1;
if (PyObject_Setltem(target, index, item) < 0)
return - 1;
Py DECREF(index);
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_Getltem() andPySequence_Getltem() , always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumagdthe type of the object passed as an argument to the funa@egn't enter into it'Thus, if you

extract an item from a list usingyList_Getltem() , you don't own the reference — but if you obtain the same

item from the same list usingySequence_Getltem() (which happens to take exactly the same arguments), you

do own areference to the returned object. Here is an example of how you could write a function that computes the sum
of the items in a list of integers; once usiRgList Getltem() , and once usingySequence_Getltem()

long
sum_list (PyObject *list)
{ - .
int i, n;
long total = O;
PyObject *item;

n = PyList_Size(list);

if (n <0)
return -1; /* Not a list */
for (i =0;i <n; i ++) {
item = PyList_Getltem(list, i); [* Can't fail */
if (! PyInt_Check(item)) continue ; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total,
}
long

sum_sequence (PyObject *sequence)

6 Chapter 1. Introduction

The Python/C API, Release 2.6.3

{ . .
int i, n;
long total = 0;
PyObject *item;
n = PySequence_Length(sequence);
if (n <0
return -1; /* Has no length */
for (i =0;i0i <n; i ++) {
item = PySequence_Getltem(sequence, i);
if (tem == NULLD
return - 1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}
return total;
}
1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typedrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback. For C programmers, however, error checking
always has to be explicit. All functions in the Python/C API can raise exceptions, unless an explicit claim is made
otherwise in a function’s documentation. In general, when a function encounters an error, it sets an exception, discards
any object references that it owns, and returns an error indicator — ud\idlly. or -1 . A few functions return a

Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors Rjtrr_Occurred() . Exception state is main-

tained in per-thread storage (this is equivalent to using global storage in an unthreaded application). A thread can be
in one of two states: an exception has occurred, or not. The funetiginr_Occurred() can be used to check for

this: it returns a borrowed reference to the exception type object when an exception has occuiédl, laatherwise.

There are a number of functions to set the exception sBgterr SetString() is the most common (though not

the most general) function to set the exception state,Rarieir Clear() clears the exception state. The full
exception state consists of three objects (all of which caNWEL): the exception type, the corresponding exception

value, and the traceback. These have the same meanings as the Pythorsgbjexts type , sys.exc_value
andsys.exc_traceback ; however, they are not the same: the Python objects represent the last exception being
handled by a Pythotry ... except statement, while the C level exception state only exists while an exception is
being passed on between C functions until it reaches the Python bytecode interpreter's main loop, which takes care of
transferring it tosys.exc_type and friends. Note that starting with Python 1.5, the preferred, thread-safe way to
access the exception state from Python code is to call the fureygexc_info() , Which returns the per-thread
exception state for Python code. Also, the semantics of both ways to access the exception state have changed so that
a function which catches an exception will save and restore its thread’s exception state so as to preserve the exception
state of its caller. This prevents common bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects that are

1.3. Exceptions 7

The Python/C API, Release 2.6.3

referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shauddset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error. A simple example of detecting
exceptions and passing them on is shown instive_sequence() example above. It so happens that that example
doesn’t need to clean up any owned references when it detects an error. The following example function shows some
error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key)
try:
item = dict[key]
except KeyError:
item =0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item (PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL *const one = NULL *incremented_item = NULL
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject Getltem(dict, key);
if (tem == NULD {
[* Handle KeyError only: */
if (! PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (tem == NULD
goto error;
}
const_ one = PyInt_FromLong(1L);
if (const_ one == NULL
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL
goto error;
if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;
rv. = 0; /* Success */
[* Continue with cleanup code */
error:

[* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);

8 Chapter 1. Introduction

The Python/C API, Release 2.6.3

Py XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; [* -1 for error, O for success */

}
This example represents an endorsed use of gwmo statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of

Py_XDECREF() to dispose of owned references that mayNiéLL (note the’X’ in the name;Py_DECREF()

would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedXo(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized. The basic initialization fundtipnlistialize()

This initializes the table of loaded modules, and creates the fundamental modhiekin_ , _ _main__ ,sys,
andexceptions . It also initializes the module search pa#lyg.path). Py_Initialize() does not set the

“script argument list” gys.argv). If this variable is needed by Python code that will be executed later, it must be

set explicitly with a call tdPySys_SetArgv(argc, argv) subsequent to the call fy _Initialize()

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory naftit@dythonX.Y relative to the parent directory
where the executable nampgthon is found on the shell command search path (the environment vaRaild).

For instance, if the Python executable is foundusr/local/bin/python , it will assume that the libraries
are in/usr/local/lib/pythonX.Y . (In fact, this particular path is also the “fallback” location, used when no
executable file namepython is found alongPATH.) The user can override this behavior by setting the environ-
ment variablePYTHONHOME , or insert additional directories in front of the standard path by seRMHON-
PATH. The embedding application can steer the search by caflingsetProgramName(file) before call-

ing Py _Initialize() . Note thatPYTHONHOME still overrides this and?’YTHONPATH is still inserted

in front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-
fined inModules/getpath.c). Sometimes, it is desirable to “uninitialize” Python. For instance, the application
may want to start over (make another calRp Initialize()) or the application is simply done with its use of
Python and wants to free memory allocated by Python. This can be accomplished byfalliFigalize() . The
functionPy_IslInitialized() returns true if Python is currently in the initialized state. More information about
these functions is given in a later chapter. Notice thatFinalize() doesnot free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the filésc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the remainder of
this section.

1.4. Embedding Python 9

The Python/C API, Release 2.6.3

Compiling the interpreter with thBy DEBUGMacro defined produces what is generally meant by “a debug build”
of Python.Py_DEBUGSs enabled in the Unix build by addingwith-pydebug to theconfigure command. It

is also implied by the presence of the not-Python-specBEBUGNacro. WherPy DEBUGS enabled in the Unix
build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:
 Extra checks are added to the object allocator.
» Extra checks are added to the parser and compiler.
« Downcasts from wide types to narrow types are checked for loss of information.

< A number of assertions are added to the dictionary and set implementations. In addition, the set object acquires
atest_c_api() method.

« Sanity checks of the input arguments are added to frame creation.
« The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
« Low-level tracing and extra exception checking are added to the runtime virtual machine.
 Extra checks are added to the memory arena implementation.
« Extra debugging is added to the thread module.
There may be additional checks not mentioned here.

Defining Py_TRACE_REFSnables reference tracing. When defined, a circular doubly linked list of active objects

is maintained by adding two extra fields to evétyObject . Total allocations are tracked as well. Upon exit, all
existing references are printed. (In interactive mode this happens after every statement run by the interpreter.) Implied
by Py_DEBUG

Please refer tMisc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER

TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input , Py_file_input , and Py_single_input . These are described following the functions
which accept them as parameters.

Note also that several of these functions tefeE* parameters. One particular issue which needs to be handled
carefully is that the=ILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py _Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C progent)’'s
function. It is important to note that the argument list may be modified (but the contents of the strings pointed to
by the argument list are not). The return value will be the integer passed $ggleit() function, 1 if the
interpreter exits due to an exception,2if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandl&ystemError is raised, this function will not returd, but exit the
process, as long @&y _InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filenampg
This is a simplified interface tByRun_AnyFileExFlags() below, leavingcloseitset to0 andflagsset to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
This is a simplified interface t8yRun_AnyFileExFlags() below, leaving theloseitargument set t0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closgit
This is a simplified interface tByRun_AnyFileExFlags() below, leaving thélagsargument set tblULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value oPyRun_InteractiveLoop() , otherwise return the result 8fyRun_SimpleFile()
If flenameis NULL, this function use8???" as the filename.

int PyRun_SimpleString (const char *command
This is a simplified interface t®@yRun_SimpleStringFlags() below, leaving thePyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags
Executes the Python source code froommandn the__main__ module according to thiiagsargument. If

11

The Python/C API, Release 2.6.3

__main__ does not already exist, it is created. Retudran success o1l if an exception was raised. If there
was an error, there is no way to get the exception information. For the mearfliag®tee below.

Note that if an otherwise unhandl&ystemError is raised, this function will not returdl , but exit the
process, as long @&y _InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filenamg
This is a simplified interface t®yRun_SimpleFileExFlags() below, leavingcloseitset to0 andflags
set toNULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
This is a simplified interface tByRun_SimpleFileExFlags() below, leavingcloseitset to0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int clos@it
This is a simplified interface tByRun_SimpleFileExFlags() below, leavinglagsset toNULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
Similar to PyRun_SimpleStringFlags() , but the Python source code is read fréminstead of an
in-memory string. filenameshould be the name of the file. Hoseitis true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filenamp
This is a simplified interface tByRun_InteractiveOneFlags() below, leavinglagsset toNULL.

int PyRun_lInteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
Read and execute a single statement from a file associated with an interactive device accordirftags the
argument. Ifflenameis NULL, "???" is used instead. The user will be prompted uséyg.psl and
sys.ps2 . ReturnsO when the input was executed successfully, if there was an exception, or an error
code from theerrcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is notincluded byPython.h , so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filenampg
This is a simplified interface tByRun_InteractiveLoopFlags() below, leavinglagsset toNULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
Read and execute statements from a file associated with an interactive device until EOF is reditbedmi
isNULL, "???" isused instead. The user will be prompted usiyg psl andsys.ps2 . Return® at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start
This is a simplified interface t@yParser_SimpleParseStringFlagsFilename() below, leaving
filenameset toNULL andflagsset to0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags
This is a simplified interface t@yParser SimpleParseStringFlagsFilename() below, leaving

filenameset toNULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-

name, int start, int flags
Parse Python source code fratn using the start tokestart according to thdlagsargument. The result can

be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int stayt
This is a simplified interface tByParser_SimpleParseFileFlags() below, leavinglagsset to0

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int flayjs
Similar to PyParser_SimpleParseStringFlagsFilename() , but the Python source code is read
from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locpals
Return value: New reference.
This is a simplified interface tByRun_StringFlags() below, leavinglagsset toNULL.

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.6.3

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompil-

erFlags *flag9
Return value: New reference.

Execute Python source code frastr in the context specified by the dictionarigkbals andlocals with the
compiler flags specified bi§jags The parametestart specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python objeltiJat if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *logals
Return value: New reference.

This is a simplified interface t®yRun_FileExFlags() below, leavingcloseitset to0 and flags set to
NULL.
PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObiject *locals, int
closei)

Return value: New reference.
This is a simplified interface t8yRun_FileExFlags() below, leavinglagsset toNULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags
Return value: New reference.
This is a simplified interface t8yRun_FileExFlags() below, leavingcloseitset to0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *lo-

cals, int closeit, PyCompilerFlags *flajs
Return value: New reference.

Similar to PyRun_StringFlags() , but the Python source code is read frdm instead of an in-
memory string. filenameshould be the name of the file. Hloseitis true, the file is closed before
PyRun_FileExFlags() returns.

PyObject* Py _CompileString (const char *str, const char *filename, int start
Return value: New reference.
This is a simplified interface t8y_CompileStringFlags() below, leavinglagsset toNULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags

Return value: New reference. 9
Parse and compile the Python source codstiinreturning the resulting code object. The start token is given
by start this can be used to constrain the code which can be compiled and shottd beal_input
Py _file_input , Or Py _single_input . The filename specified Hilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retudBLL if the code
cannot be parsed or compiled.

PyObject* PyEval EvalCode (PyCodeObject *co, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface t8yEval _EvalCodeEx() , with just the code object, and the dictionaries of
global and local variables. The other arguments are d¢ttol.

PyObject* PyEval EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject **args,
int argcount, PyObject **kws, int kwcount, PyObject **defs, int defcount,

PyObiject *closurg
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment consists

of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a closure tuple of
cells.

PyObject* PyEval _EvalFrame (PyFrameObject *j
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEXx, for backward compatibility.

PyObject* PyEval EvalFrameEx (PyFrameObject *f, int throwflag
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code object

13

The Python/C API, Release 2.6.3

int

int

int

int

associated with the execution frarhés executed, interpreting bytecode and executing calls as needed. The
additionalthrowflag parameter can mostly be ignored - if true, then it causes an exception to immediately be
thrown; this is used for ththrow() methods of generator objects.

PyEval_MergeCompilerFlags (PyCompilerFlags *cj
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

Py_eval_input
The start symbol from the Python grammar for isolated expressions; for us@witbompileString()

Py _file_input

The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

Py_single_input
The start symbol from the Python grammar for a single statement; for us@withompileString() . This
is the symbol used for the interactive interpreter loop.

PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as

int flags , and in cases where code is being executed, it is passeg@ampilerFlags *flags . In
this casefrom __ future__ import can modifyflags

WhenevePyCompilerFlags *flags isNULL, cf flags istreated as equal b, and any modification
due tofrom __ future__ import is discarded.

struct PyCompilerFlags {

int cf_flags;
}
int CO_FUTURE_DIVISION
This bit can be set iflagsto cause division operatdr to be interpreted as “true division” according R&P
238
14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER

THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

void

Py INCREF(PyObject *q
Increment the reference count for objectThe object must not bHULL; if you aren't sure that it isn'NULL,
usePy XINCREF() .

Py_XINCREHK PyObiject *q

Increment the reference count for objectThe object may b&IULL, in which case the macro has no effect.
Py_DECREF PyObject *q

Decrement the reference count for objecthe object must not bULL; if you aren’t sure that it isn'NULL,

usePy XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when & class
instance witha del () method is deallocated). While exceptions in such code are not propagatdd, the
executed code has free access to all Python global variables. This means that any object that is reachable
from a global variable should be in a consistent state béfgredECREF() is invoked. For example, codg
to delete an object from a list should copy a reference to the deleted object in a temporary variable |update
the list data structure, and then call DECREF() for the temporary variable.

Py XDECREF PyObiject *q
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asfyr DECREF(), and the same warning applies.

Py_CLEAR PyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same as foy DECREF(), except that the argument is also setNOLL. The
warning forPy DECREF() does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argumemith L before decrementing its reference count.

Itis a good idea to use this macro whenever decrementing the value of a variable that might be traversed during
garbage collection. New in version 2.4.

The following functions are for runtime dynamic embedding of PythoRy IncRef(PyObject *0) ,
Py _DecRef(PyObject *0) . They are simply exported function versions éfy XINCREF() and
Py XDECREF(), respectively.

The

following functions or macros are only for use within the interpreter corePy Dealloc() ,

_Py ForgetReference() , _Py NewReference() , as well as the global variablePy RefTotal

15

The Python/C API, Release 2.6.3

16 Chapter 3. Reference Counting

CHAPTER

FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like theethmiax variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidilly if they are supposed to

return a pointer, orl if they return an integer (exception: tRyArg_*() functions returril for success an@ for

failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); inshoatdinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C
API may not behave as intended and may fail in mysterious ways. The error indicator consists of three Python
objects corresponding to the Python varialdgs.exc_type , sys.exc_value andsys.exc_traceback

API functions exist to interact with the error indicator in various ways. There is a separate error indicator for each
thread.

void PyErr_PrintEx (intset_sys_last_vars
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

If set sys last varsis nonzero, the variablessys.last_type , sys.ast_value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, respec-
tively.

void PyErr_Print ()
Alias for PyErr_PrintEx(1)

PyObject* PyErr_Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the excepyipa(the first argument to the last call to
one of thePyErr_Set*() functions or toPyErr_Restore()). If not set, returNULL. You do not own a
reference to the return value, so you do not negeitoDECREF() it.

Note: Do not compare the return value to a specific exceptionPyger ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exg
Equivalent toPyErr_GivenExceptionMatches(PyErr_Occurred(), exc) . This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc
Return true if thegivenexception matches the exceptionerc If excis a class object, this also returns true

17

The Python/C API, Release 2.6.3

void

void

void

void

void

void

whengivenis an instance of a subclasseKcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.

PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returnee\iyr _Fetch() below can be “unnormalized”, meaning
that*exc is aclass object bitval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is
implemented to improve performance.

PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tblULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may HELL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

PyErr_Restore (PyObiject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
areNULL, the error indicator is cleared. Do not pasbldLL type and norNULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don’t
use this function. | warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily;
usePyErr_Fetch() to save the current exception state.

PyErr_SetString (PyObject *type, const char *messgge
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc_RuntimeError . You need not increment its reference
count. The second argument is an error message,; it is converted to a string object.

PyErr_SetObject (PyObject *type, PyObiject *valye
This function is similar toPyErr_SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format)...

Return value: Always NULL.

This function sets the error indicator and retuNidLL. exceptiorshould be a Python exception (class, not an
instance) formatshould be a string, containing format codes, similariatf() . Thewidth.precision

before a format code is parsed, but the width part is ignored.

18

Chapter 4. Exception Handling

The Python/C API, Release 2.6.3

void

int

Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent tgrintf("%u")
signed
int
%Id long Exactly equivalent t@rintf("%Ild")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py_ssize Bxactly equivalent terintf("%zd")
%zu size t | Exactly equivalent t@rintf("%zu")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemiriotf("%p") except that
it is guaranteed to start with the litef@ regardless of what the platformgsintf
yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

PyErr_SetNone (PyObject *typg
This is a shorthand fdPyErr_SetObject(type, Py_None)

PyErr_BadArgument ()
This is a shorthand fdPyErr_SetString(PyExc_TypeError, message) , wheremessagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()

Return value: Always NULL.
This is a shorthand fdPyErr_SetNone(PyExc_MemoryError) ; it returnsNULL so an object allocation
function can writereturn PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *typé

Return value: Always NULL.

This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the integyano value and whose second item

is the corresponding error message (gotten fetrarror()), and then call®yErr_SetObject(type,

object) . On Unix, when theerrno value iSEINTR, indicating an interrupted system call, this calls
PyErr_CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wetarn PyErr_SetFromErrno(type);

when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObiject *type, const char *filenarpe

Return value: Always NULL.

Similar toPyErr_SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@Esor andOSError , this
is used to define thBlename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr (intierr)

Return value: Always NULL.
This is a convenience function to raigéindowsError . If called withierr of O, the error code returned by
a call toGetlLastError() is used instead. It calls the Win32 functi®lormatMessage() to retrieve

19

The Python/C API, Release 2.6.3

the Windows description of error code given igyr or GetLastError() , then it constructs a tuple object
whose first item is theerr value and whose second item is the corresponding error message (gotten from
FormatMessage()), and then call®PyErr_SetObject(PyExc_WindowsError, object) . This
function always returnBlULL. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int iery
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , With an additional parameter specifying the exception type to
be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilename (intierr, const char *filenampg
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr() , with the additional behavior thatfflenameis notNULL, it is
passed to the constructor@findowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *filenanje
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErrWithFilename() , with an additional parameter specifying the
exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr_BadinternalCall 0
This is a shorthand fdPyErr_SetString(PyExc_TypeError, message) , wheremessagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr_WarnEx (PyObject *category, char *message, int stacklgvel
Issue a warning message. Tba&tegoryargument is a warning category (see belowNasLL; the message
argument is a message strirggacklevels a positive number giving a number of stack frames; the warning will
be issued from the currently executing line of code in that stack franstagklevebf 1 is the function calling
PyErr_WarnEx() , 2 is the function above that, and so forth.

This function normally prints a warning messagesys.stderr however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valuglisf no exception is raised, ot

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for exampley DECREF() owned references and return an error value).

Warning categories must be subclassed\airning ; the default warning category RuntimeWarning
The standard Python warning categories are available as global variables whose nantdxare
followed by the Python exception name. These have the fyp®bject* ; they are all class ob-
jects. Their names arPyExc_Warning , PyExc_UserWarning , PyExc_UnicodeWarning
PyExc_DeprecationWarning , PyExc_SyntaxWarning , PyExc_RuntimeWarning , and
PyExc_FutureWarning . PyExc_Warning is a subclass oPyExc_Exception ; the other warn-
ing categories are subclasse$gExc_Warning .

For information about warning control, see the documentation fowtraings module and theW option in
the command line documentation. There is no C API for warning control.

int PyErr_Warn (PyObject *category, char *message
Issue a warning message. Toategoryargument is a warning category (see belowNWLL; the message
argument is a message string. The warning will appear to be issued from the functionalimg\Warn()
equivalent to calling®’yErr_ WarnEx() with astacklevebf 1.

Deprecated; useyErr_WarnEx() instead.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const
char *module, PyObiject *registjy
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper

20 Chapter 4. Exception Handling

The Python/C API, Release 2.6.3

int

int

void

int

around the Python functiowarnings.warn_explicit() , see there for more information. Tineodule
andregistryarguments may be set MULL to get the default effect described there.

PyErr_WarnPy3k (char *message, int stackleyel
Issue eéDeprecationWarning with the givenmessagandstacklevelf the Py _Py3kWarningFlag flag
is enabled. New in version 2.6.

PyErr_CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSHBINT is to raise thekeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function returngherwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr_Setinterrupt 0
This function simulates the effect of IGINT signal arriving — the next tim@yErr_CheckSignals()
is called,Keyboardinterrupt will be raised. It may be called without holding the interpreter lock.

PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which@ byte will be written whenever a signal is received.
It returns the previous such file descriptor. The valliedisables the feature; this is the initial state. This is
equivalent tosignal.set_wakeup_fd() in Python, but without any error checkinfd should be a valid
file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObiject *dict

void

Return value: New reference.

This utility function creates and returns a new exception object. iHmeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normaljULL. This
creates a class object derived fré@xception (accessible in C aByExc_Exception).

The __module__ attribute of the new class is set to the first part (up to the last dot) afidhgeargument,
and the class name is set to the last part (after the last dot)badeargument can be used to specify alternate
base classes; it can either be only one class or a tuple of classeslicThegument can be used to specify a
dictionary of class variables and methods.

PyErr_WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedygs.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
_del__ () method.

The function is called with a single argumestij that identifies the context in which the unraisable exception
occurred. The repr adbj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose nani&Eae followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the
variables:

4.1. Standard Exceptions 21

The Python/C API, Release 2.6.3

C Name Python Name Notes
PyExc_BaseException BaseException @), @
PyExc_Exception Exception Q)
PyExc_StandardError StandardError Q)
PyExc_ArithmeticError ArithmeticError Q)
PyExc_LookupError LookupError (1)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError

PyExc_EOFError EOFError

PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError

EnvironmentError
FloatingPointError
IOError

PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_Keyboardinterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError

PyExc_NotlmplementedError
PyExc_OSError

PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_WindowsError
PyExc_ZeroDivisionError

NotlmplementedError
OSError

WindowsError
ZeroDivisionError

(1)

3)

Notes:

1. Thisis a base class for other standard exceptions.

2. This is the same aseakref.ReferenceError

3. Only defined on Windows; protect code that uses this by testing that the preprocessoMBatkNDOWS

defined.

4. New in version 2.5.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived BaseException

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

22 Chapter 4. Exception Handling

CHAPTER

FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Ultilities

int Py_FdisInteractive (FILE *fp, const char *filenamp
Return true (nonzero) if the standard I/O fipavith namefilenames deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag?y_InteractiveFlag is true, this function

also returns true if théilenamepointer iSNULL or if the name is equal to one of the stringstdin>’ or
2?77

long PyOS_GetLastModificationTime (char *filenamé
Return the time of last modification of the fiigkename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

void PyOS AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python

interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
when USE_STACKCHECK defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECQKill be defined automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (inti)

Return the current signal handler for signal This is a thin wrapper around eithsigaction() or
signal() . Do not call those functions directly!PyOS_sighandler _t is a typedef alias fowoid
(*)(int)

PyOS_sighandler_t PyOS_setsig (inti, PyOS_sighandler_t)h
Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction() orsignal() . Do not call those functions directlyPyOS_sighandler_t is a typedef
alias forvoid (*)(int)

23

The Python/C API, Release 2.6.3

5.2

System Functions

These are utility functions that make functionality from #ys module accessible to C code. They all work with the
current interpreter thread&/s module’s dict, which is contained in the internal thread state structure.

PyObject * PySys GetObject (char *namg

Return value: Borrowed reference.
Return the objeahamefrom thesys module orNULL if it does not exist, without setting an exception.

FILE * PySys GetFile (char*name, FILE *dej

Return theFILE* associated with the objenaimein thesys module, ordef if nameis not in the module or is
not associated with BILE* .

int PySys SetObject (char *name, PyObject *V
Setnamein thesys module tov unlessvis NULL, in which casenameis deleted from the sys module. Returns
0 on success,1 on error.

void PySys ResetWarnOptions (void)
Resetsys.warnoptions to an empty list.

void PySys AddWarnOption (char *s)
Appendsto sys.warnoptions

void PySys_SetPath (char *path)
Setsys.path to alist object of paths found mathwhich should be a list of paths separated with the platform’s
search path delimiter (on Unix,; on Windows).

void PySys WriteStdout (const char *format, .).
Write the output string described Bgrmatto sys.stdout . No exceptions are raised, even if truncation
occurs (see below).
format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should
be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits
for very large numbers.
If a problem occurs, osys.stdout is unset, the formatted message is written to the real (C Istedut

void PySys WriteStderr (const char *format, .).
As above, but write teys.stderr or stderrinstead.

5.3 Process Control

void Py_FatalError (const char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On Unix, the standard C library fuatotid() is called
which will attempt to produce eore file.

void Py _Exit (intstatug

Exit the current process. This callRy Finalize() and then calls the standard C library function
exit(status)

int Py_AtExit (void (*func) ()

Register a cleanup function to be calledy Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy AtEXxit() returns0; on failure, it returnsl . The cleanup function registered last is called

24 Chapter 5. Utilities

The Python/C API, Release 2.6.3

first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be callefditgy

5.4 Importing Modules

PyObject* Pylmport_ImportModule (const char *namg

Return value: New reference.

This is a simplified interface t®ylmport_ImportModuleEx() below, leaving theglobalsandlocals
arguments set tNULL andlevelset to 0. When theameargument contains a dot (when it specifies a submodule
of a package), thomlistargument is set to the li§t’] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whemamein fact specifies a subpackage instead of a submodule: the submodules specified in the
package’'s all__ variable are loaded.) Return a new reference to the imported modu\,)lor with an
exception set on failure. Before Python 2.4, the module may still be created in the failure case — examine
sys.modules to find out. Starting with Python 2.4, a failing import of a module no longer leaves the module
in sys.modules . Changed in version 2.4: failing imports remove incomplete module objects.Changed in
version 2.6: always use absolute imports

PyObject* Pylmport_ImportModuleNoBlock (const char *namg
This version ofPylmport_ImportModule() does not block. It’s intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import lock.
The functionPylmport_ImportModuleNoBlock() never blocks. It first tries to fetch the module from
sys.modules and falls back RyImport_ImportModule() unless the lock is held, in which case the func-
tion will raise animportError . New in version 2.6.

PyObject* Pylmport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return value: New reference.

Import a module. This is best described by referring to the built-in Python functionport__ () , as the
standard _import__() function calls this function directly.

The return value is a new reference to the imported module or top-level packageLarwith an exception

set on failure (before Python 2.4, the module may still be created in this case). Likeifioport_ () , the

return value when a submodule of a package was requested is normally the top-level package, unless a non-
emptyfromlistwas given. Changed in version 2.4: failing imports remove incomplete module objects.Changed

in version 2.6: The function is an alias fByImport_ImportModuleLevel() with -1 as level, meaning

relative import.

PyObject* Pylmport_ImportModuleLevel (char *name, PyObiject *globals, PyObject *locals, PyObject
*fromlist, int leve)
Import a module. This is best described by referring to the built-in Python functionport__ () , as the

standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level packageLarwith an exception
set on failure. Like for _import () , the return value when a submodule of a package was requested is
normally the top-level package, unless a non-enfimiylist was given. New in version 2.5.

PyObject* Pylmport_Import (PyObject *namg
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes tiraport_ ()
function from the__builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.grexgc or ihooks . Changed in version 2.6:
always use absolute imports

PyObject* Pylmport_ReloadModule (PyObject *n)
Return value: New reference.

5.4. Importing Modules 25

The Python/C API, Release 2.6.3

Reload a module. This is best described by referring to the built-in Python fumetmad() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldr with
an exception set on failure (the module still exists in this case).

PyObject* Pylmport_AddModule (const char *namg

Return value: Borrowed reference.

Return the module object corresponding to a module name. riElme argument may be of the form
package.module . First check the modules dictionary if there’s one there, and if not, create a new one
and insert it in the modules dictionary. RetiNJLL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn't already loaded, you will get an
empty module object. Useylmport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name faameare not created if not already present.

PyObject* Pylmport_ExecCodeModule (char *name, PyObject *cp

long

Return value: New reference.

Given a module name (possibly of the fopmackage.module) and a code object read from a Python
bytecode file or obtained from the built-in functicompile() , load the module. Return a new reference to
the module object, oNULL with an exception set if an error occurred. Before Python 2.4, the module could
still be created in error cases. Starting with Python Bafneis removed fromsys.modules in error cases,
and even ifnamewas already irsys.modules on entry toPylmport_ExecCodeModule() . Leaving
incompletely initialized modules iays.modules is dangerous, as imports of such modules have no way to
know that the module object is an unknown (and probably damaged with respect to the module author’s intents)
state.

This function will reload the module if it was already imported. $gémport_ReloadModule() for the
intended way to reload a module.

If namepoints to a dotted name of the forpackage.module , any package structures not already created
will still not be created. Changed in version 2nameis removed fronsys.modules in error cases.

Pylmport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.kyc and.pyo files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport_GetModuleDict 0

Return value: Borrowed reference.
Return the dictionary used for the module administration (a.kys.modules). Note that this is a per-
interpreter variable.

PyObject* Pylmport_Getimporter (PyObject *path

void

void

void

Return an importer object for gys.path /pkg. _path__ item path possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traverssys.path_hooks until a hook is
found that can handle the path item. Rethione if no hook could; this tells our caller it should fall back to the
builtin import mechanism. Cache the resulsiys.path_importer_cache . Return a new reference to the
importer object. New in version 2.6.

_Pylmport_Init 0
Initialize the import mechanism. For internal use only.

Pylmport_Cleanup ()
Empty the module table. For internal use only.

_Pylmport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport_FindExtension (char *, char *)

For internal use only.

26

Chapter 5. Utilities

The Python/C API, Release 2.6.3

PyObject* _Pylmport_FixupExtension (char *, char *)

For internal use only.

int Pylmport_ImportFrozenModule (char *namg
Load a frozen module namesame Returnl for successQ if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport_ImportModule() . (Note the misnomer — this function would reload the module if it was
already imported.)
_frozen
This is the structure type definition for frozen module descriptors, as generated Inedhe utility (see
Tools/freeze/ in the Python source distribution). Its definition, foundmiclude/import.h ,Is:
struct _frozen {
char *name;
unsigned char *code;
int size;
h
struct _frozen* Pylmport_FrozenModules
This pointer is initialized to point to an array sifuct _frozen records, terminated by one whose members
are alINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.
int Pylmport_Appendinittab (char *name, void (*initfunc)(void)
Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport_ExtendInittab() , returning-1 if the table could not be extended. The new module can
be imported by the nameame and uses the functioimitfunc as the initialization function called on the first
attempted import. This should be called befBse Initialize()
_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction willylmport_ExtendlInittab() to provide additional built-in modules.
The structure is defined imclude/import.h as:
struct _inittab {
char *name;
void (*initfunc)(void);
h
int Pylmport_ExtendInittab (‘struct _inittab *newtab

Add a collection of modules to the table of built-in modules. Hesvtabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success o1l if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfdrgtialize()

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data formansarshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

5.5. Data marshalling support 27

The Python/C API, Release 2.6.3

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python 2.4)
shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format for
floating point numbersPy MARSHAL_VERSIOMdicates the current file format (currently 2).

void PyMarshal WriteLongToFile (long value, FILE *file, int version
Marshal along integer,value to file. This will only write the least-significant 32 bits ehlue regardless of
the size of the nativiong type. Changed in version 2.4¢ersionindicates the file format.

void PyMarshal WriteObjectToFile (PyObject *value, FILE *file, int versign
Marshal a Python objectalue tofile. Changed in version 2.4rersionindicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version
Return value: New reference.
Return a string object containing the marshalled representatiasaloé Changed in version 2.4version
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won't be handled properly when there’s no
error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadlLongFromFile (FILE *file)
Return a dong from the data stream inRILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native sizdaig .

int PyMarshal_ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in BILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizsldrt .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream iRlIBE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returndNULL.

PyObject* PyMarshal_ReadlLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in FALE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile() , this function assumes that no further objects will be read

from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won'’t be reading anything else from the file. On error, sets the appropriate exc&@iegr¢or or
TypeError) and returndNULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize tlgn
Return value: New reference.
Return a Python object from the data stream in a character buffer conténihgtes pointed to bgtring. On
error, sets the appropriate excepti®@©OFError or TypeError) and returndNULL. Changed in version 2.5:
This function used amt type forlen. This might require changes in your code for properly supporting 64-bit
systems.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python InterprdtarExtending and Embedding PytHon

28 Chapter 5. Utilities

The Python/C API, Release 2.6.3

The first three of these functions describBgArg ParseTuple() , PyArg ParseTupleAndKeywords() ,
andPyArg_Parse() , all useformat stringswhich are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a character
string. You must not provide storage for the string itself; a pointer to an existing string is stored into the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded NUL bytes; if it does,TgypeError exception is raised. Unicode objects are converted to C strings
using the default encoding. If this conversion fail$)ricodeError s raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (orPy_ssize_t , see below)]
This variant ons stores into two C variables, the first one a pointer to a character string, the second one its
length. In this case the Python string may contain embedded null bytes. Unicode objects pass back a pointer to
the default encoded string version of the object if such a conversion is possible. All other read-buffer compatible
objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE T_CLEANbefore includingPython.h . If the macro is defined, length isRy_ssize t rather
than an int.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] Similar to s#, this code fills a Py_buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use the buffer even
inside aPy_BEGIN_ALLOW_THREADSBIock; the caller is responsible for callifgyBuffer_Release
with the structure after it has processed the data. New in version 2.6.

z (string or None) [const char *] Like s, but the Python object may also bione, in which case the C pointer is
set toNULL.

z# (string or None or any read buffer compatible object) [const char *, int] This is tos# asz istos.
z* (string or None or any buffer compatible object) [Py_buffer*] This istos* asz istos. New in version 2.6.

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As with, there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored intoftye UNICODEpointer variable whose address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant oru stores into two C variables, the first one a pointer to a
Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their read-buffer
pointer as pointer to By UNICODEarray.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant ons is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and musbtibstachar* which points

to the name of an encoding as a NUL-terminated strindydt L, in which case the default encoding is used.

An exception is raised if the named encoding is not known to Python. The second argument nulstié a;

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust*buffer to reference the newly allocated storage. The caller is responsible for calliigm_Free()
to free the allocated buffer after use.

5.6. Parsing arguments and building values 29

The Python/C API, Release 2.6.3

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] Same
ases except that 8-bit string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length]
This variant ons# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike thees format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustdoest char* which points to the

name of an encoding as a NUL-terminated stringNalLL, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument makab# a;

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and setbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.

If *buffer points to a noMNULL pointer (an already allocated buffeByArg ParseTuple() will use this
location as the buffer and interpret the initial value*btiffer_lengthas the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enougalugError will be
set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ags# except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored inrsigned
char .

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

h (integer) [short int] Convert a Python integer to agbort int

H (integer) [unsigned short int] Converta Python integer to aubsigned short int , without overflow check-
ing. New in version 2.3.

i (integer) [int] Convert a Python integer to a plaini@t .

| (integer) [unsigned int] Convert a Python integer to a @hsigned int , without overflow checking. New in
version 2.3.

| (integer) [long int] Convert a Python integer to aléng int

k (integer) [unsigned long] Convert a Python integer or long integer to aufisigned long without overflow
checking. New in version 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to aléng long . This format is only available on
platforms that suppotbng long (or_int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to au@signed long
long without overflow checking. This format is only available on platforms that suppwigned long
long (orunsigned _int64 on Windows). New in version 2.3.

n (integer) [Py_ssize_t]Convert a Python integer or long integer to #¢ ssize_t . New in version 2.5.

c (string of length 1) [char] Convert a Python character, represented as a string of length 1, tharC

30 Chapter 5. Utilities

The Python/C API, Release 2.6.3

f (float) [float] Convert a Python floating point number to di@at
d (float) [double] Convert a Python floating point number to alGuble .
D (complex) [Py_complex] Convert a Python complex nhumber to &@ complex structure.

O(object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
not NULL.

O! (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is simila®tbut takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError s raised.

O&(object) [converter anything] Convert a Python object to a C variable througboaverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobjectis the Python object to be converted aaddressis the void* argument that was passed to
the PyArg_Parse*() function. The returnedtatusshould bel for a successful conversion a@dif the
conversion has failed. When the conversion fails,ahieverterfunction should raise an exception and leave the
content ofaddressunmodified.

S (string) [PyStringObject *] Like Obut requires that the Python object is a string object. RaiygeError if
the object is not a string object. The C variable may also be declaregd@isject*

U (Unicode string) [PyUnicodeObject *] Like O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declarfegdQ@isject*

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, and ithte is set to the
length of the buffer. Only single-segment buffer objects are accepigeError s raised for all others.

w (read-write character buffer) [char *] Similar tos, but accepts any object which implements the read-write buffer
interface. The caller must determine the length of the buffer by other means, a#isstead. Only single-
segment buffer objects are acceptégpeError s raised for all others.

w# (read-write character buffer) [char *, Py_ssize t] Like s#, but accepts any object which implements the read-
write buffer interface. Thehar * variable is set to point to the first byte of the buffer, andflye ssize t
is set to the length of the buffer. Only single-segment buffer objects are acc@ppeError s raised for all
others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is towwhats* istos. New in version 2.6.

(items) (tuple) [matching-item$ The object must be a Python sequence whose length is the humber of format
units initems The C arguments must correspond to the individual format uniteems Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously cygetlirror to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.6.3

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thiatArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error niestssgof the default
error message. and; mutually exclude each other.

Note that any Python object references which are provided to the callboam@vedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, tirg object must match the format and the format must be exhausted. On success, the
PyArg_Parse*() functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse*() functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple (PyObject *args, const char *format,)..
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vaijgs
Identical toPyArg_ParseTuple() , except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords],

Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], va_list varg$
Identical toPyArg_ParseTupleAndKeywords() , except that it accepts a va_list rather than a variable

number of arguments.

int PyArg_Parse (PyObject *args, const char *format,)..
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METH_OLDARGgarameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declatedlds VARARGS function
or method tables. The tuple containing the actual parameters should be passgg @&smust actually be
a tuple. The length of the tuple must be at leash and no more thamax min and maxmay be equal.
Additional arguments must be passed to the function, each of which should be a pointBy@bgect*
variable; these will be filled in with the values froangs they will contain borrowed references. The variables
which correspond to optional parameters not giveratgs will not be filled in; these should be initialized by
the caller. This function returns true on success and falsyffis not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources forvkakref helper module for
weak references:

32 Chapter 5. Utilities

The Python/C API, Release 2.6.3

static PyObject *
weakref ref (PyObject *self, PyObject *args)

{
PyObject *object;
PyObject * callback = NULL
PyObject *result = NULL
if (PyArg_UnpackTuple(args, “ref ", 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);
}
return result;
}
The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to

PyArg_ParseTuple()

n

PyArg_ParseTuple(args, "O|O:ref ", &object, &callback)

New in version 2.2.Changed in version 2.5: This function usddtantype forminandmax This might require
changes in your code for properly supporting 64-bit systems.

PyObject* Py_BuildValue (const char *format, .).
Return value: New reference.
Create a new value based on a format string similar to those accepted byAhg Parse*() family of
functions and a sequence of values. Returns the valiJtil in the case of an error; an exception will be
raised ifNULL is returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it retuidisne; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, assfanthe# for-

mats, the required data is copied. Buffers provided by the caller are never referenced by the objects cre-
ated by Py BuildValue() . In other words, if your code invokemalloc() and passes the allo-

cated memory td’y_BuildValue() , your code is responsible for callifgee() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointéUisL, None
is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointeisL,
the length is ignored andone is returned.

Z (string or None) [char *] Same as.
z# (string or None) [char *, int] Same as#.

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4) data to
a Python Unicode object. If the Unicode buffer pointeNIdLL, None is returned.

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.6.3

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its length
to a Python Unicode object. If the Unicode buffer pointeNidLL, the length is ignored andone is
returned.

i (integer) [int] Convert a plain Gnt to a Python integer object.

b (integer) [char] Convert a plain @Char to a Python integer object.

h (integer) [short int] Convert a plain Ghort int to a Python integer object.

| (integer) [long int] Converta dong int to a Python integer object.

B (integer) [unsigned char] Convert a Qunsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a Qunsigned short int to a Python integer object.

| (integer/long) [unsigned int] Convert a Cunsigned int to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

k (integer/long) [unsigned long] Convert a Qunsigned long to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

L (long) [PY_LONG_LONG] Convert a Clong long to a Python long integer object. Only available on
platforms that suppoibng long

K (long) [unsigned PY_LONG_LONG] Convert a Qunsigned long long to a Python long integer ob-
ject. Only available on platforms that supparsigned long long

n (int) [Py_ssize_t] Convert a CPy_ssize_t to a Python integer or long integer. New in version 2.5.
c (string of length 1) [char] Converta Gnt representing a character to a Python string of length 1.
d (float) [double] Convert a Gdouble to a Python floating point number.

f (float) [float] Same asl.

D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

O(object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in isNULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. TheréforduildValue() will return
NULL but won't raise an exception. If no exception has been raisedbystemError is set.

S (object) [PyObject *] Same a®©.

N (object) [PyObject *] Same a®, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O&(object) [converter anything] Convertanythingto a Python object throughaonverterfunction. The func-
tion is called withanything(which should be compatible wittoid *) as its argument and should return
a “new” Python object, oNULL if an error occurred.

(items) (tuple) [matching-item$ Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (list) [matching-item$ Convert a sequence of C values to a Python list with the same number of
items.

{items} (dictionary) [matching-item$ Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tisy/stemError exception is set andULL returned.

PyObject* Py _VaBuildvValue (const char *format, va_list vargs
Identical toPy_BuildValue() , except that it accepts a va_list rather than a variable number of arguments.

34 Chapter 5. Utilities

The Python/C API, Release 2.6.3

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format) ...
Output not more thasizebytes tostr according to the format strinfiprmat and the extra arguments. See the
Unix man pagesnprintf(2)

int PyOS_vsnprintf (char *str, size_t size, const char *format, va_lishva
Output not more thasizebytes tostr according to the format strinfiprmatand the variable argument ligh.
Unix man page/snprintf(2)

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functiorsnprintf() and
vsnprintf() . Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure thetr*[*size-1] is always\O' upon return. They never write more thaizebytes (including
the trailing’\O’ into str. Both functions require thatr '= NULL ,size > 0 andformat !'= NULL

If the platform doesn’t havesnprintf() and the buffer size needed to avoid truncation exceby more than
512 bytes, Python aborts withRy FatalError.

The return valuerg) for these functions should be interpreted as follows:

« WhenO <= rv < size ,the output conversion was successful andharacters were written &ir (exclud-
ing the trailing\O’ byte atstr*[*rv]).

* Whenrv >= size , the output conversion was truncated and a buffer with+ 1 bytes would have been
needed to succeestr*[*size-1] is'\O’ in this case.

« Whenrv < 0, “something bad happenedstr*[*size-1] is \0' in this case too, but the rest sfr is unde-
fined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ ascii_strtod (const char *nptr, char **endpfy
Convert a string to @ouble . This function behaves like the Standard C functsbriod() does inthe C
locale. It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod() should typically be used for reading configuration files or other non-user input that
should be locale independent. New in version 2.4. See the Unix marspaap(2) for details.

char * PyOS_ascii_formatd (char *buffer, size_t buf_len, const char *format, doub)e d
Convert adouble to a string using thé’ as the decimal separatdiormatis a printf() -style format
string specifying the number format. Allowed conversion charactergeare’e’ ,'f ,'F ,’'g" and'G’ .

The return value is a pointer bufferwith the converted string or NULL if the conversion failed. New in version
2.4.

double PyOS ascii_atof (const char *nptj
Convert a string to alouble in a locale-independent way. New in version 2.4. See the Unix man page
atof(2) for details.

char * PyOS_stricmp (char *sl, char *s2
Case insensitive comparison of strings. The function works almost identicafiramp() except that it
ignores the case. New in version 2.6.

char * PyOS_strnicmp (char *sl, char *s2, Py_ssize_t s)ze
Case insensitive comparison of strings. The function works almost identicadyrtomp() except that it
ignores the case. New in version 2.6.

5.7. String conversion and formatting 35

The Python/C API, Release 2.6.3

5.8 Reflection

PyObject* PyEval_GetBuiltins 0
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no frame
is currently executing.

PyObject* PyEval GetlLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution fram@&UitL if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution framBUdl if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, whicNW@LL if no frame is currently executing.

int PyEval_GetRestricted 0
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName (PyObiject *fung
Return the name dlincif it is a function, class or instance object, else the namfeds type.

const char* PyEval_GetFuncDesc (PyObject *fung
Return a description string, depending on the typin€ Return values include “()” for functions and methods,
" constructor”, ” instance”, and ” object”. Concatenated with the resulPpfval GetFuncName() , the
result will be a description diunc

36 Chapter 5. Utilities

CHAPTER

SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created byPyList New() , butwhose items have not been set to someMbihd value yet.

6.1 Object Protocol

int PyObject_Print (PyObject *o, FILE *fp, int flagy
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWIf given, thestr() of the object is written instead of
therepr()

int PyObject_HasAttr (PyObject *o, PyObject *attr_name
Returnsl if o has the attributaattr_name and O otherwise. This is equivalent to the Python expression

hasattr(o, attr_name) . This function always succeeds.

int PyObject HasAttrString (PyObject *o, const char *attr_nanme
Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

PyObject* PyObject_GetAttr (PyObject *o, PyObiject *attr_name
Return value: New reference.
Retrieve an attribute nameditr namefrom objecto. Returns the attribute value on succes$\OLL on failure.
This is the equivalent of the Python expressioattr_name

PyObject* PyObject_GetAttrString (PyObiject *o, const char *attr_name
Return value: New reference.
Retrieve an attribute nameditr namefrom objecto. Returns the attribute value on succes$\OLL on failure.
This is the equivalent of the Python expressioattr_name

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *nane
Generic attribute getter function that is meant to be put into a type objectgetattro slot. It looks for
a descriptor in the dictionary of classes in the object's MRO as well as an attribute in the objelits
(if present). As outlined inmplementing Descriptorén The Python Language Referejcdata descriptors
take preference over instance attributes, while non-data descriptors don’t. OtherwAggjlaneError
is raised.

int PyObject_SetAttr (PyObject *o, PyObiject *attr_name, PyObject)*v
Set the value of the attribute namatlr_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statemenattr name = v

37

The Python/C API, Release 2.6.3

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObjecf)*v
Set the value of the attribute namatlr_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statemenattr name = v

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *vajue
Generic attribute setter function that is meant to be put into a type objpctetattro slot. It looks for
a data descriptor in the dictionary of classes in the object's MRO, and if found it takes preference over setting
the attribute in the instance dictionary. Otherwise, the attribute is set in the objedist__ (if present).
Otherwise, ar\ttributeError is raised andl is returned.

int PyObject_DelAttr (PyObject *o, PyObiject *attr_nanme
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

int PyObject_DelAttrString (PyObject *0, const char *attr_nanme
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject* PyObject RichCompare (PyObject *ol, PyObject *02, int op)d
Return value: New reference.
Compare the values a@fl ando2 using the operation specified bypid, which must be one d?y LT, Py LE,
Py EQ Py _NE, Py _GT, or Py_GE corresponding t&, <=, ==, I= | >, or >= respectively. This is the equiv-
alent of the Python expressi@l op 02, whereop is the operator corresponding épid. Returns the value
of the comparison on success,MULL on failure.

int PyObject_ RichCompareBool (PyObject *ol, PyObject *02, int op)d
Compare the values a@fl ando2 using the operation specified bypid, which must be one d?y LT, Py LE,
Py _EQ Py _NE, Py _GT, or Py_GE, corresponding te, <=, ==, I=, >, or >= respectively. Returnsl on
error,0 if the result is falsel otherwise. This is the equivalent of the Python expressibrop 02 , whereop
is the operator corresponding dpid.

int PyObject Cmp (PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided by, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returnedé@sult Returns-1 on failure. This is the equivalent of the
Python statemenmesult = cmp(ol, 02)

int PyObject Compare (PyObject*0l, PyObject *oR
Compare the values afl and 02 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr_Occurred() to detect an error. This is equivalent to the Python expressigg(ol, 02)

PyObject* PyObject Repr (PyObject*g
Return value: New reference.
Compute a string representation of objectReturns the string representation on succhi&d, L on failure.
This is the equivalent of the Python expressiepr(o) . Called by therepr() built-in function and by
reverse quotes.

PyObject* PyObject_Str (PyObject *9
Return value: New reference.
Compute a string representation of objectReturns the string representation on succhi&s, L on failure.
This is the equivalent of the Python expresseir(o) . Called by thestr() built-in function and by the
print statement.

PyObject* PyObject Bytes (PyObject*g
Compute a bytes representation of obgcin 2.x, this is just a alias faPyObject_Str()
PyObject* PyObject_Unicode (PyObject*q
Return value: New reference.
Compute a Unicode string representation of obfecReturns the Unicode string representation on success,

38 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.3

NULL on failure. This is the equivalent of the Python expressinitode(o) . Called by theunicode()
built-in function.

int PyObject_lIsInstance (PyObject *inst, PyObject *cls
Returnsl if instis an instance of the clas$s or a subclass afls, or O if not. On error, returnsl and sets an
exception. Ifclsis a type object rather than a class obj&stObject_Isinstance() returnsl if instis of
typecls. If clsis a tuple, the check will be done against every entrglénThe result will bel when at least one
of the checks returns, otherwise it will be0. If instis not a class instance aot$is neither a type object, nor
a class object, nor a tuplenstmust have a_class__ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1.Changed in version
2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object8 is a subclass oA if it inherits from A

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testindifs a subclass oA, if Ais B, PyObject_IsSubclass() returns

true. If A andB are different objectsB's __bases__ attribute is searched in a depth-first fashion for— the
presence of the bases__ attribute is considered sufficient for this determination.

int PyObject_IsSubclass (PyObject *derived, PyObject *¢Js
Returnsl if the classderivedis identical to or derived from the classs, otherwise return®. In case of an
error, returnsl . If clsis a tuple, the check will be done against every entrglén The result will bel when
at least one of the checks returhsotherwise it will be0. If eitherderivedor clsis not an actual class object
(or tuple), this function uses the generic algorithm described above. New in version 2.1.Changed in version 2.3:
Older versions of Python did not support a tuple as the second argument.

int PyCallable_Check (PyObject*g
Determine if the objeco is callable. Returr if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _Call (PyObject *callable_object, PyObject *args, PyObject Jkw
Return value: New reference.

Call a callable Python objedatallable_object with arguments given by the tuplrgs and named argu-
ments given by the dictionagw. If no named arguments are need&d, may beNULL. args must not be
NULL, use an empty tuple if no arguments are needed. Returns the result of the call on sucbisisl. or
on failure. This is the equivalent of the Python expressipply(callable _object, args, kw) or
callable_object(*args, **kw) . New in version 2.2.

PyObject* PyObject_CallObject (PyObiject *callable_object, PyObject *arys
Return value: New reference.
Call a callable Python objedallable_object with arguments given by the tuplgs If no arguments are
needed, theargsmay beNULL. Returns the result of the call on succesd\bi_L on failure. This is the equiv-
alent of the Python expressiapply(callable_object, args) or callable_object(*args)

PyObject* PyObject_CallFunction (PyObiject *callable, char *format,).

Return value: New reference.

Call a callable Python objectllable, with a variable number of C arguments. The C arguments are described
using aPy_BuildValue() style format string. The format may BULL, indicating that no arguments are
provided. Returns the result of the call on succes\NGLL on failure. This is the equivalent of the Python
expressiorapply(callable, args) or callable(*args) . Note that if you only pasByObject *
args,PyObject_CallFunctionObjArgs() is a faster alternative.

PyObject* PyObject_CallMethod (PyObiject *o, char *method, char *format,)...
Return value: New reference.
Call the method namethethodof objecto with a variable number of C arguments. The C arguments are
described by &y BuildValue() format string that should produce a tuple. The format mayNh&L,
indicating that no arguments are provided. Returns the result of the call on succH&H, loon failure. This

6.1. Object Protocol 39

The Python/C API, Release 2.6.3

is the equivalent of the Python expressmmethod(args) . Note that if you only pasByObject * args,
PyObject_CallMethodObjArgs() is a faster alternative.
PyObject* PyObject_CallFunctionObjArgs (PyObiject *callable, ..., NULL

Return value: New reference.

Call a callable Python objecillable with a variable number dPyObject* arguments. The arguments are
provided as a variable number of parameters followedNbj.L. Returns the result of the call on success, or
NULL on failure. New in version 2.2.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL

long

long

int

int

Return value: New reference.

Calls a method of the objeat where the name of the method is given as a Python string objeene It is
called with a variable number éfyObject* arguments. The arguments are provided as a variable number of
parameters followed bULL. Returns the result of the call on successNoi_L on failure. New in version

2.2.

PyObject_Hash (PyObject *9
Compute and return the hash value of an obfedDn failure, returnl . This is the equivalent of the Python
expressiorhash(o)

PyObject_HashNotimplemented (PyObject *9
Set aTypeError indicating thattype(o) is not hashable and returd . This function receives special
treatment when stored intp_hash slot, allowing a type to explicitly indicate to the interpreter that it is not
hashable. New in version 2.6.

PyObject_IsTrue (PyObject *g
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
not not o . On failure, returnl .

PyObject_Not (PyObject *g
Returns0 if the objecto is considered to be true, addotherwise. This is equivalent to the Python expression
not o . On failure, returnl .

PyObject* PyObject_Type (PyObject*q

int

Return value: New reference.

Wheno is nonNULL, returns a type object corresponding to the object type of oloje@n failure, raises
SystemError and returndNULL. This is equivalent to the Python expressigpe(o) . This function incre-
ments the reference count of the return value. There’s really no reason to use this function instead of the common
expressioro->ob_type , which returns a pointer of typeyTypeObject* , except when the incremented
reference count is needed.

PyObject_TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeab is of typetypeor a subtype ofype Both parameters must be ndHJLL. New in
version 2.2.

Py ssize 't PyObject_Length (PyObject*q
Py ssize t PyObject_Size (PyObject *g

Return the length of object If the objecto provides either the sequence and mapping protocols, the sequence
length is returned. On errotl is returned. This is the equivalent to the Python expredsiofo) . Changed

in version 2.5: These functions returnediah type. This might require changes in your code for properly
supporting 64-bit systems.

PyObject* PyObject_Getltem (PyObject *o, PyObject *kgy

int

Return value: New reference.
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

PyObject_Setltem (PyObject *o, PyObject *key, PyObject}v
Map the objeckeyto the values. Returns1 on failure. This is the equivalent of the Python statenogkey]

40

Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.3

= V.

int PyObject Delltem (PyObject *o, PyObject *kgy
Delete the mapping fdteyfrom 0. Returns-1 on failure. This is the equivalent of the Python statenuksit
olkey]

int PyObject_AsFileDescriptor (PyObject *9
Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject_Dir (PyObject*g
Return value: New reference.
This is equivalent to the Python express@ir(o) , returning a (possibly empty) list of strings appropriate for
the object argument, AMULL if there was an error. If the argumentNRILL, this is like the Pythordir()
returning the names of the current locals; in this case, if no execution frame is activélitheris returned but
PyErr_Occurred() will return false.

PyObject* PyObject_Getlter (PyObject *g
Return value: New reference.

This is equivalent to the Python expressitar(o) . It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. RaiSgpeError and returndNULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of addirml ando2, or NULL on failure. This is the equivalent of the Python expressibn
+ 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *op
Return value: New reference.
Returns the result of subtracting from o1, or NULL on failure. This is the equivalent of the Python expression
ol - o2 .

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
ol * o2 .

PyObject* PyNumber_Divide (PyObject*ol, PyObject *oR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expressibn
/ 02.

PyObject* PyNumber_FloorDivide (PyObject *o1, PyObject *oR
Return value: New reference.
Return the floor 0b1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of integers.
New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *01, PyObject *op
Return value: New reference.
Return a reasonable approximation for the mathematical valod divided byo2, or NULL on failure. The

6.2. Number Protocol 41

The Python/C API, Release 2.6.3

return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *ol, PyObject *oP
Return value: New reference.
Returns the remainder of dividiral by 02, or NULL on failure. This is the equivalent of the Python expression
ol % o2

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *op
Return value: New reference.
See the built-in functiodivmod() . ReturnsNULL on failure. This is the equivalent of the Python expression
divmod(ol, 02)

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return value: New reference.
See the built-in functiopow() . ReturnsNULL on failure. This is the equivalent of the Python expression
pow(ol, 02, 03) ,whereo3is optional. Ifo3is to be ignored, pas3y None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return value: New reference.
Returns the negation afon success, dlULL on failure. This is the equivalent of the Python expressmn

PyObject* PyNumber_Positive (PyObject *9
Return value: New reference.
Returnso on success, dMULL on failure. This is the equivalent of the Python expression

PyObject* PyNumber_Absolute (PyObject *g
Return value: New reference.
Returns the absolute value @for NULL on failure. This is the equivalent of the Python expressibs(o) .

PyObject* PyNumber_Invert (PyObject *9
Return value: New reference.
Returns the bitwise negation obn success, AMULL on failure. This is the equivalent of the Python expression
~0.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, dlULL on failure. This is the equivalent of the Python
expressiornl << 02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *oR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressiorol >> 02.

PyObject* PyNumber_And (PyObject *o01, PyObject *oR
Return value: New reference.
Returns the “bitwise and” od1 ando2 on success andULL on failure. This is the equivalent of the Python
expressiorol & 02.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *oR
Return value: New reference.

Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressionl " 02 .

PyObject* PyNumber_Or (PyObject *o1, PyObject *op
Return value: New reference.

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.3

Returns the “bitwise or” ob1l ando2 on success, oNULL on failure. This is the equivalent of the Python
expressiorol | 02 .

PyObject* PyNumber_InPlaceAdd (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of addiral ando2, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python statemeht += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of subtractira® from o1, or NULL on failure. The operation is doria-place whenol
supports it. This is the equivalent of the Python staternént= 02 .

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of multiplyingl and 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python staternént= 02 .

PyObject* PyNumber_InPlaceDivide (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. The operation is done-placewhenol supports
it. This is the equivalent of the Python statemeht /= 02 .

PyObject* PyNumber_InPlaceFloorDivide (PyObject *01, PyObiject *oR
Return value: New reference.
Returns the mathematical floor of dividiled. by 02, or NULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python statern&nf/= 02 . New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *01, PyObiject *oR
Return value: New reference.
Return a reasonable approximation for the mathematical valod divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
The operation is donia-placewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObiject *o1, PyObject *oR
Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place whenol
supports it. This is the equivalent of the Python staternén®oe= 02.

PyObject* PyNumber_InPlacePower (PyObject *01, PyObject *02, PyObject *»3
Return value: New reference.
See the built-in functiopow() . ReturnsNULL on failure. The operation is done-placewhenol supports
it. This is the equivalent of the Python statemefit **= 02 when 03 isPy_None, or an in-place variant
of pow(ol, 02, 03) otherwise. Ifo3is to be ignored, pas8y None in its place (passin§lULL for 03
would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, ddULL on failure. The operation is dorie-placewhen
ol supports it. This is the equivalent of the Python staternénk<= 02.

PyObject* PyNumber_InPlaceRshift (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, oNULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python staternént->= 02 .

PyObject* PyNumber_InPlaceAnd (PyObject *01, PyObject *oR
Return value: New reference.

6.2. Number Protocol 43

The Python/C API, Release 2.6.3

Returns the “bitwise and” od1 ando2 on success andULL on failure. The operation is dorne-placewhen
ol supports it. This is the equivalent of the Python staternén&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *o1, PyObject *op

Return value: New reference.
Returns the “bitwise exclusive or” @fl by 02 on success, ddULL on failure. The operation is dorie-place
whenolsupports it. This is the equivalent of the Python stateroént*= 02 .

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *op

int

int

Return value: New reference.
Returns the “bitwise or” 061 ando2 on success, dlULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python staternén{= 02 .

PyNumber_Coerce (PyObject **p1, PyObject **p2

This function takes the addresses of two variables of yp@bject* . If the objects pointed to bypl and
*p2 have the same type, increment their reference count and @{surccess). If the objects can be converted
to a common numeric type, replatigl and*p2 by their converted value (with ‘new’ reference counts), and
return0. If no conversion is possible, or if some other error occurs, retlir(failure) and don't increment the
reference counts. The c&lyNumber_Coerce(&0l1, &02) s equivalent to the Python statemedt, 02

= coerce(ol, 02)

PyNumber_CoerceEx (PyObject **p1, PyOb