The Python Library Reference
Release 2.6.4

Guido van Rossum

Fred L. Drake, Jr., editor

October 30, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 23
Built-in Constants 25
4.1 Constantsaddedbytee module. 25
Built-in Objects 27
Built-in Types 29
6.1 TruthValueTesting o o o e 29
6.2 Boolean Operations-and, or ,NOt e 29
6.3 CoMpPariSONS. i e e e e e e e e e e 30
6.4 Numeric Types —int ,float ,long ,complex 30
6.5 lterator TYPeS e e e e e e e e 33
6.6 Sequence Typesstr ,unicode ,list ,tuple ,buffer ,xrange 33
6.7 SetTypes—set ,frozenset 43
6.8 Mapping Types —dict e 45
6.9 FileObjects e e a7
6.10 ContextManager TYPES v v i v i i e e e e e e e 50
6.11 Other Built-in TYPES. o o o e e e e e 51
6.12 Special Attributes. L e 53
Built-in Exceptions 55
7.1 Exceptionhierarchy. e 59
String Services 61
8.1 string —Commonstringoperations 61
8.2 re — Regular expression operations e 70
8.3 struct — Interpret strings as packed binarydata L. 84
8.4 difflib — Helpers for computingdeltas o oo 87
8.5 Stringl0 — Read and write stringsasfiles. 96
8.6 cStringlO — Faster version o®tringlO 97
8.7 textwrap — Textwrappingandfiling. o L. 98
8.8 codecs — Codecregistryandbaseclasses. 100
8.9 unicodedata —Unicode Database. 113
8.10 stringprep — Internet String Preparation. 115
8.11 fpformat — Floating pointconversions. i i 116
Data Types 117
9.1 datetime —Basicdateandtimetypes.o 117
9.2 calendar — General calendar-related functions. 138

10

11

12

13

9.3 collections — High-performance containerdatatypes

9.4 heapq —Heap queue algorithm.
9.5 bhisect — Array bisectionalgorithm o
9.6 array — Efficientarraysofnumericvalues
9.7 sets — Unordered collections of uniqueelements.

9.8 sched —Eventscheduler. e
9.9 mutex — Mutual exclusion support. e e
9.10 queue — A synchronizedqueueclass. e
9.11 weakref —Weakreferences.

9.12 UserDict — Class wrapper for dictionaryobjects
9.13 UserList — Classwrapper forlistobjects
9.14 UserString — Class wrapper for stringobjects

9.15 types — Namesforbuilt-intypes.
9.16 new — Creation of runtime internal objects.
9.17 copy — Shallow anddeep copyoperations e
9.18 pprint —Dataprettyprinter e e e e
9.19 repr — Alternaterepr() implementation.,

Numeric and Mathematical Modules

10.1 numbers — Numeric abstractbaseclasses.
10.2 math — Mathematical functions. e
10.3 cmath — Mathematical functions for complexnumbers

10.4 decimal — Decimal fixed point and floating point arithmetic
10.5 fractions — Rationalnumbers.
10.6 random — Generate pseudo-randomnumbers.
10.7 itertools — Functions creating iterators for efficientlooping.
10.8 functools = — Higher order functions and operations on callable objects
10.9 operator — Standard operatorsasfunctions oL
File and Directory Access

11.1 os.path — Common pathname manipulations.
11.2 fileinput — Iterate over lines from multiple input streams
11.3 stat — Interpretingstat() results. L
11.4 statvfs — Constants used witbs.statvfs()
11.5 filecmp — File and Directory Comparisons v v v v i i v it
11.6 tempfile — Generate temporary files and directories.
11.7 glob — Unix style pathname pattern expansion.
11.8 fnmatch — Unix filename pattern matching.
11.9 linecache —Randomaccesstotextlines.
11.10shutil — High-level fileoperations e

11.11dircache — Cacheddirectorylistings.
11.12macpath — Mac OS 9 path manipulation functions.

Data Persistence

12.1 pickle — Python object serialization oL
12.2 cPickle — Afasterpickle
12.3 copy_reg — Registempickle supportfunctions.

12.4 shelve — Python objectpersistence. L
12.5 marshal — Internal Python object serialization.
12.6 anydbm — Generic access to DBM-styledatabases

12.7 whichdb — Guess which DBM module created adatabase.

12.8 dbm— Simple “database” interface. o
12.9 gdbm— GNU’s reinterpretationofdbm. oo oL

12.10dbhash — DBM-style interface to the BSD databaselibraty.

12.11bsddb — Interface to Berkeley DB library,
12.12dumbdbm— Portable DBM implementation
12.13sqlite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving

14

15

16

17

18

19

13.1 zlib — Compression compatiblewiteip o .
13.2 gzip — Supportforgzipfiles
13.3 bz2 — Compression compatible withzip2 oo oo oL

13.4 zipfile — Work with ZIP archives.
13.5 tarfile — Read and write tar archivefiles. o L.
File Formats

14.1 csv — CSV File Readingand Writing. o oo
14.2 ConfigParser = — Configurationfileparser.
14.3 robotparser — Parserforrobots.txt. L.
14.4 netrc —netrcfile processing. e e e
14.5 xdrlib —Encode anddecode XDRdata.,
14.6 plistlib — Generate and parse Mac OSpfist files.

Cryptographic Services

15.1 hashlib — Secure hashes and messagedigests

15.2 hmac — Keyed-Hashing for Message Authentication.
15.3 md5— MD5 message digestalgorithm.
15.4 sha — SHA-1 message digestalgorithm.

Generic Operating System Services

16.1 os — Miscellaneous operating systeminterfaces.
16.2 io — Coretools for workingwithstreams
16.3 time —Timeaccessand CONVErSIONS o v v i i i e e e e e e e
16.4 optparse — More powerful command line optionparser
16.5 getopt — Parserforcommand lineoptions. oo
16.6 logging — Logging facility for Python.
16.7 getpass — Portable passwordinput.
16.8 curses — Terminal handling for character-celldisplays.

16.9 curses.textpad — Text input widget for curses programs
16.10curses.wrapper ~ — Terminal handler for curses programs
16.11 curses.ascii — Utilities for ASCll characters
16.12curses.panel ~ — A panel stack extensionforcurses.
16.13platform — Access to underlying platform’s identifyingdata.

16.14errno — Standard errnosystemsymbols.o oL o oo
16.15ctypes — Aforeign function library for Python L.

Optional Operating System Services

17.1 select — Waiting for I/O completion.
17.2 threading — Higher-level threadinginterface.
17.3 thread — Multiple threadsofcontrol. oL
17.4 dummy_threading — Drop-in replacement for thiareading module

17.5 dummy_thread — Drop-in replacement for thtaread module
17.6 multiprocessing — Process-based “threading” interface.

17.7 mmap— Memory-mapped file support
17.8 readline — GNUreadlineinterface. o
17.9 rlcompleter — Completion function for GNU readline.

Interprocess Communication and Networking

18.1 subprocess — Subprocessmanagemento e
18.2 socket — Low-level networkinginterface.
18.3 ssl — SSL wrapper for socketobjects. L

18.4 signal — Sethandlers forasynchronousevents.
18.5 popen2 — Subprocesses with accessible I/Ostreams.
18.6 asyncore — Asynchronoussockethandler.

18.7 asynchat — Asynchronous socket command/response handler.

Internet Data Handling
19.1 email — Anemail and MIME handlingpackage

439
439

441

442
445
450

481
481
485
493
495
495
496
548
551
553

555
555
561
571
578

581

583
586

501
591

20

21

19.2 json —JSONencoderanddecoder. i i i 619

19.3 mailcap — Mailcapfilehandling. 624
19.4 mailbox — Manipulate mailboxes invariousformats 624
19.5 mhlib — Accessto MH mailboxeso 641
19.6 mimetools — Tools for parsing MIMEmessages v 643
19.7 mimetypes — Map filenamesto MIME types. 644
19.8 MimeWriter — Generic MIME filewriter oo o 647
19.9 mimify — MIME processingof mailmessages. 647
19.10multifile — Support for files containing distinctparts. 648
19.11rfc822 —Parse RFC 2822 mailheaders. 650
19.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 654
19.13binhex — Encode and decode binhex4files 656
19.14binascii — Convert between binaryand ASCII. o000 656
19.15quopri — Encode and decode MIME quoted-printabledata 658
19.16 uu — Encode and decode uuencodefiles oo oL 659
Structured Markup Processing Tools 661
20.1 HTMLParser — Simple HTML and XHTML parser. 661
20.2 sgmllib — Simple SGML parser. e 663
20.3 htmllib — AparserforHTMLdocuments, 665
20.4 htmlentitydefs — Definitions of HTML general entities 667
20.5 xml.parsers.expat — Fast XML parsingusingExpat 667
20.6 xml.dom — The Document Object Model API. 675
20.7 xml.dom.minidom — Lightweight DOM implementation. 685
20.8 xml.dom.pulldom — Support for building partial DOMtrees 689
20.9 xml.sax — Supportfor SAX2 parsers. v v i i e e e 689
20.10xml.sax.handler —BaseclassesforSAXhandlers L. 691
20.11xml.sax.saxutils — SAXUtilities 695
20.12xml.sax.xmlreader — Interface for XML parsers. L 696
20.13xml.etree.ElementTree — The ElementTree XMLAPI. 699
Internet Protocols and Support 707
21.1 webbrowser — Convenient Web-browser controller. 707
21.2 cgi — Common Gateway Interface support. 709
21.3 cgitb — Traceback managerforCGlscripts. 715
21.4 wsgiref — WSGI Utilities and Reference Implementation 716
21.5 urllib — Open arbitraryresourcesbyURL 724
21.6 urllib2 — extensible library foropeningURLs 729
21.7 httplib — HTTP protocolclient. 739
21.8 ftplib —FTPprotocolclient. e 743
21.9 poplib —POP3protocolclient. e 746
21.10imaplib — IMAP4 protocol client 748
21.12nntplib — NNTP protocolclient. 753
21.12smtplib — SMTP protocolclient. 757
21.13smtpd — SMTP Server. o e e e e e e 761
21.14telnetlib — Telnetclient 761
21.15uuid — UUID objects accordingtoRFC4122. 164
21.16urlparse — Parse URLsintocomponents. i 766
21.17SocketServer — A framework for network servers. oL oo 770
21.18BaseHTTPServer —BasicHTTPserver 776
21.19SimpleHTTPServer — Simple HTTPrequesthandler 779
21.20CGIHTTPServer — CGl-capable HTTP requesthandler 780
21.21cookielib — Cookie handling for HTTPclients. 781
21.22Cookie — HTTP state management. v it ittt 789
21.23xmirpclib — XML-RPCclientaccess i i it 792
21.24SimpleXMLRPCServer — Basic XML-RPCserver., 799
21.25DocXMLRPCServer — Self-documenting XML-RPC server. 802

22 Multimedia Services 805

22.1 audioop — Manipulateraw audiodata o 805
22.2 imageop — Manipulaterawimagedata Lo 808
22.3 aifc — Read and write AIFFand AIFCfiles. 809
22.4 sunau — Read and write Sun AUfiles L L 811
22.5 wave — Read and write WAV files. e 813
22.6 chunk —Read IFF chunkeddata. 815
22.7 colorsys — Conversions betweencolorsystems. 816
22.8 imghdr — Determinethetypeofanimage 817
229 sndhdr — Determine typeofsoundfile o oL 817
22.100ssaudiodev — Access to OSS-compatible audiodevices. 818
23 Internationalization 823
23.1 gettext — Multilingual internationalizationservices. 823
23.2 locale —Internationalizationservices e 831
24 Program Frameworks 839
24.1 cmd— Support for line-oriented command interpreters.0 839
24.2 shlex — Simplelexicalanalysis e 841
25 Graphical User Interfaces with Tk 845
25.1 Tkinter — Pythoninterfaceto Tcl/Tk. 845
25.2 Tix —ExtensionwidgetsforTk. e 854
25.3 ScrolledText ~ — Scrolled TextWidget. 859
25.4 turtle —TurtlegraphicsforTK 859
255 IDLE e e e e 886
25.6 Other Graphical User Interface Packages 889
26 Development Tools 891
26.1 pydoc — Documentation generator and online help system. 891
26.2 doctest — Testinteractive Pythonexamples. 892
26.3 unittest —Unittestingframework. 913
26.4 2to3 - Automated Python 2to 3 code translation 923
26.5 test — Regression tests package forPython. oo oo 927
26.6 test.test_support — Utility functionsfortests. 929
27 Debugging and Profiling 933
27.1 bdb — Debugger framework. 933
27.2 pdb — The Python Debugger e 937
27.3 DebuggerCommands e e e e e e 938
27.4 The Python Profilers e 941
27.5 hotshot — High performance logging profiler 948
27.6 timeit — Measure execution time of small code snippets 949
27.7 trace — Trace or track Python statement execution. 952
28 Python Runtime Services 955
28.1 sys — System-specific parameters and functions. Lo 955
28.2 _ builtin__ —Built-inobjects 963
28.3 future_builtins —Python3built-ins 964
28.4 __main__ —Top-level scriptenvironment. o 965
28.5 warnings —Warningcontrol. L e e 965
28.6 contextlib — Utilities for with -statementcontexts 969
28.7 abc — AbstractBase Classes. e e 970
28.8 atexit —Exithandlers. 973
28.9 traceback — Printorretrieve astacktraceback. 974
28.10_ future_ — Future statementdefinitions 977
28.11gc — Garbage Collectorinterface. e 978
28.12inspect —Inspectliveobjects. 980
28.13site — Site-specific configurationhook oo oo 985

29

30

31

32

33

34

35

36

28.14user — User-specific configurationhook 987

28.15fpectl — Floating point exceptioncontrol 987

Custom Python Interpreters 991

29.1 code — Interpreterbaseclasses e 991

29.2 codeop — Compile Pythoncode 993

Restricted Execution 995

30.1 rexec — Restricted executionframework oo oL 995

30.2 Bastion — Restrictingaccesstoobjects L 998

Importing Modules 1001

31.1 imp —Accessthémport internals. L 1001
31.2 imputil —Importutilities 1004
31.3 zipimport — Import modules from Zip archives.o L0 1007
31.4 pkgutii — Package extension utility L L Lo 1009
31.5 modulefinder = — Find modulesusedbyascript 1010
31.6 runpy — Locating and executing Pythonmodules 1011
Python Language Services 1013

32.1 parser — Access Pythonparsetrees. 1013
32.2 Abstract Syntax TreesS v i i e e e e 1021
32.3 symtable — Access tothe compiler'ssymboltables. 1026
32.4 symbol — Constants used with Python parsetrees 1028
32.5 token — Constants used with Pythonparsetrees 1028
32.6 keyword — Testing for Pythonkeywords 1029
32.7 tokenize — Tokenizer for Pythonsource. 1029
32.8 tabnanny — Detection of ambiguous indentation L. 1030
32.9 pyclbr — Python class browsersupport 1031
32.10py_compile — Compile Python sourcefiles 1032
32.11compileall — Byte-compile Python libraries 1032
32.12dis — Disassembler for Python bytecode 1033
32.13pickletools — Tools for pickle developers, 1040
32.14distutils — Building and installing Pythonmodules. 1041
Python compiler package 1043

33.1 Thebasicinterface e 1043
33.2 LimMitations. e e e e 1044
33.3 Python Abstract Syntax. e e e 1044
33.4 Using Visitors to Walk ASTS o o i i i e e e e e 1048
33.5 Bytecode Generation. e e e e e e e 1049
Miscellaneous Services 1051

34.1 formatter — Genericoutputformatting 1051
MS Windows Specific Services 1055

35.1 msilib — Read and write Microsoft Installerfiles 1055
35.2 msvert — Useful routines from the MS VC++runtime 1060
35.3 _winreg —WIindOws registry aCCess v v v v i i e e e e 1061
35.4 winsound — Sound-playing interface for Windows. 1066
Unix Specific Services 1069

36.1 posix — The mostcommon POSIX systemcalls. 1069
36.2 pwd—The passworddatabase e 1070
36.3 spwd — The shadow password database 1070
36.4 grp —Thegroupdatabase e 1071
36.5 crypt — Functiontocheck Unixpasswords. 1072
36.6 dl —CallCfunctionsinsharedobjects 1072
36.7 termios — POSIXstylettycontrol. 1073

Vi

36.8 tty — Terminalcontrolfunctions. 1074

36.9 pty — Pseudo-terminal utilities. 1075
36.10fcntl — Thefentl() andioctl() systemecalls. 1075
36.11pipes — Interface to shell pipelines 1077
36.12posixfile — File-like objects with lockingsupport 1078
36.13resource — Resource usageinformation. 0., 1080
36.14nis — Interface to Sun's NIS (YellowPages) 1082
36.15syslog — Unix syslog library routines. 1083
36.16 commands — Utilities for runningcommands L. 1083
37 Mac OS X specific services 1085
37.1 ic — Accesstothe Mac OS XInternetConfig. 1085
37.2 MacOS— Accessto Mac OSinterpreterfeatures 1086
37.3 macostools — Convenience routines for file manipulation. 1087
37.4 findertools — Thefinder's Apple Eventsinterface 1088
37.5 EasyDialogs — Basic Macintoshdialogs. 1088
37.6 FrameWork — Interactive application framework oL, 1091
37.7 autoGIL — Global Interpreter Lock handling in eventloops. 1094
37.8 Mac OS Toolbox Modules 1094
37.9 ColorPicker — Colorselectiondialog. 1100
38 MacPython OSA Modules 1101
38.1 gensuitemodule — Generate OSAstubpackages. 1102
38.2 aetools — OSAclientsupport. e e e e e 1102
38.3 aepack — Conversion between Python variables and AppleEvent data containers. 1103
38.4 aetypes — AppleEventobjects. L e 1104
38.5 MiniAEFrame — Open Scripting Architecture server support. 1106
39 SGI IRIX Specific Services 1107
39.1 al —AudiofunctionsontheSGI 1107
39.2 AL — Constants used withthed module 1109
39.3 cd — CD-ROM access on SGISystems v v i vt i e e e e e e 1109
39.4 fl — FORMS library for graphical userinterfaces. 1112
39.5 FL — Constantsused withtife module 1117
39.6 flp — Functions for loading stored FORMS designs. 1117
39.7 fm — Font Managetinterface. e 1117
39.8 gl — Graphics Libraryinterface 1118
39.9 DEVICE— Constantsused withttgd module 1120
39.10GL— Constants used withttgd module 1120
39.11imgfile — Support for SGlimglibfiles o o oo 1120
39.12jpeg — Read andwrite JPEGfiles. 1121
40 SunOS Specific Services 1123
40.1 sunaudiodev —AccesstoSunaudiohardware. 1123
40.2 SUNAUDIODEW- Constants used witbunaudiodev 1124
41 Undocumented Modules 1125
41.1 Miscellaneous useful utilities. e 1125
41.2 Platform specificmodules 1125
41.3 Multimedia. e e e 1125
41.4 Undocumented Mac OSmodules. 1125
415 Obsolete. e 1127
41.6 SGl-specific Extension modules. e 1127
A Glossary 1129
B About these documents 1135
B.1 Contributors to the Python Documentation. 1135

Vii

C History and License 1137
C.1 Historyofthesoftware e 1137
C.2 Terms and conditions for accessing or otherwise using Python 1138
C.3 Licenses and Acknowledgements for Incorporated Software. 1140

D Copyright 1149

Module Index 1151

Index 1155

viii

The Python Library Reference, Release 2.6.4

Release?2.6
Date October 30, 2009

While The Python Language Referen@e The Python Language Referehckescribes the exact syntax and se-
mantics of the Python language, this library reference manual describes the standard library that is distributed with
Python. It also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file 1/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available frgthcthe
Package Index

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as humbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see raodate) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with Bhapier
Functions as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.6.4

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

all (iterable
Return True if all elements of theerableare true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of thierableis true. If the iterable is empty, return False. Equivalent to:

def any (iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclassgor andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instanc&iof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expressios.nét a Python
int object, it has to define an index () method that returns an integer. New in version 2.6.

bool ([x])
Convert a value to a Boolean, using the standard truth testing proceduis féfse or omitted, this returns
False ; otherwise it returngrue . bool is also a class, which is a subclassrdf . Classbool cannot
be subclassed further. Its only instancesfamse andTrue . New in version 2.2.1.Changed in version
2.3: If no argument is given, this function returifsise .

callable (objec)
ReturnTrue if the objectargument appears callablegalse if not. If this returns true, it is still possible
that a call fails, but if it is false, callingbjectwill never succeed. Note that classes are callable (calling a
class returns a new instance); class instances are callable if they havelb () method.

The Python Library Reference, Release 2.6.4

chr (i)
Return a string of one character whose ASCII code is the inte§@r examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusiXedpeError
will be raised ifi is outside that range. See alsoichr()

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, A

The @classmethod form is a functiondecorator— see the description of function definitionsHanction
definitions(in The Python Language Referehfer details.

It can be called either on the class (suctCa§)) or on an instance (such &5).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want thoswtsaeethod() in
this section.

For more information on class methods, consult the documentation on the standard type hieratehy in
standard type hierarchgin The Python Language ReferehcBlew in version 2.2.Changed in version 2.4:
Function decorator syntax added.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative
if X < y,zeroifx == y and strictly positive ifx > y.

compile (source, filename, mode, [flags, [dont_inheijt]]
Compile thesourceinto a code or AST object. Code objects can be executed Bxaa statement or
evaluated by a call teval() . sourcecan either be a string or an AST object. Refer todke module
documentation for information on how to work with AST objects.

Thefilenameargument should give the file from which the code was read; pass some recognizable value if
it wasn't read from a file’&string>’ is commonly used).

Themodeargument specifies what kind of code must be compiled; it cdexse’ if sourceconsists of a
sequence of statementsyal’ if it consists of a single expression,'smgle’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something ditmrethan
will be printed).

The optional argumentitags and dont_inheritcontrol which future statements (sB&P 239 affect the
compilation ofsource If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. Iffthgsargument is given andont_inherit

is not (or is zero) then the future statements specified byléigs argument are used in addition to those
that would be used anyway. dfont_inheritis a non-zero integer then tllagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found asonepiler_flag attribute on the
_Feature instance inthe future module.

This function raise$yntaxError if the compiled source is invalid, andypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line statements, line endings must be represented by a single
newline character\q’), and the input must be terminated by at least one newline character. If line endings

are represented Byr\n’ |, usestr.replace() to change them intdn’ . Changed in version 2.3:
The flags and dont_inheritarguments were added.Changed in version 2.6: Support for compiling AST
objects.

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6.4

complex ([real, [imag]])
Create a complex number with the vakegal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). limagis omitted, it defaults to zero and the function serves as a
numeric conversion function likeit() ,long() andfloat() . If both arguments are omitted, returns
0j .

The complex type is described Mumeric Types — int, float, long, complex

delattr (object, namg

This is a relative oketattr() . The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(x, 'foobar’) is equivalent talel x.foobar

dict ([arg])
Create a new data dictionary, optionally with items taken frangqn The dictionary type is described in

Mapping Types — dict
For other containers see the builtlist , set , andtuple classes, and theollections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method nameddir__ () , this method will be called and must return the list of
attributes. This allows objects that implement a custorgetattr () or __getattribute_ ()
function to customize the wagir() reports their attributes.

If the object does not provide dir__() , the function tries its best to gather information from the object’s
__dict__attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custogetattr ()

The defauldir() mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

«If the object is a module object, the list contains the names of the module’s attributes.

«If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct
>>> dir () # doctest: +SKIP

[builtins_ ', ’ doc__’, '__name__’, ’struct’]
>>> dir (struct) # doctest: +NORMALIZE_WHITESPACE
[Struct’, *_ builtins__ ', * doc_ ', ' file ', ' name_’,

' _package ', ' clearcache’, ’'calcsize’, ’error’, 'pack’, 'pack_into’,

‘unpack’, 'unpack_from’]
>>> class Foo(object):
def _ dir _ (self):
return ["kan", "ga", "roo"]

>>> f = Fool)
>>> dir ()
[ga’, 'kan’, ’roo’]

Note: Becausealir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of

The Python Library Reference, Release 2.6.4

names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (&, b
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the sam@a#8 b, a % b) . For floating point
numbers the result i€}, a % b) , whereq is usuallymath.floor(a / b) but may be 1 less than
that. Inany casgq * b + a % b isveryclose ta, if a % bis non-zero it has the same signtasind
0 <= abs(a % b) < abs(b) . Changed in version 2.3: Usimjvmod() with complex numbers is
deprecated.

enumerate (sequence, [start=0]
Return an enumerate objedequencenust be a sequence, #@arator, or some other object which sup-
ports iteration. Tha@ext() method of the iterator returned leypumerate() returns a tuple containing
a count (fromstart which defaults to 0) and the corresponding value obtained from iteratingitever

able enumerate() is useful for obtaining an indexed serig®, seq[0]) , (1, seq[l]) , (2,
seq[2]) ,.... For example:

>>> for i, season in enumerate ([' Spring ', ' Summer, ’Fall ', ' Winter "]):
print i, season

0 Spring

1 Summer

2 Fall

3 Winter

New in version 2.3.New in version 2.6: Tk&art parameter.

eval (expression, [globals, [locals]]
The arguments are a string and optional globals and locals. If providelials must be a dictionary. If
provided,locals can be any mapping object. Changed in version 2.4: formecglswas required to be a
dictionary. Theexpressiorargument is parsed and evaluated as a Python expression (technically speaking,
a condition list) using theglobals andlocals dictionaries as global and local namespace. [fdlabals
dictionary is present and lacks *__builtins__’, the current globals are copiedlmibalsbeforeexpression
is parsed. This means thaxpressiomormally has full access to the standardobuiltin__ module
and restricted environments are propagated. Ifltleals dictionary is omitted it defaults to thglobals
dictionary. If both dictionaries are omitted, the expression is executed in the environmentwhgye is
called. The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.
Example:

>>> X = 1
>>> print eval (" x+1")
2

This function can also be used to execute arbitrary code objects (such as those createdi®()). In
this case pass a code object instead of a string. If the code object has been compilegesith as the
kind argumentgeval() ‘s return value will beNone.

Hints: dynamic execution of statements is supported beiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around foreisg(®y or
execfile()

execfile (filename, [globals, [locals]]
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new modute.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local

1 ltis used relatively rarely so does not warrant being made into a statement.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

file

filter

float

namespace. If providedipcals can be any mapping object. Changed in version 2.4: formedsls was
required to be a dictionary. If thecalsdictionary is omitted it defaults to thglobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment axeride() is called. The
return value ifNone.

Note: The defaultlocals act as described for functidncals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbicidls dictionary if you need to see effects of
the code orocals after functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

(filename, [mode, [bufsize]]
Constructor function for théle type, described further in sectidiie Objects The constructor’s argu-
ments are the same as those ofdpen() built-in function described below.

When opening a file, it's preferable to uspen() instead of invoking this constructor directlile s
more suited to type testing (for example, writiisinstance(f, file)). New in version 2.2.

(function, iterabl¢
Construct a list from those elementsitdrable for which functionreturns true.iterable may be either a
sequence, a container which supports iteration, or an iterafitgrdbleis a string or a tuple, the result also
has that type; otherwise it is always a listfuhctionis None, the identity function is assumed, that is, all
elements ofterablethat are false are removed.

Note thatfilter(function, iterable) is equivalent to[litem for item in iterable
if function(item)] if function is not None and [item for item in iterable if
item] if function is None.
Seeitertools.filterfalse() for the complementary function that returns elemenissoéblefor
which functionreturns false.
(D)

Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+|-]nan or
[+]-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating
point number with the same value (within Python’s floating point precision) is returned. If no argument is
given, return$.0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and
a leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity
as nan, inf or -inf.

The float type is described iMumeric Types — int, float, long, complex

format (value, [format_speq]

Convert avalueto a “formatted” representation, as controlledfoymat_spec The interpretation ofor-
mat_speawvill depend on the type of thealueargument, however there is a standard formatting syntax that
is used by most built-in types:ormat Specification Mini-Language

Note: format(value, format_spec) merely callsvalue. format__(format_spec)
New in version 2.6.

frozenset ([iterable])

Return a frozenset object, optionally with elements taken fiterable The frozenset type is described in
Set Types — set, frozenset

For other containers see the builtdict |, list , andtuple classes, and theollections module.
New in version 2.4.

getattr (object, name, [defaul)]

Return the value of the named attributedobject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exagetkfr(x, 'foobar’)

is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

The Python Library Reference, Release 2.6.4

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resdltus if the string is the name of one of the ob-
ject’s attributesFalse if not. (This is implemented by callingetattr(object, name) and seeing
whether it raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace bydire module. New in version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Note: To obtain a hexadecimal string representation for a float, usiéotiehex() method. Changed
in version 2.4: Formerly only returned an unsigned literal.
id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and

constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value.

CPython implementation detail: This is the address of the object.

input ([prompt])
Equivalent toeval(raw_input(prompt))

Warning: This function is not safe from user errors! It expects a valid Python expression as input; if
the input is not syntactically valid, &yntaxError will be raised. Other exceptions may be raise(if
there is an error during evaluation. (On the other hand, sometimes this is exactly what you neefl when
writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw_input() function for general input from users.

int ([x, [base]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespauasepaeameter
gives the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or
zero. Ifbaseis zero, the proper radix is determined based on the contents of string; the interpretation is the
same as for integer literals. (SHemeric literals(in The Python Language Referehgédf baseis specified
andx is not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer or
a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given,
returnso.

The integer type is described Mumeric Types — int, float, long, complex

isinstance (object, classinfp
Return true if theobjectargument is an instance of tlsdassinfoargument, or of a (direct or indirect)

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

subclass thereof. Also return trueciassinfois a type object (new-style class) aobdjectis an object of

that type or of a (direct or indirect) subclass thereofolifectis not a class instance or an object of the
given type, the function always returns falsecldissinfois neither a class object nor a type object, it may

be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are
not accepted). I€lassinfois not a class, type, or tuple of classes, types, and such tuplegedrror

exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfp

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entriagsinfowill be checked. In any other
case, alypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o, [sentinel)
Return aniterator object. The first argument is interpreted very differently depending on the presence of
the second argument. Without a second arguntemt st be a collection object which supports the iteration
protocol (the__iter_ () method), or it must support the sequence protocol (thgetitem__ ()
method with integer arguments startingdat If it does not support either of those protocdlgpeError
is raised. If the second argumeségntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to itext() method; if the value returned is equal to
sentine] Stoplteration will be raised, otherwise the value will be returned.
One useful application of the second formitef () is to read lines of a file until a certain line is reached.
The following example reads a file untBTOP" is reached:
with open (" mydata.txt ") as fp:

for line in iter (fp . readline, "STOP):
process_line(line)

New in version 2.2.

len (9
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same oriteratsl€'s items. iterable may be either a
sequence, a container that supports iteration, or an iterator objéetalfleis already a list, a copy is made
and returned, similar titlerable[:] . For instancelist('abc’) returns['a’, 'b’, 'c’] and
list((1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty likt,
list is a mutable sequence type, as documentefidguence Types — str, unicode, list, tuple, buffer,
xrange For other containers see the builtditt , set , andtuple classes, and theollections
module.

locals ()

Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals() whenitis called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

long ([x, [base]])

Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace.b@leargument is interpreted in the same

way as forint() , and may only be given whexis a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given,@&turns

The long type is described iMumeric Types — int, float, long, complex

map(function, iterable, .).

Apply functionto every item ofiterableand return a list of the results. If additioritdrablearguments are
passedfunctionmust take that many arguments and is applied to the items from all iterables in parallel.

11

The Python Library Reference, Release 2.6.4

If one iterable is shorter than another it is assumed to be extendedNwitl items. If functionis None,
the identity function is assumed; if there are multiple argumentsy() returns a list consisting of tuples
containing the corresponding items from all iterables (a kind of transpose operatiotiferbéearguments
may be a sequence or any iterable object; the result is always a list.

max(iterable, [args...], [key)
With a single argumeriterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optionalkeyargument specifies a one-argument ordering function like that usddtieort()
The key argument, if supplied, must be in keyword form (for exampiegx(a,b,c,key=func)).
Changed in version 2.5: Added support for the optideglargument.

min (iterable, [args...], [key)
With a single argumeriterable return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optionalkeyargument specifies a one-argument ordering function like that useidtfeort()
The key argument, if supplied, must be in keyword form (for exampign(a,b,c,key=func)).
Changed in version 2.5: Added support for the optid@glargument.

next (iterator, [default])
Retrieve the next item from thigerator by calling itsnext() method. Ifdefaultis given, it is returned if
the iterator is exhausted, otherwiS®plteration is raised. New in version 2.6.

object ()
Return a new featureless objectbject is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function
does not accept any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]]
Open a file, returning an object of thiéee type described in sectiofile Objects If the file cannot be
opened,|OError is raised. When opening a file, it's preferable to ogen() instead of invoking the
file constructor directly.

The first two arguments are the same assfdio ‘s fopen() : filenameis the file name to be opened, and
modeis a string indicating how the file is to be opened.

The most commonly-used values mibdeare’r’ for reading,’w’ for writing (truncating the file if it
already exists), anéh’ for appending (which osomeUnix systems means thatl writes append to the

end of the file regardless of the current seek positionjndfieis omitted, it defaults t&r' . The default

is to use text mode, which may conv@ri’ characters to a platform-specific representation on writing
and back on reading. Thus, when opening a binary file, you should afipentb themodevalue to open

the file in binary mode, which will improve portability. (Appendifly is useful even on systems that
don't treat binary and text files differently, where it serves as documentation.) See below for more possible
values ofmode The optionabufsizeargument specifies the file's desired buffer size: 0 means unbuffered,

1 means line buffered, any other positive value means use a buffer of (approximately) that size. A negative
bufsizemeans to use the system default, which is usually line buffered for tty devices and fully buffered for
other files. If omitted, the system default is uséd.

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+ truncates the file). Appent’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files; on
systems that don'’t have this distinction, adding’tiie has no effect.

In addition to the standartbpen() valuesmodemay be’U’ or’'rU’ . Python is usually built with
universal newline support; supplying’ opens the file as a text file, but lines may be terminated by any
of the following: the Unix end-of-line conventicin’ , the Macintosh conventiolr’ , or the Windows

2 Specifying a buffer size currently has no effect on systems that don’'tsetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any 1/0O has been performed, and there’s no
reliable way to determine whether this is the case.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

convention\r\n’ . All of these external representations are seehras by the Python program. If
Python is built without universal newline suppontredewith ‘U’ is the same as normal text mode. Note
that file objects so opened also have an attribute calglines which has a value oNone (if no
newlines have yet been seefw), ,\r ,\r\n’ , or a tuple containing all the newline types seen.

Python enforces that the mode, after strippldy , begins withr ,’'w’ or’a’

Python provides many file handling modules includiriginput , 0S, os.path , tempfile , and
shutil . Changed in version 2.5: Restriction on first letter of mode string introduced.
ord (c¢)

Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’'a’) returns the intege®7, ord(u'\u2020) returns8224. This is the inverse othr() for

8-bit strings and ofinichr() for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’'s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, andBypeError will be raised.

pow(X, y, [])

print

Returnx to the powery; if zis present, returrx to the powery, modulo z (computed more efficiently
thanpow(x, y) % z). The two-argument forrpow(x, y) is equivalent to using the power operator:
X**y .

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result
is delivered. For exampld0**2 returnsl00, but10**-2 returns0.01 . (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted.
If zis presentx andy must be of integer types, arydmust be non-negative. (This restriction was added

in Python 2.2. In Python 2.1 and before, floating 3-argunpent() returned platform-dependent results
depending on floating-point rounding accidents.)

([object, ...], [sep=""], [end="\n"], [file=sys.stdout])
Printobjec(s) to the strearfile, separated bgepand followed byend sep endandfile, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings fik€) does and written to the stream, separated
by sepand followed byend Both sepandendmust be strings; they can also Nene, which means to use
the default values. If nobjectis given,print() will just write end

The file argument must be an object withverite(string) method; if it is not present oNone,
sys.stdout will be used.

Note: This function is not normally available as a built-in since the namet is recognized as the
print statement. To disable the statement and useiting) function, use this future statement at the
top of your module:

from _ future__ import print_function

New in version 2.6.

property ([fget, [fset, [fdel, [doc]]]])

Return a property attribute farew-style class (classes that derive frombject).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init__ (self):
self . _x = None

def getx (self):
return self . _x

13

The Python Library Reference, Release 2.6.4

def setx (self , value):
self . _x = value
def delx (self):
del self . _x
X = property (getx, setx, delx, “I’"m the ’x’ property. ")

If given, docwill be the docstring of the property attribute. Otherwise, the property will ¢gets docstring
(if it exists). This makes it possible to create read-only properties easily psipgrty() as adecorator

class Parrot (object):
def __init__ (self):
self . voltage = 100000

@property

def voltage (self):
"™"Get the current voltage.
return self . _voltage

nmn

turns thevoltage() method into a “getter” for a read-only attribute with the same name.

A property object hagetter , setter ,anddeleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C(object):
def __init_ (self):
self . _x = None

@property

def x(self):
""" I'm the 'X' property.
return self . _x

@x setter
def x(self , value):
self . _x = value

@x deleter
def x(self):
del self . _x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original propertyx(in this case.)

The returned property also has the attribuigest , fset , andfdel corresponding to the constructor
arguments. New in version 2.2.Changed in version 2.5: fgsts docstring if nodoc given.Changed in
version 2.6: Theyetter , setter , anddeleter attributes were added.

range ([start], stop, [step)

This is a versatile function to create lists containing arithmetic progressions. It is most often fieed in
loops. The arguments must be plain integers. Ifdtepargument is omitted, it defaults o If the start
argument is omitted, it defaults @. The full form returns a list of plain integefstart, start +

step, start + 2 * step, ..] . If stepis positive, the last element is the large&trt + i

* step less tharstop if stepis negative, the last element is the smallgsit + i * step greater
thanstop stepmust not be zero (or elséalueError is raised). Example:

>>> range (10)

[0, 1, 2, 3, 4,5,6,7 8, 9]
>>> range (1, 11)

1, 2, 3, 4, 5,6, 7, 8 9, 10]

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

I

>>> range (1, 0)

I

raw_input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is readEOFError is raised. Example:

>>> g = raw_input (' -->)
--> Monty Python’s Flying Circus
>>> g

"Monty Python’s Flying Circus"

Ifthereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, iterable, [initializer)
Apply functionof two arguments cumulatively to the itemsitdrable, from left to right, so as to reduce
the iterable to a single value. For exampkeduce(lambda x, y: x+y, [1, 2, 3, 4, 5)])
calculateg(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
y, is the update value from thterable. If the optionalinitializer is present, it is placed before the items of
the iterable in the calculation, and serves as a default when the iterable is enipityallzer is not given
anditerable contains only one item, the first item is returned.

reload (modulg
Reload a previously importesiodule The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as tlmoduleargument).

Whenreload(module) is executed:

«Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary.ifiihe function of extension modules
is not called a second time.

*As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

*The names in the module namespace are updated to point to any new or changed objects.

*Other references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each hamespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the fimmport statement for it does not bind
its name locally, but does store a (partially initialized) module objecysimodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This

15

The Python Library Reference, Release 2.6.4

feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try :
cache

except NameError :
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, main__ and__ builtin__ . In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module udirggn ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to useport and qualified namesr(odule*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval() , otherwise the representation is a string enclosed in angle brackets that contains
the name of the type of the object together with additional information often including the name and address
of the object. A class can control what this function returns for its instances by definingepr__ ()
method.

reversed (seq
Return a reverséerator. seqmust be an object which has areversed_ () method or supports
the sequence protocol (thelen_ () method and the getitem__() method with integer argu-
ments starting ab). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom
__reversed_ () method.

round (x, [n])
Return the floating point value rounded ton digits after the decimal point. I is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgalad(0.5)
is 1.0 andround(-0.5) is-1.0).

set ([iterable])
Return a new set, optionally with elements are taken fitenable The set type is described &et Types —
set, frozenset

For other containers see the builtdict , list , andtuple classes, and theollections module.
New in version 2.4,

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For exampleetattr(x, 'foobar’, 123) is equivalent tok.foobar
= 123.

slice ([start], stop, [step)
Return aslice object representing the set of indices specifieddnge(start, stop, step) . The
start andsteparguments default tblone. Slice objects have read-only data attributemt , stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For examajstart:stop:step] or a[start:stop,
i] . Seeitertools.islice() for an alternate version that returns an iterator.

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

sorted (iterable, [cmp, [key, [reverse]])
Return a new sorted list from the itemsifarable.

The optional argumentsmp key, andreversehave the same meaning as those for likesort()
method (described in sectidhiutable Sequence Types

cmpspecifies a custom comparison function of two arguments (iterable elements) which should return a
negative, zero or positive number depending on whether the first argument is considered smaller than, equal
to, or larger than the second argumeamip=lambda x,y: cmp(X.lower(), y.lower()) . The

default value isNone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set tdrue , then the list elements are sorted as if each comparison were
reversed.

In general, thekey and reverseconversion processes are much faster than specifying an equicabent
function. This is becausampis called multiple times for each list element whideyandreversetouch each

element only once. To convert an old-stglapfunction to akeyfunction, see th&€mpToKey recipe in the
ASPN cookbookNew in version 2.4.

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, D &

The@staticmethod form is a functiordecorator— see the description of function definitiondHanction
definitions(in The Python Language Referehéer details.

It can be called either on the class (suctCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierditedy in
standard type hierarch{in The Python Language Referehcblew in version 2.2.Changed in version 2.4:
Function decorator syntax added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(object) is thatstr(object) does not always attempt to return a
string that is acceptable toval() ; its goal is to return a printable string. If no argument is given, returns
the empty string;, .

For more information on strings sé&equence Types — str, unicode, list, tuple, buffer, xravigeh de-

scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methodsection. To output formatted strings use template strings ovoibygerator described in the

String Formatting Operationsection. In addition see thg&ring Servicesection. See alsonicode()

sum(iterable, [start])
Sumsstart and the items of aiterable from left to right and returns the totaktart defaults to0. The
iterables items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by callifigpin(sequence) . Note thatsum(range(n), m) is equivalent
to reduce(operator.add, range(n), m) To add floating point values with extended precision,
seemath.fsum() . New in version 2.3.

super (type, [object-or-typé)]
Return a proxy object that delegates method calls to a parent or sibling clagseofThis is useful for

17

http://code.activestate.com/recipes/576653/
http://code.activestate.com/recipes/576653/

The Python Library Reference, Release 2.6.4

tuple

accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr() except that theypeitself is skipped.

The__mro__ attribute of thetypelists the method resolution search order used by bethttr() and
super() . The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a tyipsybclass(type2,
type) must be true (this is useful for classmethods).

Note: super() only works fornew-style clagss.

There are two typical use cases fuper In a class hierarchy with single inheritansepercan be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use stiperin other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method (self , arg):
super (C, self). method(arg)

Note thatsuper() is implemented as part of the binding process for explicit dotted attribute lookups such
assuper(). __getitem__(name) . It does so by implementing its own getattribute ()

method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super() is undefined for implicit lookups using statements or operators susipeEs()[name]

Also note thatsuper() is not limited to use inside methods. The two argument form specifies the argu-
ments exactly and makes the appropriate references. New in version 2.2.

([iterable])
Return a tuple whose items are the same and in the same oriferade's items. iterable may be a se-
guence, a container that supports iteration, or an iterator objet¢rdbleis already a tuple, it is returned
unchanged. For instanceiple('abc’) returns(a’, 'b’, 'c’) andtuple([1, 2, 3]) re-
turns(1, 2, 3) . If noargumentis given, returns a new empty tugje,

tuple is animmutable sequence type, as documentéskiuence Types — str, unicode, list, tuple, buffer,
xrange For other containers see the builtdict , list , andset classes, and theollections
module.

type (objecd

Return the type of anbject The return value is a type object. Thenstance() built-in function is
recommended for testing the type of an object.

With three argumentsype() functions as a constructor as detailed below.

type (name, bases, dict

Return a new type object. This is essentially a dynamic form ottass statement. Th@amestring is

the class name and becomes th@ame___ attribute; thebaseguple itemizes the base classes and becomes
the __bases__ attribute; and thalict dictionary is the namespace containing definitions for class body
and becomes the dict__ attribute. For example, the following two statements create ideritipal
objects:

>>> class X(object):
a=1

>>> X = type (' X', (object ,), dict (a=1))

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4

New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string’'a’ . This is the inverse ofrd() for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError s raised otherwise. For ASCII and 8-bit strings seg) . New in version 2.0.

unicode ([object, [encoding, [errors]]])
Return the Unicode string version olbjectusing one of the following modes:

If encodingand/orerrors are givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlnpokupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encodirgroi$ is
'strict’ (the default), &/alueError is raised on errors, while a value ‘@jnore’ causes errors to
be silently ignored, and a value 'oéplace’ causes the official Unicode replacement charackeFFFD

to be used to replace input characters which cannot be decoded. See alsdabe module.

If no optional parameters are givamicode() will mimic the behaviour oktr() except that it returns
Unicode strings instead of 8-bit strings. More preciselyhfectis a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a_unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encodistyiot’ mode.

For more information on Unicode strings seequence Types — str, unicode, list, tuple, buffer, xratgeh

describes sequence functionality (Unicode strings are sequences), and also the string-specific methods de-
scribed in theString Methodssection. To output formatted strings use template strings o¢dbperator
described in thé&tring Formatting Operationsection. In addition see tHgiring Servicesection. See also

str() . New in version 2.0.Changed in version 2.2: Support faunicode_ () added.

vars ([object])
Without an argument, act likecals()

With a module, class or class instance object as argument (or anything else thatdata attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined?

xrange ([start], stop, [step)
This function is very similar taange() , but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage>ofinge() overrange() is minimal (sincexrange() still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

CPython implementation detail: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python restricts all arguments to na-
tive C longs (“short” Python integers), and also requires that the number of elements fit in a native C
long. If a larger range is needed, an alternate version can be crafted usirigribels module:
islice(count(start, step), (stop-start+step-1)//step)

zip ([iterable, ...])
This function returns a list of tuples, where thth tuple contains théth element from each of the argu-
ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same Bpgth, is similar tomap()
with an initial argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list.

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

19

The Python Library Reference, Release 2.6.4

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups usaigy*[iter(s)]*n)

zip() in conjunction with theé operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>>y = [4, 5, 6]
>>> zipped = zip (X, Y)
>>> zipped

(1, 4), (2, 5), 3, 6)]

>>> X2, y2 = zip (*zipped)

>>> x == list (x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formezlyg() required at least one argument azig()
raised alypeError instead of returning an empty list.

__import__ (name, [globals, [locals, [fromlist, [level]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by thenport statement. It can be replaced (by importing lblidtins module
and assigning tbuiltins.__import__) in order to change semantics of timeport statement, but
nowadays it is usually simpler to use import hooks (8&® 302). Direct use of import_ () is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the moduleame potentially using the giveglobalsandlocalsto determine how to
interpret the name in a package context. Trhenlist gives the names of objects or submodules that should
be imported from the module given Imame The standard implementation does not ustitalsargument

at all, and uses itglobalsonly to determine the package context of import statement.

level specifies whether to use absolute or relative imports. The defadlt ishich indicates both abso-

lute and relative imports will be attempte@®. means only perform absolute imports. Positive values for
level indicate the number of parent directories to search relative to the directory of the module calling
__import__()

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpot the module named hhyame However, when a non-empfsomlistargument
is given, the module named Imameis returned.

For example, the statemeniport spam results in bytecode resembling the following code:
spam = __import (' spam’, globals (), locals (), [I, -1)

The statemerimport spam.ham results in this call:

spam = __import (' spam.ham’, globals (), locals (), I, -1)

Note how__import__ () returns the toplevel module here because this is the object that is bound to a
name by themport statement.

On the other hand, the statemémim spam.ham import eggs, sausage as saus results in
_temp = _ import__ ('’ spam.ham’, globals (), locals (), ['eggs’, ’'sausage’'], -1)
eggs = _temp. eggs

saus = _temp. sausage

Here, thespam.ham module is returned from _import () . From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call
__import__ () and then look it up irsys.modules

20

Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.4

>>> import sys

>>> name = ' foo.bar.baz
>>> import__ (name)
<module 'foo’ from ...>
>>> baz = sys.modules[name]
>>> bpaz

<module ’'foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for
parameters was added.

21

The Python Library Reference, Release 2.6.4

22 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN
FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, args, [keyword$]
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and theargsargument must be a sequence. Tinectionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument
list. Callingapply() is different from just callindunction(args) , since in that case there is always
exactly one argument. The useagfply() is equivalent tdunction(*args, **keywords) . Dep-
recated since version 2.3: Use the extended call syntax*aigs and**keywords instead.

buffer (object, [offset, [size]]
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesdbjectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by thgizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, TgiseError

intern (' string)
Enterstringin the table of “interned” strings and return the interned string — whislriggitself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuergern() around to benefit from it.

23

The Python Library Reference, Release 2.6.4

24 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of theool type. New in version 2.3.

True
The true value of théool type. New in version 2.3.

None
The sole value ofypes.NoneType . None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function. Changed in version 2.4: AssignniNarie tre
illegal and raise &yntaxError

Notimplemented
Special value which can be returned by the “rich comparison” special methodg (() , It (,
and friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with-@noption. Assignments to _debug_ are illegal
and raise &yntaxError . See also thassert statement.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if-ecommand-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.

quit

exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raiseSystemExit with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.6.4

26 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN OBJECTS

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choic&Su®eeary

(in The Python Language Referehéar the complete picture on operator priorities.

27

The Python Library Reference, Release 2.6.4

28 Chapter 5. Built-in Objects

CHAPTER

SIX

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python'’s built-in types have differed from user-defined types because it was
not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists.
The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some
operations are supported by several object types; in particular, practically all objects can be compared, tested for

truth value, and converted to a string (with tlegr() function or the slightly differenstr() function). The

latter function is implicitly used when an object is written by thet() function.

6.1 Truth Value Testing

Any object can be tested for truth value, for use inifanor while condition or as operand of the Boolean
operations below. The following values are considered false:

* None

 False

« zero of any numeric type, for exampl&,0L, 0.0 , Oj .
< any empty sequence, for example() ,[] .

< any empty mapping, for examplg, .

« instances of user-defined classes, if the class definesanzero__ () or__len_ () method, when
that method returns the integer zercoool valueFalse . *

All other values are considered true — so objects of many types are always true. Operations and built-in functions
that have a Boolean result always rettror False for false andl or True for true, unless otherwise stated.
(Important exception: the Boolean operatiansandand always return one of their operands.)

6.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes

X ory if xis false, thery, elsex (2)

X and y if xis false, therx, elsey (2)

not X if xis false, therTrue , elseFalse 3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the firstfealeds .

1 Additional information on these special methods may be found in the Python Reference Masial dustomizatioin The Python
Language Referenpe

29

The Python Library Reference, Release 2.6.4

2. This is a short-circuit operator, so it only evaluates the second argument if the firstone is

3. not has a lower priority than non-Boolean operatorsngb a == is interpreted apot (a == b)
anda == not b isa syntax error.

6.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for exampley <= z is equivalent toc

<y and y <= z , exceptthayis evaluated only once (but in both cages not evaluated at all when < y

is found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal ()
is object identity
is not negated object identity
Notes:

1. !'= can also be writter>, but this is an obsolete usage kept for backwards compatibility only. New code
should always usk= .

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. <Fhe

and>= operators will raise dypeError exception when any operand is a complex number. Instances of a class
normally compare as non-equal unless the class defines trap__ () method. Refer t@asic customization

(in The Python Language Referehc®r information on the use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’'t support proper comparison are ordered by their address. Two more operations
with the same syntactic prioritin andnot in , are supported only by sequence types (below).

6.4 Numeric Types — int , float ,long , complex

There are four distinct numeric typgdain integerslong integersfloating point numbersandcomplex numbers

In addition, Booleans are a subtype of plain integers. Plain integers (also justiciigerd are implemented

usinglong in C, which gives them at least 32 bhits of precisi@yg.maxint s always set to the maximum
plain integer value for the current platform, the minimum valuesiss.maxint - 1). Long integers have
unlimited precision. Floating point numbers are implemented udindple in C. All bets on their precision are
off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementediogbig in C. To extract

these parts from a complex numkeusez.real andz.imag . Numbers are created by numeric literals or as

the result of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers)
yield plain integers unless the value they denote is too large to be represented as a plain integer, in which case they
yield a long integer. Integer literals with ald or’l" suffix yield long integers’(’ is preferred becausH

looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point
numbers. Appendin or’'J’ to a numeric literal yields a complex number with a zero real part. A complex
numeric literal is the sum of a real and an imaginary part. Python fully supports mixed arithmetic: when a binary
arithmetic operator has operands of different numeric types, the operand with the “narrower” type is widened to

30 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

that of the other, where plain integer is narrower than long integer is narrower than floating point is narrower than
complex. Comparisons between numbers of mixed type use the samé Tile.constructorgit() , long()
float() ,andcomplex() can be used to produce numbers of a specific type.

All built-in numeric types support the following operations. Jée power operato(in The Python Language
Referenceand later sections for the operators’ priorities.

Operation Result Notes

X +y sum ofx andy

X -y difference ofx andy

X *y product ofx andy

xly guotient ofx andy (1)

x Iy (floored) quotient ok andy (4)(5)

X %y remainder ok / vy (4)

-X X negated

+X x unchanged

abs(x) absolute value or magnitude »f 3)

int(x) x converted to integer (2)

long(x) x converted to long integer (2)

float(x) x converted to floating point (6)

complex(re,im) a complex number with real pas, imaginary partm. im defaults to zero,

c.conjugate() conjugate of the complex number (Identity on real numbers)

divmod(x, V) the pair(x /1 y, x % vy) 3)4)

pow(X, V) X to the powery 3)(7)

X **y x to the powery (7
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

2. Conversion from floats usingnt() or long() truncates toward zero like the related function,
math.trunc() . Use the functionmath.floor() to round downward anchath.ceil() to round
upward.

3. SeeBuilt-in Functionsfor a full description.

4. Complex floor division operator, modulo operator, afidnod() . Deprecated since version 2.3: Instead
convert to float usingibs() if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python definepow(0, 0) andO ** 0 to bel, asis common for programming languages.

All numbers.Real types (nt ,long , andfloat) also include the following operations:

Operation Result Notes
math.trunc(x) X truncated to Integral

round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor(x) the greatest integral float <<

math.ceil(x) the least integral float >x

6.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

2 As a consequence, the I, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

6.4. Numeric Types — int ,float ,long , complex 31

The Python Library Reference, Release 2.6.4

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operatierhas the same priority as the other unary numeric operatioaad-).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
X |y bitwise or of x andy
XNy bitwise exclusive oof x andy
X &Yy bitwiseand of x andy
X << n x shifted left byn bits D2
X >>n x shifted right byn bits (1)(3)
~X the bits ofx inverted

Notes:

1. Negative shift counts are illegal and causéaueError to be raised.

2. A left shift by n bits is equivalent to multiplication bgow(2, n) . Along integer is returned if the result
exceeds the range of plain integers.

3. Aright shift by n bits is equivalent to division bgow(2, n)

6.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio 0
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
RaisesOverflowError on infinities and a/alueError ~ on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or frond@cimalstring usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leadigand a trailingp and exponent. New in version 2.6.

fromhex (9)
Class method to return the float represented by a hexadecimal strifige strings may have leading and
trailing whitespace. New in version 2.6.

Note thatfloat.hex() is an instance method, whifeoat.fromhex() is a class method.
A hexadecimal string takes the form:
[sign] [0x’] integer [." fraction] ['p’ exponent]

where the optionasign may by either+ or -, integer andfraction are strings of hexadecimal digits,
andexponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at
least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex() is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C'$baformat character or Javaouble.toHexString are accepted boat.fromhex()

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal stfir8.a7p10 represents the floating-point number
(3 + 10./16 + 7./16**2) * 2.0**10 ,0r3740.0 :

>>> float . fromhex(' 0x3.a7pl0)
3740.0

Applying the reverse conversion 8740.0 gives a different hexadecimal string representing the same number:

32 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

>>> float . hex(3740.0)
'0x1.d380000000000p+11"

6.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more
detail, always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

_iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together ftarattre
protocot

_iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for andin statements. This method corresponds totthéter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, rai§tdapéeration exception.
This method corresponds to ttge iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratoest() method raiseStoplteration , it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

6.5.1 Generator Types

Python’s generatos provide a convenient way to implement the iterator protocol. If a container object’s
iter () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying theiter__ () andnext() methods. More information about generators can be
found inthe documentation for the yield express{anThe Python Language Referehce

6.6 Sequence Types — str , unicode , list , tuple , buffer
Xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the builtdict andset classes, and theollections module. String literals

are written in single or double quotexyzzy' |, "frobozz" . SeeString literals(in The Python Language
Referencefor more about string literals. Unicode strings are much like strings, but are specified in the syntax
using a preceding’ character:u’abc’ , u"def* . In addition to the functionality described here, there are
also string-specific methods described in #teng Methodsection. Lists are constructed with square brackets,
separating items with commafg, b, ¢] . Tuples are constructed by the comma operator (not within square

6.5. Iterator Types 33

The Python Library Reference, Release 2.6.4

brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as
a, b, ¢ or() . Asingleitem tuple must have a trailing comma, suclidgs .

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer() . They don't support concatenation or repetition.

Obijects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created
using thexrange() function. They don't support slicing, concatenation or repetition, and usingot in
min() ormax() onthem is inefficient.

Most sequence types support the following operations.ifhandnot in operations have the same priorities
as the comparison operations. Theand* operations have the same priority as the corresponding numeric
operations? Additional methods are provided fofutable Sequence Types

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the tables andt are sequences of the same typgd;andj are integers:

Operation Result Notes
X in's True if anitem ofsis equal tox, elseFalse Q)

X not in s False if anitem ofsis equal tox, elseTrue | (1)

s +t the concatenation afandt (6)
s*nn*s n shallow copies o§ concatenated (2)
s[i] i‘th item of s, origin O 3
s[i:j] slice ofsfromi toj 3)(4)
s[i;j:K] slice ofsfromi to j with stepk 3)(5)
len(s) length ofs

min(s) smallest item o6

max(s) largest item of

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full det@isrgeeisongin The Python
Language Referengén the language reference.) Notes:

1. Whensiis a string or Unicode string object thie andnot in operations act like a substring test. In
Python versions before 2.8had to be a string of length 1. In Python 2.3 and beyorrday be a string of
any length.

2. Values ofn less tharD are treated a8 (which yields an empty sequence of the same typs).aNote also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;

consider:
>>> |ists = [* 3
>>> |ists

[0 0, O
>>> lists] 0] . append(3)
>>> |ists

(3], 3], 31

What has happened is thgf] is a one-element list containing an empty list, so all three elements of
m* 3 are (pointers to) this single empty list. Modifying any of the elementsstdf modifies this
single list. You can create a list of different lists this way:

\Y

>>> lists = [for i in range (3)]
>>> lists] 0] . append(3)

>>> lists] 1] . append(5)

>>> lists] 2] . append(7)

>>> |ists

(3], 8], [71

3. If i orj is negative, the index is relative to the end of the strieg(s) + i orlen(s) + j s substi-
tuted. But note that0 is still 0.

3 They must have since the parser can't tell the type of the operands.

34 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

4. The slice ofsfromi toj is defined as the sequence of items with indexch that <= k < j .Ifiorjis
greater thahen(s) , uselen(s) . If i is omitted orNone, use0. If j is omitted orNone, uselen(s)
If i is greater than or equal {pthe slice is empty.

5. The slice ofs from i to j with stepk is defined as the sequence of items with index i + n*k such
that0 <= n < (j-i)/k . In other words, the indices are i+k , i+2*k , i+3*k and so on, stopping
whenj is reached (but never includiny If i orj is greater thaten(s) , uselen(s) . If i orjare omitted
or None, they become “end” values (which end depends on the sidg). dfiote, k cannot be zero. IKis
None, it is treated likel.

6. CPython implementation detail: If sandt are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of thesorms + t ors += t . When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version
and implementation dependent. For performance sensitive code, it is preferable to sisgding)
method which assures consistent linear concatenation performance across versions and implementations.
Changed in version 2.4: Formerly, string concatenation never occurred in-place.

6.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python'’s strings support the sequence type methods describedSiacthence Types — str, unicode,
list, tuple, buffer, xrangsection. To output formatted strings use template strings @rtpeerator described in the
String Formatting Operationsection. Also, see thee module for string functions based on regular expressions.

capitalize 0
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width, [fillchar])
Return centered in a string of lengthdth. Padding is done using the speciffdithar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sub, [start, [end])
Return the number of non-overlapping occurrences of subsstign the range $tart, end. Optional
argumentstartandendare interpreted as in slice notation.

decode ([encoding, [errors]])
Decodes the string using the codec registereéhmoding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defaigtrist’ , meaning that
encoding errors raigenicodeError . Other possible values alignore’ , 'replace’ and any other
name registered viaodecs.register_error() , see sectiorCodec Base ClassedNew in version

2.2.Changed in version 2.3: Support for other error handling schemes added.

encode ([encoding, [errors]])

Return an encoded version of the string. Default encoding is the current default string enceding.
rors may be given to set a different error handling scheme. The defaulerfors is 'strict’ ,
meaning that encoding errors raise UmicodeError . Other possible values arégnore’
replace’ , 'xmlcharrefreplace’ , 'backslashreplace’ and any other name registered
via codecs.register_error() , see sectionCodec Base Classes For a list of possible en-
codings, see sectioftandard Encodings New in version 2.0.Changed in version 2.3: Support for
xmicharrefreplace’ and’backslashreplace’ and other error handling schemes added.

endswith (suffix, [start, [end])
ReturnTrue if the string ends with the specifieliffix otherwise returralse . suffixcan also be a tuple
of suffixes to look for. With optionadtart, test beginning at that position. With optiordd stop comparing
at that position. Changed in version 2.5: Accept tuplesudiix

expandtabs ([tabsize)
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 35

The Python Library Reference, Release 2.6.4

in the string. Iftabsizeis not given, a tab size & characters is assumed. This doesn't understand other
non-printing characters or escape sequences.

find ('sub, [start, [end])
Return the lowest index in the string where substsobis found, such thasubis contained in the range
[start, end. Optional argumentstart andendare interpreted as in slice notation. Retutnif subis not
found.

format (*args, **kwargs)
Perform a string formatting operation. Th@mat_stringargument can contain literal text or replacement
fields delimited by brace§ . Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a cofgrmoft_stringwhere each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0} ".format(1+2)
'The sum of 1 + 2 is 3

SeeFormat String Syntafor a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferre@tfortmet-
ting described irString Formatting Operations new code. New in version 2.6.

index (sub, [start, [end])
Like find() , but raisevalueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle 0
Return true if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

36 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

join (iterable
Return a string which is the concatenation of the strings initdreble iterable The separator between
elements is the string providing this method.

ljust (width, [fillchar])

Return the string left justified in a string of lengtlidth. Padding is done using the speciffdithar (default
is a space). The original string is returneavifith is less tharden(s) . Changed in version 2.4: Support

for thefillchar argument.
lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removed.chhesargument is a string specifying the
set of characters to be removed. If omitted\mne, the charsargument defaults to removing whitespace.
Thecharsargument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " Istrip()
'spacious '
>>> ' www.example.com . lIstrip(' cmowz.’)

'example.conm’

Changed in version 2.2.2: Support for ttiearsargument.

partition (sep
Split the string at the first occurrence s#p and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings. New in version 2.5.

replace (old, new, [count]
Return a copy of the string with all occurrences of substditgreplaced bynew If the optional argument
countis given, only the firstountoccurrences are replaced.

rfind (' sub, [start, [end])
Return the highest index in the string where substsng is found, such thasubis contained within
s[start,end]. Optional argumerdtart andendare interpreted as in slice notation. Retutnon failure.

rindex (' sub, [start, [end])
Like rfind() but raises/alueError when the substringubis not found.

rust (width, [fillchar])

Return the string right justified in a string of lengitidth. Padding is done using the specifiitchar
(default is a space). The original string is returnedidth is less tharlen(s) . Changed in version 2.4:
Support for thdillchar argument.

rpartition (sep
Split the string at the last occurrences#p and return a 3-tuple containing the part before the separator,

the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep, [maxsplit])
Return a list of the words in the string, usisgpas the delimiter string. Haxsplitis given, at mostnaxsplit
splits are done, thaghtmostones. Ifsepis not specified oNone, any whitespace string is a separator.
Except for splitting from the right;split() behaves likesplit() which is described in detail below.

New in version 2.4.
rstrip ([chars])

Return a copy of the string with trailing characters removed. dff@sargument is a string specifying the
set of characters to be removed. If omitted\wme, the charsargument defaults to removing whitespace.
Thecharsargument is not a suffix; rather, all combinations of its values are stripped:

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 37

The Python Library Reference, Release 2.6.4

split

>>> spacious " rstrip()

’ spacious’

>>> ' mississippi Torstrip(T ipz)
'mississ’

Changed in version 2.2.2: Support for ttfearsargument.

([sep, [maxsplit])
Return a list of the words in the string, usisgpas the delimiter string. Ifhaxsplitis given, at mostaxsplit
splits are done (thus, the list will have at masaxsplit+1 elements). limaxsplitis not specified, then
there is no limit on the number of splits (all possible splits are made).

If sepis given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example,1,2".split(’,") returns['l’, ”, '2’]). Thesepargument may consist of multiple
characters (for exampl&,<>2<>3".split('<>") returng'l’, '2’, '3). Splitting an empty

string with a specified separator retuftis .

If sepis not specified or iNone, a different splitting algorithm is applied: runs of consecutive whitespace

are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with &lone separator returng .

Forexample, 1 2 3 ’.split() returnsg['l’, '2’, '37] ,and’ 1 2 3 ’.split(None,
1) returng'l’, 2 3]

splitlines ([keepends)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unles&eependss given and true.

startswith (prefix, [start, [end]])

strip

ReturnTrue if string starts with theprefix, otherwise returrralse . prefixcan also be a tuple of prefixes
to look for. With optionalstart, test string beginning at that position. With optioeald stop comparing
string at that position. Changed in version 2.5: Accept tuplgmefix

([chars])
Return a copy of the string with the leading and trailing characters removedhBineargument is a string
specifying the set of characters to be removed. If omittedare, thecharsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious " strip()
'spacious’
>>> ' www.example.com . strip(' cmowz.’)

‘'example’

Changed in version 2.2.2: Support for #tfearsargument.

swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

titte ()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.
The algorithm uses a simple language-independent definition of a word as groups of consecutive letters.
The definition works in many contexts but it means that apostrophes in contractions and possessives form
word boundaries, which may not be the desired result:
>>> "they "re bill s friends from the UK " title()
"They’'Re BIll'S Friends From The UK"
A workaround for apostrophes can be constructed using regular expressions:

38 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

>>> jmport re
>>> def titlecase (S):
return re.sub(r'[A-Za-z]+([A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +
mo.group(0)[1:].lower(),

s)

>>> titlecase(“they 're bill ’s friends. ")
"They're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

translate (table, [deletecharg]
Return a copy of the string where all characters occurring in the optional argdeletgcharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

You can use thenaketrans() helper function in thestring module to create a translation table. For
string objects, set thiableargument tdNone for translations that only delete characters:

>>> ' read this short text ' . translate(None, ’aeiou ')
'rd ths shrt txt’

New in version 2.6: Support forldone tableargument. For Unicode objects, ttranslate() method

does not accept the optiondgletecharsaargument. Instead, it returns a copy of thwehere all characters

have been mapped through the given translation table which must be a mapping of Unicode ordinals to
Unicode ordinals, Unicode strings Bione. Unmapped characters are left untouched. Characters mapped
to None are deleted. Note, a more flexible approach is to create a custom character mapping codec using
thecodecs module (se@ncodings.cp1251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill (width)
Return the numeric string left filled with zeros in a string of lengitith. A sign prefix is handled correctly.
The original string is returned Widthis less tharlen(s) . New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric ()
ReturnTrue if there are only numeric characters in [Sglse otherwise. Numeric characters include
digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR
FRACTION ONE FIFTH.

isdecimal ()
ReturnTrue if there are only decimal characters inFalse otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

6.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as
the stringformattingor interpolationoperator. Giveriormat % values (whereformatis a string or Unicode
object), %conversion specifications fiormat are replaced with zero or more elementsvafues The effect is
similar to the usingprintf() in the C language. ormatis a Unicode object, or if any of the objects being
converted using th&sconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentaluesmay be a single non-tuple object. Otherwise valuesmust be a

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 39

The Python Library Reference, Release 2.6.4

tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The'%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for exsonpémame)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as df (asterisk), the actual width is read from the next
element of the tuple inalues and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as’a (dot) followed by the precision. If specified & (an asterisk), the
actual width is read from the next element of the tupleadtues and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in themtrgtgnclude a
parenthesised mapping key into that dictionary inserted immediately aft&otheharacter. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print has %#)03d quote types. " %\
{’ language ’': "Python ", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

The value conversion will use the “alternate form” (where defined below).

0 The conversion will be zero padded for numeric values.

The converted value is left adjusted (overrides'@e conversion if both are given).
T (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

+ A sign character't’ or’-") will precede the conversion (overrides a “space” flag).

A length modifier fi, | , or L) may be present, but is ignored as it is not necessary for Python — sébélgis
identical to%d

The conversion types are:

40 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

Con- Meaning Notes

version

o’ Signed integer decimal.

T Signed integer decimal.

o’ Signed octal value. Q)

u’ Obsolete type — it is identical td’ . @)

X’ Signed hexadecimal (lowercase). (2)

X’ Signed hexadecimal (uppercase). (2)

e’ Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). €))

'f Floating point decimal format. 3

' Floating point decimal format. 3

g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 pi(4pt
less than precision, decimal format otherwise.

G’ Floating point format. Uses uppercase exponential format if exponent is less than -4|o¢4)ot
less than precision, decimal format otherwise.

'c’ Single character (accepts integer or single character string).

r String (converts any python object usirepr()). (5)

's’ String (converts any python object usisg()). (6)

"%’ No argument is converted, results ifP& character in the result.

Notes:

1. The alternate form causes a leading z&db () to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leadifg’ or'0X’ (depending on whether tHg' or’'X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed

as they would otherwise be.
The precision determines the number of significant digits before and after the decimal point and defaults to
6.
5. The%r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
6. If the object or format provided is@anicode string, the resulting string will also henicode .
The precision determines the maximal number of characters used.
7. SeePEP 237

Since Python strings have an explicit lendg¥bs conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&@@onversions for numbers whose absolute value
is over 1e50 are replaced Bfgconversions? All other errors raise exceptions. Additional string operations are
defined in standard moduleging andre .

6.6.3 XRange Type

Thexrange type is an immutable sequence which is commonly used for looping. The advantage@frthe
type is that arxrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)je function.

5 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 41

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6.4

6.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
guence types: such objects cannot be modified once created. The following operations are defined on mutable

sequence types (whexas an arbitrary object):

Operation Result Notes
s[li] = x itemi of sis replaced by
s[iif] =t slice ofsfromi to is replaced by the contents of th
iterablet
del sJij] same as[i;j] = []
sfizjik] =t the elements aof[i:j:K] are replaced by those of (1)
t
del s[i:j:K] removes the elements sfi:j:k] from the list
s.append(x) same as[len(s):len(s)] = [X] (2)
s.extend(x) same as[len(s):len(s)] = x 3)
s.count(x) return number of's for which s[i] ==
s.index(x[, i[, jID return smallesk such thas[k] == x andi <= 4)
k <j
s.insert(i, x) same as[iii] = [X] (5)
s.pop([i]) same ax = g[i]; del s[i]; return x (6)
s.remove(x) same agslel s[s.index(x)] (4)
s.reverse() reverses the items afin place 7
s.sort([cmp[, key], sort the items o§in place (M (8)(9)(1Q
reverse]]])
Notes:

1. t must have the same length as the slice it is replacing.

2. The C implementation of Python has historically accepted multiple parameters and implicitly joined them
into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python
1.4.

3. xcan be any iterable object.

4. RaisesValueError whenx is not found ins. When a negative index is passed as the second or third
parameter to thendex() method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previowy() didn't have arguments
for specifying start and stop positions.

5. When a negative index is passed as the first parameter ingbe() method, the list length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

6. Thepop() method is only supported by the list and array types. The optional argurdefdults to-1 ,
so that by default the last item is removed and returned.

7. Thesort() andreverse() methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

8. Thesort() method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to,
or larger than the second argumepnmp=lambda x,y: cmp(x.lower(), y.lower()) . The

default value isNone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set tdrue , then the list elements are sorted as if each comparison were
reversed.

42 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

In general, thekey and reverseconversion processes are much faster than specifying an equicatgnt
function. This is becausempis called multiple times for each list element whiey andreversetouch
each element only once. Changed in version 2.3: SuppoNdoe as an equivalent to omittingmpwas
added.Changed in version 2.4: Supportkeyandreversewas added.

9. Starting with Python 2.3, theort() method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list appear empty
for the duration, and raisé&lueError if it can detect that the list has been mutated during a sort.

6.7 Set Types — set , frozenset

A setobject is an unordered collection of distinashableobjects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, dif-
ference, and symmetric difference. (For other containers see the bdititin, list , andtuple classes, and
thecollections module.) New in version 2.4. Like other collections, sets suppart set ,len(set)

andfor x in set . Being an unordered collection, sets do not record element position or order of insertion.
Accordingly, sets do not support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set typesst andfrozenset . Theset type is mutable — the contents can

be changed using methods likdd() andremove() . Since it is mutable, it has no hash value and cannot be
used as either a dictionary key or as an element of another seftofemset type is immutable antdashable

— its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

The constructors for both classes work the same:

classset ([iterable])

classfrozenset ([iterable])
Return a new set or frozenset object whose elements are takeitdérairie The elements of a set must be
hashable. To represent sets of sets, the inner sets mirstzbeset objects. Ifiterableis not specified,
a hew empty set is returned.

Instances ofet andfrozenset provide the following operations:

len(s)
Return the cardinality of sest

X in s
Testx for membership irs.

X not in s
Testx for non-membership is.

isdisjoint (‘othern)
Return True if the set has no elements in common witier. Sets are disjoint if and only if their
intersection is the empty set. New in version 2.6.

issubset (other)
set <= other ()
Test whether every element in the set ither.

set < other ()
Test whether the set is a true subseotbfer, that is,set <= other and set != other

issuperset (other
set >= other ()
Test whether every elementatheris in the set.

6.7. Set Types — set , frozenset 43

The Python Library Reference, Release 2.6.4

set > other ()
Test whether the set is a true supersettbgr, that is,set >= other and set != other

union (other, ..)

set | other | ... 0
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

intersection (other, .)

set & other & ... 0
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts
multiple input iterables.

difference (other, ..)

set - other - ... 0
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set N other ()
Return a new set with elements in either the seaitberbut not both.

copy ()
Return a new set with a shallow copy of

Note, the non-operator versions ofinion() , intersection() , difference() , and
symmetric_difference() , issubset() , and issuperset() methods will accept any it-

erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions liet('abc) & ’'cbs’ in favor of the more readable

set(’abc’).intersection(’chs’)

Bothset andfrozenset support set to set comparisons. Two sets are equal if and only if every element

of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances ofset are compared to instances @fozenset based on their members. For ex-
ample, set('abc’) == frozenset('abc’) returns True and so doesset(’abc’) in
set([frozenset('abc’)])

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each ottadrafdhe following returnFalse : a<b,
a==b, ora>b. Accordingly, sets do not implementthecmp__ () method.

Since sets only define partial ordering (subset relationships), the output ligtteert() method is
undefined for lists of sets.

Set elements, like dictionary keys, musttizeshable

Binary operations that miget instances witlirozenset return the type of the first operand. For exam-
ple: frozenset('ab’) | set(’bc’) returns an instance éfozenset

The following table lists operations available feet that do not apply to immutable instances of
frozenset

update (other,..)

set |= other | ... 0
Update the set, adding elements from all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection_update (other, ..)

set &= other & ... 0

Update the set, keeping only elements found in it and all others. Changed in version 2.6: Accepts
multiple input iterables.

difference_update (other, ..)

44

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

set -= other | ... 0
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input
iterables.

symmetric_difference_update (other)

set A= other ()
Update the set, keeping only elements found in either set, but not in both.

add (elem
Add elemenelemto the set.

remove (elen)
Remove elemerglemfrom the set. RaiseseyError if elemis not contained in the set.

discard (elem
Remove elemerdglemfrom the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Réisg&rror if the set is empty.

clear ()

Remove all elements from the set.
Note, the non-operator versions of theupdate() |, intersection_update() ,
difference_update() , and symmetric_difference_update() methods will accept

any iterable as an argument.

Note, theelemargument to the contains__ () , remove() , anddiscard() methods may be a
set. To support searching for an equivalent frozensegldmaset is temporarily mutated during the search
and then restored. During the search, éhemset should not be read or mutated since it does not have a
meaningful value.

See Also:

Comparison to the built-in set type®ifferences between theets module and the built-in set types.

6.8 Mapping Types — dict

A mappingobject mapsashablevalues to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, ttietionary. (For other containers see the builtlist , set , andtuple
classes, and theollections module.)

A dictionary’s keys arealmostarbitrary values. Values that are riohshable that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such asl and1.0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated listyof value pairs within braces, for ex-
ample:{’jack’: 4098, ’'sjoerd: 4127} or{4098: ‘’jack’, 4127: ’sjoerd’} , Or by
thedict constructor.

classdict ([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argangeista
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

6.8. Mapping Types — dict 45

The Python Library Reference, Release 2.6.4

If keyword arguments are given, the keywords themselves with their associated values are added as items

to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
"one™ 2, "two™ 3}

edict(one=2, two=3)
«dict({'one”. 2, 'two: 3})
«dict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments
added. These are the operations that dictionaries support (and therefore, custom mapping types should
support too):

len(d)
Return the number of items in the dictionaty

dlkey]
Return the item ofl with key key. Raises &eyError if keyis not in the map. New in version 2.5:
If a subclass of dict defines a methodmissing__ () , if the keykeyis not present, thd[key]

operation calls that method with the Kegyas argument. Thélkey] operation then returns or raises
whatever is returned or raised by themissing__ (key) call if the key is not present. No other
operations or methods invoke missing__ () . If __missing_ () is not definedKeyError
israised._missing_ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict

d[key] = value
Setd[key] tovalue

del d[key]
Removed[key] fromd. Raises &eyError if keyis not in the map.

key in d
ReturnTrue if d has a keykey, elseFalse . New in version 2.2.
key not in d
Equivalent tonot key in d . New in version 2.2.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcliteidkeys()
clear ()
Remove all items from the dictionary.
copy ()

Return a shallow copy of the dictionary.

fromkeys (seq, [value]
Create a new dictionary with keys fropegand values set tealue

fromkeys() is a class method that returns a new dictionaajuedefaults toNone. New in version
2.3.

get (key, [default)
Return the value fokeyif keyis in the dictionary, elséefault If defaultis not given, it defaults to
None, so that this method never raiseKayError

has_key (key)
Test for the presence &gyin the dictionaryhas_key() is deprecated in favor dfey in d .

items ()
Return a copy of the dictionary’s list gkey, value) pairs.

46

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-
random, varies across Python implementations, and depends on the dictionary’s history of insertions
and deletions.

If items() , keys() , values() , iteritems() , iterkeys() , anditervalues() are
called with no intervening modifications to the dictionary, the lists will directly correspond. This
allows the creation ofvalue, key) pairs usingzip() : pairs = zip(d.values(),

d.keys()) . The same relationship holds for thierkeys() and itervalues() meth-
ods: pairs = zip(d.itervalues(), d.iterkeys()) provides the same value for
pairs . Another way to create the same list mairs = [(v, K) for (k, V) in

d.iteritems()]

iteritems ()
Return an iterator over the dictionaryleey, value) pairs. See the note falict.items()

Usingiteritems() while adding or deleting entries in the dictionary may raiseiatimeError
or fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the notdifdritems()

Usingiterkeys() while adding or deleting entries in the dictionary may rais&uatimeError
or fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the noteifbrtems()

Using itervalues() while adding or deleting entries in the dictionary may raise a
RuntimeError or fail to iterate over all entries. New in version 2.2.
keys ()

Return a copy of the dictionary’s list of keys. See the notalfor.items()

pop (key, [default)
If keyis in the dictionary, remove it and return its value, else retlefault If defaultis not given and
keyis not in the dictionary, &eyError is raised. New in version 2.3.

popitem ()
Remove and return an arbitraflgey, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, callingpopitem() raises &eyError

setdefault (key, [default)
If keyis in the dictionary, return its value. If not, insdstywith a value ofdefaultand returrdefault
defaultdefaults toNone.

update ([other])
Update the dictionary with the key/value pairs frother, overwriting existing keys. Retuidone.

update() accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairsd.update(red=1, blue=2) . Changed in version 2.4: Allowed the argument to

be an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the notelfcritems()

6.9 File Objects

File objects are implemented using G&lio package and can be created with the builbpen() func-
tion. File objects are also returned by some other built-in functions and methods, soslpasen() and
os.fdopen() and themakefile() method of socket objects. Temporary files can be created using the

6.9. File Objects a7

The Python Library Reference, Release 2.6.4

tempfile module, and high-level file operations such as copying, moving, and deleting files and directories can
be achieved with thehutil module.

When a file operation fails for an 1/0O-related reason, the excepfiéhror is raised. This includes situations
where the operation is not defined for some reason,déek() on a tty device or writing a file opened for
reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the
file be open will raise &alueError after the file has been closed. Callicigse() = more than once is
allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you useniitle statement. For
example, the following code will automatically clog/hen thewith block is exited:

from _ future import with_statement # This isn’t required in Python 2.6
with open (" hello.txt ") as f
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open(" hello.txt ")
try :
for line in f
print line
finally
f . close()

Note: Not all “file-like” types in Python support use as a context manager fowitte statement. If your
code is intended to work with any file-like object, you can use the funatioriextlib.closing()
instead of using the object directly.

flush ()
Flush the internal buffer, liketdio ‘s fflush() . This may be a no-op on some file-like objects.

Note: flush() does not necessarily write the file’s data to disk. Ulsesh() followed by
os.fsync() to ensure this behavior.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations
from the operating system. This can be useful for other, lower level interfaces that use file descriptors, such
as thefcntl module oros.read() and friends.

Note: File-like objects which do not have a real file descriptor shadtbrovide this method!
isatty ()

ReturnTrue if the file is connected to a tty(-like) device, elBalse .
Note: If a file-like object is not associated with a real file, this method shaolde implemented.

next ()
A file object is its own iterator, for exampieer(f) returnsf (unlessf is closed). When a file is used
as an iterator, typically in gor loop (for examplefor line in f: print line), thenext()
method is called repeatedly. This method returns the nextinput line, or Eigei$eration when EOF
is hit when the file is open for reading (behavior is undefined when the file is open for writing). In order
to make afor loop the most efficient way of looping over the lines of a file (a very common operation),
thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer,
combiningnext() with other file methods (likeeadline()) does not work right. However, using
seek() to reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

48 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

read ([size])
Read at mossizebytes from the file (less if the read hits EOF before obtairsizgbytes). If thesize
argument is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object.
An empty string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes
sense to continue reading after an EOF is hit.) Note that this method may call the underlying C function
fread() more than once in an effort to acquire as clossitebytes as possible. Also note that when in
non-blocking mode, less data than was requested may be returned, evesizdparameter was given.

Note: This function is simply a wrapper for the underlyifigad() C function, and will behave the
same in corner cases, such as whether the EOF value is cached.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete lin€) If the sizeargument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned
onlywhen EOF is encountered immediately.

Note: Unlike stdio ‘sfgets() , the returned string contains null characté\® () if they occurred in
the input.

readlines ([sizehint])
Read until EOF usingeadline() and return a list containing the lines thus read. If the optisizahint
argument is present, instead of reading up to EOF, whole lines totalling approxirsiaiyntoytes (pos-
sibly after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may
choose to ignoreizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingites(f) . New in version 2.1.Deprecated since version 2.3: Use
for line in file instead.

seek (offset, [whence)]
Set the file’s current position, liketdio ‘s fseek() . Thewhenceargument is optional and defaults to
0s.SEEK_SET or 0 (absolute file positioning); other values a®SEEK_CUR or 1 (seek relative to the
current position) ands.SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, 0s.SEEK_CUR) advances the position by two anfiseek(-3,
0s.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mdale or’a+’), anyseek() operations will be undone
at the next write. If the file is only opened for writing in append mode (made), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled’&xodg If the
file is opened in text mode (withollt’), only offsets returned biell() are legal. Use of other offsets
causes undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

tell ()
Return the file’s current position, likedio ‘s ftell()

Note: On Windowstell() can return illegal values (after dgets()) when reading files with Unix-
style line-endings. Use binary mode) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optionaizeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined
new content. Availability: Windows, many Unix variants.

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in
cases where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a
file ended in a newline or not (yes this happens!).

6.9. File Objects 49

The Python Library Reference, Release 2.6.4

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in
the file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a
list of strings. There is no return value. (The name is intended to nmesahines() ; writelines()
does not add line separators.)

Files support the iterator protocol. Each iteration returns the same resildt. gesadline() , and iteration
ends when theeadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but
should be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributegltise() = method
changes the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte
strings using this encoding. In addition, when the file is connected to a terminal, the attribute gives the
encoding that the terminal is likely to use (that information might be incorrect if the user has misconfigured
the terminal). The attribute is read-only and may not be present on all file-like objects. It may leode
in which case the file uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/0O mode for the file. If the file was created using tipeen() built-in function, this will be the value
of themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirtgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form...> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the--with-universal-newlines option to configure (the default) this
read-only attribute exists, and for files opened in universal newline read mode it keeps track of the types
of newlines encountered while reading the file. The values it can tak&’are, \n’ , \r\n’ , None
(unknown, no newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple
newline conventions were encountered. For files not opened in universal newline read mode the value of
this attribute will beNone.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the
print statement. Classes that are trying to simulate a file object should also have a veodfédpace
attribute, which should be initialized to zero. This will be automatic for most classes implemented in Python
(care may be needed for objects that override attribute access); types implemented in C will have to provide
a writablesoftspace attribute.

Note: This attribute is not used to control tpeint statement, but to allow the implementatiorpoint
to keep track of its internal state.

6.10 Context Manager Types

New in version 2.5. Python'with statement supports the concept of a runtime context defined by a context
manager. This is implemented using two separate methods that allow user-defined classes to define a runtime
context that is entered before the statement body is executed and exited when the statement ends.

50 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

The context management protocobnsists of a pair of methods that need to be provided for a context manager
object to define a runtime context:

_enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier inabeclause ofwith statements using this
context manager.

An example of a context manager that returns itself is a file object. File objects return themselves from
__enter__() to alloopen() to be used as the context expression with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext() . These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context
in the body of thewith statement without affecting code outside Wi¢h statement.

__exit__ (exc_type, exc_val, exc)tb
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be
suppressed. If an exception occurred while executing the body ofvithe statement, the arguments
contain the exception type, value and traceback information. Otherwise, all three arguméisare

Returning a true value from this method will cause thigh statement to suppress the exception and
continue execution with the statement immediately followingutiite statement. Otherwise the exception
continues propagating after this method has finished executing. Exceptions that occur during execution of
this method will replace any exception that occurred in the body ofvitte statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception.
This allows context management code (suchagextlib.nested) to easily detect whether or not an
exit () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated
specially beyond their implementation of the context management protocol. Seertieetlib module for

some examples.

Python’sgeneratos and thecontextlib.contextmanager decoratorprovide a convenient way to imple-
ment these protocols. If a generator function is decorated wittaheextlib.contextmanager decorator,
it will return a context manager implementing the necessagnter__ () and__exit_ () methods, rather
than the iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

6.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

6.11.1 Modules

The only special operation on a module is attribute acomssame, wheremis a module anchameaccesses a
name defined im's symbol table. Module attributes can be assigned to. (Note thanihert statement is not,
strictly speaking, an operation on a module objeoport foo does not require a module object nanfedto
exist, rather it requires an (externdgfinitionfor a module nametbo somewhere.)

A special member of every module isdict__ . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment todliet
attribute is not possible (you can write__dict__['a’] = 1 , which definesn.a to bel, but you can’t write
m.__dict = {}). Modifying__dict _ directly is not recommended.

6.11. Other Built-in Types 51

The Python Library Reference, Release 2.6.4

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from afile,
they are written asmodule 'os’ from '/usr/local/lib/pythonX.Y/os.pyc'>

6.11.2 Classes and Class Instances

SeeObjects, values and typés The Python Language ReferepheadClass definitiongin The Python Language
Referencgfor these.

6.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list)

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the
same operation (to call the function), but the implementation is different, hence the different object types.

SeeFunction definitiongin The Python Language Referehéar more information.

6.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance mathodsself is the object
on which the method operates, amdm_func is the function implementing the method. Callingarg-1,
arg-2, ..., arg-n) is completely equivalent to calling.im_func(m.im_self, arg-1, arg-2,

..., arg-n)

Class instance methods are eitbeundor unbound referring to whether the method was accessed through an
instance or a class, respectively. When a method is unbounah, iself attribute will beNone and if called, an
explicitself object must be passed as the first argument. In this selfe, must be an instance of the unbound
method’s class (or a subclass of that class), otherwisgoaError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objemigth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resulfByipedrror being raised. In

order to set a method attribute, you need to explicitly set it on the underlying function object:

class C
def method (self):
pass
c = C(
c. method . im_func . whoami = ''my name is ¢’

SeeThe standard type hierarchjn The Python Language Referehéa more information.

6.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don't contain a reference to their global execution
environment. Code objects are returned by the buitteimpile() function and can be extracted from function
objects through theifunc_code attribute. See also theode module. A code object can be executed or
evaluated by passing it (instead of a source string) tekee statement or the built-iaval() function.

SeeThe standard type hierarchjn The Python Language Referehéa more information.

52 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4

6.11.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypet{on .
There are no special operations on types. The standard moee defines names for all standard built-in

types.
Types are written like thisstype 'int’>

6.11.7 The Null Object
This object is returned by functions that don'’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

6.11.8 The Ellipsis Object

This object is used by extended slice notation Skeings(in The Python Language Referejcdt supports no
special operations. There is exactly one ellipsis object, n&ftigtsis (a built-in name).

It is written asEllipsis

6.11.9 Boolean Values

Boolean values are the two constant objéitse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in furaiign can be

used to cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above). They are written &alse andTrue , respectively.

6.11.10 Internal Objects

SeeThe standard type hierarchiin The Python Language Referehder this information. It describes stack
frame objects, traceback objects, and slice objects.

6.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some
of these are not reported by the() built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods___
Deprecated since version 2.2: Use the built-in functio)) to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since version 2.2: Use the built-in functiof)) to get a list of an object’s attributes. This
attribute is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

6.12. Special Attributes 53

The Python Library Reference, Release 2.6.4

__name__
The name of the class or type.

The following attributes are only supported bgyw-style classs.

mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolu-
tion.

mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It
is called at class instantiation, and its result is stored imro___.

__Subclasses ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list
of all those references still alive. Example:

>>> int . __ subclasses_ ()
[<type ’bool’>]

54 Chapter 6. Built-in Types

CHAPTER

SEVEN

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the ragdeiitions . This module never

needs to be imported explicitly: the exceptions are provided in the built-in namespace as welbasfiimns

module. For class exceptions, inty statement with aexcept clause that mentions a particular class,

that clause also handles any exception classes derived from that class (but not exception classes fridm which
is derived). Two exception classes that are not related via subclassing are never equivalent, even if they have
the same name. The built-in exceptions listed below can be generated by the interpreter or built-in functions.
Except where mentioned, they have an “associated value” indicating the detailed cause of the error. This may be
a string or a tuple containing several items of information (e.g., an error code and a string explaining the code).
The associated value is the second argument todise statement. If the exception class is derived from the
standard root clag8aseException , the associated value is present as the exception instargs’sattribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to
prevent user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception class and noBaseException . More information on defining
exceptions is available in the Python Tutorial undeer-defined Exceptior{gn Python Tutoria).

The following exceptions are only used as base classes for other exceptions.

exceptionBaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that useException). If str() orunicode() is called on an instance of this class, the representation
of the argument(s) to the instance are returned or the empty string when there were no arguments. All
arguments are stored args as a tuple. New in version 2.5.

exceptionException
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should
also be derived from this class. Changed in version 2.5: Changed to inheriBteat-xception

exceptionStandardError
The base class for all built-in exceptions excegtoplteration , GeneratorExit
Keyboardinterrupt andSystemExit . StandardError itself is derived fromException

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @wrer8owError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is
invalid: IndexError , KeyError . This can be raised directly lyodecs.lookup()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syi§&é&mpr , OSError . When
exceptions of this type are created with a 2-tuple, the first item is available on the insemice’s attribute
(it is assumed to be an error number), and the second item is available stefver attribute (it is
usually the associated error message). The tuple itself is also available argtheattribute. New in
version 1.5.2. When aBnvironmentError exception is instantiated with a 3-tuple, the first two items

55

The Python Library Reference, Release 2.6.4

are available as above, while the third item is available ofiildlgame attribute. However, for backwards
compatibility, theargs attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefirne
andstrerror attributes are alsblone when the instance was created with other than 2 or 3 arguments.
In this last casegrgs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when amssert statement fails.

exceptionAttributeError
Raised when an attribute reference (gd¢tibute referencegin The Python Language Referejcer as-
signment fails. (When an object does not support attribute references or attribute assignments at all,
TypeError s raised.)

exceptionEOFError
Raised when one of the built-in functionsigut() or raw_input()) hits an end-of-file condition
(EOF) without reading any data. (N.B.: thiee.read() andfile.readline() methods return an

empty string when they hit EOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised
when Python is configured with thewith-fpectl option, or theWANT_SIGFPE_HANDLES&mbol
is defined in thepyconfig.h file.

exceptionGeneratorExit
Raise when generatofs close() method is called. It directly inherits froBaseException instead
of StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6:
Changed to inherit fromBaseException

exceptionlOError
Raised when an I/O operation (such gzt statement, the built-iopen() function or a method of a
file object) fails for an 1/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frontnvironmentError . See the discussion above for more information on
exception instance attributes. Changed in version 2.6: Chasggd:t.error to use this as a base
class.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefr@n ... import
fails to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integéiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@tytrol-C or Delete). During execution, a check
for interrupts is made regularly. Interrupts typed when a built-in functigrut() or raw_input()
is waiting for input also raise this exception. The exception inherits fB@seException so as to not
be accidentally caught by code that catcheseption and thus prevent the interpreter from exiting.
Changed in version 2.5: Changed to inherit frBaseException

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some ob-
jects). The associated value is a string indicating what kind of (internal) operation ran out of memory. Note
that because of the underlying memory management architecturméBc() function), the interpreter
may not always be able to completely recover from this situation; it nevertheless raises an exception so that
a stack traceback can be printed, in case a run-away program was the cause.

56 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.4

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated
value is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This exception is derived frorenvironmentError . It is raised when a function returns a system-
related error (not for illegal argument types or other incidental errors).efim® attribute is a numeric
error code fromerrno , and thestrerror attribute is the corresponding string, as would be printed by
the C functionperror() . See the modulerrno , which contains names for the error codes defined by
the underlying operating system.

For exceptions that involve a file system path (sucletadir() or unlink()), the exception instance
will contain a third attributefilename , which is the file name passed to the function. New in version
15.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiséemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception
handling in C, most floating point operations also aren’t checked.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byeheref.proxy() function,
is used to access an attribute of the referent after it has been garbage collected. For more informa-
tion on weak references, see theeakref module. New in version 2.2: Previously known as the
weakref.ReferenceError exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of
the interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by anterator's next() method to signal that there are no further values. This is derived from
Exception rather tharStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuiritpart statement, in aexec
statement, in a call to the built-in functieeval() or input() , or when reading the initial script or
standard input (also interactively).

Instances of this class have attribufdsname , lineno , offset andtext for easier access to the
details.str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpretersys.version ; it is also printed at the start of an interactive Python session),

the exact error message (the exception’s associated value) and if possible the source of the program that
triggered the error.

exceptionSystemExit
This exception is raised by thg's.exit() function. When itis not handled, the Python interpreter exits;
no stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status
(passed to C'exit() function); if it is None, the exit status is zero; if it has another type (such as a
string), the object’s value is printed and the exit status is one.

57

The Python Library Reference, Release 2.6.4

Instances have an attributede which is set to the proposed exit status or error message (defaulting to
None). Also, this exception derives directly froBaseException and notStandardError , since it
is not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handieely clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos._exit() function can be used if it is absolutely positively necessary to exitimmediately

(for example, in the child process after a calfook()).

The exception inherits frorBaseException instead ofStandardError ~ or Exception so thatitis
not accidentally caught by code that catcReseption . This allows the exception to properly propagate
up and cause the interpreter to exit. Changed in version 2.5: Changed to inher@demfixception

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is
a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclassiéémeError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subcladseadfrror . New
in version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. Itis a subclasgotfleError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclas&ofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsgcofieError . New
in version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sucteasrror

exceptionVMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an
errno value. Thewinerror and strerror values are created from the return values of the
GetLastError() and FormatMessage() functions from the Windows Platform API. Therno
value maps thevinerror value to correspondingrrno.h values. This is a subclass©fSError . New
in version 2.0.Changed in version 2.5: Previous versions pu#ikastError() codes inteerrno .

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seediméngs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

58 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.4

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

exceptionimportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exceptionUnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

7.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

+-- SystemExit

Keyboardinterrupt

GeneratorExit

+-- Exception
+-- Stoplteration
+-- StandardError

| +-- BufferError

| +-- ArithmeticError

| | +-- FloatingPointError

| | +-- OverflowError

| | +-- ZeroDivisionError

| +-- AssertionError

| +-- AttributeError

| +-- EnvironmentError

[| +-- 1OError

| | +-- OSError

| | +-- WindowsError (Windows)

| | +-- VMSError (VMS)

| +-- EOFError

[+-- ImportError

| +-- LookupError

| | +-- IndexError

| | +-- KeyError

[+-- MemoryError

| +-- NameError

| | +-- UnboundLocalError

| +-- ReferenceError

| +-- RuntimeError

[| +-- NotImplementedError

| +-- SyntaxError

[| +-- IndentationError

| | +-- TabError

[+-- SystemError

[+-- TypeError

[+-- ValueError

[+-- UnicodeError

7.1. Exception hierarchy 59

The Python Library Reference, Release 2.6.4

I
I
|
+

+-- UnicodeDecodeError
+-- UnicodeEncodeError
+-- UnicodeTranslateError

-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

60

Chapter 7. Built-in Exceptions

CHAPTER

EIGHT

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python's built-in string classes support the sequence type methods describegkigubece Types —
str, unicode, list, tuple, buffer, xrangection, and also the string-specific methods described iattivey Methods
section. To output formatted strings use template strings ofdbperator described in th®tring Formatting
Operationssection. Also, see thee module for string functions based on regular expressions.

8.1 string — Common string operations

The string module contains a number of useful constants and classes, as well as some deprecated legacy
functions that are also available as methods on strings. In addition, Python’s built-in string classes support the
sequence type methods described in $lzejuence Types — str, unicode, list, tuple, buffer, xrsegtion, and

also the string-specific methods described inShéng Methodsection. To output formatted strings use template
strings or théooperator described in th&ring Formatting Operationsection. Also, see the module for string
functions based on regular expressions.

8.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of thescii_lowercase andascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letteraibcdefghijkimnopqgrstuvwxyz’ . This value is not locale-dependent and
will not change.

ascii_uppercase
The uppercase lette S BCDEFGHIJKLMNOPQRSTUVWXYZhis value is not locale-dependent and will
not change.

digits
The string'0123456789'’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringswvercase anduppercase described below. The specific value is
locale-dependent, and will be updated wiherele.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string 'abcdefghijkimnopqgrstuvwxyz’ . The specific value is locale-dependent, and will be up-
dated wherocale.setlocale() is called.

61

The Python Library Reference, Release 2.6.4

octdigits
The string'01234567"

punctuation
String of ASCII characters which are considered punctuation characters@labale.

printable
String of characters which are considered printable. This is a combinatiatigté , letters
punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZhe specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the char-
acters space, tab, linefeed, return, formfeed, and vertical tab.

8.1.2 String Formatting

Starting in Python 2.6, the built-in str and unicode classes provide the ability to do complex variable substitu-
tions and value formatting via ther.format() method described iREP 3101 TheFormatter class in
thestring module allows you to create and customize your own string formatting behaviors using the same
implementation as the built-iformat() method.

classFormatter ()
TheFormatter class has the following public methods:

format (format_string, *args, *kwargs
format() is the primary APl method. It takes a format template string, and an arbitrary set of
positional and keyword argumeritrmat() is just a wrapper that call§ormat()

vformat (format_string, args, kwargs
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the
dictionary as individual arguments using trergs and**kwds syntax. vformat() does the
work of breaking up the format template string into character data and replacement fields. It calls the
various methods described below.

In addition, theFormatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string
Loop over the format_string and return an iterable of tupligsrél_text field nameformat_spec
conversiol. This is used byformat() to break the string in to either literal text, or replacement
fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_textwill be a zero-length string. If there is no replacement field, then the valugsl@f name
format_spe@ndconversiorwill be None.

get_field (field_name, args, kwarys
Givenfield_names returned bparse() (see above), convertitto an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form define& 3101 such
as “O[name]” or “label.title”. args andkwargsare as passed in tdormat() . The return value
used_keyas the same meaning as Keyparameter tget_value()

get _value (key, args, kwargs
Retrieve a given field value. THeeyargument will be either an integer or a string. If it is an integer,
it represents the index of the positional argumerdinigs if it is a string, then it represents a named
argument irkwargs

62 Chapter 8. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.6.4

Theargsparameter is set to the list of positional argumentstomat() , and thekwargsparameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would caurse value() to be called with &ey
argument of 0. Thename attribute will be looked up afteget_value() returns by calling the
built-in getattr() function.

If the index or keyword refers to an item that does not exist, themdaxError or KeyError
should be raised.

check unused_args (used_args, args, kwarjys
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference tatfpgandkwargsthat was passed to vformat. The
set of unused args can be calculated from these paramelersk _unused_args() is assumed
to throw an exception if the check fails.

format_field (value, format_spéc
format_field() simply calls the globaformat() built-in. The method is provided so that
subclasses can override it.

convert_field (value, conversion
Converts the value (returned et field()) given a conversion type (as in the tuple returned by
theparse() method.) The default version understands ‘r' (repr) and ‘s’ (str) conversion types.

8.1.3 Format String Syntax
The str.format() method and th&ormatter class share the same syntax for format strings (although in
the case ofFormatter , subclasses can define their own format string syntax.)

Format strings contain “replacement fields” surrounded by curly brgcesAnything that is not contained in
braces is considered literal text, which is copied unchanged to the output. If you need to include a brace character
in the literal text, it can be escaped by doubliffy: and}} .

The grammar for a replacement field is as follows:

replacement_field m= " field_name ["!" conversion] [":" format_spec] “}’
field_name = (identifier | integer) (*.” attribute_name | “[" element_index “I")*
attribute_name = identifier

element_index n= integer

conversion = e

format_spec n= <described in the next section>

In less formal terms, the replacement field starts wifiield _namewhich can either be a number (for a positional
argument), or an identifier (for keyword arguments). Following this is an optiomaersionfield, which is
preceded by an exclamation poitit , and aformat_spegcwhich is preceded by a colon

Thefield_nameatself begins with either a number or a keyword. If it's a number, it refers to a positional argument,
and if it's a keyword it refers to a named keyword argument. This can be followed by any number of index or
attribute expressions. An expression of the formame’ selects the named attribute usimpgtattr() , While

an expression of the forffindex]’ does an index lookup using getitem__ ()

Some simple format string examples:

" First, thou shalt count to {0} " # References first positional argument

"My quest is {name} " # References keyword argument 'name’
"Weight in tons {0.weight} ! # 'weight’ attribute of first positional arg

" Units destroyed: {players[O]} " # First element of keyword argument 'players’.

The conversiorfield causes a type coercion before formatting. Normally, the job of formatting a value is done
by the_ format__ () method of the value itself. However, in some cases it is desirable to force a type to be

8.1. string — Common string operations 63

The Python Library Reference, Release 2.6.4

formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__format__ () ,the normal formatting logic is bypassed.

Two conversion flags are currently supportéld? which callsstr() on the value, andr’ which calls
repr()
Some examples:

"Harold 's a clever {0!s} # Calls str() on the argument first
"Bring out the holy {name!r} " # Calls repr() on the argument first

The format_spedield contains a specification of how the value should be presented, including such details as
field width, alignment, padding, decimal precision and so on. Each value type can define it's own “formatting
mini-language” or interpretation of tHermat_spec

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spedield can also include nested replacement fields within it. These nested replacement fields can
contain only a field name; conversion flags and format specifications are not allowed. The replacement fields
within the format_spec are substituted beforefthvenat_spedstring is interpreted. This allows the formatting of

a value to be dynamically specified.

For example, suppose you wanted to have a replacement field whose field width is determined by another variable:
"A man with two {0:{1}} ", format("noses", 10)

This would first evaluate the inner replacement field, making the format string effectively:

“A man with two {0:10}

Then the outer replacement field would be evaluated, producing:

" noses "

Which is substituted into the string, yielding:
"A man with two noses

(The extra space is because we specified a field width of 10, and because left alignment is the default for strings.)

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (§eemat String Synta) They can also be passed directly to the builtermat()
function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting
options are only supported by the numeric types.

A general convention is that an empty format stritig X produces the same result as if you had calle on
the value.

The general form of atandard format specifigs:

format_spec [[filalign][sign][#][0][width][.precision][type]

fill = <a character other than ‘}>

align = T e

sign = e

width = integer

precision = integer

type :: “b” | HC” | Hd” | “eﬂ | “E” | “f” | “F” I HgH | “GH I HnH | “0” | “X” | “X” | “%”

Thefill character can be any character other than ‘} (which signifies the end of the field). The presence of a fill
character is signaled by timextcharacter, which must be one of the alignment options. If the second character of
format_speds not a valid alignment option, then it is assumed that both the fill character and the alignment option
are absent.

The meaning of the various alignment options is as follows:

64 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Op- | Meaning

tion

< Forces the field to be left-aligned within the available space (This is the default.)

> Forces the field to be right-aligned within the available space.

=’ Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing
fields in the form ‘+000000120’. This alignment option is only valid for numeric types.

w Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill
it, so that the alignment option has no meaning in this case.

Thesignoption is only valid for number types, and can be one of the following:

Option | Meaning

"+ indicates that a sign should be used for both positive as well as negative numbers.
indicates that a sign should be used only for negative numbers (this is the default behavior).
space indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The'# option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies
that the output will be prefixed b@b’ ,’00" , or’'0x’ , respectively.

width is a decimal integer defining the minimum field width. If not specified, then the field width will be deter-
mined by the content.

If the width field is preceded by a zerd0{) character, this enables zero-padding. This is equivalent to an
alignmenttype of'=" and &fill character of0’

The precisionis a decimal number indicating how many digits should be displayed after the decimal point for a
floating point value formatted witlf and’F’ , or before and after the decimal point for a floating point value
formatted with’'g’ or’G’ . For non-number types the field indicates the maximum field size - in other words,
how many characters will be used from the field content. Jieeisionis not allowed for integer values.

Finally, thetypedetermines how the data should be presented.

The available integer presentation types are:

Type | Meaning

b’ Binary format. Outputs the number in base 2.

'c’ Character. Converts the integer to the corresponding unicode character before printing.
o’ Decimal Integer. Outputs the number in base 10.

0 Octal format. Outputs the number in base 8.

X Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
X! Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
n Number. This is the same &b , except that it uses the current locale setting to insert the appropriate

number separator characters.
None| The same a%l’

The available presentation types for floating point and decimal values are:

8.1. string — Common string operations 65

The Python Library Reference, Release 2.6.4

Type

Meaning

o
B
”

r=
9

0’

None

Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exp
Exponent notation. Same & except it uses an upper case ‘E’ as the separator character.
Fixed point. Displays the number as a fixed-point number.

Fixed point. Same d§

General format. For a given precisipn>= 1, this rounds the number fsignificant digits and then
formats the result in either fixed-point format or in scientific notation, depending on its magnitud
The precise rules are as follows: suppose that the result formatted with presentati@ tyaed
precisionp-1 would have exponergxp . Thenif-4 <= exp < p , the number is formatted with
presentation typd#’ and precisiomp-1-exp . Otherwise, the number is formatted with presentati
type’e’ and precisiom-1 . In both cases insignificant trailing zeros are removed from the
significand, and the decimal point is also removed if there are no remaining digits following it.
Postive and negative infinity, positive and negative zero, and nans, are formaitiéd,amf ,0, -0
andnan respectively, regardless of the precision.

A precision of0 is treated as equivalent to a precisiorilof

General format. Same & except switches tte’ if the number gets too large. The representati
of infinity and NaN are uppercased, too.

Number. This is the same &8 , except that it uses the current locale setting to insert the approp
number separator characters.

Percentage. Multiplies the number by 100 and displays in fied) format, followed by a percent
sign.

pnent.

DNS

riate

The same a%’

8.1.4 Template strings

Templates provide simpler string substitutions as describ&uEin 292 Instead of the norma&lebased substitu-
tions, Templates suppdbtbased substitutions, using the following rules:

» $$ is an escape; it is replaced with a single

* S$identifier names a substitution placeholder matching a mapping kéidentifier" . By de-
fault, "identifier" must spell a Python identifier. The first non-identifier character afte$ ttteracter
terminates this placeholder specification.

* ${identifier} is equivalent tdbidentifier . It is required when valid identifier characters follow
the placeholder but are not part of the placeholder, su¢i{asunlification"

Any other appearance & in the string will result in avalueError being raised. New in version 2.4. The
module provides &emplate class that implements these rules. The methodsaiplate are:

string

classTemplate (templatd
The constructor takes a single argument which is the template string.

Template

substitute (mapping, [**kws)
Performs the template substitution, returning a new stmmgppingis any dictionary-like object with
keys that match the placeholders in the template. Alternatively, you can provide keyword arguments,
where the keywords are the placeholders. When b@ppingandkwsare given and there are dupli-
cates, the placeholders framstake precedence.

safe_substitute (mapping, [**kws)
Like substitute() , except that if placeholders are missing fronappingand kws instead of
raising aKeyError exception, the original placeholder will appear in the resulting string intact.
Also, unlike with substitute() , any other appearances of thewill simply return$ instead of
raisingValueError

While other exceptions may still occur, this method is called “safe” because substitutions always tries
to return a usable string instead of raising an exception. In another setisesubstitute()
may be anything other than safe, since it will silently ignore malformed templates containing dangling
delimiters, unmatched braces, or placeholders that are not valid Python identifiers.

instances also provide one public data attribute:

66

Chapter 8. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.6.4

template
This is the object passed to the constructteisiplateargument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> g.substitute(who="tim’, what="kung pao’)

'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[-..]

KeyError: 'what’

>>> Template('$who likes $what’).safe_substitute(d)
'tim likes $what’

Advanced usage: you can derive subclassekeofiplate to customize the placeholder syntax, delimiter char-
acter, or the entire regular expression used to parse template strings. To do this, you can override these class
attributes:

« delimiter — This is the literal string describing a placeholder introducing delimiter. The default $alue
Note that this shouldhot be a regular expression, as the implementation will icalbscape() on this
string as needed.

« idpattern— This is the regular expression describing the pattern for non-braced placeholders (the braces will
be added automatically as appropriate). The default value is the regular expfeasij a-z0-9]*

Alternatively, you can provide the entire regular expression pattern by overriding the class apizitberte If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

 escaped- This group matches the escape sequence$8.gn the default pattern.

« named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

« braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

« invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear
last in the regular expression.

8.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s, [sep)
Split the argument into words usirggr.split() , capitalize each word usirgjr.capitalize() ,
and join the capitalized words usirgr.join() . If the optional second argumesepis absent or
None, runs of whitespace characters are replaced by a single space and leading and trailing whitespace are
removed, otherwissepis used to split and join the words.

maketrans (from, tg
Return a translation table suitable for passingamslate() , that will map each character frominto
the character at the same positiortanfrom andto must have the same length.

8.1. string — Common string operations 67

The Python Library Reference, Release 2.6.4

Note: Don't use strings derived fromowercase anduppercase as arguments; in some locales, these
don't have the same length. For case conversions, alwaysusaver() andstr.upper()

8.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see Sédtign
Methodsfor more information on those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since version 2.0: Use flmit() built-in function. Convert a string to a floating point
number. The string must have the standard syntax for a floating point literal in Python, optionally preceded
by a sign ¢ or -). Note that this behaves identical to the built-in functitmrat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

atoi (s, [base)
Deprecated since version 2.0: Use th&) built-in function. Convert string to an integer in the given
base The string must consist of one or more digits, optionally preceded by a sign {). The base
defaults to 10. If it is O, a default base is chosen depending on the leading characters of the string (after
stripping the sign)0x or 0X means 160 means 8, anything else means 10bdfeis 16, a leadin@x or
0X is always accepted, though not required. This behaves identically to the built-in fumttion when
passed a string. (Also note: for a more flexible interpretation of numeric literals, use the built-in function
eval))

atol (s, [base)
Deprecated since version 2.0: Use thieg() built-in function. Convert string to a long integer in the
givenbase The string must consist of one or more digits, optionally preceded by a-=sign-(). Thebase
argument has the same meaning asafor() . A trailing | or L is not allowed, except if the base is 0.
Note that when invoked withoultaseor with baseset to 10, this behaves identical to the built-in function
long() when passed a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s, [tabsize]
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the
given tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t
understand other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub, [start, [end]]
Return the lowest index is where the substringub is found such thasub is wholly contained in
s[start:end] . Return-1 on failure. Defaults fostartandendand interpretation of negative values is
the same as for slices.

rfind (s, sub, [start, [end])
Like find() but find the highest index.

index (s, sub, [start, [end])
Like find() but raiseValueError when the substring is not found.

rindex (s, sub, [start, [end]]
Like rfind() but raisevValueError when the substring is not found.

count (s, sub, [start, [end])
Return the number of (non-overlapping) occurrences of substtib@ string s[start:end] . Defaults
for startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

68 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

split (s, [sep, [maxsplit])
Return a list of the words of the strirgy If the optional second argumesgpis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the
second argumersepis present and ndtlone, it specifies a string to be used as the word separator. The
returned list will then have one more item than the number of hon-overlapping occurrences of the separator
in the string. The optional third argumemiaxsplitdefaults to 0. If it is nonzero, at mostaxsplitnumber
of splits occur, and the remainder of the string is returned as the final element of the list (thus, the list will
have at mostaxsplit+1 elements).

The behavior of split on an empty string depends on the valsepfif sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing
one element which is an empty string.

rsplit (s, [sep, [maxsplit])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting
list of words is the same as returneddyyit() , except when the optional third argumaemaxsplitis ex-
plicitly specified and nonzero. Whenaxsplitis nonzero, at moshaxsplithumber of splits — theghtmost
ones — occur, and the remainder of the string is returned as the first element of the list (thus, the list will
have at mosimaxsplit+1 elements). New in version 2.4.

splitfields (s, [sep, [maxsplit])
This function behaves identically tplit() . (In the pastsplit() was only used with one argument,
while splitfields() was only used with two arguments.)

join (words, [sep)
Concatenate a list or tuple of words with intervening occurrencespiThe default value fosepis a single
space character. Itis always true teaiing.join(string.split(s, sep), sep) equalss.

joinfields (words, [sep]
This function behaves identically fjoin() . (Inthe pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there igonafields() method on
string objects; use thein() method instead.

Istrip (s, [chars)
Return a copy of the string with leading characters removed:héfrsis omitted orNone, whitespace
characters are removed. If given and Naine, charsmust be a string; the characters in the string will be
stripped from the beginning of the string this method is called on. Changed in version 2.2.8hdrse
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

rstrip (s, [chars)
Return a copy of the string with trailing characters removedchiéirsis omitted orNone, whitespace
characters are removed. If given and Natne, charsmust be a string; the characters in the string will be
stripped from the end of the string this method is called on. Changed in version 2.2.8hdiisparameter
was added. Theharsparameter cannot be passed in earlier 2.2 versions.

strip (s, [chars)
Return a copy of the string with leading and trailing characters removedhalfsis omitted orNone,
whitespace characters are removed. If given and\Nmate, charsmust be a string; the characters in the
string will be stripped from the both ends of the string this method is called on. Changed in version 2.2.3:
Thecharsparameter was added. Thlearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table, [deletechar$]
Delete all characters frosthat are indeletechargif present), and then translate the characters usibig,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.
If tableis None, then only the character deletion step is performed.

upper (9
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width, [fillchar])
rjust (s, width, [fillchar])

8.1. string — Common string operations 69

The Python Library Reference, Release 2.6.4

center (s, width, [fillchar])
These functions respectively left-justify, right-justify and center a string in a field of given width. They
return a string that is at leasidth characters wide, created by padding the stsingth the charactéfillchar
(default is a space) until the given width on the right, left or both sides. The string is never truncated.

Zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign
are handled correctly.

replace (str, old, new, [maxreplacg]
Return a copy of stringtr with all occurrences of substrirmd replaced bynew If the optional argument
maxreplaces given, the firstnaxreplaceoccurrences are replaced.

8.2 re — Regqular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash chardtter) (o indicate special forms or to allow special characters to

be used without invoking their special meaning. This collides with Python’s usage of the same character for the
same purpose in string literals; for example, to match a literal backslash, one might have td\Write as the

pattern string, because the regular expression must band each backslash must be expressall asside a

regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled
in any special way in a string literal prefixed with . Sor"\n" is a two-character string containifly and

n’ , while \n" is a one-character string containing a newline. Usually patterns will be expressed in Python
code using this raw string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first,
but miss some fine-tuning parameters.

See Also:

Mastering Regular ExpressionsBook on regular expressions by Jeffrey Friedl, published by O’Reilly. The
second edition of the book no longer covers Python at all, but the first edition covered writing good regular
expression patterns in great detail.

8.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expresstomsgB are both regular expressions,
thenABis also a regular expression. In general, if a stgmgatcheg\ and another string matche$, the stringpq

will match AB. This holds unles& or B contain low precedence operations; boundary conditions betiverdB;

or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions,
consult the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult theRegular Expression HOWT(n).

Regular expressions can contain both special and ordinary characters. Most ordinary charactars, like ,

or'0’ , are the simplest regular expressions; they simply match themselves. You can concatenate ordinary char-
acters, sdast matches the strinfast’ . (In the rest of this section, we’ll write RE’s ithis special

style , usually without quotes, and strings to be matchedsingle quotes’ J)

70 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Some characters, liKE or’(" , are special. Special characters either stand for classes of ordinary characters,
or affect how the regular expressions around them are interpreted. Regular expression pattern strings may not
contain null bytes, but can specify the null byte using\thember notation, e.g.\x00’

The special characters are:

(Dot.) In the default mode, this matches any character except a newline. FAAALLflag has been
specified, this matches any character including a newline.

'~ (Caret.) Matches the start of the string, andMiLTILINE mode also matches immediately after each
newline.

'$" Matches the end of the string or just before the newline at the end of the string, andLmILINE
mode also matches before a newlifieo matches both ‘foo’ and ‘foobar’, while the regular expression
foo$ matches only ‘foo’. More interestingly, searching fon.$ in 'fool\nfoo2\n’ matches ‘foo2’
normally, but ‘fool’ inMULTILINE mode; searching for a singfin 'foo\n’ will find two (empty)
matches: one just before the newline, and one at the end of the string.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possibleab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

'+ Causes the resulting RE to match 1 or more repetitions of the precedingbREvill match ‘a’ followed
by any non-zero number of ‘b’s; it will not match just ‘a’.

'?” Causes the resulting RE to match 0 or 1 repetitions of the precedingtREwill match either ‘a’ or ‘ab’.

*?,+?,?? The™ '+ [and'?" qualifiers are algreedy they match as much text as possible. Sometimes
this behaviour isn't desired; if the RE*> is matched againstH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding’?’ after the qualifier makes it perform the matchnrian-
greedyor minimal fashion; asfew characters as possible will be matched. Usit®) in the previous
expression will match onRgH1>" .

{m} Specifies that exactlyn copies of the previous RE should be matched; fewer matches cause the entire RE
not to match. For example{6} will match exactly sixa’ characters, but not five.

{m,n} Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For exampig8,5} will match from 3 to 5’a’ characters. Omittingn
specifies a lower bound of zero, and omittimgpecifies an infinite upper bound. As an exampa{d,}b
will match aaaab or a thousanda’ characters followed by b, but notaaab. The comma may not be
omitted or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , a{3,5} will match 5’a’ characters, whil@{3,5}? will only match 3
characters.

'\" Either escapes special characters (permitting you to match charactéf’s lik® , and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand, so
it's highly recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be
indicated by giving two characters and separating them By a Special characters are not active inside
sets. For examplgakm$] will match any of the characteta’ ,’k’ ,'m’ ,or'$;[a-z] will match
any lowercase letter, arfd-zA-Z0-9] matches any letter or digit. Character classes sudtv asr \S
(defined below) are also acceptable inside a range, although the characters they match depends on whether
LOCALEor UNICODEmMode is in force. If you want to include’a ora’-" inside a set, precede it with

a backslash, or place it as the first character. The pdflerrwill match’]’ , for example.

You can match the characters not within a rangedmplementinghe set. This is indicated by including
a'™ as the first character of the s&t; elsewhere will simply match the¢’ character. For example,
[*5] will match any character excef , and[™] will match any character except

8.2. re — Regular expression operations 71

The Python Library Reference, Release 2.6.4

Note that insidd] the special forms and special characters lose their meanings and only the syntaxes de-
scribed here are valid. For exampte, (,) , and so on are treated as literals indide and backreferences
cannot be used insidg .

I A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An
arbitrary number of REs can be separated by’fhe in this way. This can be used inside groups (see
below) as well. As the target string is scanned, REs separaté¢d bwre tried from left to right. When one
pattern completely matches, that branch is accepted. This means tha oratehesP will not be tested
further, even if it would produce a longer overall match. In other words)|the operator is never greedy.

To match a literal|’ , use\| , or enclose it inside a character class, &]in.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\number special sequence, described below. To match the litétalsor’)’ , use\(or
\) , or enclose them inside a character clggs])]

(?...) This is an extension notation (& following a’(" is not meaningful otherwise). The first character
after the’?” determines what the meaning and further syntax of the construct is. Extensions usually do
not create a new groug?P<name>...) is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the s&t , 'L’ ,'m’ ,’'s’ ,’'u’ ,’x .) The group matches the
empty string; the letters set the corresponding flagd: (ignore case);e.L (locale dependent)g.M
(multi-line),re.S (dot matches allye.U (Unicode dependent), amd.X (verbose), for the entire regular
expression. (The flags are described/indule Content3 This is useful if you wish to include the flags as
part of the regular expression, instead of passifigggargument to thee.compile() function.

Note that the(?x) flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the
parentheses, but the substring matched by the graapotbe retrieved after performing a match or refer-
enced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible within
the rest of the regular expression via the symbolic group naanee Group nhames must be valid Python
identifiers, and each group name must be defined only once within a regular expression. A symbolic group
is also a numbered group, just as if the group were not named. So the groupidametie example below
can also be referenced as the numbered gtoup

For example, if the pattern i@P<id>[a-zA-Z_]\w*) , the group can be referenced by its name in
arguments to methods of match objects, sucmagoup(’id’) or m.end(’id’) , and also by name
in the regular expression itself (usi@P=id)) and replacement text given tsub() (using\g<id>).

(?P=name) Matches whatever text was matched by the earlier group naicme
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if... matches next, but doesn’'t consume any of the string. This is called a lookahead
assertion. Forexamplsaac (?=Asimov) willmatch’lsaac ' onlyifit's followed by’Asimov’

(?L..) Matches if... doesn’t match next. This is a negative lookahead assertion. For exdsgde,
(?!'Asimov) will match’lsaac * only if it's notfollowed by’Asimov’

(?<=...) Matches if the current position in the string is preceded by a match.forthat ends at the current
position. This is called gositive lookbehind assertion(?<=abc)def will find a match inabcdef ,
since the lookbehind will back up 3 characters and check if the contained pattern matches. The contained
pattern must only match strings of some fixed length, meaningathator a|lb are allowed, bua* and
a{3,4} are not. Note that patterns which start with positive lookbehind assertions will never match at the
beginning of the string being searched; you will most likely want to usedhech() function rather than
thematch() function:

>>> import re
>>> m = re . search(' (?<=abc)def ', ’abcdef ")

72 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

>>> m group(0)
'def’

This example looks for a word following a hyphen:

>>> m = re.search(' (?<=-) \w+ , ’spam-egg’)
>>> m group(0)
‘egq’
(?<l.) Matches if the current position in the string is not preceded by a match.for This is called a

negative lookbehind assertioisimilar to positive lookbehind assertions, the contained pattern must only
match strings of some fixed length. Patterns which start with negative lookbehind assertions may match at
the beginning of the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with
given id or nameexists, and withno-pattern if it doesn’t. no-pattern is optional and can
be omitted. For example(<)?(\w+@\w+(?:\.\w+)+)(?(1)>) is a poor email matching pat-
tern, which will match with’<user@host.com>’ as well as’'user@host.com’ , but not with
‘'<user@host.com’ . New in version 2.4.

The special sequences consist\bf and a character from the list below. If the ordinary character is not on the
list, then the resulting RE will match the second character. For exai§plmatches the charact&’

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,(.+) \1 matchesthe the’ or'55 55’ , but not'the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of
numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the character
with octal valuenumber Inside the[' and’]’ of a character class, all numeric escapes are treated as
characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of al-
phanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note ttiatis defined as the boundary betwaanand\ W, so the precise set
of characters deemed to be alphanumeric depends on the valuesNBODEandLOCALEflags. Inside
a character rang#h represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when itrist at the beginning or end of a word. This is just the opposite
of \b , so is also subject to the settingsl@ddCALEandUNICODE

\d When theUNICODHlag is not specified, matches any decimal digit; this is equivalent to tHe-8gt . With
UNICODE it will match whatever is classified as a digit in the Unicode character properties database.

\D When theUNICODEflag is not specified, matches any non-digit character; this is equivalent to the set
[*0-9] . With UNICODE it will match anything other than character marked as digits in the Unicode
character properties database.

\s When theLOCALEandUNICODHilags are not specified, matches any whitespace character; this is equivalent
to the sef \t\n\r\fiv] . With LOCALE it will match this set plus whatever characters are defined as
space for the current locale. fNICODEis set, this will match the charactefs\t\n\r\fiv] plus
whatever is classified as space in the Unicode character properties database.

\S When theLOCALEand UNICODEflags are not specified, matches any non-whitespace character; this is
equivalent to the sdt* \t\n\r\fiv] With LOCALE it will match any character not in this set, and
not defined as space in the current locale.UMICODEIis set, this will match anything other thgn
\t\n\r\fiv] and characters marked as space in the Unicode character properties database.

\w When theLOCALEand UNICODEflags are not specified, matches any alphanumeric character and the un-
derscore; this is equivalent to the §@&zA-Z0-9] . With LOCALE it will match the sef0-9] plus
whatever characters are defined as alphanumeric for the current locdlélGfODHS set, this will match
the character§0-9] plus whatever is classified as alphanumeric in the Unicode character properties
database.

\W When theLOCALEand UNICODEflags are not specified, matches any non-alphanumeric character; this is
equivalent to the s¢fa-zA-Z0-9] . With LOCALE it will match any character notin the 4ét9 | ,

8.2. re — Regular expression operations 73

The Python Library Reference, Release 2.6.4

and not defined as alphanumeric for the current localeNfCODEis set, this will match anything other
than[0-9] and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three
digits in length.

8.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressiwatsh checks for a match only at
the beginning of the string, whilsearchchecks for a match anywhere in the string (this is what Perl does by
default).

Note that match may differ from search even when using a regular expression beginniffy with’ matches

only at the start of the string, or iIRMULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting
position given by the optiongdosargument regardless of whether a newline precedes it.

>>> re . match("c", "abcdef ") # No match
>>> re.search("c", "abcdef ") # Match
< sre.SRE_Match object at ...>

8.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern, [flags)
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifigggvalue. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re . compile(pattern)
result = prog . match(string)

is equivalent to
result = re . match(pattern, string)

but usingre.compile() and saving the resulting regular expression object for reuse is more efficient
when the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passedrtatch() , re.search() or
re.compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

74 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

IGNORECASE
Perform case-insensitive matching; expressions[#k&] will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make\w ,\W,\b ,\B,\s and\S dependent on the current locale.

M

MULTILINE
When specified, the pattern charactér matches at the beginning of the string and at the beginning of
each line (immediately following each newline); and the pattern char&&temmatches at the end of the
string and at the end of each line (immediately preceding each newline). By d&faultmatches only at
the beginning of the string, ari only at the end of the string and immediately before the newline (if
any) at the end of the string.

S

DOTALL
Make the'.” special character match any character at all, including a newline; without thi&flagwill
match anythingxcepta newline.

U

UNICODE
Make\w,\W,\b ,\B,\d ,\D,\s and\S dependent on the Unicode character properties database. New
in version 2.0.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line &8ntains a
neither in a character class or preceded by an unescaped backslash, all characters from the leftmost such
'# through the end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally

equal:
a = re.compile(" \d + # the integral part
\. # the decimal point
\d * # some fractional digits "™ , re . X)

b = re.compile(" \d+\.\d*")

search (pattern, string, [flags)
Scan througlstringlooking for a location where the regular expresgiatternproduces a match, and return
a correspondingfatchObject instance. ReturiNone if no position in the string matches the pattern;
note that this is different from finding a zero-length match at some point in the string.

match (pattern, string, [flags]
If zero or more characters at the beginningstbfng match the regular expressigattern return a corre-
spondingMatchObject instance. ReturiNone if the string does not match the pattern; note that this is
different from a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

split (pattern, string, [maxsplit=0f
Split string by the occurrences gfattern If capturing parentheses are usegattern then the text of all
groups in the pattern are also returned as part of the resulting listaxgplitis nonzero, at moshaxsplit
splits occur, and the remainder of the string is returned as the final element of the list. (Incompatibility note:
in the original Python 1.5 releasmaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(' \W+, ’Words, words, words. ")
[Words’, 'words’, 'words’, "]

>>> re.split(' (\W+), ' Words, words, words. ")
[Words’, ', ’, 'words’, ', ’, 'words’, ", "]

8.2. re — Regular expression operations 75

The Python Library Reference, Release 2.6.4

>>> re.split('\W+, ' Words, words, words. 1)
[Words’, 'words, words.’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(' (\W+), ' ..words, words... ")

[", ..., 'words’, ', ’, 'words’, ..., "]

That way, separator components are always found at the same relative indices within the result list (e.g., if
there’s one capturing group in the separator, the Oth, the 2nd and so forth).

Note thatsplit will never split a string on an empty pattern match. For example:

>>> re.split('x*', 'foo')
[foo’]
>>> re.split(" (?m)*$ ", "foo \n\n bar\n")

[foo\n\nbar\n’]

findall ~ (pattern, string, [flags]

Return all non-overlapping matches pdtternin string, as a list of strings. Thetring is scanned left-to-

right, and matches are returned in the order found. If one or more groups are present in the pattern, return
a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2.Changed in
version 2.4: Added the optional flags argument.

finditer (pattern, string, [flags]

Return anterator yielding MatchObject instances over all non-overlapping matches for thep@tern

in string. Thestringis scanned left-to-right, and matches are returned in the order found. Empty matches
are included in the result unless they touch the beginning of another match. New in version 2.2.Changed in
version 2.4: Added the optional flags argument.

sub (pattern, repl, string, [counti)

Return the string obtained by replacing the leftmost non-overlapping occurrenpasteéhin string by

the replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a
function; if it is a string, any backslash escapes in it are processed. That is,converted to a single
newline charactely is converted to a linefeed, and so forth. Unknown escapes sugh are left alone.
Backreferences, such ¥s, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re . sub(r def \ s+([a-zA-Z_][a-zA-Z_0-9]*) \s*\ (\s*\): 7,
r' static PyObject* \npy_\ 1(void) \n{’,

" def myfunc(): ')

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrencgatfern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj):

if matchobj .group(0) == "-": return '~
. else : return -’
>>> re.sub('’ -{1,2} ', dashrepl, ' pro----gram-files)

'‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must
use a RE object, or use embedded modifiers in a pattern; for exasapl@(?i)b+", "x", "bbbb
BBBB") returns’x X’

The optional argumertountis the maximum number of pattern occurrences to be replamaat must
be a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the

76

Chapter 8. String Services

The Python Library Reference, Release 2.6.4

pattern are replaced only when not adjacent to a previous matshpga*’, ’-’, 'abc’) returns
"-a-b-c-’

In addition to character escapes and backreferences as described\gbpaee> will use the substring
matched by the group namedme, as defined by th€?P<name>...) syntax.\g<number> uses the
corresponding group numbeag<2> is therefore equivalent t& , but isn’t ambiguous in a replacement
such adg<2>0 .\20 would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal characte’ . The backreferencg<0> substitutes in the entire substring matched by the
RE.

subn (pattern, repl, string, [count)
Perform the same operationgs() , but return a tuplénew_string, number_of subs_made)

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for
example, it might contain unmatched parentheses) or when some other error occurs during compilation or
matching. It is never an error if a string contains no match for a pattern.

8.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string, [pos, [endpos]]
If zero or more characters at the beginningstifng match this regular expression, return a corresponding
MatchObject instance. ReturiNone if the string does not match the pattern; note that this is different
from a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

The optional second parametgwsgives an index in the string where the search is to start; it defaults to

0. This is not completely equivalent to slicing the string; thle pattern character matches at the real
beginning of the string and at positions just after a newline, but not necessarily at the index where the search
iS to start.

The optional parametezndposlimits how far the string will be searched; it will be as if the string is
endposcharacters long, so only the characters fromsto endpos - 1 will be searched for a match. If
endposs less tharpos no match will be found, otherwise, ik is a compiled regular expression object,

rx.match(string, 0, 50) is equivalent tax.match(string[:50], 0)
>>> pattern = re . compile("o")
>>> pattern . match("dog") # No match as "0" is not at the start of "dog."

>>> pattern . match("dog", 1) # Match as "o" is the 2nd character of "dog".
< sre.SRE_Match object at ...>

search (string, [pos, [endpos])
Scan througtstring looking for a location where this regular expression produces a match, and return a
corresponding/iatchObject instance. Returhlone if no position in the string matches the pattern; note
that this is different from finding a zero-length match at some point in the string.

The optionabosandendpogarameters have the same meaning as fonthieh() method.

split (' string, [maxsplit=0)
Identical to thesplit() function, using the compiled pattern.

findall ~ ('string, [pos, [endpos]]
Identical to thefindall() function, using the compiled pattern.

finditer (string, [pos, [endpos])
Identical to thefinditer() function, using the compiled pattern.

8.2. re — Regular expression operations 77

The Python Library Reference, Release 2.6.4

sub (repl, string, [count=0)
Identical to thesub() function, using the compiled pattern.

subn (repl, string, [count=0)
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compilédiifaro flags were provided.

groups
The number of capturing groups in the pattern.

groupindex
A dictionary mapping any symbolic group names definedB<id>) to group numbers. The dictionary
is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

8.2.5 Match Objects

Match objects always have a boolean valu€ofe , so that you can test whether eigatch() resulted in a
match with a simple if statement. They support the following methods and attributes:

expand (templatg
Return the string obtained by doing backslash substitution on the templatetstriptate as done by the
sub() method. Escapes such\asare converted to the appropriate characters, and numeric backreferences
(\1 ,\2) and named backreferencég<1> ,\g<name>) are replaced by the contents of the corresponding

group.

group ([groupl, ...)
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if

there are multiple arguments, the result is a tuple with one item per argument. Without arguroemns,
defaults to zero (the whole match is returned). ¢fraupNargument is zero, the corresponding return value

is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the
pattern, arindexError exception is raised. If a group is contained in a part of the pattern that did not
match, the corresponding resulthone. If a group is contained in a part of the pattern that matched
multiple times, the last match is returned.

>>> m = re . match(r" (\w+) (\w+)", "lsaac Newton, physicist ")
>>> m group(0) # The entire match

'Isaac Newton’

>>> m group(1) # The first parenthesized subgroup.

'Isaac’

>>> m group(2) # The second parenthesized subgroup.
'Newton’

>>> mgroup(1, 2) # Multiple arguments give us a tuple.

(lsaac’, 'Newton’)

If the regular expression uses tfi@P<name>...) syntax, thegroupN arguments may also be strings
identifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re . match(r" (?P<first_name> \w+) (?P<last_name> \w+)", "Malcom Reynolds ")
>>> m group(' first name)

"Malconm’

>>> m group(’last name ')

'Reynolds’

78 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Named groups can also be referred to by their index:

>>> m group(1)
'Malcom’
>>> m group(2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m= re.match(" (()+ ", "alb2c3") # Matches 3 times.
>>> m group(1) # Returns only the last match.
'3’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the
pattern. Thalefaultargument is used for groups that did not participate in the match; it defallisrie.
(Incompatibility note: in the original Python 1.5 release, if the tuple was one element long, a string would
be returned instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:
>>> m = re.match(r" (\d+)\.(\d+)", "24.1632 ")

>>> m groups()
(24, '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default thlone unless thalefaultargument is given:

>>> m = re. match(r" (\d+)\.?2(\d+)? ", "24")

>>> m groups() # Second group defaults to None.

('24’, None)

>>> m groups(' 0") # Now, the second group defaults to 0.
(24, '0’)

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup name. The
defaultargument is used for groups that did not participate in the match; it defaltsrte. For example:

>>> m = re . match(r" (?P<first_name> \w+) (?P<last_name> \w+)", "Malcom Reynolds ")
>>> m groupdict()
{first_name’: 'Malcom’, ’last_name’: 'Reynolds’}

start ([group])

end ([group])
Return the indices of the start and end of the substring matchgdlog; group defaults to zero (meaning
the whole matched substring). Retufn if group exists but did not contribute to the match. For a match
objectm, and a group that did contribute to the match, the substring matched by ggoigguivalent to

m.group(g))is
m string[m . start(g):m . end(g)]

Note thatm.start(group) will equal m.end(group) if group matched a null string. For example,
afterm = re.search(’b(c?)’, 'cba’) , m.start(0) is1,m.end(0) is 2, m.start(1) and
m.end(1) are both 2, andnh.start(2) raises arindexError exception.

An example that will removeemove_thifrom email addresses:

>>> email = "tony@tiremove_thisger.net
>>> m = re . search("remove this ", emalil)

8.2. re — Regular expression operations 79

The Python Library Reference, Release 2.6.4

>>> emaill:m . start()] + emaillm . end()]
‘tony@tiger.net’

span ([group])
For MatchObject m, return the 2-tuplém.start(group), m.end(group)) . Note that ifgroup

did not contribute to the match, this@sl, -1) . groupdefaults to zero, the entire match.

pos
The value ofposwhich was passed to treearch() or match() method of theRegexObject . This
is the index into the string at which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to theearch() or match() method of theRegexObject
This is the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupame if no group was matched at all. For example,
the expressiong@)b , ((a)(b)) , and((ab)) will have lastindex == if applied to the string
‘ab’ , while the expressiofa)(b) will have lastindex == , if applied to the same string.
lastgroup

The name of the last matched capturing groug\one if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasetch() orsearch() method produced thislatchObject in-
stance.

string
The string passed tmatch() orsearch()

8.2.6 Examples

Checking For a Pair

In this example, we’'ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match):
if match is None:
return None
return ' <Match: , groups= > 9% (match . group(), match . groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “g” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(" [0-9akqj|{5}$ ")

>>> displaymatch(valid . match("ak05q")) # Valid.
"<Match: 'ak05q’, groups=()>"

>>> displaymatch(valid . match("ak05e ")) # Invalid.
>>> displaymatch(valid . match("ak0")) # Invalid.
>>> displaymatch(valid . match("727ak ")) # Valid.

"<Match: '727ak’, groups=()>"

That last hand;727ak" , contained a pair, or two of the same valued cards. To match this with a regular
expression, one could use backreferences as such:

>>> pair = re.compile(" *(.).* \1")

>>> displaymatch(pair . match("717ak ")) # Pair of 7s.
"<Match: '717’, groups=('7",)>"

>>> displaymatch(pair . match(" 718ak ")) # No pairs.

80 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

>>> displaymatch(pair . match(" 354aa")) # Pair of aces.
"<Match: '354aa’, groups=('a’,)>"

To find out what card the pair consists of, one could usgthap() method ofMatchObject in the following
manner:

>>> pair . match("717ak"). group(1)
e

Error because re.match() returns None, which doesn’t have a group() method:
>>> pair . match("718ak"). group(1)
Traceback (most recent call last):

File "<pyshell#23>" | line 1, in <module>
re . match(r" .*(.).* \1", "718ak"). group(1)
AttributeError : 'NoneType’' object has no attribute 'group’

>>> pair . match("354aa"). group(1)
‘a

Simulating scanf()

Python does not currently have an equivalens¢anf() . Regular expressions are generally more powerful,
though also more verbose, thacanf() format strings. The table below offers some more-or-less equivalent
mappings betweescanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%c .

%5¢ {5}

%d [-+]?\d+

%e %E %f, %g [-+]1?2(0\d+(\d*)?\\d+)([eE][-+]?\d+)?
%i [-+]?(O[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%0 0[0-7]*

%s \S+

%u \d+

%x %X O[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like
lusr/sbin/sendmail - 0 errors, 4 warnings

you would use a&canf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a

RuntimeError exception with the messageaximum recursion limit exceeded. For example,
>>> g = 'Begin ' + 1000*' a very long string "+ end’
>>> re . match(' Begin (\w|)*? end ', s) .end()
Traceback (most recent call last):
File "<stdin>" | line 1, in?
File "/usr/local/lib/python2.5/re.py" , line 132, in match
return _compile(pattern, flags) . match(string)

RuntimeError : maximum recursion limit exceeded

8.2. re — Regular expression operations 81

The Python Library Reference, Release 2.6.4

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of tff2 pattern are special-cased to avoid recursion. Thus, the above
regular expression can avoid recursion by being recatgs [a-zA-Z0-9_]*?end . As a further benefit,
such regular expressions will run faster than their recursive equivalents.

search() vs. match()

In a nutshellmatch() only attempts to match a pattern at the beginning of a string wdesrech() will match
a pattern anywhere in a string. For example:

>>> re . match("o", "dog") # No match as "0" is not the first letter of "dog".

>>> re.search("o", "dog") # Match as search() looks everywhere in the string.

< sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created with
re.compile("pattern™) , not the primitives re.match(pattern, string) or

re.search(pattern, string)
match() has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re . compile("0")
>>> pattern . match("dog") # No match as "0" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern . match("dog", 0)

Match as "0" is the 2nd character of "dog" (index 0 is the first):

>>> pattern . match("dog", 1)

< _sre.SRE_Match object at ...>

>>> pattern . match("dog", 2) # No match as "o" is not the 3rd character of "dog."

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:
>>> jnput = " Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split("\n+", input)

>>> entries

[Ross McFluff: 834.345.1254 155 EIm Street’,

'Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
'Frank Burger: 925.541.7625 662 South Dogwood Way’,
'Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the
maxsplit parameter ofplit() because the address has spaces, our splitting pattern, in it:

82 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

>>> [re .split(":? ", entry, 3) for entry in entries]
[[Ross’, 'McFIluff’, '834.345.1254’, '155 Elm Street’],

[Ronald’, 'Heathmore’, '892.345.3428', '436 Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662 South Dogwood Way’],
[Heather’, 'Albrecht’, '548.326.4584’, '919 Park Place’]]

The:? pattern matches the colon after the last name, so that it does not occur in the result listmAfitbpdit
of 4, we could separate the house number from the street name:

>>> [re .split(":? ", entry, 4) for entry in entries]
[[Ross’, 'McFluff', '834.345.1254', '155’, 'Elm Street’],
[Ronald’, 'Heathmore’, '892.345.3428’, '436’, 'Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662’, 'South Dogwood Way'],
[Heather’, 'Albrecht’, '548.326.4584’, '919’, 'Park Place’]]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
usingsub() with a function to “munge” text, or randomize the order of all the characters in each word of a
sentence except for the first and last characters:

>>> def repl (m):

inner_word = list (m. group(2))

random . shuffle(inner_word)

return ~ mgroup(1) + "".join(inner_word) + m group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly.
>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potimrpy.’

Finding all Adverbs

findall() matchesll occurrences of a pattern, not just the first onee@mch() does. For example, if one
was a writer and wanted to find all of the adverbs in some text, he or she migidisg) in the following
manner:

>>> text = "He was carefully disguised but captured quickly by police.

>>> re . findall("\ w+ly ", text)
[carefully’, 'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matchetrtexgr() is useful as

it provides instances dflatchObject instead of strings. Continuing with the previous example, if one was a
writer who wanted to find all of the adverlsd their positionsn some text, he or she would uSediter()

in the following manner:

>>> text = "He was carefully disguised but captured quickly by police.

>>> for min re . finditer("\ w+ly ", text):

print ’ L : > % (m. start(), m . end(), m . group(0))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notationr(text”) keeps regular expressions sane. Without it, every backshsh) (n a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code

8.2. re — Regular expression operations 83

The Python Library Reference, Release 2.6.4

are functionally identical:

>>> re . match(r" \W() \1\wW, " ff ")

< sre.SRE_Match object at ...>

>>> re . match("\\ W() \\ 1\ W, " ff ")
< _sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string
notation, this means\\" . Without raw string notation, one must ud8\" , making the following lines of
code functionally identical:

>>> re . match(r \\ ", M\ ")
< _sre.SRE_Match object at ...>
>>> re . match("\ \\ ", "\ ")
< sre.SRE_Match object at ...>

8.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses
format stringgexplained below) as compact descriptions of the lay-out of the C structs and the intended conversion
to/from Python values. This can be used in handling binary data stored in files or from network connections, among
other sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, .).
Return a string containing the values, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

pack_into (fmt, buffer, offset, v1, v2,)...
Pack the valuesl, v2, ... according to the given format, write the packed bytes into the writable
buffer starting aiffset Note that the offset is a required argument. New in version 2.5.

unpack (fmt, string
Unpack the string (presumably packedgack(fmt, ...)) according to the given format. The result
is a tuple even if it contains exactly one item. The string must contain exactly the amount of data required
by the format len(string) must equatalcsize(fmt)).

unpack_from (fmt, buffer, [offset=0]
Unpack thebufferaccording to the given format. The result is a tuple even if it contains exactly one item.
The buffer must contain at least the amount of data required by the foleratbuffer[offset:])
must be at leastalcsize(fmt)). New in version 2.5.

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious
given their types:

84 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Format C Type Python Notes
X pad byte no value

C char string of length 1

b signed char integer

B unsigned char integer

? _Bool bool (1)
h short integer

H unsigned short integer

i int integer

I unsigned int integer or long

I long integer

L unsigned long long

q long long long (2)
Q unsigned long long long (2)
f float float

d double float

s char[] string

p char[] string

P void * long
Notes:

1. The'?" conversion code corresponds to tH&ool type defined by C99. If this type is not available, it is
simulated using ahar . In standard mode, it is always represented by one byte. New in version 2.6.

2. The’q” and’Q’ conversion codes are available in native mode only if the platform C compiler supports
Clong long ,or,onWindows, int64 . They are always available in standard modes. New in version
2.2.

A format character may be preceded by an integral repeat count. For example, the formatiktrinmeans
exactly the same dbhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the’s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for examplgd,0s’ means a single 10-byte string, whilEOc’ means 10 characters. For
packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting
string always has exactly the specified number of bytes. As a special'@s'se,means a single, empty string
(while’0c’ means 0 characters).

The'p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed
number of bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or
255, whichever is smaller. The bytes of the string follow. If the string passedpadk() is too long (longer

than the count minus 1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1,
it is padded with null bytes so that exactly count bytes in all are used. Note thatffeck() ,the’p’ format
character consumes count bytes, but that the string returned can never contain more than 255 characters.

Forthe’l’ 'L’ ,’q" and’'Q’ format characters, the return value is a Python long integer.

For the’P’ format character, the return value is a Python integer or long integer, depending on the size needed
to hold a pointer when it has been cast to an integer typRUAL pointer will always be returned as the Python
integer0. When packing pointer-sized values, Python integer or long integer objects may be used. For example,
the Alpha and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold
the pointer; other platforms use 32-bit pointers and will use a Python integer.

For the’?” format character, the return value is eitAeue or False . When packing, the truth value of
the argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any
non-zero value will be True when unpacking.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by
skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of
the packed data, according to the following table:

8.3. struct — Interpret strings as packed binary data 85

The Python Library Reference, Release 2.6.4

Character | Byte order Size and alignment
@ native native

= native standard

< little-endian standard

> big-endian standard

! network (= big-endian)| standard

If the first character is not one of thes@' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun
processors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compdiemeonf expression. This is always combined
with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytesjong long (__inté4 on Windows) is 8 bytesfloat and
double are 32-bit and 64-bit IEEE floating point numbers, respectivaBool is 1 byte.

Note the difference betwee@’' and’=" : both use native byte order, but the size and alignment of the latter is
standardized.

The form’l’ is available for those poor souls who claim they can’'t remember whether network byte order is
big-endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate cheiceonf
1>)

The’P’ format character is only available for the native byte ordering (selected as the default or wi@r' the
byte order character). The byte order charaeter chooses to use little- or big-endian ordering based on the host
system. The struct module does not interpret this as native ordering, 0 thfermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(' hhl ", 1, 2, 3)

"\x00\x01\x00\x02\x00\x00\x00\x03'’

>>> unpack(' hhl ', 00 \x01 \x00 \x02 \x00 \x00 \x00 \x03 ")
1, 2, 3)

>>> calcsize(' hhl ")

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. For example, the fortnat’ specifies two pad bytes at the end,
assuming longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect;
standard size and alignment does not enforce any alignment.

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = 'raymond \x32 \x12 \x08 \x01 \x08 '

>>> npame, serialnum, school, gradelevel = unpack(' <10sHHb' , record)

>>> from collections import namedtuple

>>> Student = namedtuple(' Student ', ' name serialnum school gradelevel ")

>>> Student . make(unpack(' <10sHHb', s))
Student(name="raymond ', serialnum=4658, school=264, gradelevel=8)

See Also:
Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

86 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

8.3.1 Struct Objects

Thestruct module also defines the following type:

classStruct (formaf
Return a new Struct object which writes and reads binary data according to the formafimag Cre-
ating a Struct object once and calling its methods is more efficient than callirggrtiie ~ functions with
the same format since the format string only needs to be compiled once. New in version 2.5. Compiled
Struct objects support the following methods and attributes:

pack (v1,v2,.)
Identical to thepack() function, using the compiled format. lef(result) will equal
self.size)

pack_into (buffer, offset, v1, v2,)..
Identical to thepack _into() function, using the compiled format.

unpack (string)

Identical to theunpack() function, using the compiled format. leQ(string) must equal
self.size).

unpack_from (buffer, [offset=0)
Identical to the unpack from() function, using the compiled format.
(len(buffer[offset:]) must be at leastelf.size).

format

The format string used to construct this Struct object.

size
The calculated size of the struct (and hence of the string) correspondimgrtat .

8.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for
example, for comparing files, and can produce difference information in various formats, including HTML and
context and unified diffs. For comparing directories and files, see alsbleb@p module.

classSequenceMatcher ()

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements
arehashable The basic algorithm predates, and is a little fancier than, an algorithm published in the late
1980's by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find
the longest contiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp
algorithm doesn’t address junk). The same idea is then applied recursively to the pieces of the sequences to
the left and to the right of the matching subsequence. This does not yield minimal edit sequences, but does
tend to yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

classDiffer ()
This is a class for comparing sequences of lines of text, and producing human-readable differences or
deltas. Differ useSequenceMatcher both to compare sequences of lines, and to compare sequences of
characters within similar (near-matching) lines.

Each line of aDiffer delta begins with a two-letter code:

8.4. difflib — Helpers for computing deltas 87

The Python Library Reference, Release 2.6.4

Code Meaning
' line unique to sequence 1

+ line unique to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with ?* attempt to guide the eye to intraline differences, and were not present in either
input sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff ()
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can
be generated in either full or contextual difference mode.

The constructor for this class is:

__init__ ([tabsize], [wrapcolumn], [linejunk], [charjunk]
Initializes instance oHtmIDiff

tabsizels an optional keyword argument to specify tab stop spacing and defa8lts to

wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped,
defaults toNone where lines are not wrapped.

linejunk and charjunkare optional keyword arguments passed imtiiff() (used byHtmIDiff
to generate the side by side HTML differences). 8dif() documentation for argument default
values and descriptions.

The following methods are public:

make_file (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedgromlinesandtolines(lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdescandtodescare optional keyword arguments to specify from/to file column header strings
(both default to an empty string).

contextand numlinesare both optional keyword arguments. $ehtextto True when contextual
differences are to be shown, else the defaulidtse to show the full files.numlinesdefaults to5.
Whencontextis True numlinescontrols the number of context lines which surround the difference
highlights. Whercontextis False numlinescontrols the number of lines which are shown before a
difference highlight when using the “next” hyperlinks (setting to zero would cause the “next” hyper-
links to place the next difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedromlinesandtolines(lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fondke file() method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of
its use. New in version 2.4.

context_diff (&, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)
Comparea andb (lists of strings); return a delta (@eneratorgenerating the delta lines) in context diff
format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsathigh defaults to three.

By default, the diff control lines (those wittt* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set kihetermargument to"™ so that the output will be
uniformly newline free.

88 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are
normally expressed in the format returned tbye.ctime() . If not specified, the strings default to
blanks.

>>> sl [bacon\n’, "eggs\n’, 'ham\n’', ’guido \n’]

>>> §2 [" python \n’, ’"eggy\n’, ’'hamster \n’, ’guido \n’]

>>> for line in context_diff(sl, s2, fromfile =" before.py ', tofile =" afterpy)
sys . stdout . write(line) # doctest: +NORMALIZE_WHITESPACE

*** phefore.py
--- after.py

*hkhkkkkkkkkkkkk

*k%k 174 *kkk

I bacon

I eggs

I' ham
guido

— 14 -

I' python

I eggy

I hamster
guido

SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

get_close_matches (word, possibilities, [n], [cutoff]
Return a list of the best “good enough” matchesrd is a sequence for which close matches are desired
(typically a string), angossibilitiesis a list of sequences against which to matabrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater than
0.

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least
that similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get _close_matches(appel ', ["ape’, 'apple ', ’'peach’, ’puppy’])
[apple’, "ape’]

>>> jmport keyword
>>> get_close_matches(
['while’]

>>> get_close_matches(
I

>>> get_close_matches(
['except]

wheel ", keyword . kwlist)

apple ', keyword . kwlist)

accept ', keyword . kwlist)

ndiff (a, b, [linejunk], [charjunk]
Comparea andb (lists of strings); return ®iffer -style delta (ayeneratorgenerating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false

if not. The default is None), starting with Python 2.3. Before then, the default was the module-level
function IS_LINE_JUNK() , which filters out lines without visible characters, except for at most one
pound character#). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic
analysis of which lines are so frequent as to constitute noise, and this usually works better than the pre-2.3
default.

8.4. difflib — Helpers for computing deltas 89

The Python Library Reference, Release 2.6.4

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level functith CHARACTER_JUNK(), which filters out whitespace
characters (a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff("’ one\n two\n three \n ' . splitlines(1),
“ore \n tree \n emun ’ . splitlines(1))
>>> print ' . join(diff),
- one

? N

+ ore

? N

- two

- three

? -

+ tree

+ emu

restore (sequence, whigh

Return one of the two sequences that generated a delta.

Given asequenceroduced byDiffer.compare() or ndiff() , extract lines originating from file 1
or 2 (parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiff(* one\n two \n three \n . splitlines(1),

"ore \n tree \n emun ' . splitlines(1))

>>> diff = list (diff) # materialize the generated delta into a list
>>> print '’ . join(restore(diff, 1)),

one

two

three

>>> print '’ . join(restore(diff, 2)),

ore

tree

emu

unified_diff (a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)

Comparea andb (lists of strings); return a delta (@eneratorgenerating the delta lines) in unified diff
format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is
set byn which defaults to three.

By default, the diff control lines (those with- , +++, or @®are created with a trailing newline. This
is helpful so that inputs created frofife.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set khetermargument td" so that the output will be
uniformly newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these
may be specified using strings fisomfile tofile, fromfiledate andtofiledate The modification times are

normally expressed in the format returned tbhye.ctime() . If not specified, the strings default to
blanks.

>>> gl = [’"bacon\n’, ’'eggs\n’, ’'hamin’, ’guido \n’]

>>> s2 = ['python \n’, ’"eggy\n’, ’hamster \n’, ’qguido \n']

>>> for line in unified_diff(sl, s2, fromfile =’ before.py ', tofile = after.py ')

90

Chapter 8. String Services

The Python Library Reference, Release 2.6.4

sys . stdout . write(line) # doctest: +NORMALIZE WHITESPACE
--- before.py
+++ after.py

0@ -14 +1,4 @@
-bacon

-eggs

-ham

+python

+eggy
+hamster

guido
SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

IS_LINE_JUNK (line)
Return true for ignorable lines. The litiae is ignorable ifline is blank or contains a singlg’ , otherwise
it is not ignorable. Used as a default for paramétexjunkin ndiff() before Python 2.3.

IS_ CHARACTER_JUNKch)
Return true for ignorable characters. The charagités ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published ibr. Dobb’s Journain July, 1988.

8.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk, [a, [b]]])
Optional argumenisjunk must beNone (the default) or a one-argument function that takes a sequence
element and returns true if and only if the element is “junk” and should be ignored. Phksiador isjunk
is equivalent to passinigmbda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t "

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional argumentsandb are sequences to be compared; both default to empty strings. The elements
of both sequences must bashable

SequenceMatcher objects have the following methods:

set_ seqs (a, b
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequenceseiuseq2() to set the commonly used sequence
once and calbet seql() repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bh)
Find longest matching block ia[alo:ahi] andbiblo:bhi]

If isjunk was omitted orNone, find_longest_match() returns (i, j, k) such that
ali:i+K] is equal tob[j:j+k] , Wherealo <= i <= i+k <= ahi andblo <= j <=
j*tk <= bhi . Forall(i’, j, k) meeting those conditions, the additional conditi@ns=

8.4. difflib — Helpers for computing deltas 91

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.6.4

kK ,i <=1 ,andifi == 1 ,j <=] are also met. In other words, of all maximal matching
blocks, return one that starts earliestirand of all those maximal matching blocks that start earliest
in a, return the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd ")
>>> s. find_longest_match(0, 5, 0, 9
Match(a=0, b=4, size=5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That pteabots from
matching thé abcd’ at the tail end of the second sequence directly. Instead onhaliod’ can
match, and matches the leftmémsibcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x ==" ", " abcd", "abcd abcd ")
>>> s. find_longest_match(0, 5, 0, 9
Match(a=1, b=0, size=4)

If no blocks match, this return@lo, blo, 0) . Changed in version 2.6: This method returns a
named tupléMatch(a, b, size)

get_matching_blocks 0

Return list of triples describing matching subsequences. Each triple is of thifojmn) , and
means thaali:i+n] == b[j:;j+n] . The triples are monotonically increasingiiandj.

The last triple is a dummy, and has the va(len(a), len(b), 0) . It is the only triple with
n==0.If(@, j n) and(i’, j, n) are adjacent triples in the list, and the second is not

the last triple in the list, theitn != ¥’ orj+n !'= | ;in other words, adjacent triples always
describe non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always
describe non-adjacent blocks was implemented.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> g. get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of 5-tuples describing how to tuarinto b. Each tuple is of the fornftag, il, i2,
i1, j2) . Thefirsttuple hagl == j1 == , and remaining tuples havg equal to tha2 from
the preceding tuple, and, likewigé,equal to the previouR.

Thetag values are strings, with these meanings:

Value Meaning

'replace’ afil:i2] should be replaced Hyj1:j2]

‘delete’ afil:i2] should be deleted. Note thdt == j2 in this case.
'insert’ b[j1:j2] should be inserted afil:il] . Note thatl == i2 in this case.
‘equal’ afil:i2] == b[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "qabxcd "
>>> b = "abycdf "
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s. get opcodes():

print (" a[%d %d (%9 b[%d %d (%9 " %

(tag, i1, i2, afil:i2], j1, j2, b[j1:j2])
delete a0:1] (q) b[0:0] ()

equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

92

Chapter 8. String Services

The Python Library Reference, Release 2.6.4

equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return ageneratorof groups with up ton lines of context.

Starting with the groups returned byt _opcodes() , this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same formajais opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this isL.0 if the sequences are identical, a@d if they have nothing in

common.
This is expensive to computedlet _matching_blocks() orget _opcodes() hasn't already
been called, in which case you may want todroyck _ratio() orreal_quick_ratio() first

to get an upper bound.

quick_ratio ()
Return an upper bound oatio() relatively quickly.

This isn't defined beyond that it is an upper boundaio() , and is faster to compute.

real_quick_ratio 0
Return an upper bound oatio() very quickly.

This isn't defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() or quick_ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, althougiuick_ratio() andreal_quick_ratio() are always at least as large
asratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s, ratio()

0.75

>>> g. quick_ratio()

0.75

>>> s, real_quick_ratio()

1.0

8.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
" private Thread currentThread;
" private volatile Thread currentThread; ")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuratio@
value over 0.6 means the sequences are close matches:

>>> print round (s . ratio(), 3)
0.866
If you're only interested in where the sequences majeh, matching_blocks() is handy:

>>> for block in s.get_matching_blocks():
print "a] %d and b[] match for elements " % block
a[0] and b[0] match for 8 elements

8.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 2.6.4

a[8] and b[17] match for 21 elements
a[29] and b[38] match for O elements

Note that the last tuple returned lggt_matching_blocks() is always a dummylen(a), len(b),
0) , and this is the only case in which the last tuple element (number of elements matdhed) is

If you want to know how to change the first sequence into the secondetisepcodes()

>>> for opcode in s.get opcodes():

print " al %a %d bf t %d" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See Also:

e The get_close_matches() function in this module which shows how simple code building on
SequenceMatcher can be used to do useful work.

« Simple version control recigier a small application built wittsequenceMatcher

8.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim torbmimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Re-
stricting synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing

a longer diff.

TheDiffer class has this constructor:

classDiffer ([linejunk, [charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default
is None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from theeadlines() method of file-like objects. The delta generated also consists

of newline-terminated strings, ready to be printed as-is viawti@lines() method of a file-like

object.

8.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained fronedtkines() method of file-like objects):

1

>>> textl = 1. Beautiful is better than ugly.
2. Explicit is better than implicit.

3. Simple is better than complex.

4. Complex is better than complicated.

. . splitlines(1)

>>> |len (textl)

4

>>> textl[O] -1]

\n'

94 Chapter 8. String Services

http://code.activestate.com/recipes/576729/

The Python Library Reference, Release 2.6.4

>>> textz = 7 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
7 splitlines(1)
Next we instantiate a Differ object:
>>> d = Differ()

Note that when instantiating@iffer ~ object we may pass functions to filter out line and character “junk.” See
theDiffer() constructor for details.

Finally, we compare the two:
>>> result = list (d.compare(textl, text2))
result is alist of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint(result)

[1. Beautiful is better than ugly.\n’,

- 2. Explicit is better than implicit.\n’,

- 3. Simple is better than complex.\n’,

"+ 3. Simple is better than complex.\n’,

? ++\n’,

- 4. Complex is better than complicated.\n’,

? N ---- Nn’,
'+ 4. Complicated is better than complex.\n’,

? ++++ A Mn',

"+ 5. Flat is better than nested.\n’]
As a single multi-line string it looks like this:

>>> jmport sys
>>> sys . stdout . writelines(result)

1. Beautiful is better than ugly.
- 2. Explicit is better than implicit.
3. Simple is better than complex.

+ 3. Simple is better than complex.

? ++

- 4. Complex is better than complicated.

? " — A
+ 4. Complicated is better than complex.

? ++++ A A
+ 5. Flat is better than nested.

8.4.5 A command-line interface to difflib

This example shows how to use difflib to creatdifi -like utility. It is also contained in the Python source
distribution, asTools/scripts/diff.py

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.

* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.
import sys, os, time , difflib , optparse

8.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 2.6.4

def main ():
Configure the option parser
usage = "usage: %prog [options] fromfile tofile
parser = optparse . OptionParser(usage)
parser .add option("-c", action ="store true ", default =False ,
help =’ Produce a context format diff (default) ")
parser .add option("-u", action ="store true ", default =False ,
help =’ Produce a unified format diff ")
hlp = ' Produce HTML side by side diff (can use -c and -l in conjunction)
parser .add_option("-m", action ="store true ", default =False , help =hlp)
parser .add option("-n", action ="store true ", default =False ,
help = Produce a ndiff format diff ")
parser .add option("-l ", "-lines ", type ="int ", default =3,
help =" Set number of context lines (default 3) ")
(options, args) = parser . parse_args()
if len (args) == 0:
parser . print_help()
sys . exit(1)
if len (args) = 2:
parser . error("need to specify both a fromfile and tofile ")
n = options . lines
fromfile, tofile = args # as specified in the usage string

we’re passing these as arguments to the diff function

fromdate = time . ctime(os . stat(fromfile) . st_mtime)
todate = time . ctime(os . stat(tofile) . st_mtime)
fromlines = open (fromfile, "U). readlines()

tolines = open (tofile, "U) . readlines()

if options . u:

diff = difflib . unified_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)
elif options . n:
diff = difflib . ndiff(fromlines, tolines)
elif options . m:
diff = difflib . HtmIDiff() . make_file(fromlines, tolines, fromfile,
tofile, context =options . c,
numlines =n)
else :
diff = difflib . context_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)

we're using writelines because diff is a generator
sys . stdout . writelines(diff)

if __name__ == _ main__
main()
8.5 StringlO — Read and write strings as files

This module implements a file-like clas3ringlO , that reads and writes a string buffer (also knowmasnory
files). See the description of file objects for operations (sedtimODbjecty. (For standard strings, see¢ and

unicode .)

96 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, thetringlO will start empty. In both cases, the initial file position
starts at zero.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised whegetvalue() s called.

The following methods o&tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before$henglO object'sclose() method is
called. See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause
this method to rais&nicodeError

close ()
Free the memory buffer. Attempting to do further operations with a cl@edglO object will raise a
ValueError

Example usage:

import StringlO

output = StringlO . StringlO()
output . write(' First line. \n")
print ~ >>output, ' Second line. ’
Retrieve file contents -- this will be
'First line.\nSecond line.\n’

contents = output . getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output . close()

8.6 cStringl0O — Faster version of StringlO

The modulecStringlO provides an interface similar to that of th&ringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the funcitsmglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your
own version using subclassing. It's not possible to set attributes on it. Use the ofigima)lO module in
those cases.

Unlike the memory files implemented by tBéringlO module, those provided by this module are not able to
accept Unicode strings that cannot be encoded as plain ASCII strings.

Calling StringlO() with a Unicode string parameter populates the object with the buffer representation of the
Unicode string, instead of encoding the string.

Another difference from th&tringlO module is that callingStringlO() with a string parameter creates
a read-only object. Unlike an object created without a string parameter, it does not have write methods. These
objects are not generally visible. They turn up in tracebacl&@isgl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO() with a string parameter.

OutputType
The type object of the objects returned by callBiginglO() with no parameters.

8.6. cStringlO — Faster version of StringlO 97

The Python Library Reference, Release 2.6.4

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import cStringlO

output = cStringlO . StringlO()
output . write(' First line. \n")
print ~ >>output, ' Second line. ’
Retrieve file contents -- this will be
'First line.\nSecond line.\n’

contents = output . getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output . close()

8.7 textwrap — Text wrapping and filling

New in version 2.3. Théextwrap module provides two convenience functionsap() andfill() , as well
asTextWrapper , the class that does all the work, and a utility functi@dent() . If you're just wrapping

or filling one or two text strings, the convenience functions should be good enough; otherwise, you should use an
instance offextWrapper for efficiency.

wrap (text, [width, [...]])
Wraps the single paragraphtext(a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesxdfVrapper , documented below.
width defaults tor0.

fill (text, [width, [...]])
Wraps the single paragraphtiext and returns a single string containing the wrapped paragfaioh.
is shorthand for

“\n " . join(wrap(text,)

In particularfill() accepts exactly the same keyword argumentsrag()

Bothwrap() andfill() work by creating arextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long
words be broken if necessary, unl@ssctWrapper.break long_words is set to false.

An additional utility function,dedent() , is provided to remove indentation from strings that have unwanted
whitespace to the left of the text.

dedent (tex?
Remove any common leading whitespace from every linexn

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: 'thedilegs and
"\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:

98 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

def test ():
end first line with \ to avoid the empty line!
s ="\
hello
world
print repr (s) # prints ’ hello\n world\n ’
print repr (dedent(s)) # prints ’hello\n world\n’

classTextWrapper (...
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corre-
sponds to one instance attribute, so for example
wrapper = TextWrapper(initial_indent =)

is the same as

wrapper = TextWrapper()
wrapper . initial_indent ="

*

You can re-use the sami@xtWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in
the input text longer thawidth , TextWrapper guarantees that no output line will be longer than
width characters.

expand_tabs
(default: True) If true, then all tab characters itext will be expanded to spaces using the
expandtabs() method oftext

replace_whitespace
(default: True) If true, each whitespace character (as definestiigg.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false andeplace whitespace is true, each tab character will be
replaced by a single space, whichigt the same as tab expansion.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though). New in version 2.6:
Whitespace was always dropped in earlier versions.

initial_indent
(default:™) String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line.

subsequent_indent
(default: ") String that will be prepended to all lines of wrapped output except the first. Counts
towards the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sen-
tences are always separated by exactly two spaces. This is generally desired for text in a monospaced
font. However, the sentence detection algorithm is imperfect: it assumes that a sentence ending con-
sists of a lowercase letter followed by one’of ,'I" , or'?" , possibly followed by one of”
or"" , followed by a space. One problem with this is algorithm is that it is unable to detect the
difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

8.7. textwrap — Text wrapping and filling 99

The Python Library Reference, Release 2.6.4

and “Spot.” in
[...] See Spot. See Spot run [..]]

fix_sentence_endings is false by default.

Since the sentence detection algorithm reliestimg.lowercase for the definition of “lower-
case letter,” and a convention of using two spaces after a period to separate sentences on the same line,
it is specific to English-language texts.

break long_words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines
are longer thanvidth . If it is false, long words will not be broken, and some lines may be longer
thanwidth . (Long words will be put on a line by themselves, in order to minimize the amount by
whichwidth is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in
compound words, as it is customary in English. If false, only whitespaces will be considered as
potentially good places for line breaks, but you need tobsetk long words to false if you
want truly insecable words. Default behaviour in previous versions was to always allow breaking
hyphenated words. New in version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (tex)
Wraps the single paragraph faxt (a string) so every line is at mostidth characters long. All
wrapping options are taken from instance attributes ofTtg\Wrapper instance. Returns a list of
output lines, without final newlines.

fill (tex)
Weraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

8.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding name
in all lower case letters, and returrCadecinfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
«decode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.
The various functions or classes take the following arguments:

encodeand decode These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are
expected to work in a stateless mode.

100 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

incrementalencodeandincrementaldecoderThese have to be factory functions providing the following
interface:

factory(errors="strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder andIncrementalDecoder , respectively. Incremental codecs can maintain
state.

streamreadeandstreamwriter These have to be factory functions providing the following interface:
factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors are

*’strict’ : raise an exception in case of an encoding error

*replace’ : replace malformed data with a suitable replacement marker, sucR as or
\ufffd’

*’ignore’ :ignore malformed data and continue without further notice

*’xmicharrefreplace’ . replace with the appropriate XML character reference (for encoding
only)

*'backslashreplace’ : replace with backslashed escape sequences (for encoding only

as well as any other error handling name defined&tiaster _error()
In case a search function cannot find a given encoding, it should rdtura.

lookup (‘encoding
Looks up the codec info in the Python codec registry and retu@mdecinfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions
is scanned. If n&CodecIinfo object is found, d.ookupError is raised. Otherwise, theodecinfo
object is stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHiabkugsé)
for the codec lookup:

getencoder (encoding
Look up the codec for the given encoding and return its encoder function.

Raises da.ookupError in case the encoding cannot be found.

getdecoder (encoding
Look up the codec for the given encoding and return its decoder function.

Raises a.ookupError in case the encoding cannot be found.

getincrementalencoder (‘encoding
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises d ookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder. New in version 2.5.

getincrementaldecoder (‘encoding
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises d ookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder. New in version 2.5.

getreader (encoding
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises da.ookupError in case the encoding cannot be found.

8.8. codecs — Codec registry and base classes 101

The Python Library Reference, Release 2.6.4

getwriter (encoding
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises da.ookupError in case the encoding cannot be found.

register_error (name, error_handlér
Register the error handling functiarror_handlerunder the nam@ame error_handlerwill be called
during encoding and decoding in case of an error, wiameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains in-
formation about the location of the error. The error handler must either raise this or a different exception
or return a tuple with a replacement for the unencodable part of the input and a position where encoding
should continue. The encoder will encode the replacement and continue encoding the original input at the
specified position. Negative position values will be treated as being relative to the end of the input string. If
the resulting position is out of bound amexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

lookup_error (nhamg
Return the error handler previously registered under the meme

Raises a.ookupError in case the handler cannot be found.

strict_errors (exception
Implements thestrict error handling: each encoding or decoding error raisgsiaodeError

replace_errors (exception
Implements theeplace error handling: malformed data is replaced with a suitable replacement character
such as?’ in bytestrings andufffd’ in Unicode strings.

ignore_errors (- exception
Implements thégnore error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

xmicharrefreplace_errors (' exception
Implements thexmicharrefreplace error handling (for encoding only): the unencodable character is
replaced by an appropriate XML character reference.

backslashreplace_errors (- exception
Implements thébackslashreplace error handling (for encoding only): the unencodable character is
replaced by a backslashed escape sequence.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode, [encoding, [errors, [buffering]]]
Open an encoded file using the giverodeand return a wrapped version providing transparent encod-
ing/decoding. The default file mode’'rs meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects
for most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid
data loss due to encodings using 8-bit values. This means that no automatic convelsion i done on
reading and writing.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultsstdct’ which causes &alueError
to be raised in case an encoding error occurs.

bufferinghas the same meaning as for the builtpen() function. It defaults to line buffered.

EncodedFile (file, input, [output, [errors])
Return a wrapped version of file which provides transparent encoding translation.

102 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Strings written to the wrapped file are interpreted according to the giyern encoding and then written to
the original file as strings using tlaitputencoding. The intermediate encoding will usually be Unicode
but depends on the specified codecs.

If outputis not given, it defaults tinput

errors may be given to define the error handling. It defaultstact’ , Which cause¥alueError to
be raised in case an encoding error occurs.

iterencode (iterable, encoding, [errorg)]
Uses an incremental encoder to iteratively encode the input providadrhple This function is egener-
ator. errors (as well as any other keyword argument) is passed through to the incremental encoder. New in
version 2.5.

iterdecode (iterable, encoding, [errorg)]
Uses an incremental decoder to iteratively decode the input providadrhple This function is egener-
ator. errors (as well as any other keyword argument) is passed through to the incremental decoder. New in
version 2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

BOM

BOM_BE

BOM_LE

BOM_UTF8

BOM_UTF16

BOM_UTF16_BE

BOM_UTF16_LE

BOM_UTF32

BOM_UTF32_BE

BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16s eitherBOM_UTF16_BEor BOM_UTF16_LEdepending on the platform’s native byte or-
der,BOMs an alias foBOM_UTF16BOM_LHor BOM_UTF16 LEandBOM_BHor BOM_UTF16 BE
The others represent the BOM in UTF-8 and UTF-32 encodings.

8.8.1 Codec Base Classes

Thecodecs module defines a set of base classes which define the interface and can also be used to easily write
your own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, thiecode() anddecode() methods may implement different
error handling schemes by providing teeors string argument. The following string values are defined and
implemented by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

'xmicharrefrepladeeplace with the appropriate XML character reference (only for encoding).

'backslashreplac®eplace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedrgig@ster_error()

8.8. codecs — Codec registry and base classes 103

The Python Library Reference, Release 2.6.4

Codec Objects
The Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

encode (input, [errors])
Encodes the objedhput and returns a tuple (output object, length consumed). While codecs are not re-
stricted to use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string
using a particular character set encoding (&€gl252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in thedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

decode (input, [errors])
Decodes the objedhput and returns a tuple (output object, length consumed). In a Unicode context,
decoding converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé getreadbuf buffer slot. Python strings, buffer objects
and memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdtict’ handling.

The method may not store state in tbedec instance. Us&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type
in this situation.

ThelncrementalEncoder andincrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to thencode() /decode() method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to thencode() /decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. ThéncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python
codec registry.

classincrementalEncoder ([errors])
Constructor for anncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providingethers
keyword argument. These parameters are predefined:

*'strict’ RaiseValueError (or a subclass); this is the default.

*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

’xmlicharrefreplace’ Replace with the appropriate XML character reference

*'backslashreplace’ Replace with backslashed escape sequences.

104 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalEncoder object.

The set of allowed values for tlegrors argument can be extended wittgister_error()

encode (object, [final])
Encodesbiject(taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call tencode() final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects
The IncrementalDecoder class is used for decoding an input in multiple steps. It defines the following
methods which every incremental decoder must define in order to be compatible with the Python codec registry.

classincrementalDecoder ([errors])
Constructor for anincrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providingettiers
keyword argument. These parameters are predefined:

*'strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.
*replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute
makes it possible to switch between different error handling strategies during the lifetime of the
IncrementalDecoder object.

The set of allowed values for tlegrors argument can be extended wittgister_error()

decode (object, [final])
Decodesbject(taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call tolecode() final must be true (the default is false). flhal is true
the decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g.
because of incomplete byte sequences at the end of the input) it must initiate error handling just like
in the stateless case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encoding submodules very easily. Semdings.utf 8 for an example of how this is done.

StreamWriter Objects
TheStreamWriter class is a subclass @fodec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

classStreamWriter (stream, [errors)
Constructor for &treamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing binary data.

8.8. codecs — Codec registry and base classes 105

The Python Library Reference, Release 2.6.4

The StreamWriter may implement different error handling schemes by providingetiiers keyword
argument. These parameters are predefined:

*’strict’ RaiseValueError (or a subclass); this is the default.

*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

o’xmlicharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &tithem\Writer
object.

The set of allowed values for thegrors argument can be extended wittgister_error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, theeamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

TheStreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

classStreamReader (stream, [errors)

Constructor for é&streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword argu-
ments, but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiiers keyword
argument. These parameters are defined:

*’strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.
*replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime &tthemReader
object.

The set of allowed values for thegrors argument can be extended witkgister_error()

read ([size, [chars, [firstline]]])
Decodes data from the stream and returns the resulting object.

charsindicates the number of characters to read from the strezad() will never return more than
charscharacters, but it might return less, if there are not enough characters available.

106

Chapter 8. String Services

The Python Library Reference, Release 2.6.4

sizeindicates the approximate maximum number of bytes to read from the stream for decoding pur-
poses. The decoder can modify this setting as appropriate. The default value -1 indicates to read and
decode as much as possibéezeis intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on
later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state
markers are available on the stream, these should be read too. Changed in versibar@atgument
added.Changed in version 2.4fRstline argument added.

readline ([size, [keepends]]
Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streamadline() method.

If keependss false line-endings will be stripped from the lines returned. Changed in version 2.4:
keependargument added.

readlines ([sizehint, [keepends]]
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if
keependss true.

sizehint if given, is passed as tl#zeargument to the streanmysad() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, theeamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may
provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned hyothey() function to construct the
instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance.streammust be a file-like objectReaderandWriter must
be factory functions or classes providing theeamReader andStreamWriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaceSttamReader andStreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects
The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned hyothep() function to construct the
instance.

8.8. codecs — Codec registry and base classes 107

The Python Library Reference, Release 2.6.4

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework
on the frontend (the input teead() and output ofwrite()) while Readerand Writer work on the
backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface. Readey Writer must be factory functions or classes
providing objects of th&treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®eaderandWriter for the backend translation.
The intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use
Unicode as the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceSotamReader andStreamWriter — classes.
They inherit all other methods and attributes from the underlying stream.

8.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be prétysé&JAHCODEarrays). Depend-

ing on the way Python is compiled (either vig@nable-unicode=ucs2 or --enable-unicode=ucs4 ,

with the former being the defaulBy_UNICODEis either a 16-bit or 32-bit data type. Once a Unicode object

is used outside of CPU and memory, CPU endianness and how these arrays are stored as bytes become an is-
sue. Transforming a unicode object into a sequence of bytes is called encoding and recreating the unicode object
from the sequence of bytes is known as decoding. There are many different methods for how this transformation
can be done (these methods are also called encodings). The simplest method is to map the codepoints 0-255 to
the bytesOx0-Oxff . This means that a unicode object that contains codepoints abhed@FF can't be en-

coded with this method (which is callelatin-1’ or’iso-8859-1’). unicode.encode() will raise
aUnicodeEncodeError that looks like this:UnicodeEncodeError: ’latin-1' codec can't

encode character u\ul234’ in position 3: ordinal not in range(256)

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the®y@ebxff . To see how this is done simply open

e.g. encodings/cpl1252.py (which is an encoding that is used primarily on Windows). There’s a string
constant with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive
bytes. There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings
are called UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a
little endian machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem:
Bytes will always be in natural endianness. When these bytes are read by a CPU with a different endianness, then
bytes have to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so
called BOM (the “Byte Order Mark”). This is the Unicode charadtetfFEFFE This character will be prepended

to every UTF-16 byte sequence. The byte swapped version of this chat@dHE) is an illegal character

that may not appear in a Unicode text. So when the first character in an UTF-16 byte sequence appears to be a
U+FFFEthe bytes have to be swapped on decoding. Unfortunately upto Unicode 4.0 the chaaeEeihad

a second purpose aZERO WIDTH NO-BREAK SPACK character that has no width and doesn't allow a

word to be split. It can e.g. be used to give hints to a ligature algorithm. With Unicode 4.0UskigFFas a

ZERO WIDTH NO-BREAK SPA®@BEs been deprecated (witht2060 (WORD JOINERassuming this role).
Nevertheless Unicode software still must be able to habtHEEFF in both roles: As a BOM it's a device to
determine the storage layout of the encoded bytes, and vanishes once the byte sequence has been decoded into
a Unicode string; as ZERO WIDTH NO-BREAK SPAGE a normal character that will be decoded like any

other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to

108 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

six 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F OXXXXXXX

U-00000080 ... U-000007FF 120XXXXX LOXXXXXX

U-00000800 ... U-0000FFFF | 11210xxxX 1OXXXXXX 1OXXXXXX

U-00010000 ... U-001FFFFF | 11110xxXx 10XXXXXX LOXXXXXX 1OXXXXXX

U-00200000 ... U-03FFFFFF | 111120xx 10xxXXXX LOXXXXXX LOXXXXXX LOXXXXXX
U-04000000 ... U-7FFFFFFF | 1111110x 10xxxXXX 1OXXXXXX LOXXXXXX LOXXXXXX LOXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and &hyFEFF character in the decoded Unicode string
(even if it's the first character) is treated a8BRO WIDTH NO-BREAK SPACE

Without external information it's impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that's not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn't allow arbitrary byte sequences. To increase the
reliability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python
2.5 calls"utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a
UTF-8 encoded BOM (which looks like this as a byte seque@zef , Oxbb , Oxbf) is written. As it's rather
improbable that any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER | WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte
sequence, but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write
Oxef , Oxbb, Oxbf as the first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they
appear as the first three bytes in the file.

8.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping

tables. The following table lists the codecs by name, together with a few common aliases, and the languages for
which the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive.

Notice that spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid
aliases; therefore, e.qutf-8’ is a valid alias for théutf 8 codec.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

* an ISO 8859 codeset

< a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control
characters with additional graphic characters

« an IBM EBCDIC code page
< an IBM PC code page, which is ASCIl compatible

Codec Aliases Language
ascii 646, us-ascii English
bigs big5-tw, csbig5 Traditional
big5hkscs big5-hkscs, hkscs Traditional
cp037 IBM037, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cpd37 437, 1BM437 English

8.8. codecs — Codec registry and base classes

109

The Python Library Reference, Release 2.6.4

Table 8.1 — continued from previous page

cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western E!
cp737 Greek
cp775 IBM775 Baltic lang
cp850 850, IBM850 Western E!
cp852 852, IBM852 Central an
cp855 855, IBM855 Bulgarian,
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portugues:
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Nc
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional
cpl006 Urdu
cpl026 ibm1026 Turkish
cpl140 ibm1140 Western E
cpl250 windows-1250 Central an
cpl251 windows-1251 Bulgarian,
cpl252 windows-1252 Western E
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic lang
cpl258 windows-1258 Viethnames
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c-5601, ks_¢c-5601-1987, ksx1001, ks_x-1001 Korean
gh2312 chinese, ¢sis058gh231280, euc- cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, iscSiimp8fied
gbk 936, cp936, ms936 Unified Ch
gb18030 gb18030-2000 Unified Ch
hz hzgb, hz-gb, hz-gh-2312 Simplified
1502022 _jp €sis02022jp, is02022jp, is0-2022-jp Japanese
502022 jp 1 i502022jp-1, is0-2022-jp-1 Japanese
i502022_jp_2 i502022jp-2, is0-2022-jp-2 Japanese,
i502022_jp_2004 is02022jp-2004, is0-2022-jp-2004 Japanese
i502022_jp_3 i502022jp-3, is0-2022-jp-3 Japanese
i1502022_jp_ext | is02022jp-ext, is0-2022-jp-ext Japanese
i502022_kr €sis02022kr, is02022kr, is0-2022-kr Korean
latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latin1, L1 West Euro
iso8859 2 is0-8859-2, latin2, L2 Central an
iso8859 3 is0-8859-3, latin3, L3 Esperanto.
is0o8859 4 is0-8859-4, latin4, L4 Baltic lang
is08859 5 iS0-8859-5, cyrillic Bulgarian,
is08859 6 is0-8859-6, arabic Arabic
iso8859 7 is0-8859-7, greek, greek8 Greek
iso8859 8 is0-8859-8, hebrew Hebrew

110 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

Table 8.1 — continued from previous page

is08859 9
iso8859 10
is08859 13
is08859_14
is08859_15
johab

koi8_r
koi8 u
mac_cyrillic
mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf 32
utf_32_he
utf_32 le
utf_16
utf_16 be
utf 16 le
utf 7

utf_8
utf_8_sig

is0-8859-9, latinb, L5
is0-8859-10, latin6, L6
is0-8859-13
is0-8859-14, latin8, L8
is0-8859-15

cp1361, ms1361

maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman

macturkish

csptcplbs4, ptl54, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U32, utf32

UTF-32BE

UTF-32LE

U16, utfl6

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

Turkish
Nordic lang
Baltic lang
Celtic lang
Western E
Korean
Russian
Ukrainian
Bulgarian,
Greek
Icelandic
Central an
Western E
Turkish
Kazakh
Japanese
Japanese
Japanese
all languag
all languag
all languag
all languag
all languag
all languag
all languag
all languag
all languag

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery
that any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the
“decoding” direction is listed as operand type in the table.

8.8. codecs — Codec registry and base classes

111

The Python Library Reference, Release 2.6.4

Codec Aliases Operand Purpose
type
base64 cothese64, base-64 | byte Convert operand to MIME base64
string
bz2 codecbz2 byte Compress the operand using bz2
string
hex_codef hex byte Convert operand to hexadecimal representation, with two digits
string | per byte
idna Uni- ImplementsRFC 349Q see als@ncodings.idna
code
string
mbcs dbcs Uni- Windows only: Encode operand according to the ANSI codepage
code (CP_ACP)
string
palmos Uni- Encoding of PalimOS 3.5
code
string
puny- Uni- ImplementsRFC 3492
code code
string
quo- quopri, byte Convert operand to MIME quoted printable
pri_codec| quoted-printable, | string
guotedprintable
raw_unicqde_escape Uni- Produce a string that is suitable as raw Unicode literal in Python
code source code
string
rot 13 rotl3 Uni- Returns the Caesar-cypher encryption of the operand
code
string
string_escgape byte Produce a string that is suitable as string literal in Python soufce
string | code
unde- any Raise an exception for all conversions. Can be used as the system
fined encoding if no automaticoercionbetween byte and Unicode
strings is desired.
uni- Uni- Produce a string that is suitable as Unicode literal in Python
code_escape code source code
string
uni- Uni- Return the internal representation of the operand
code_internal code
string
uu_codec| uu byte Convert the operand using uuencode
string
zlib_codec zip, zlib byte Compress the operand using gzip
string

New in version 2.3: Th&na andpunycode encodings.

8.8.4 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3. This module implemerits-C 3490(Internationalized Domain Names in Applications) and
RFC 3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the
punycode encoding andtringprep

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name
containing non-ASCII characters (such asvw.Alliancefrancaise.nu) is converted into an ASCII-
compatible encoding (ACE, such asvw.xn--alliancefranaise-npb.nu). The ACE form of the do-

main name is then used in all places where arbitrary characters are not allowed by the protocol, such as DNS
queries, HTTFHost fields, and so on. This conversion is carried out in the application; if possible invisible to

112 Chapter 8. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.6.4

the user: The application should transparently convert Unicode domain labels to IDNA on the wire, and convert
back ACE labels to Unicode before presenting them to the user.

Python supports this conversion in several ways: iima codec allows to convert between Unicode and the

ACE. Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications
need not be concerned about converting host names themselves when they pass them to the socket module. On top
of that, modules that have host names as function parameters, shtthldéis andftplib , accept Unicode

host namest(tplib then also transparently sends an IDNA hostname iHibst field if it sends that field at

all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode
is performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normaliza-
tions on host names, to achieve case-insensitivity of international domain names, and to unify similar characters.
The nameprep functions can be used directly if desired.

nameprep (label)
Return the nameprepped version label. The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII (label)
Convert a label to ASCII, as specifiediti-C 3490 UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specifiedRRC 349Q

8.8.5 encodings.utf 8 sig — UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM
will be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write
to the byte stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

8.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based obnimdeData.txt file version 5.1.0 which is publicly
available fromftp://ftp.unicode.org/

The module uses the same names and symbols as defined by the UnicodeData File Format 5.1.0 (see
http://www.unicode.org/Public/5.1.0/ucd/UCD.h)mlt defines the following functions:

lookup (nam§
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr, [default)
Returns the name assigned to the Unicode charactiehr as a string. If no name is definedefaultis
returned, or, if not givenyalueError s raised.

decimal (unichr, [default)
Returns the decimal value assigned to the Unicode charnawiehr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError is raised.

digit (unichr, [default)
Returns the digit value assigned to the Unicode charactahr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError is raised.

numeric (unichr, [default)
Returns the numeric value assigned to the Unicode charatehr as float. If no such value is defined,
defaultis returned, or, if not giveriyalueError is raised.

8.9. unicodedata — Unicode Database 113

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

The Python Library Reference, Release 2.6.4

category (‘unichr)
Returns the general category assigned to the Unicode chavnadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode charattdr as string. If no such value is
defined, an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode chanaictaras integer. Return® if no
combining class is defined.

east_asian_width (‘unichr)
Returns the east asian width assigned to the Unicode chavsnitér as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode chanawithr as integer. Returrisif the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chamadtteas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringunistr. Valid values forform are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD'.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition
of canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed
in various way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA)

can also be expressed as the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL
LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD)
is also known as canonical decomposition, and translates each character into its decomposed form. Normal
form C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence.
In Unicode, certain characters are supported which normally would be unified with other characters. For
example, U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL
LETTERI). However, itis supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility
characters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposi-
tion, followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining
characters and the other doesn't, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

unidata_version
The version of the Unicode database used in this module. New in version 2.3.

ucd 320
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata

>>> unicodedata . lookup(' LEFT CURLY BRACKEY)
u'{

>>> unicodedata . name(u’ /")

'SOLIDUS’

>>> unicodedata . decimal(u 9’)

114 Chapter 8. String Services

The Python Library Reference, Release 2.6.4

9
>>> unicodedata .decimal(u a’')
Traceback (most recent call last):
File "<stdin>" , line 1, in ?
ValueError : not a decimal
>>> unicodedata .category(u A') # ’'L'etter, 'u'ppercase

L
>>> unicodedata . bidirectional(u’ \u0660 ') # 'A’rabic, 'N'umber
AN’

8.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to com-
pare such identifications for “equality”. Exactly how this comparison is executed may depend on the application
domain, e.g. whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifi-
cations, to allow only identifications consisting of “printable” characters.

RFC 3454defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto
the wire, they are processed with the preparation procedure, after which they have a certain normalized form. The
RFC defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and
what other optional parts of thetringprep ~ procedure are part of the profile. One example stirangprep

profile isnameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to
represent them as dictionaries or lists, the module uses the Unicode character database internally. The module
source code itself was generated usingrttiestringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a sgtjngprep provides the “characteristic function”, i.e. a function that returns true

if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

in_table_ al (code

Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).
in_table bl (codg

Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table_b2 (codg
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table_b3 (codg
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normaliza-
tion).
in_table_c11 (codg
Determine whethetodeis in tableC.1.1 (ASCII space characters).
in_table c12 (codd
Determine whethetodeis in tableC.1.2 (Non-ASCIl space characters).
in_table_c11_c12 (codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).
in_table c21 (codd
Determine whethecodeis in tableC.2.1 (ASCII control characters).
in_table_c22 (codg
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).
in_table c21 c22 (codg
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

8.10. stringprep — Internet String Preparation 115

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.6.4

in_table ¢c3 (codé
Determine whethetodeis in tableC.3 (Private use).

in_table_c4 (codeg
Determine whethetodeis in tableC.4 (Non-character code points).

in_table ¢c5 (code
Determine whethetodeis in tableC.5 (Surrogate codes).

in_table c6 (codg
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in_table_c7 (code
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in_table ¢8 (codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in_table_c9 (code
Determine whethetodeis in tableC.9 (Tagging characters).

in_table d1 (codg
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

in_table_d2 (code
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

8.11 fpformat — Floating point conversions

Deprecated since version 2.6: Tipformat module has been removed in Python 3.0. Tgfermat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done usifigthing interpolation operator described
in the String Formatting Operationsection.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digsdigits after the point and at least one digit beforadifs <= 0 , the
decimal point is suppressed.

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.

sci (X, dig9
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifs
<= 0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passeftf orsci() as thex parameter does not look like a number.
This is a subclass dfalueError ~ when the standard exceptions are strings. The exception value is the
improperly formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat . fix(1.23, 1)
1.2’

116 Chapter 8. String Services

CHAPTER

NINE

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-
type arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particudliat, , list , set (which along withfrozenset
replaces the deprecatedts module), anduple . Thestr class can be used to handle binary data and 8-bit
text, and theunicode class to handle Unicode text.

The following modules are documented in this chapter:

9.1 datetime — Basic date and time types

New in version 2.3. Thelatetime module supplies classes for manipulating dates and times in both simple
and complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient
member extraction for output formatting and manipulation. For related functionality, see also¢heand
calendar modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object
has any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment.
Whether a naivelatetime object represents Coordinated Universal Time (UTC), local time, or time in some
other timezone is purely up to the program, just like it's up to the program whether a particular number represents
metres, miles, or mass. Naidatetime objects are easy to understand and to work with, at the cost of ignoring
some aspects of reality.

For applications requiring moréatetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the abstiafti class. Thes&zinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect.
Note that no concreteinfo classes are supplied by tHetetime module. Supporting timezones at whatever
level of detail is required is up to the application. The rules for time adjustment across the world are more political
than rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed inlate or datetime object. MINYEARIs 1.

MAXYEAR
The largest year number allowed irdate or datetime object. MAXYEARS 9999 .

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

117

The Python Library Reference, Release 2.6.4

9.1.1 Available Types

classdate ()
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month , andday .

classtime ()
Anidealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds
(there is no notion of “leap seconds” here). Attributeésur , minute , second , microsecond , and
tzinfo

classdatetime ()
A combination of a date and a time. Attributegear , month, day, hour , minute , second ,
microsecond , andtzinfo

classtimedelta ()
A duration expressing the difference between tiede , time , or datetime instances to microsecond
resolution.

classtzinfo ()
An abstract base class for time zone information objects. These are used dt¢hime andtime
classes to provide a customizable notion of time adjustment (for example, to account for time zone and/or
daylight saving time).

Objects of these types are immutable.
Objects of thedate type are always naive.

An objectd of typetime or datetime may be naive or awared is aware ifd.tzinfo is notNone and
d.tzinfo.utcoffset(d) does not returtNone. If d.tzinfo is None, or if d.tzinfo is notNone but
d.tzinfo.utcoffset(d) returnsNone, d is naive.

The distinction between naive and aware doesn't appiyitedelta objects.
Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

9.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

classtimedelta ([days, [seconds, [microseconds, [milliseconds, [minutes, [hours, [weeks])]
All arguments are optional and default@o Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days secondsindmicrosecondsire stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.
*A week is converted to 7 days.
and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000

*0 <= seconds < 3600*24 (the number of seconds in one day)

118 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

+-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float,
the conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated ra@gesflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta

>>> d = timedelta(microseconds =1)

>>> (d . days, d .seconds, d . microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negativemedelta object,timedelta(-999999999)

max
The most positive timedelta object, timedelta(days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999)

resolution
The smallest possible difference between non-equaltimedelta objects,
timedelta(microseconds=1)

Note that, because of normalizatiotimedelta.max > -timedelta.min . -timedelta.max is not

representable astenedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusjve
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive
Supported operations:
Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 == t3 andt1-t3 ==t2 are true. (1)
t1 =t2 - t3 Difference oft2 andt3. Afterwardstl ==1t2 - t3 andt2 ==t1 + t3 are true.
1)
t1 =t2 *iortl =i Delta multiplied by an integer or long. Afterwartls// i == t2 is true,
* 12 providedi != 0
In generalfl *i == t1* (i-1) + tlis true. (1)
t1 =12 /i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns dimedelta object with the same value. (2)
-t1 equivalent taimedelta (-t1.days -t1l.secondstl.microsecondsand
to t1* -1. (1)(4)
abs(t) equivalent to +whent.days >= 0 ,andtotwhent.days < 0 . (2)
Notes:

1. This is exact, but may overflow.

2. This is exact, and cannot overflow.

3. Division by 0 raise&eroDivisionError

4. -timedelta.maxs not representable adienedelta object.

In addition to the operations listed abowmedelta objects support certain additions and subtractions with
date anddatetime objects (see below).

9.1. datetime — Basic date and time types 119

The Python Library Reference, Release 2.6.4

Comparisons ofimedelta objects are supported with thienedelta object representing the smaller dura-

tion considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the
default comparison by object address, wheimaedelta object is compared to an object of a different type,
TypeError is raised unless the comparisorris or I= . The latter cases retufralse or True , respectively.

timedelta objects arénashablgusable as dictionary keys), support efficient pickling, and in Boolean contexts,
atimedelta object is considered to be true if and only if it isn't equatitnedelta(0)

Example usage:

>>> from datetime import timedelta

>>> year = timedelta(days =365)

>>> another_year = timedelta(weeks =40, days =84, hours =23,

minutes =50, seconds =600) # adds up to 365 days
>>> year == another_year
True

>>> ten_years = 10 * year
>>> ten_years, ten_years .days // 365

(datetime.timedelta(3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, nine_years .days // 365
(datetime.timedelta(3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years .days // 365
(datetime.timedelta(1095), 3)

>>> abs (three_years - ten_years) == 2 * three_years + year
True

9.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called
day number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book Calendrical Calculations, where it's the base calendar for all computations. See the book for
algorithms for converting between proleptic Gregorian ordinals and many other calendar systems.

classdate (year, month, day
All arguments are required. Arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
°l <= month <= 12
el <= day <= number of days in the given month and year
If an argument outside those ranges is givéalueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalentiabe.fromtimestamp(time.time())

fromtimestamp (timestamp
Return the local date corresponding to the POSIX timestamp, such as is returtiedebyme()
This may raisevalueError , if the timestamp is out of the range of values supported by the platform
C localtime() function. It's common for this to be restricted to years from 1970 through 2038. Note
that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are
ignored byfromtimestamp()

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unles@ <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) == d

120 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

Class attributes:

min

The earliest representable dadate(MINYEAR, 1, 1)
max

The latest representable datete(MAXYEAR, 12, 31)
resolution

The smallest possible difference between non-equal date olijestslelta(days=1)
Instance attributes (read-only):

year
BetweenVIINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = datel + timedelta dateZ2is timedelta.days days removed frordatel (1)
date2 = datel - timedelta Computeglate2such thatdate2 + timedelta == datel . (2
timedelta = datel - date2 3)
datel < date2 datelis considered less thatate2whendatelprecedeslate2in time. (4)
Notes:
1. date2 is moved forward in time iftimedelta.days > 0 , or backward iftimedelta.days
< 0. Afterward date2 - datel == timedelta.days . timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised ifdate2.year would be

smaller tharMINYEARor larger tharMAXYEAR

2. This isn't quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases
where datel - timedelta does ndimedelta.seconds andtimedelta.microseconds are ig-
nored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 +
timedelta == datel after.

4. In other wordsdatel < date2 if and only if datel.toordinal() < date2.toordinal()
In order to stop comparison from falling back to the default scheme of comparing object addresses date
comparison normally raiseSypeError if the other comparand isn’t also @ate object. However,
Notlmplemented is returned instead if the other comparand hésatuple() attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, ddien a
object is compared to an object of a different typgpeError s raised unless the comparisorss or
= . The latter cases retufralse or True , respectively.

Dates can be used as dictionary keys. In Boolean contextaiall objects are considered to be true.
Instance methods:

replace (year, month, day
Return a date with the same value, except for those members given new values by whichever keyword
arguments are specified. For example iE= date(2002, 12, 31) , thend.replace(day=26)
= date(2002, 12, 26)

timetuple ()
Return aime.struct_time such as returned byme.localtime() . The hours, minutes and sec-
onds are 0, and the DST flag is -d.timetuple() is equivalent tdime.struct_time((d.year,
d.month, d.day, 0, 0, 0, d.weekday(), d.toordinal() - date(d.year, 1,
1).toordinal() + 1, -1))

9.1. datetime — Basic date and time types 121

The Python Library Reference, Release 2.6.4

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. Bateany
objectd, date.fromordinal(d.toordinal()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For exkatgi)02,
12, 4).weekday() == , @ Wednesday. See alsmweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For exmatgi002,
12, 4).isoweekday() == , a Wednesday. See als@ekday() ,isocalendar()

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar. h&egéwww.phys.uu.nl/
vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday.
The first week of an I1SO year is the first (Gregorian) calendar week of a year containing a Thursday. This
is called week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, soda& (2003, 12, 29).isocalendar() == (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7) .

isoformat ()
Return a string representing the date in ISO 8601 format, ‘YYYY-MM-DD'. For exang#ég (2002,
12, 4).isoformat() == '2002-12-04

_str ()
For a dated, str(d) is equivalent tal.isoformat()

ctime ()
Return a string representing the date, for exampledate(2002, 12,
4).ctime() == 'Wed Dec 4 00:00:00 2002’ . d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native €time()
function (whichtime.ctime() invokes, but whicldate.ctime() does not invoke) conforms to the
C standard.

stritime (formal)
Return a string representing the date, controlled by an explicit format string. Format codes referring to
hours, minutes or seconds will see 0 values. See segtifiime() Behavior

Example of counting days to an event:

>>> import time
>>> from datetime import date
>>> today = date . today()

>>> today
datetime.date(2007, 12, 5)
>>> today == date . fromtimestamp(time . time())
True
>>> my_birthday = date(today .year, 6, 24)
>>> if my_birthday < today:
my_birthday = = my_birthday . replace(year =today .year + 1)

>>> my_birthday
datetime.date(2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday . days
202

Example of working withdate :

122 Chapter 9. Data Types

http://www.phys.uu.nl/

The Python Library Reference, Release 2.6.4

>>> from datetime import date

>>> d = date . fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date(2002, 3, 11)

>>> t = d. timetuple()

>>> for i in t

print i

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> jc = d. isocalendar()

>>> for i in ic:

print i

2002 # 1SO vyear

11 # 1ISO week number

1 # 1SO day number (1 = Monday)
>>> d. isoformat()

'2002-03-11"

>>> d. stritime(" %d %m/%")

'11/03/02’

>>> d. stritime(" OA | 9B %)

'Monday 11. March 2002’

9.1.4 datetime Objects

A datetime object is a single object containing all the information frordade object and a@ime object.
Like adate object,datetime assumes the current Gregorian calendar extended in both directions; like a time
object,datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, day, [hour, [minute, [second, [microsecond, [tzinfo]J]]]
The year, month and day arguments are requidfomay beNone, or an instance of zinfo subclass.
The remaining arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*l <= month <= 12
*1 <= day <= number of days in the given month and year
*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is givéanlueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None. This is equivalent to
datetime.fromtimestamp(time.time()) . See alsmow() , fromtimestamp()

9.1. datetime — Basic date and time types 123

The Python Library Reference, Release 2.6.4

now([tz])
Return the current local date and time. If optional arguminis None or not specified, this is
like today() , but, if possible, supplies more precision than can be gotten from going through
a time.time() timestamp (for example, this may be possible on platforms supplying the C
gettimeofday() function).

Else tz must be an instance of a classzinfo subclass, and the current date

and time are converted tazs time zone. In this case the result is equivalent to

tz.fromutc(datetime.utcnow().replace(tzinfo=tz)) . See alsaoday() , utcnow()
utcnow ()

Return the current UTC date and time, witinfo ~ None. This is likenow() , but returns the current
UTC date and time, as a naidatetime object. See alsoow() .

fromtimestamp (timestamp, [tZ)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by
time.time() . If optional argumentz is None or not specified, the timestamp is converted to the plat-
form’s local date and time, and the returrémietime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted totzs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz))

fromtimestamp() may raise/alueError , if the timestamp is out of the range of values supported by

the platform Clocaltime() orgmtime() functions. It's common for this to be restricted to years in
1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a times-
tamp, leap seconds are ignored foymtimestamp() , and then it's possible to have two timestamps
differing by a second that yield identicdhtetime objects. See alsotcfromtimestamp()

utcfromtimestamp (timestamp
Return the UTQlatetime corresponding to the POSIX timestamp, withhfo None. This may raise
ValueError , if the timestamp is out of the range of values supported by the platfogmt®ne() func-
tion. It's common for this to be restricted to years in 1970 through 2038. Seé&atstmestamp()

fromordinal (ordinal)
Return thedatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has
ordinal 1.ValueError israised unless <= ordinal <= datetime.max.toordinal() . The
hour, minute, second and microsecond of the result are all 0zarfd is None.

combine (date, timg
Return a newdatetime object whose date members are equal to the gilere object’'s, and whose
time andtzinfo members are equal to the givéime object's. For anydatetime objectd, d
== datetime.combine(d.date(), d.timetz()) . If date is adatetime object, its time and
tzinfo members are ignored.

strptime (date_string, format
Return adatetime corresponding talate_string parsed according téormat This is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])) . ValueError is raised if
the date_string and format can't be parsedibye.strptime() or if it returns a value which isn't a
time tuple. New in version 2.5.

Class attributes:

min
The earliest representabiatetime , datetime(MINYEAR, 1, 1, tzinfo=None)

max
The latest representabtéatetime , datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None)

resolution

The smallest possible difference between non-equaldatetime objects,
timedelta(microseconds=1)

Instance attributes (read-only):

124 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

year
BetweenVIINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as ttenfoargument to thelatetime constructor, oNone if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta D)

datetime2 = datetimel - timedelta (2)

timedelta = datetimel - datetime2 3)

datetimel < datetime2 Compareslatetime to datetime . (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in time if
timedelta.days > 0, or backward itimedelta.days < 0. The result has the sartenfo mem-
ber as the input datetime, and datetime2 - datetimel == timedelta &ftesrflowError is raised if
datetime2.year would be smaller thaiNYEARor larger tharIAXYEARNote that no time zone adjust-
ments are done even if the input is an aware object.

2. Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the
sametzinfo member as the input datetime, and no time zone adjustments are done even if the input is
aware. This isn't quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow
in cases where datetimel - timedelta does not.

3. Subtraction of alatetime from adatetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naivgpeError s raised.

If both are naive, or both are aware and have the sam® member, thézinfo members are ignored,
and the result is @&medelta objectt such thatdatetime2 + t == datetimel . No time zone
adjustments are done in this case.

If both are aware and have differetsinfo ~ members,a-b acts as ifa and b were first converted
to naive UTC datetimes first. The result (a.replace(tzinfo=None) - a.utcoffset())

- (b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never over-
flows.

4. datetimels considered less thatatetime2vhendatetimelprecedeslatetimen time.

If one comparand is naive and the other is awargeError is raised. If both comparands are aware,
and have the sameinfo member, the commotzinfo member is ignored and the base datetimes are
compared. If both comparands are aware and have differgrib members, the comparands are first
adjusted by subtracting their UTC offsets (obtained fs®ti.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raiségpeError if the other comparand isn’t alsodatetime object.
However,Notimplemented is returned instead if the other comparand hasnatuple() attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a

9.1. datetime — Basic date and time types 125

The Python Library Reference, Release 2.6.4

datetime objectis compared to an object of a different typgpeError is raised unless the comparison
is==or!=. The latter cases retufralse or True , respectively.

datetime objects can be used as dictionary keys. In Boolean contextitalime objects are considered to
be true.

Instance methods:

date ()
Returndate object with same year, month and day.

time ()
Returntime object with same hour, minute, second and microsectomuo is None. See also method
timetz()

timetz ()
Returntime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time()

replace ([year, [month, [day, [hour, [minute, [second, [microsecond, [tzinfol]]]]]]]
Return a datetime with the same members, except for those members given new values by whichever key-
word arguments are specified. Note tt@bfo=None can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.

astimezone (12
Return adatetime object with newtzinfo memberntz, adjusting the date and time members so the
result is the same UTC time aslf but intZs local time.

tzmust be an instance oftainfo subclass, and itstcoffset() anddst() methods must not return
None. self must be awaresglf.tzinfo must not beNone, andself.utcoffset() must not return
None).

If self.tzinfo is tz, self.astimezone(tz) is equal toself: no adjustment of date or time mem-
bers is performed. Else the resultis local time in time zaneepresenting the same UTC timeszdf: after
astz = dt.astimezone(tz) ,astz - astz.utcoffset() will usually have the same date and
time members adt - dt.utcoffset() . The discussion of clagginfo explains the cases at Day-

light Saving Time transition boundaries where this cannot be achieved (an issue tnimatiels both
standard and daylight time).

If you merely want to attach a time zone objézto a datetimedt without adjustment of date and time
members, usdt.replace(tzinfo=tz) . If you merely want to remove the time zone object from an
aware datetimedt without conversion of date and time members, diseeplace(tzinfo=None)

Note that the defaulizinfo.fromutc() method can be overridden inznfo subclass to affect the
result returned bystimezone() . Ignoring error casesistimezone() acts like:

def astimezone (self , tz):
if self .tzinfo is tz:

return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self . utcoffset()) . replace(tzinfo =tz)

Convert from UTC to tz's local time.
return tz . fromutc(utc)

utcoffset ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.utcoffset(self) , and raises an
exception if the latter doesn'’t retuNbne, or atimedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(self) , and raises an exception
if the latter doesn't returfNone, or atimedelta object representing a whole humber of minutes with
magnitude less than one day.

126 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(self) , raises an exception if
the latter doesn’t returNone or a string object,

timetuple ()
Return atime.struct_time such as returned byime.localtime() . d.timetuple() is
equivalent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute,
d.second, d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() +
1, dst)) Thetm_isdst flag of the result is set according to ttist() method:tzinfo is None or
dst() returnsNone, tm_isdst is setto-1 ;elseifdst() returns a non-zero valuem_isdst is set
to1; elsetm_isdst is set to0.

utctimetuple 0
If datetime instanced is naive, this is the same dgimetuple() except thatm_isdst s forced
to O regardless of what.dst() returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtractingl.utcoffset() , and a

time.struct_time for the normalized time is returnedm_isdst is forced to 0. Note that the
result'stm_year member may bé/INYEARL or MAXYEARL, if d.year wasMINYEARor MAXYEAR
and UTC adjustment spills over a year boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The sanselfslate().toordinal()

weekday ()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as

self.date().weekday() . See alsasoweekday()

isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as

self.date().isoweekday() . See alsaveekday() , isocalendar()

isocalendar ()

Return a 3-tuple, (ISO vyear, I1SO week number, ISO weekday). The same as

self.date().isocalendar()

isoformat ([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-
DDTHH:MM:SS.mmmmmm or, ifmicrosecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not returiNone, a 6-character string is appended, giving the UTC offset in (signed)

hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm-+HH:MM or, iifiicrosecond is0YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argumergep(default’T’) is a one-character separator, placed between the date and time

portions of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):

def utcoffset (self , dt): return timedelta(minutes =-399)
>>> datetime(2002, 12, 25, tzinfo =TZ()) .isoformat(' ')
'2002-12-25 00:00:00-06:39’
str ()
For adatetime instance, str(d) is equivalent tal.isoformat(’ ’)
ctime ()
Return a string representing the date and time, for exangégetime(2002, 12, 4,
20, 30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’ . d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native @ime() func-
tion (whichtime.ctime() invokes, but whicldatetime.ctime() does not invoke) conforms to the
C standard.

9.1. datetime — Basic date and time types 127

The Python Library Reference, Release 2.6.4

stritime (formaf)
Return a string representing the date and time, controlled by an explicit format string. See Seittioa()
Behavior

Examples of working with datetime objects:

>>> from datetime import datetime, date, time

>>> # Using datetime.combine()

>>> d = date(2005, 7, 14)

>>> t = time(12, 30)

>>> datetime . combine(d, t)

datetime.datetime(2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()

>>> datetime . now()

datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1
>>> datetime . utcnow()

datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)

>>> # Using datetime.strptime()

>>> dt = datetime . strptime("21/11/06 16:30 ", "%d %m/% %d:%M")
>>> dt

datetime.datetime(2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple() to get tuple of all attributes
>>> tt = dt . timetuple()

>>> for it in ftt

print it
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> jc = dt . isocalendar()
>>> for it in ic:

print it

2006 # 1SO vyear

a7 # 1SO week

2 # I1SO weekday

>>> # Formatting datetime

>>> dt . stritime(" %A, %d 9B % %: %Wp")
"Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT{tzinfo):
def _init (self): # DST starts last Sunday in March
d = datetime(dt .year, 4, 1) # ends last Sunday in October
self .dston = d - timedelta(days =d. weekday() + 1)
d = datetime(dt .year, 11, 1)

self .dstoff = d - timedelta(days =d. weekday() + 1)
def utcoffset (self , dt):
return timedelta(hours =1) + self . dst(dt)
def dst (self , dt):
if self .dston <= dt. replace(tzinfo =None) < self . dstoff:

128 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

return timedelta(hours =1)
else :
return timedelta(0)
def tzname (self ,dt):
return " GMT +1

>>> class GMTZtzinfo):
def __init__ (self):
d = datetime(dt .year, 4, 1)
self .dston = d - timedelta(days =d. weekday() + 1)
d = datetime(dt .year, 11, 1)

self .dstoff = d - timedelta(days =d. weekday() + 1)
def utcoffset (self , dt):
return timedelta(hours =1) + self . dst(dt)
def dst (self , dt):
if self .dston <= dt. replace(tzinfo =None) < self . dstoff:
return timedelta(hours =2)
else :

return timedelta(0)
def tzname (self ,dt):
return " GMT +2

>>> gmtl = GMTL()

>>> # Daylight Saving Time

>>> dtl = datetime(2006, 11, 21, 16, 30, tzinfo =gmtl)
>>> dtl . dst()

datetime.timedelta(0)

>>> dtl . utcoffset()

datetime.timedelta(0, 3600)

>>> dt2 = datetime(2006, 6, 14, 13, O, tzinfo =gmtl)
>>> dt2 . dst()

datetime.timedelta(0, 3600)

>>> dt2 . utcoffset()

datetime.timedelta(0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2 . astimezone(GMT2())

>>> dt3 # doctest: +ELLIPSIS

datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2 # doctest: +ELLIPSIS

datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2 . utctimetuple() == dt3 . utctimetuple()

True

9.1.5 time Objects
A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

classtime (hour, [minute, [second, [microsecond, [tzinfo]]]]
All arguments are optionaltzinfo may beNone, or an instance of &info subclass. The remaining
arguments may be ints or longs, in the following ranges:

*0 <= hour < 24

*0 <= minute < 60

*0 <= second < 60

*0 <= microsecond < 1000000

9.1. datetime — Basic date and time types 129

The Python Library Reference, Release 2.6.4

If an argument outside those ranges is givéalueError is raised. All default td® excepttzinfo, which
defaults toNone.

Class attributes:

min

The earliest representalilene , time(0, 0, 0, 0)
max

The latest representabiiene |, time(23, 59, 59, 999999)
resolution

The smallest possible difference between non-etuad objects,timedelta(microseconds=1) ,
although note that arithmetic agime objects is not supported.

Instance attributes (read-only):

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as the tzinfo argument taithe constructor, oNone if none was passed.

Supported operations:

» comparison ofime totime , wherea is considered less thanwhena precede® in time. If one com-
parand is naive and the other is awargpeError is raised. If both comparands are aware, and have the
sameizinfo member, the commozinfo member is ignored and the base times are compared. If both
comparands are aware and have diffeteimtfo = members, the comparands are first adjusted by subtract-
ing their UTC offsets (obtained frorelf.utcoffset()). In order to stop mixed-type comparisons
from falling back to the default comparison by object address, whignea object is compared to an object
of a different typeTypeError is raised unless the comparisorris or != . The latter cases retufralse
or True , respectively.

* hash, use as dict key
« efficient pickling

 in Boolean contexts, @me object is considered to be true if and only if, after converting it to minutes and
subtractingutcoffset() (or 0 if that's None), the result is non-zero.

Instance methods:

replace ([hour, [minute, [second, [microsecond, [tzinfo]]]]]
Return atime with the same value, except for those members given new values by whichever keyword
arguments are specified. Note tteinfo=None can be specified to create a nafiree from an aware
time , without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not returriNone, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm-+HH:MM or, if self.microsecond is 0,
HH:MM:SS+HH:MM

str ()
For a timet, str(t) is equivalent td.isoformat()

stritime (formai
Return a string representing the time, controlled by an explicit format string. See sedftiome() Behavior

130 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

utcoffset ()
If tzinfo is None, returnsNone, else returnsself.tzinfo.utcoffset(None) , and raises an
exception if the latter doesn’t retuNione or atimedelta object representing a whole number of minutes
with magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(None) , and raises an exception
if the latter doesn't returiNone, or atimedelta object representing a whole number of minutes with
magnitude less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(None) , Or raises an exception
if the latter doesn’t returilone or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT{tzinfo):
def utcoffset (self , dt):
return timedelta(hours =1)
def dst (self , dt):
return timedelta(0)
def tzname (self ,dt):
return " Europe/Prague "
>>> t = time(12, 10, 30, tzinfo =GMTL())
>>> # doctest: +ELLIPSIS
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMT1()
>>> t . isoformat()
'12:10:30+01:00’
>>> t . dst()
datetime.timedelta(0)
>>> t . tzname()
'Europe/Prague’
>>> t . strftime("o 9V %S %)
'12:10:30 Europe/Prague’

9.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to de-
rive a concrete subclass, and (at least) supply implementations of the staridard methods needed by the
datetime methods you use. Theatetime module does not supply any concrete subclassesigb

An instance of (a concrete subclass tfinfo can be passed to the constructors datetime andtime

objects. The latter objects view their members as being in local time, ariditlie object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time
object passed to them.

Special requirement for pickling: Azinfo subclass must have an init_ () method that can be called
with no arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that
may be relaxed in the future.

A concrete subclass dfinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of adaiietime objects. If in doubt, simply implement all of them.

utcoffset (' self, d)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should
be negative. Note that this is intended to be the total offset from UTC; for exampléziiifa object
represents both time zone and DST adjustmentsyffset() should return their sum. If the UTC offset
isn't known, returrNone. Else the value returned must beraedelta object specifying a whole number

9.1. datetime — Basic date and time types 131

The Python Library Reference, Release 2.6.4

of minutes in the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less
than one day). Most implementationsiatoffset() will probably look like one of these two:

return CONSTANT # fixed-offset class
return ~ CONSTANT+ self . dst(dt) # daylight-aware class

If utcoffset() does not returNone, dst() should not returiNone either.
The default implementation afticoffset() raisesNotimplementedError

dst (self, d)
Return the daylight saving time (DST) adjustment, in minutes east of UT®pae if DST information
isn't known. Returntimedelta(0) if DST is not in effect. If DST is in effect, return the offset as a
timedelta object (seeitcoffset() for details). Note that DST offset, if applicable, has already been
added to the UTC offset returned hycoffset() , S0 there’s no need to consudlst() unless you're
interested in obtaining DST info separately. For exampéeetime.timetuple() calls itstzinfo

member'sdst() method to determine how thien_isdst flag should be set, aridinfo.fromutc()
callsdst() to account for DST changes when crossing time zones.

An instancetz of atzinfo subclass that models both standard and daylight times must be consistent in
this sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for evergtetime dt with dt.tzinfo == tz For saneizinfo sub-
classes, this expression yields the time zone’s “standard offset”, which should not depend on the date or
the time, but only on geographic location. The implementatiotiedétime.astimezone() relies on

this, but cannot detect violations; it's the programmer’s responsibility to ensure itizifita subclass

cannot guarantee this, it may be able to override the default implementatiomiof fromutc() to

work correctly withastimezone() regardless.

Most implementations afist() ~ will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn’'t account for DST
return timedelta(0)

or

def dst (self):
Code to set dston and dstoff to the time zone’'s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt. replace(tzinfo =None) < dstoff:
return timedelta(hours =1)

else :
return timedelta(0)

The default implementation afst() raisesNotimplementedError

tzname (self, d)

Return the time zone name corresponding todh&etime objectdt, as a string. Nothing about string
names is defined by thi#atetime module, and there’s no requirement that it mean anything in particular.
For example, “GMT”, “UTC”, “-500", “-5:00", “EDT", “US/Eastern”, “America/New York” are all valid
replies. ReturrNone if a string name isn’t known. Note that this is a method rather than a fixed string
primarily because someginfo subclasses will wish to return different names depending on the specific
value ofdt passed, especially if theinfo class is accounting for daylight time.

The default implementation e¢fname() raisesNotimplementedError

132

Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

These methods are called bylatetime ortime object, in response to their methods of the same names. A
datetime object passes itself as the argument, anidi@ object passeblone as the argument. Azinfo
subclass’s methods should therefore be prepared to acdeptgument oNone, or of classdatetime

WhenNone is passed, it's up to the class designer to decide the best response. For example, ridtmairg
appropriate if the class wishes to say that time objects don’t participate inittie protocols. It may be more
useful forutcoffset(None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When adatetime object is passed in response tal@etime method,dt.tzinfo is the same object as
self tzinfo methods can rely on this, unless user code ¢alilso methods directly. The intent is that the
tzinfo methods interpredt as being in local time, and not need worry about objects in other timezones.

There is one mor&zinfo method that a subclass may wish to override:

fromutc (self, d)
This is called from the defauliatetime.astimezone() implementation. When called from that,
dt.tzinfo is self anddt's date and time members are to be viewed as expressing a UTC time. The
purpose ofromutc() is to adjust the date and time members, returning an equivalent datetsal'sn
local time.

Mosttzinfo subclasses should be able to inherit the defaaihutc() implementation without prob-

lems. It's strong enough to handle fixed-offset time zones, and time zones accounting for both standard
and daylight time, and the latter even if the DST transition times differ in different years. An example of a
time zone the defaufromutc() implementation may not handle correctly in all cases is one where the
standard offset (from UTC) depends on the specific date and time passed, which can happen for political
reasons. The default implementationsastimezone() andfromutc() may not produce the result

you want if the result is one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the defduiimutc() implementation acts like:

def fromutc (self , dt):

raise ValueError error if dt.tzinfo is not self

dtoff = dt . utcoffset()

dtdst = dt . dst()

raise ValueError if dtoff is None or dtdst is None

delta = dtoff - dtdst # this is self's standard offset

if delta:
dt += delta # convert to standard local time
dtdst = dt . dst()
raise ValueError if dtdst is None

if dtdst:

return dt + dtdst
else :

return dt

Exampletzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR= timedelta(hours =1)

A UTC class.

class UTQtzinfo):
myTCct™

def utcoffset (self , dt):
return ZERO

def tzname (self , dt):

9.1. datetime — Basic date and time types 133

The Python Library Reference, Release 2.6.4

return "UTC

def dst (self , dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.

Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset (tzinfo):
""Fixed offset in minutes east from UTC."

def __init__ (self , offset, name):
self . __ offset = timedelta(minutes = offset)
self . __name = name

def utcoffset (self , dt):
return self . __ offset

def tzname (self , dt):
return self . _name

def dst (self , dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET= timedelta(seconds = - _time . timezone)
if _time . daylight:

DSTOFFSET= timedelta(seconds = - _time . altzone)
else :

DSTOFFSET= STDOFFSET
DSTDIFF = DSTOFFSET- STDOFFSET
class LocalTimezone (tzinfo):

def utcoffset (self , dt):
if self . _isdst(dt):
return DSTOFFSET
else :
return STDOFFSET

def dst (self , dt):
if self . _isdst(dt):
return DSTDIFF
else :
return ZERO

def tzname (self , dt):
return _time . tzname[self . _isdst(dt)]

def _isdst (self , dt):
tt = (dt .year, dt .month, dt . day,

134 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

dt . hour, dt . minute, dt . second,
dt . weekday(), O, -1)

stamp = _time . mktime(tt)

tt = _time . localtime(stamp)

return tt .tm_isdst > O

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):

days to go = 6 - dt.weekday()

if days_to_go:

dt += timedelta(days_to_go)

return dt
US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(1, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime(1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime(1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone (tzinfo):

def __init__ (self , hours, reprname, stdname, dstname):
self . stdoffset = timedelta(hours =hours)
self .reprname = reprname
self . stdname = stdname
self . dstname = dstname

def _ repr__ (self):
return self . reprname

def tzname (self , dt):
if self . dst(dt):
return self . dstname
else :

9.1. datetime — Basic date and time types

135

The Python Library Reference, Release 2.6.4

return self . stdname

def utcoffset (self , dt):
return self . stdoffset + self . dst(dt)

def dst (self , dt):

if dt is None or dt. tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt. tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:

dststart, dstend = DSTSTART_1987 2006, DSTEND_1987_2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else :

return ZERO
start = first_sunday_on_or_after(dststart . replace(year =dt . year))
end = first_sunday_on_or_after(dstend . replace(year =dt . year))

Can’'t compare naive to aware objects, so strip the timezone from

dt first.
if start <= dt. replace(tzinfo =None) < end:
return HOUR
else :
return ZERO
Eastern = USTimeZone(-5, "Eastern ", "EST', "EDT')
Central = USTimeZone(-6, "Central ", "CST', "CDT)
Mountain = USTimeZone(- 7, "Mountain ", "MST, "MDT)
Pacific = USTimeZone(-8, "Pacific ", "PST', "PDT')

Note that there are unavoidable subtleties twice per yeatim& subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT
begins the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last
Sunday in October:

UTC 3MM 4MM 5MM 6:MM 7:MM 8:MM
EST 222MM 23:MM OMM 1:MM 2:MM 3:MM
EDT 23:MM OMM 1.MM 2:MM 3:MM 4:MM

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM OMM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn't really make sense on that dayastmezone(Eastern) won't deliver a result withhour == 2 on

the day DST begins. In order faistimezone() to make this guarantee, theinfo.dst() method must
consider times in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the

136 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguouastimezone() mimics the local clock’s behavior by mapping

two adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM
and 6:MM both map to 1:MM when converted to Eastern. In ordeaftimezone() to make this guarantee,

the tzinfo.dst() method must consider times in the “repeated hour” to be in standard time. This is easily
arranged, as in the example, by expressing DST switch times in the time zone’s standard local time.

Applications that can't bear such ambiguities should avoid using hybridb ~ subclasses; there are no ambi-
guities when using UTC, or any other fixed-offsghfo subclass (such as a class representing only EST (fixed
offset -5 hours), or only EDT (fixed offset -4 hours)).

9.1.7 strftime() Behavior

date , datetime ,andtime objects all support atrftime(format) method, to create a string representing
the time under the control of an explicit format string. Broadly spealdrgjftime(fmt) acts like thaime
module’stime.strftime(fmt, d.timetuple()) although not all objects supporttanetuple()
method.

Fortime objects, the format codes for year, month, and day should not be used, as time objects have no such
values. If they're used anywa$900 is substituted for the year, afidfor the month and day.

Fordate objects, the format codes for hours, minutes, seconds, and microseconds should not bedsed, as
objects have no such values. If they're used anywWaig substituted for them. New in version 2.6me and
datetime objects support &f format code which expands to the number of microseconds in the object, zero-
padded on the left to six places. For a naive objecttlzand%Zformat codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a
2-digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, iftcoffset() returnstimedelta(hours=-3, minutes=-30) ,
%zis replaced with the string0330’

%Z If tzname() returnsNone, %Zis replaced by an empty string. Otherwi&is replaced by the returned
value, which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

The exact range of years for whidlrftime() works also varies across platforms. Regardless of platform,
years before 1900 cannot be used.

9.1. datetime — Basic date and time types 137

The Python Library Reference, Release 2.6.4

Di- Meaning Notes
rec-
tive
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%c Locale’s appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%f Microsecond as a decimal number [0,999999], zero-padded on the left Q)
%H Hour (24-hour clock) as a decimal number [00,23].

%I Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale’s equivalent of either AM or PM. 2
%S Second as a decimal number [00,61]. 3)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,%3].
All days in a new year preceding the first Sunday are considered to be in week 0.
%w Weekday as a decimal number [0(Sunday),6].

%W | Week number of the year (Monday as the first day of the week) as a decimal number [00,58).
All days in a new year preceding the first Monday are considered to be in week 0.
%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (5)
%Z Time zone name (empty string if the object is naive).
%% Aliteral "%’ character.

Notes:

1. When used with thstrptime() function, the%f directive accepts from one to six digits and zero pads
on the right.%f is an extension to the set of format characters in the C standard (but implemented separately
in datetime objects, and therefore always available).

2. When used with thetrptime() function, the%opdirective only affects the output hour field if t8él
directive is used to parse the hour.

3. The range really i9 to 61; according to the Posix standard this accounts for leap seconds and the (very
rare) double leap seconds. Tti@e module may produce and does accept leap seconds since it is based
on the Posix standard, but thatetime module does not accept leap secondstiptime() input nor
will it produce them instrftime() output.

4. When used with thetrptime() function, %Uand%Ware only used in calculations when the day of the
week and the year are specified.

5. For example, ifutcoffset() returnstimedelta(hours=-3, minutes=-30) , %z is replaced
with the string’-0330’

9.2 calendar — General calendar-related functions

This module allows you to output calendars like the Uk program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the
last (the European convention). Usetfirstweekday/() to set the first day of the week to Sunday (6) or

to any other weekday. Parameters that specify dates are given as integers. For related functionality, see also the
datetime andtime modules.

Most of these functions and classses rely ondthieetime module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Grego-

138 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

rian” calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it's the base calendar for all
computations.

classCalendar ([firstweekday]
Creates aalendar object. firstweekdays an integer specifying the first day of the weékis Monday
(the default)6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for for-
matting. This class doesn’'t do any formatting itself. This is the job of subclasses. New in version 2.5.
Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of firetweekday property.

itermonthdates (year, month
Return an iterator for the montihonth(1-12) in the yeayear. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end
of the month that are required to get a complete week.

itermonthdays2 (year, month
Return an iterator for the montmonthin the yearyear similar to itermonthdates() . Days
returned will be tuples consisting of a day number and a week day number.

itermonthdays (year, month
Return an iterator for the montmonthin the yearyear similar to itermonthdates() . Days
returned will simply be day numbers.

monthdatescalendar (year, month
Return a list of the weeks in the monthonthof the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month
Return a list of the weeks in the montionthof theyearas full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month
Return a list of the weeks in the monthonthof the yearas full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar ('year, [width])
Return the data for the specified year ready for formatting. The return value is a list of month rows.
Each month row contains up width months (defaulting to 3). Each month contains between 4 and 6
weeks and each week contains 1-7 days. Daydategime.date objects.

yeardays2calendar (year, [width])
Return the data for the specified year ready for formatting (similaretvdatescalendar()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, [width])
Return the data for the specified year ready for formatting (similgretodatescalendar()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

classTextCalendar ([firstweekday]
This class can be used to generate plain text calendars. New in versioneX®&alendar instances
have the following methods:

formatmonth (theyear, themonth, [w, [I]}
Return a month’s calendar in a multi-line string. wfis provided, it specifies the width of the date
columns, which are centered. llfs given, it specifies the number of lines that each week will use.
Depends on the first weekday as specified in the constructor or set bytfivetweekday()
method.

prmonth (theyear, themonth, [w, [I]]
Print a month’s calendar as returnedfbymatmonth()

9.2. calendar — General calendar-related functions 139

The Python Library Reference, Release 2.6.4

formatyear (theyear, themonth, [w, [I, [c, [M]]])
Return am-column calendar for an entire year as a multi-line string. Optional parametérandc
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set bytfiretweekday()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, [w, [, [c, [m]]])
Print the calendar for an entire year as returnebloynatyear()

classHTMLCalendar ([firstweekday]
This class can be used to generate HTML calendars. New in versionZMLCalendar instances have
the following methods:

formatmonth (theyear, themonth, [withyegr]
Return a month’s calendar as an HTML table.withyearis true the year will be included in the
header, otherwise just the month name will be used.

formatyear (theyear, themonth, [width]
Return a year's calendar as an HTML tableidth (defaulting to 3) specifies the number of months
per row.

formatyearpage (theyear, [width, [css, [encoding])]
Return a year’s calendar as a complete HTML pagiglth (defaulting to 3) specifies the number of
months per rowcssis the name for the cascading style sheet to be usledie can be passed if no
style sheet should be usezhcodingspecifies the encoding to be used for the output (defaulting to the
system default encoding).

classLocaleTextCalendar ([firstweekday, [locale])
This subclass ofextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

classLocaleHTMLCalendar ([firstweekday, [locale])
This subclass afiTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

For simple text calendars this module provides the following functions.

setfirstweekday (weekday
Sets the weekdayO(is Monday, 6 is Sunday) to start each week. The valld®ONDAYTUESDAY
WEDNESDAYHURSDAYFRIDAY, SATURDAYand SUNDAYare provided for convenience. For ex-
ample, to set the first weekday to Sunday:

import calendar
calendar . setfirstweekday(calendar . SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (yean
ReturnsTrue if yearis a leap year, otherwidealse .

leapdays (vy1,y2
Returns the number of leap years in the range fydito y2 (exclusive), wherglandy2 are years. Changed
in version 2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day
Returns the day of the weeR (s Monday) foryear (1970 —-...), month(1-12), day(1-31).

weekheader (' n)
Return a header containing abbreviated weekday namsgrecifies the width in characters for one weekday.

140 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgeifielmhdmonth

monthcalendar (year, montf
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbigtweekday()

prmonth (theyear, themonth, [w, [I]]
Prints a month’s calendar as returnedrbynth() .

month (theyear, themonth, [w, [I]]
Returns a month’s calendar in a multi-line string using fienatmonth() of the TextCalendar
class. New in version 2.0.

prcal (year, [w, [I, [c]]])
Prints the calendar for an entire year as returnedadyndar()

calendar (year, [w, [, [c]]])
Returns a 3-column calendar for an entire year as a multi-line string usinfprinatyear() of the
TextCalendar class. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned ggnthme() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In factime.gmtime() andtimegm() are each others’ inverse. New in version 2.0.

Thecalendar module exports the following data attributes:

day_name
An array that represents the days of the week in the current locale.

day_abbr
An array that represents the abbreviated days of the week in the current locale.

month_name
An array that represents the months of the year in the current locale. This follows normal convention of
January being month number 1, so it has a length of 13waonth_name[0] is the empty string.

month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal
convention of January being month number 1, so it has a length of 1Banth_abbr[0] is the empty
string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality toittee module.

Module time Low-level time related functions.

9.3 collections — High-performance container datatypes

New in version 2.4. This module implements high-performance container datatypes. Currently, there are two
datatypesdeque anddefaultdict , and one datatype factory functiomamedtuple() . Changed in ver-

sion 2.5: Addediefaultdict .Changed in version 2.6: Addethmedtuple() . The specialized containers
provided in this module provide alternatives to Python’s general purpose built-in contaiinérs, list , set
andtuple

Besides the containers provided here, the optibsddb module offers the ability to create in-memory or file
based ordered dictionaries with string keys usingathedb.btopen() method.

In addition to containers, the collections module provides some ABCs (abstract base classes) that can be used to
test whether a class provides a particular interface, for example, is it hashable or a mapping. Changed in version
2.6: Added abstract base classes.

9.3. collections — High-performance container datatypes 141

The Python Library Reference, Release 2.6.4

9.3.1 ABCs - abstract base classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable __next__ __iter__
Sized _len__
Callable _call__
Sequence| Sized , __getitem___ __contains__ . __iter__, reversed
Iterable index , andcount
Container
MutableSedgbequence __setitem___ Inherited Sequence methods apmpend , reverse
__delitem__ extend , pop, remove, and iadd
andinsert
Set Sized , e, 1t , eq , _ne_, gt ,
lterable _ge_, and__, or____sub__, xor__,
Container andisdisjoint
MutableSet Set add anddiscard Inherited Set methods amtear |, pop, remove ,
_jor__ , iand__ ,__ixor__ ,and__isub__
Mapping | Sized , __getitem___ __contains__ , keys ,items ,values ,get,
lterable _eqg__,and_ne__
Container
MutableMappapping __setitem__ and | Inherited Mapping methods amqap, popitem
__delitem___ clear ,update , andsetdefault
MappingVije8ized _len__
KeysView| MappingView __contains__,__iter__
Set
ltemsView MappingView __contains__,__iter__
Set
ValuesVieWwMappingView __contains__, _iter

These ABCs allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections . Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs.
For example, to write a class supporting the &4t API, it only necessary to supply the three underlying abstract
methods:___contains__ () , _iter_ () ,and__len_ () . The ABC supplies the remaining methods

suchas and_ () andisdisjoint()

class ListBasedSet (collections . Set):
" Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable. ™
def _init (self , iterable):
self .elements = Ist =]
for wvalue in iterable:
if value not in Ist
Ist . append(value)
def _ iter (self):
return iter (self . elements)
def _ contains__ (self , value):
return value in self . elements
def __len__ (self):
return len (self . elements)

142 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

sl = ListBasedSet(' abcdef ")
s2 = ListBasedSet(' defghi ')
overlap = sl & s2 # The __and_ () method is supported automatically

Notes on usinget andMutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new
instances from an iterable. The class constructor is assumed to have a signature in the form
ClassName(iterable) . That assumption is factored-out to an internal classmethod called
_from_iterable() which callscls(iterable) to produce a new set. If thBet mixin is be-
ing used in a class with a different constructor signature, you will need to ovédroiae iterable()
with a classmethod that can construct new instances from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefin@ and
then the other operations will automatically follow suit.

3. TheSet mixin provides a hash() method to compute a hash value for the set; howevdrash__ ()
is not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit
from bothSet() andHashable() ,thendefine _hash = Set._hash

See Also:
» OrderedSet recipfor an example built oMutableSet
» For more about ABCs, see tladc module and?EP 3119

9.3.2 deque objects

classdeque ([iterable, [maxlen]])
Returns a new deque object initialized left-to-right (usimpend()) with data fromiterable If iterable
is not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the
deque with approximately the same O(1) performance in either direction.

Thoughlist objects support similar operations, they are optimized for fast fixed-length operations and
incur O(n) memory movement costs foop(0) andinsert(0, V) operations which change both the

size and position of the underlying data representation. New in version 2ahxlenis not specified or is

None deques may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum
length. Once a bounded length deque is full, when new items are added, a corresponding number of items
are discarded from the opposite end. Bounded length deques provide functionality similartdd the

filter in Unix. They are also useful for tracking transactions and other pools of data where only the most
recent activity is of interest. Changed in version 2.6: Addeklenparameter. Deque objects support the
following methods:

append (X)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length O.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable
Extend the left side of the deque by appending elements iterable Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError

9.3. collections — High-performance container datatypes 143

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119

The Python Library Reference, Release 2.6.4

popleft ()

Remove and return an element from the left side of the deque. If no elements are present, raises an

IndexError

remove (value

Removed the first occurrencewdlue If not found, raises &alueError

rotate (n)

. New in version 2.5.

Rotate the deque steps to the right. Ifiis negative, rotate to the left. Rotating one step to the right is

equivalent tod.appendleft(d.pop())

In addition to the above, deques support iteration,

pickliegy(d) , reversed(d) , copy.copy(d) ,
operator, and subscript references suct[al . In-

dexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

copy.deepcopy(d) , membership testing with tha
Example:

>>> from collections import deque

>>> d = deque(' ghi) #
>>> for elem in d: #
print elem . upper()

G

H

I

>>> d. append(']) #
>>> d. appendleft(') #
>>> d #

deque(['f, 'g, 'h’, 7, 1)

>>> d. pop() #

Ij!

>>> d. popleft() #

lfi

>>> list (d) #

[g, 'h, 7]

>>> d[0] "

Ygl

>>> d[- 1] #

li!

>>> list (reversed(d)) "
', gl

>>>"'h in d #

True

>>> d. extend(’jkl ") #

>>> d

deque(lg’, 'h, 1, j, 'K, 1)

>>> d. rotate(1) #

>>> d

deque(!, 'g’, 'h', 7, J, K]

make a new deque with three items
iterate over the deque’s elements

add a new entry to the right side
add a new entry to the left side
show the representation of the deque
return and remove the rightmost item
return and remove the leftmost item
list the contents of the deque

peek at leftmost item

peek at rightmost item

list the contents of a deque in reverse
search the deque

add multiple elements at once

right rotation

>>> d. rotate(-1) # left rotation
>>> d
deque(T'g’, 'n’, ', 7, 'K, I
>>> deque(reversed(d)) # make a new deque in reverse order
deque(['l, k', J, ', 'h’, g
>>> d. clear() # empty the deque
>>> d. pop() # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>" , line 1, in -toplevel-
144 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

d. pop()
IndexError : pop from an empty deque
>>> d. extendleft(“abc’) # extendleft() reverses the input order
>>> d

deque(['c’, b, 'al)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar tottie filter in Unix:

def tail (filename, n =10):
" Return the last n lines of a file
return deque(open (filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right
and popping to the left:
def moving_average (iterable, n =3):

moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0

http://fen.wikipedia.org/wiki/Moving_average

it = iter (iterable)

d = deque(itertools . islice(it, n -1))
d. appendleft(0)

s = sum(d)

for elem in it
s += elem - d. popleft()
d. append(elem)
yield s / float (n)

Therotate() method provides a way to implemem¢que slicing and deletion. For example, a pure python
implementation oflel d[n] relies on theotate() method to position elements to be popped:

def delete_nth (d, n):

d. rotate(-n)

d. popleft()

d. rotate(n)
To implementdeque slicing, use a similar approach applyingtate() to bring a target element to the left
side of the deque. Remove old entries wathpleft() , add new entries witbxtend() , and then reverse the
rotation. With minor variations on that approach, it is easy to implement Forth style stack manipulations such as
dup, drop , swap, over , pick ,rot , androll

9.3.3 defaultdict objects

classdefaultdict ([default_factory, [...]])
Returns a new dictionary-like objeatefaultdict is a subclass of the built-idict class. It overrides
one method and adds one writable instance variable. The remaining functionality is the same as for the
dict class and is not documented here.

The first argument provides the initial value for ttiefault_factory attribute; it defaults tdNone.
All remaining arguments are treated the same as if they were passeddmitheconstructor, including
keyword arguments. New in version 2d&efaultdict objects support the following method in addition
to the standardict operations:
__missing__ (key
If the default_factory attribute isNone, this raises &eyError exception with thekey as
argument.

9.3. collections — High-performance container datatypes 145

The Python Library Reference, Release 2.6.4

If default_factory is notNone, it is called without arguments to provide a default value for the
givenkey, this value is inserted in the dictionary for tkey, and returned.

If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the getitem__ () method of thedict class when the requested key is
not found; whatever it returns or raises is then returned or raised pgtitem__ ()

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the missing__ () method; it is initialized from the first argument to the
constructor, if present, or tdone, if absent.

defaultdict Examples

Usinglist as thedefault_factory , it is easy to group a sequence of key-value pairs into a dictionary of
lists:

>>> s [("yellow ', 1), ("blue’, 2), ("yellow ', 3), ("blue’', 4), ("red’, 1)]

>>> d defaultdict(list)
>>> for k, v in s:
dlk] . append(v)

5> d. items()
[(blue’, [2, 4]), (red’, [1]), Cyellow’, [1, 3])]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created

using thedefault_factory function which returns an emptist . Thelist.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and théist.append() operation adds another value to the list. This technique is simpler and
faster than an equivalent technique usiig.setdefault()
>>> d = {}
>>> for k, v in s:

d. setdefault(k, []) . append(v)

S>> d. items()
[Cblue’, [2, 4]), (red’, [1]), (yellow’, [1, 3])]

Setting thedefault_factory toint makes thelefaultdict useful for counting (like a bag or multiset
in other languages):

)

>>> g = ' mississippi
>>> d = defaultdict(int)
>>> for k in s:

dk] +=1

5> d. items()
[, 4), (p, 2), (s, 4), (m, 1)]

When a letter is first encountered, it is missing from the mapping, so¢feult_factory function calls
int() to supply a default count of zero. The increment operation then builds up the count for each letter.

The functionint() which always returns zero is just a special case of constant functions. A faster and more
flexible way to create constant functions is to iisetools.repeat() which can supply any constant value
(not just zero):

>>> def constant_factory (value):

return itertools . repeat(value) . next

>>> d = defaultdict(constant_factory(" <missing> ')
>>> d. update(name =’ John’, action ='ran’)

146 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

>>> to " %d
'John ran to <missing>’

Setting thedefault_factory to set makes thelefaultdict useful for building a dictionary of sets:

>>> 5 [("red’, 1), ("blue’, 2), ("red’, 3), ("blue’, 4), ("red’, 1), (’'blue ", 4)]
>>> d defaultdict(set)
>>> for k, v in s:

dlk] . add(v)

>>> d. items()
[Cblue’, set([2, 4])), (red’, set([1, 3]))]

9.3.4 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code.
They can be used wherever regular tuples are used, and they add the ability to access fields by name instead of
position index.

namedtuple (typename, field_names, [verbose]
Returns a new tuple subclass nantgoename The new subclass is used to create tuple-like objects that
have fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass
also have a helpful docstring (with typename and field_names) and a helpégr__ () method which
lists the tuple contents inrrame=value format.

Thefield_namesre a single string with each fieldname separated by whitespace and/or commas, for exam-
ple’x y' or’x, y . Alternatively,field_namegan be a sequence of strings suclibds 'y’]

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be
akeyword such aglass for, return, global, pass print, orraise

If verboseis true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples. New in version 2.6.

Example:

>>> Point = namedtuple(' Point ', 'x y’, verbose =True)
class Point(tuple):
'Point(x, y)’

slots = ()
_fields = (%, 'y)

def __new_ (_cls, x, y):
return _tuple. _new__ (_cls, (X, ¥))

@classmethod
def _make(cls, iterable, new=tuple._ _new__, len=len):
'Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) = 2:
raise TypeError(Expected 2 arguments, got %d’ % len(result))
return result

def _ repr__ (self):
return 'Point(x=%r, y=%r) % self

def _asdict(t):

9.3. collections — High-performance container datatypes 147

The Python Library Reference, Release 2.6.4

'Return a new dict which maps field names to their values’
return {'x: t[0], 'y t[1]}

def _replace(_self, **kwds):
'Return a new Point object replacing specified fields with new values’
result = _self._make(map(kwds.pop, (X, 'y), _self))
if kwds:
raise ValueError('Got unexpected field names: %r % kwds.keys())
return result

def _ getnewargs__ (self):
return tuple(self)

X = _property(_itemgetter(0))
y = _property(_itemgetter(1))
>>> p = Point(11, y =22) # instantiate with positional or keyword arguments
>>> p[0] + p[1] # indexable like the plain tuple (11, 22)
33
>>> X,y = p # unpack like a regular tuple
>>> X, Y
(11, 22)
>>> p.X + p.y # fields also accessible by name
33
>>> p # readable _ repr__ with a name=value style

Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returnedcby thesqlite3
modules:

EmployeeRecord = namedtuple(' EmployeeRecord ', ' name, age, title, department, paygrade
import csv
for emp in map(EmployeeRecord . make, csv . reader(open("employees.csv ", "rb"))):

print emp. name, emp. title

import sqlite3
conn = sglite3 . connect(’/companydata ')
cursor = conn. cursor()
cursor . execute(' SELECT name, age, title, department, paygrade FROM employees ")
for emp in map(EmployeeRecord . _make, cursor . fetchall()):
print emp. name, emp. title

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute.
To prevent conflicts with field names, the method and attribute names start with an underscore.

_make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point . _make(t)
Point(x=11, y=22)

_asdict ()
Return a new dict which maps field names to their corresponding values:

>>> p. _asdict()
{x: 11, 'y 22}

148 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

_replace (kwarg9
Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point(x =11, y =22)
>>> p. _replace(x =33)
Point(x=33, y=22)

>>> for partnum, record in inventory . items():
inventory[partnum] = record . _replace(price =newprices[partnum], timestamp

_fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types
from existing named tuples.

>>> p. _fields # view the field names

(X, y)

>>> Color = namedtuple(' Color ', ’'red green blue ")

>>> Pixel = namedtuple(' Pixel ', Point . _fields + Color . _fields)

>>> Pixel(11, 22, 128, 255, 0)
Pixel(x=11, y=22, red=128, green=255, blue=0)

To retrieve a field whose name is stored in a string, usedhettr() function:

>>> getattr (p, 'x')
11

To convert a dictionary to a named tuple, use the double-star-operator (as desctilmpédaking Argument Lists
(in Python Tutoria)):

>>>d = {"x': 11, 'y’ : 22}

>>> Point(**d)

Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is
how to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple(' Point ', 'x y’')):
_slots__ =)
@property

def hypot (self):
return (self .x ** 2 + self .y ** 2) ** 0.5
def _ str (self):

return ’ Point: x= y= hypot= " % (self .x, self .y, self
>>> for p in Point(3, 4), Point(14, 5/7.):
print p

Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above setslots ~ to an empty tuple. This keeps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple(' Point3D ', Point . _fields +('z2)

Default values can be implemented by usimgplace() to customize a prototype instance:

>>> Account = namedtuple(' Account ', ' owner balance transaction_count ")
>>> default_account = Account(' <owner name>', 0.0, 0)
>>> johns_account = default_account . _replace(fowner =" John’)

9.3. collections — High-performance container datatypes 149

=tim

The Python Library Reference, Release 2.6.4

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple
class declaration:

>>> Status = namedtuple(' Status ', 'open pending closed). _make(range (3))
>>> Status . open, Status . pending, Status . closed
O, 1, 2)
>>> class Status :
open, pending, closed = range (3)
See Also:

Named tuple recipadapted for Python 2.4.

9.4 heapq — Heap queue algorithm

New in version 2.3. This module provides an implementation of the heap queue algorithm, also known as the
priority queue algorithm.

Heaps are arrays for whidteap[k] <= heap[2*k+1] andheap[k] <= heap[2*k+2] for all k, count-
ing elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is thatap[0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more
suitable since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest
(called a “min heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place
sorting).

These two make it possible to view the heap as a regular Python list without surpesgg0] is the smallest
item, andheap.sort() maintains the heap invariant!

To create a heap, use a list initialized [{o, or you can transform a populated list into a heap via function
heapify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heappushpop (heap, item
Pushitemon the heap, then pop and return the smallest item frorheae The combined action runs more
efficiently thanheappush() followed by a separate call teeappop() . New in version 2.6.

heapify (X)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item
Pop and return the smallest item from theap and also push the neitem The heap size doesn'’t
change. If the heap is emptydexError is raised. This is more efficient thamappop() followed by
heappush() , and can be more appropriate when using a fixed-size heap. Note that the value returned may
be larger tharitem! That constrains reasonable uses of this routine unless written as part of a conditional
replacement:

if item > heap[O]:
item = heapreplace(heap, item)

Example of use:

150 Chapter 9. Data Types

http://code.activestate.com/recipes/500261/

The Python Library Reference, Release 2.6.4

>>> from heapq import heappush, heappop
>>> heap = []
>>> data =[1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush(heap, item)

>>> ordered = []
>>> while heap:
ordered . append(heappop(heap))

>>> print ordered

[0, 1, 2, 3, 4, 5 6, 7,8, 9]
>>> data . sort()

>>> print data == ordered
True

Using a heap to insert items at the correct place in a priority queue:

>>> heap = []
>>> data = [(1, 'J'), (4, "N), (3, "H) (2, "0O)]
>>> for item in data:

heappush(heap, item)

>>> while heap:
print heappop(heap)] 1]

J

@)
H
N

The module also offers three general purpose functions based on heaps.

merge (*iterables)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from
multiple log files). Returns aiterator over the sorted values.

Similar tosorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).
New in version 2.6.

nlargest (n, iterable, [key)
Return a list with then largest elements from the dataset definedtbsable key if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to:sorted(iterable, key=key, reverse=True)[:n] New in
version 2.4.Changed in version 2.5: Added the optikegargument.

nsmallest (' n, iterable, [key)
Return a list with then smallest elements from the dataset definedténable key if provided, specifies
a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to:sorted(iterable, key=key)[:n] New in version 2.4.Changed
in version 2.5: Added the optionkéyargument.

The latter two functions perform best for smaller valuesiofFor larger values, it is more efficient to use the
sorted() function. Also, whem==1, it is more efficient to use the built-imin() andmax() functions.

9.4.1 Theory

(This explanation is due to Francois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whidjk] <= a[2*k+1] andalk] <= a[2*k+2] for all k, counting elements from
0. For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a
heap is tha[0] is always its smallest element.

9.4. heapq — Heap queue algorithm 151

The Python Library Reference, Release 2.6.4

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers
below arek, notalk]

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each célis topping2*k+1 and2*k+2 . In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and
the rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the
two topped cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way
to remove it and find the “next” winner is to move some loser (let's say cell 30 in the diagram above) into the O
position, and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This
is clearly logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n)
sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that
the inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation
contexts, where the tree holds all incoming events, and the “win” condition means the smallest scheduled time.
When an event schedule other events for execution, they are scheduled into the future, so they can easily go into
the heap. So, a heap is a good structure for implementing schedulers (this is what | used for my MIDI sequencer

-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a
merging passes for these runs, which merging is often very cleverly organigésivery important that the initial

sort produces the longest runs possible. Tournaments are a good way to that. If, using all the memory available to
hold a tournament, you replace and percolate items that happen to fit the current run, you'll produce runs which
are twice the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly
the same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new
run. Clever and quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

9.5 bisect — Array bisection algorithm

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to
ensure (far in advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge).
Some tapes were even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite
spectacular to watch! From all times, sorting has always been a Great Art! :-)

152 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

This module provides support for maintaining a list in sorted order without having to sort the list after each
insertion. For long lists of items with expensive comparison operations, this can be an improvement over the more
common approach. The module is calledect because it uses a basic bisection algorithm to do its work.

The source code may be most useful as a working example of the algorithm (the boundary conditions are already
right!).

The following functions are provided:

bisect_left (list, item, [lo, [hi]])
Locate the proper insertion point fademin list to maintain sorted order. The parameterandhi may be
used to specify a subset of the list which should be considered; by default the entire list is utedislf
already present ilist, the insertion point will be before (to the left of) any existing entries. The return value
is suitable for use as the first parameteligbinsert() . This assumes théist is already sorted. New
in version 2.1.

bisect_right (list, item, [lo, [hi]])

Similar tobisect_left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.
bisect (..)

Alias for bisect_right()

insort_left (list, item, [lo, [hi]])
Insertitemin list in sorted order. This is equivalentlist.insert(bisect.bisect_left(list,

item, lo, hi), item) . This assumes théist is already sorted. New in version 2.1.

insort_right (list, item, [lo, [hi]])
Similar toinsort_left() , but insertingitemin list after any existing entries afem New in version
2.1.

insort (..)

Alias for insort_right()

9.5.1 Examples

The bisect() function is generally useful for categorizing numeric data. This examplehisest() to
look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A,
75..84isa ‘B, etc.

>>> grades = "FEDCBA
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade (total):
return grades|bisect(breakpoints, total)]

>>> grade(66)

ICI

>>> map(grade, [33, 99, 77, 44, 12, 88])

[E’, 'A’, 'B, 'D, 'F, 'A]

Unlike thesorted() function, it does not make sense for tiieect() functions to havéeyor reversedargu-

ments because that would lead to an inefficent design (successive calls to bisect functions would not “remember”
all of the previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [('red’, 5), ('"blue’, 1), ('yellow ', 8), ('black ', 0)]
>>> data . sort(key =lambda r: [1])

>>> keys = [r[1] for r in data] # precomputed list of keys
>>> data[bisect_left(keys, 0)]

(black’, 0)

>>> data[bisect_left(keys, D]

(blue’, 1)

9.5. bisect — Array bisection algorithm 153

The Python Library Reference, Release 2.6.4

>>> data[bisect_left(keys, 5)]

(red’, 5)

>>> data[bisect_left(keys, 8)]

(yellow’, 8)

9.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by ugjpg@dewhich is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1

b’ signed char int 1

‘B’ unsigned char | int 1

u’ Py_UNICODE | Unicode character 2 (see note)
'h signed short int 2

'H unsigned short| int 2

i) signed int int 2

T unsigned int long 2

T signed long int 4

L unsigned long | long 4

'f float float 4

o’ double float 8

Note: The'u’ typecode corresponds to Python’s unicode character. On narrow Unicode builds this is 2-bytes,
on wide builds this is 4-bytes.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C imple-
mentation). The actual size can be accessed throughtetinsize attribute. The values stored fdr' and

I items will be represented as Python long integers when retrieved, because Python’s plain integer type cannot
represent the full range of C’s unsigned (long) integers.

The module defines the following type:

classarray (typecode, [initializer]
A new array whose items are restricted typecode and initialized from the optionahitializer value,
which must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4:
Formerly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new
array'sfromlist() , fromstring() , or fromunicode() method (see below) to add initial items to
the array. Otherwise, the iterable initializer is passed teettiend() method.

ArrayType
Obsolete alias foarray .

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication.
When using slice assignment, the assigned value must be an array object with the same type code; in all other
casesJypeError israised. Array objects also implement the buffer interface, and may be used wherever buffer
objects are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

154 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

buffer_info 0

Return a tuple(address, length) giving the current memory address and the length in elements
of the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info()[1] * array.itemsize . This is occasionally useful when working with

low-level (and inherently unsafe) I/O interfaces that require memory addresses, such asastfain
operations. The returned numbers are valid as long as the array exists and no length-changing operations
are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method
is maintained for backward compatibility and should be avoided in new code. The buffer interface is docu-
mented inBuffer Objectgin The Python/C ABI

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size;
for other types of valuef®RuntimeError is raised. It is useful when reading data from a file written on a
machine with a different byte order.

count (x)
Return the number of occurrencesxdh the array.

extend (iterable)
Append items froniterableto the end of the array. Iferableis another array, it must haexactlythe same
type code; if notTypeError will be raised. Ifiterableis not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could
only be another array.

fromfile (f, n)
Readn items (as machine values) from the file objeeind append them to the end of the array. If less than
nitems are availables OFError is raised, but the items that were available are still inserted into the array.
f must be a real built-in file object; something else witkead() method won't do.

fromlist (list)
Append items from the list. This is equivalentfr x in list: a.append(x) except that if
there is a type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using théromfile() method).

fromunicode (9)
Extends this array with data from the given unicode string. The array must be aityparray; otherwise
aValueError s raised. Usarray.fromstring(unicodestring.encode(enc)) to append
Unicode data to an array of some other type.

index (X)
Return the smallestsuch that is the index of the first occurrence »fn the array.

insert (i, x)
Insert a new item with valurin the array before position Negative values are treated as being relative to
the end of the array.

pop (il)
Removes the item with the indéXrom the array and returns it. The optional argument defaults taso
that by default the last item is removed and returned.

read (f, n)
Deprecated since version 1.5.1: Use ftwnfile() method. Readh items (as machine values) from
the file objectf and append them to the end of the array. If less thdams are availableEOFError is
raised, but the items that were available are still inserted into the drrayst be a real built-in file object;
something else with eead() method won't do.

remove (X)
Remove the first occurrence wfrom the array.

9.6. array — Efficient arrays of numeric values 155

The Python Library Reference, Release 2.6.4

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of
bytes that would be written to a file by thefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a'typearray; otherwise &alueError

is raised. Usarray.tostring().decode(enc) to obtain a unicode string from an array of some
other type.

write ()
Deprecated since version 1.5.1: Usetthide() method. Write all items (as machine values) to the file
objectf.

When an array object is printed or converted to a string, it is representedrrag(typecode,

initializer) . Theinitializer is omitted if the array is empty, otherwise it is a string if tgpecodéas 'c’ ,
otherwise it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value usimgal() , solong as tharray() function has been imported usifigm array

import array . Examples:

array(1)

array('c’, ' hello world ")
array('u’, u hello \u2641 ")
array(1, [1, 2, 3, 4, 5]
array('d, [1.0, 2.0, 3.141))
See Also:

Module struct ~ Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.nefior further information about Numerical Python. (A PDF version of the
NumPy manual is available attp://numpy.sourceforge.net/numdoc/numdoq.pdf

9.7 sets — Unordered collections of unique elements

New in version 2.3.Deprecated since version 2.6: The busein/frozenset types replace this module. The

sets module provides classes for constructing and manipulating unordered collections of unique elements. Com-
mon uses include membership testing, removing duplicates from a sequence, and computing standard math oper-
ations on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin set ,len(set) ,andfor x in set . Being an unordered collec-
tion, sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing,
or other sequence-like behavior.

Most set applications use tlset class which provides every set method except fdrash__ () . For advanced
applications requiring a hash method, thenutableSet classaddsa hash_ () method but omits methods
which alter the contents of the set. B&ht andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a setnstance(obj, BaseSet)

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines baty () and__hash__ () . As aresult,

156 Chapter 9. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

The Python Library Reference, Release 2.6.4

sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable col-
lections such as tuples or instancesioimutableSet . For convenience in implementing sets of sets, inner
sets are automatically converted to immutable form, for exangs#g[Set(['dog’])]) is transformed to
Set([ImmutableSet(['dog’])])

classSet ([iterable])
Constructs a new emptget object. If the optionaiterable parameter is supplied, updates the set with
elements obtained from iteration. All of the elementéémable should be immutable or be transformable
to an immutable using the protocol described in sedtiartocol for automatic conversion to immutable

classimmutableSet ([iterable])
Constructs a new emptynmutableSet object. If the optionalterable parameter is supplied, updates
the set with elements obtained from iteration. All of the elemenigerable should be immutable or be
transformable to an immutable using the protocol described in se@tmncol for automatic conversion to
immutable

BecausémmutableSet objects provide a_hash__ () method, they can be used as set elements or as
dictionary keysImmutableSet objects do not have methods for adding or removing elements, so all of
the elements must be known when the constructor is called.

9.7.1 Set Objects

Instances ofet andimmutableSet both provide the following operations:

Operation Equivalent | Result
len(s) cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
s.issubset(t) s <=t test whether every elementdnis int
s.issuperset(t) s >=t test whether every elementtiis in s
s.union(t) s |t new set with elements from bogandt
s.intersection(t) S &t new set with elements commongandt
s.difference(t) s -t new set with elements isbut not int
s.symmetric_difference(t) s Mt new set with elements in eithsior t but not both
s.copy() new set with a shallow copy af
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric_difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructiSetite’) &
'cbs’ in favor of the more readabl8et(’abc’).intersection(’cbs’) . Changed in version 2.3.1:

Formerly all arguments were required to be sets. In addition, 8ethandImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset
of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a
subset, but is not equal). A set is greater than another set if and only if the first set is a proper superset of the
second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each ottadr,afdhe following returnFalse : a<b, a==b, or
a>b. Accordingly, sets do not implement thecmp__() method.

Since sets only define partial ordering (subset relationships), the output ligtteert() method is unde-
fined for lists of sets.

The following table lists operations availablelinmutableSet but not found inSet :

Operation Result
hash(s) returns a hash value far

The following table lists operations availableSet but not found innmmutableSet

9.7. sets — Unordered collections of unique elements 157

The Python Library Reference, Release 2.6.4

Operation Equiva- Result
lent
s.update(t) s|=t return ses with elements added fromn
s.intersection_update(t) s&=t return ses keeping only elements also foundtin
s.difference_update(t) s-=t return ses after removing elements found in
s.symmetric_difference_update(t) | s"=t return ses with elements frons or t but not both
s.add(x) add element to sets
s.remove(x) removex from sets; raisesKeyError if not present
s.discard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaises
KeyError if empty
s.clear() remove all elements from sst
Note, the non-operator versionsugfdate() , intersection_update() , difference_update() ,and
symmetric_difference_update() will accept any iterable as an argument. Changed in version 2.3.1:

Formerly all arguments were required to be sets. Also note, the module also includémnaupdate()
method which is an alias farpdate() . The method is included for backwards compatibility. Programmers
should prefer theipdate() method because it is supported by the builsd() andfrozenset() types.

9.7.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, 'Jane’, 'Jack’', ’Janice '])

>>> programmers = Set(['Jack’, 'Sani, ’'Susan’, ’Janice '])

>>> managers = Set(['Jane’, 'Jack’, ’'Susan’, ’Zack'])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers . add(’' Marvin ") # add element

>>> print engineers # doctest: +SKIP
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees . issuperset(engineers) # superset test

False

>>> employees . update(engineers) # update from another set

>>> employees . issuperset(engineers)

True

>>> for group in [engineers, programmers, managers, employees]: # doctest: +SKIP
group . discard(' Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

Set(['Janice’, 'Jack’, 'Sam’])

Set(['Jane’, 'Zack’, 'Jack’])

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack’])

9.7.3 Protocol for automatic conversion to immutable
Sets can only contain immutable elements. For convenience, mi#ablebjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add¢hashableelement, or if it is not hashable, the element is checked to see if it has
an__as_immutable_ () method which returns an immutable equivalent.

SinceSet objects have a_as_immutable_ () method returning an instance biimutableSet , it is
possible to construct sets of sets.

A similar mechanism is needed by thecontains__ () andremove() methods which need to hash an
element to check for membership in a set. Those methods check an element for hashability and, if not, check for a

158 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

__as_temporarily_immutable_ () method which returns the element wrapped by a class that provides
temporary methods for hash__ () ,__eq_ () ,and_ne_ () .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the as_temporarily_immutable__ () method which returns thEet object
wrapped by a new classTemporarilylmmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyimmutableSet . In other words, sets of mutable sets are not thread-safe.

9.7.4 Comparison to the built-in set types
The built-inset andfrozenset types were designed based on lessons learned frosetie module. The
key differences are:
e Set andimmutableSet were renamed teet andfrozenset
« There is no equivalent tBaseSet . Instead, usesinstance(x, (set, frozenset))
« The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.
« The built-in versions have more space efficient pickles.

* The built-in versions do not have union_update() method. Instead, use thgpdate() method
which is equivalent.

 The built-in versions do not have_aepr(sorted=True) method. Instead, use the builtsiapr()
andsorted() functions:repr(sorted(s))

» The built-in version does not have a protocol for automatic conversion to immutable. Many found this
feature to be confusing and no one in the community reported having found real uses for it.

9.8 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfurjc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually
deal with the “outside world” —timefuncshould be callable without arguments, and return a number (the
“time”, in any units whatsoever). Thaelayfundunction should be callable with one argument, compatible
with the output oftimefung and should delay that many time unitelayfuncwill also be called with the
argumenD after each eventis run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time

>>> s = sched . scheduler(time . time, time . sleep)

>>> def print_time (); print "From print_ time ", time . time()

>>> def print_some_times ():
print time . time()
s.enter(5, 1, print_time, ()
s.enter(10, 1, print_time, ()
s. run()
print time . time()

>>> print_some_times()
930343690.257
From print_time 930343695.274

9.8. sched — Event scheduler 159

The Python Library Reference, Release 2.6.4

From print_time 930343700.273
930343700.276

In multi-threaded environments, tiseheduler class has limitations with respect to thread-safety, inability to
insert a new task before the one currently pending in a running scheduler, and holding up the main thread until the
event queue is empty. Instead, the preferred approach is to ugsedheing.Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time ():

print " From print_time

, time . time()

>>> def print_some_times ():
print time . time()
Timer(5, print_time, () . start()
Timer(10, print_time, () . start()
time . sleep(11) # sleep while time-delay events execute
print time . time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343701.301

9.8.1 Scheduler Objects

scheduler instances have the following methods and attributes:

enterabs (time, priority, action, argument
Schedule a new event. Tliene argument should be a numeric type compatible with the return value of
thetimefuncfunction passed to the constructor. Events scheduled for the thaeill be executed in the
order of theirpriority.

Executing the event means executamion(*argument) . argumentmust be a sequence holding the
parameters foaction

Return value is an event which may be used for later cancellation of the evenbt(ses()).

enter (delay, priority, action, argumeit
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect
and the return value are the same as thoseritzrabs()

cancel (evenj
Remove the event from the queue.elfentis not an event currently in the queue, this method will raise a
ValueError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using tedayfunc() function passed to the con-
structor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunccan raise an exception. In either case, the scheduler will maintain a consistent
state and propagate the exception. If an exception is raisedttign the event will not be attempted in
future calls torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will
simply fall behind. No events will be dropped; the calling code is responsible for canceling events which
are no longer pertinent.

160 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as
anamed tuplavith the following fields: time, priority, action, argument. New in version 2.6.

9.9 mutex — Mutual exclusion support

Deprecated since version Thetutex module has been removed in Python 3.0. Tihgex module defines a
class that allows mutual-exclusion via acquiring and releasing locks. It does not require (ortimphging
or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue
is empty. Otherwise, the queue contains zero or ngfaection, argument) pairs representing
functions (or methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not
empty, the first queue entry is removed andutsction(argument) pair called, implying it now has

the lock.

Of course, no multi-threading is implied — hence the funny interfacefdt() , where a function is called
once the lock is acquired.

9.9.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and retlime , otherwise, returiFalse .

lock (function, argument

Executefunction(argument) , unless the mutex is locked. In the case it is locked, place the function
and argument on the queue. $eéock() for explanation of whefunction(argument) is executed
in that case.

unlock ()

Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

9.10 queue — A synchronized queue class

Note: The Queue module has been renameddoeue in Python 3.0. Th&to3tool will automatically adapt
imports when converting your sources to 3.0.

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple threadSu&he class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue,
the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved
(operating like a stack). With a priority queue, the entries are kept sorted (usirigedipe; module) and the

lowest valued entry is retrieved first.

The Queue module defines the following classes and exceptions:

9.9. mutex — Mutual exclusion support 161

The Python Library Reference, Release 2.6.4

classQueue(maxsizg
Constructor for a FIFO queu@naxsizéds an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. Imaxsizds less than or equal to zero, the queue size is infinite.

classLifoQueue (maxsizg
Constructor for a LIFO queuenaxsizds an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. Ifnaxsizds less than or equal to zero, the queue size is infinite. New in version 2.6.

classPriorityQueue (maxsizg
Constructor for a priority queuenaxsizeas an integer that sets the upperbound limit on the number of items
that can be placed in the queue. Insertion will block once this size has been reached, until queue items are
consumed. Ifnaxsizas less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned

by sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form:
(priority_number, data) . New in version 2.6.

exceptionEmpty
Exception raised when non-blockimgt() (or get_nowait()) is called on &ueue object which is
empty.

exceptionFull
Exception raised when non-blockimmyit() (or put_nowait()) is called on @ueue object which is
full.

See Also:

collections.deque is an alternative implementation of unbounded queues with fast atppend() and

popleft() operations that do not require locking.

9.10.1 Queue Objects

Queue objectsueue, LifoQueue , or PriorityQueue) provide the public methods described below.

gsize ()
Return the approximate size of the queue. Note, gsize() > 0 doesn’t guarantee that a subsequent get() will
not block, nor will gsize() < maxsize guarantee that put() will not block.

empty ()
ReturnTrue if the queue is emptyralse otherwise. If empty() return$rue it doesn’t guarantee that
a subsequent call to put() will not block. Similarly, if empty() retuffedse it doesn’t guarantee that a
subsequent call to get() will not block.

full ()
ReturnTrue if the queue is fullFalse otherwise. If full() returnsTrue it doesn’t guarantee that a sub-
sequent call to get() will not block. Similarly, if full() returizalse it doesn’t guarantee that a subsequent
call to put() will not block.

put (item, [block, [timeout])
Putiteminto the queue. If optional argdockis true andimeoutis None (the default), block if necessary
until a free slot is available. limeoutis a positive number, it blocks at mdgheoutseconds and raises the
Full exception if no free slot was available within that time. Otherwidedkis false), put an item on the
queue if a free slot is immediately available, else raisé-tlie exception {imeoutis ignored in that case).
New in version 2.3: Thémeoutparameter.

put_nowait (item)
Equivalent toput(item, False)

get ([block, [timeout]])
Remove and return an item from the queue. If optional afgskis true andimeoutis None (the default),
block if necessary until an item is available. tifneoutis a positive number, it blocks at masineout
seconds and raises tiienpty exception if no item was available within that time. Otherwibto¢k is

162 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

false), return an item if one is immediately available, else rais&thpty exception imeoutis ignored in
that case). New in version 2.3: Thiemeoutparameter.

get_nowait ()
Equivalent toget(False)

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon con-
sumer threads.

task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. Eet@ach
used to fetch a task, a subsequent catbtk_done() tells the queue that the processing on the task is
complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been() into the queue).

Raises &/alueError if called more times than there were items placed in the queue. New in version 2.5.
join ()

Blocks until all items in the queue have been gotten and processed.

The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down

whenever a consumer thread cailsk_done() to indicate that the item was retrieved and all work on it
is complete. When the count of unfinished tasks drops to z@rg) unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker ():
while True :
item = q.get()
do_work(item)
g. task_done()

g = Queue()

for i in range (num_worker_threads):
t = Thread(target = =worker)
t . setDaemon(True)

t . start()
for item in source():
g. put(item)
g. join() # block until all tasks are done

9.11 weakref — Weak references

New in version 2.1. Theveakref module allows the Python programmer to crestak referencet® objects.
In the following, the ternreferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak referencesyrbage collectioris free to destroy the referent and reuse its memory for something
else. A primary use for weak references is to implement caches or mappings holding large objects, where it's
desired that a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionariesVeB&eyDictionary and
WeakValueDictionary classes supplied by theeakref module are an alternative, using weak references

to construct mappings that don’t keep objects alive solely because they appear in the mapping objects. If, for
example, an image object is a value ilveeakValueDictionary , then when the last remaining references to

9.11. weakref — Weak references 163

The Python Library Reference, Release 2.6.4

that image object are the weak references held by weak mappings, garbage collection can reclaim the object, and
its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary =~ andWeakValueDictionary use weak references in their implementation, setting

up callback functions on the weak references that notify the weak dictionaries when a key or value has been
reclaimed by garbage collection. Most programs should find that using one of these weak dictionary types is all
they need — it's not usually necessary to create your own weak references directly. The low-level machinery used
by the weak dictionary implementations is exposed byithekref module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the objeatsl () is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in
Python (but not in C), methods (both bound and unbound), sets, frozensets, file afijeetsitos, type objects,
DBcursor objects from thebsddb module, sockets, arrays, deques, and regular expression pattern objects.
Changed in version 2.4: Added support for files, sockets, arrays, and patterns. Several built-in typesuch as
anddict do not directly support weak references but can add support through subclassing:

class Dict (dict):
pass

obj = Dict(red =1, green =2, blue =3) # this object is weak referenceable

CPython implementation detail: Other built-in types such @sple andlong do not support weak references
even when subclassed.

Extension types can easily be made to support weak referencedlesdeReference Suppdim Extending and
Embedding Pythdn

classref (object, [callback)
Return a weak reference tbject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will ddase to be
returned. Ifcallbackis provided and noione, and the returned weakref object is still alive, the callback
will be called when the object is about to be finalized; the weak reference object will be passed as the only
parameter to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an objes¢ls () method.

Weak references ateashabldf the objectis hashable. They will maintain their hash value even after the
objectwas deleted. Ihash() is called the first time only after thebjectwas deleted, the call will raise
TypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references
have the same equality relationship as their referents (regardlessaaliitck). If either referent has been
deleted, the references are equal only if the reference objects are the same object. Changed in version 2.4:
This is now a subclassable type rather than a factory function; it derivesdiopent

proxy (object, [callback)
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts
instead of requiring the explicit dereferencing used with weak reference objects. The returned object will
have a type of eitheProxyType or CallableProxyType , depending on whethabjectis callable.
Proxy objects are ndtashableregardless of the referent; this avoids a number of problems related to
their fundamentally mutable nature, and prevent their use as dictionary &alfsackis the same as the
parameter of the same name to th&) function.

getweakrefcount (objec)
Return the number of weak references and proxies which refsjéxt

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

164 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no
longer a strong reference to the key. This can be used to associate additional data with an object owned by
other parts of an application without adding attributes to those objects. This can be especially useful with
objects that override attribute accesses.

Note: Caution: Because ®WeakKeyDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure fdeakKeyDictionary ~ because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references
directly. The references are not guaranteed to be “live” at the time they are used, so the result of calling the
references needs to be checked before being used. This can be used to avoid creating references that will cause
the garbage collector to keep the keys around longer than needed.

iterkeyrefs 0
Return anterator that yields the weak references to the keys. New in version 2.5.

keyrefs ()
Return a list of weak references to the keys. New in version 2.5.

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong
reference to the value exists any more.

Note: Caution: Because @eakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure fgeakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic”
(as a side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues
as theiterkeyrefs() andkeyrefs() methods ofVeakKeyDictionary objects.

itervaluerefs 0
Return arniterator that yields the weak references to the values. New in version 2.5.

valuerefs ()
Return a list of weak references to the values. New in version 2.5.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same
as the standarleferenceError ~ exception.

See Also:

PEP 0205 Weak ReferencesThe proposal and rationale for this feature, including links to earlier implementa-
tions and information about similar features in other languages.

9.11. weakref — Weak references 165

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 2.6.4

9.11.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object :
pass

>>> 0 = Object()

>>> r = weakref . ref(o)
>>> 02 = 1()

>>> 0 is 02

True

If the referent no longer exists, calling the reference object refuoms:

>>> del o0, 02
>>> print ()
None

Testing that a weak reference object is still live should be done using the expresigjois not None
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o = r()
if o is None:
referent has been garbage collected
print " Object has been deallocated; can "t frobnicate.
else :
print " Object is still live!
0. do_something_useful()

n

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause
a weak reference to become invalidated before the weak reference is called; the idiom shown above is safe in
threaded applications as well as single-threaded applications.

Specialized versions otf objects can be created through subclassing. This is used in the implementation of
theWeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most
useful to associate additional information with a reference, but could also be used to insert additional processing
on calls to retrieve the referent.

This example shows how a subclasseff can be used to store additional information about an object and affect
the value that's returned when the referent is accessed:

import weakref

class ExtendedRef (weakref . ref):

def __init (self , ob, callback =None, **annotations):
super (ExtendedRef, self). __init_ (ob, callback)
self . _counter =0

for Kk, v in annotations . iteritems():
setattr (self , k, v)

def _ call__ (self):
""" Return a pair containing the referent and the number of
times the reference has been called.
ob = super (ExtendedRef, self). __cal_ ()
if ob is not None:

self .__counter += 1
ob = (ob, self .__counter)
return ob

166 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

9.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The
IDs of the objects can then be used in other data structures without forcing the objects to remain alive, but the
objects can still be retrieved by ID if they do.

import weakref

_id20obj_dict = weakref . WeakValueDictionary()
def remember (obj):

oid = id (obj)

_id2obj_dict[oid] = obj

return oid

def id2obj (oid):
return _id2obj_dict[oid]

9.12 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a mini-
mum mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such
as the shelve module).

This module also defines a classserDict |, that acts as a wrapper around dictionary objects. The need for this
class has been largely supplanted by the ability to subclass directlydicim (a feature that became available
starting with Python version 2.2). Prior to the introductiondaft , the UserDict class was used to create
dictionary-like sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thElserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. lfinitialdata is provided,data is initialized with its
contents; note that a referencendialdata will not be kept, allowing it be used for other purposes.

Note: For backward compatibility, instancesdferDict are not iterable.

classlterableUserDict ([initialdata])
Subclass obJserDict that supports direct iteration (e.fpr key in myDict).

In addition to supporting the methods and operations of mappings (see séafipmg Types — dijtUserDict
andlterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents oftheerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__() ,__setitem__ () ,__delitem__() ,andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more
functionality. For instance, defining all but delitem__() will preclude onlypop() andpopitem()
from the full interface.

In addition to the four base methods, progressively more efficiency comes with defining
contains () ,__iter_ () ,anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not defiite () orcopy()

Starting with Python version 2.6, it is recommended to edéections.MutableMapping instead
of DictMixin

9.12. UserDict — Class wrapper for dictionary objects 167

The Python Library Reference, Release 2.6.4

9.13 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to
work with versions of Python earlier than Python 2.2, please consider subclassing directly from theltsailt-in

type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thelserList class:

classUserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblgatia the
attribute ofUserList instances. The instance’s contents are initially set to a copgtpéiefaulting to the
empty list[] . list can be any iterable, e.g. a real Python list diserList object.

Note: TheUserList class has been moved to tbellections module in Python 3.0. Th2to3tool
will automatically adapt imports when converting your sources to 3.0.

In addition to supporting the methods and operations of mutable sequences (seeSegtionce Types — str,
unicode, list, tuple, buffer, xranyjeJserList instances provide the following attribute:

data
A real Python list object used to store the contents oftherList class.

Subclassing requirements:Subclasses dfiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance
of the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter,
which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this
class will need to be overridden; please consult the sources for information about the methods which need to be
provided in that case. Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor
be callable with no parameters, and offer a mutaaita attribute. Earlier versions of Python did not attempt to
create instances of the derived class.

9.14 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are
writing code that does not need to work with versions of Python earlier than Python 2.2, please consider sub-
classing directly from the built-istr type instead of usingJserString (there is no built-in equivalent to
MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own
string-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is
especially the case fofdutableString

TheUserString module defines the following classes:

classUserString ([sequence)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible viatlaga attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode
string, an instance dfiserString (or a subclass) or an arbitrary sequence which can be converted into a
string using the built-irstr() function.

Note: TheUserString class has been moved to tbellections module in Python 3.0. Thto3
tool will automatically adapt imports when converting your sources to 3.0.

168 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

classMutableString ([sequence)]
This class is derived from theserString above and redefines strings to ieitable Mutable strings
can’'t be used as dictionary keys, because dictionaries requinatableobjects as keys. The main intention
of this class is to serve as an educational example for inheritance and necessity to remove (override) the
__hash__ () method in order to trap attempts to use a mutable object as dictionary key, which would be
otherwise very error prone and hard to track down. Deprecated since version 2 Btuldige String
class has been removed in Python 3.0.

In addition to supporting the methods and operations of string and Unicode objects (seeSerttipiviethody
UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content df seeString class.

9.15 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for
the types defined by various extension modules. Also, it does not include some of the types that arise during
processing such as thistiterator type. It is safe to usGom types import * — the module does

not export any names besides the ones listed here. New names exported by future versions of this module will all
end inType.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete (mylist, item):
if type (item) is IntType:
del mylist[item]
else :
mylist . remove(item)

Starting in Python 2.2, built-in factory functions such@$) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usimigptt®e module. Accordingly, the
example above should be written as follows:

def delete (mylist, item):
if isinstance (item, int):
del mylist[item]
else :
mylist . remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedygye()); alias of the built-intype .

BooleanType
The type of thébool valuesTrue andFalse ; alias of the built-inbool . New in version 2.3.

IntType

The type of integers (e.d.); alias of the built-inint .
LongType

The type of long integers (e.dL); alias of the built-inong .

FloatType
The type of floating point numbers (e..0); alias of the built-infloat

9.15. types — Names for built-in types 169

The Python Library Reference, Release 2.6.4

ComplexType
The type of complex numbers (e40j). Thisis not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’); alias of the built-instr .

UnicodeType
The type of Unicode character strings (eigSpam’). This is not defined if Python was built without
Unicode support. It's an alias of the builtsimicode .

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)); alias of the built-intuple

ListType
The type of lists (e.g[0, 1, 2, 3]), alias of the built-inlist

DictType
The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0}); alias of the built-indict

DictionaryType
An alternate name fdDictType

FunctionType
LambdaType
The type of user-defined functions and functions createldimpda expressions.

GeneratorType
The type ofgeneratoriterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returnedbypile()

ClassType
The type of user-defined old-style classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdviethodType .

BuiltinFunctionType

BuiltinMethodType
The type of built-in functions likéen() or sys.exit() , and methods of built-in classes. (Here, the
term “built-in” means “written in C".)

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout ; alias of the built-infile

XRangeType
The type of range objects returnedange() ; alias of the built-inkrange .

SliceType

The type of objects returned lajice() ; alias of the built-inslice
EllipsisType

The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc_traceback

170 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

FrameType
The type of frame objects such as foundbrtb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

DictProxyType
The type of dict proxies, such aypeType.__ dict__

NotimplementedType
The type ofNotimplemented

GetSetDescriptorType
The type of objects defined in extension modules WigicetSetDef , such ag-rameType.f_locals
or array.array.typecode . This type is used as descriptor for object attributes; it has the same pur-
pose as theroperty type, but for classes defined in extension modules. New in version 2.5.
MemberDescriptorType
The type of objects defined in extension modules witAyMemberDef, such as
datetime.timedelta.days . This type is used as descriptor for simple C data members which

use standard conversion functions; it has the same purpose @otieaty type, but for classes defined
in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to
GetSetDescriptorType . New in version 2.5.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string
object. Using this is more portable than using a sequence of the two string types constructed elsewhere
since it only contain®nicodeType if it has been built in the running version of Python. For example:
isinstance(s, types.StringTypes) . New in version 2.2.

9.16 new — Creation of runtime internal objects

Deprecated since version 2.6: Tinew module has been removed in Python 3.0. Usaythes module’s classes
instead. Thexew module allows an interface to the interpreter object creation functions. This is for use primarily

in marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

Thenew module defines the following functions:

instance (class, [dict])
This function creates an instanceatdisswith dictionarydict without calling the__init__ () constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, cla¥s
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust
be callable.

function (code, globals, [name, [argdefs, [closure]]]
Returns a (Python) function with the given code and globalsatheis given, it must be a string ddone.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name . If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters. I€losureis given, it must béNone or a tuple of cell objects containing objects to bind to the
names ircode.co_freevars

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno,

Inotaty |
This function is an interface to tHeyCode_New() C function.

9.16. new — Creation of runtime internal objects 171

The Python Library Reference, Release 2.6.4

module (name, [doc)
This function returns a new module object with nam@me namemust be a string. The optiondbc
argument can have any type.

classobj (name, baseclasses, gict
This function returns a new class object, with nanaene derived frombaseclasseéwvhich should be a
tuple of classes) and with namespalogt.

9.17 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

copy (X)
Return a shallow copy of.

deepcopy (X)
Return a deep copy of

exceptionerror
Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain
other objects, like lists or class instances):

* A shallow copyconstructs a new compound object and then (to the extent possible) irderésicesnto
it to the objects found in the original.

< A deep copyonstructs a new compound object and then, recursively, insgpiesinto it of the objects
found in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

* Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may
cause a recursive loop.

« Because deep copy copiegerythingt may copy too much, e.g., administrative data structures that should
be shared even between copies.

Thedeepcopy() function avoids these problems by:
» keeping a “memo” dictionary of objects already copied during the current copying pass; and
« letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or
any similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object
unchanged; this is compatible with the way these are treated yckle module.

Shallow copies of dictionaries can be made usiitg.copy() , and of lists by assigning a slice of the entire

list, for examplegcopied_list = original_list[:] . Changed in version 2.5: Added copying functions.
Classes can use the same interfaces to control copying that they use to control pickling. See the description of
modulepickle for information on these methods. Thepy module does not use tltepy reg registration

module. In order for a class to define its own copy implementation, it can define special metlcody__ ()
and__deepcopy__ () . The former is called to implement the shallow copy operation; no additional arguments
are passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo
dictionary. If the__deepcopy__ () implementation needs to make a deep copy of a component, it should call
thedeepcopy() function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

172 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

9.18 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can

be used as input to the interpreter. If the formatted structures include objects which are not fundamental Python
types, the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or
instances are included, as well as many other built-in objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don't fit within the allowed width. ConstruétrettyPrinter objects explicitly if you need to adjust the width
constraint. Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a
dictionary was sorted only if its display required more than one line, although that wasn’'t documented.Changed
in version 2.6: Added support faet andfrozenset . Thepprint module defines one class:

classPrettyPrinter (..)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An
output stream may be set using tsieeamkeyword; the only method used on the stream object is the
file protocol'swrite() method. If not specified, therettyPrinter adoptssys.stdout . Three
additional parameters may be used to control the formatted representation. The keywordsrgrdepth
andwidth. The amount of indentation added for each recursive level is specifigtbpt the default is
one. Other values can cause output to look a little odd, but can make nesting easier to spot. The number
of levels which may be printed is controlled bigpth if the data structure being printed is too deep, the
next contained level is replaced by . By default, there is no constraint on the depth of the objects being
formatted. The desired output width is constrained usingniaéh parameter; the default is 80 characters.
If a structure cannot be formatted within the constrained width, a best effort will be made.

>>> import pprint

>>> stuff = [’spam’, 'eggs’, ’'lumberjack ', ’'knights ', 'ni’]
>>> stuff . insert(0, stuff[:])
>>> pp = pprint . PrettyPrinter(indent =4)

>>> pp. pprint(stuff)

[['spam’, 'eggs’, 'lumberjack’, ’knights’, 'ni’],
'spam’,
'eggs’,
'lumberjack’,
'knights’,
ni’]
>>> tup = ('spam’, ("eggs’, ('lumberjack ', ('knights ', ('ni’, ('dead’,
(' parrot ', (' fresh fruit M)
>>> pp = pprint . PrettyPrinter(depth =6)

>>> pp. pprint(tup)
('spam’, ('eggs’, (lumberjack’, (knights’, ('ni’, (dead’, (..)))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object, [indent, [width, [depth]])
Return the formatted representationatfjectas a string.indent width and depthwill be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The paraimeésris
width anddepthwere added.

pprint (object, [stream, [indent, [width, [depth]]]]
Prints the formatted representation albject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteagrifita statement for in-
specting valuesndent width anddepthwill be passed to th@rettyPrinter constructor as formatting
parameters.

>>> jmport pprint

>>> stuff = ['spam’, 'eggs’, ’lumberjack ', ’knights ', ’'ni’]
>>> stuff . insert(0, stuff)

>>> pprint . pprint(stuff)

9.18. pprint — Data pretty printer 173

The Python Library Reference, Release 2.6.4

[<Recursion on list with id=...>,
'Spam’,

‘'eggs’,

‘lumberjack’,

'knights’,

ni’]

Changed in version 2.4: The parametadent width anddepthwere added.

isreadable (objec)
Determine if the formatted representationatijectis “readable,” or can be used to reconstruct the value
usingeval() . This always returnBalse for recursive objects.

>>> pprint . isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representa-
tion of objectexposes a recursive entry, the recursive reference will be represert@®eagrsion on
typename with id=number> . The representation is not otherwise formatted.

>>> pprint . saferepr(stuff)
"[<Recursion on list with id=...>, 'spam’, ’'eggs’, 'lumberjack’, ’knights’,

ni’]

9.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation @bject This takes into account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using
these methods on an instance is slightly more efficient sinceRrewyPrinter objects don't need to be
created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this returnfalse for recursive objects. If thelepthparameter of the
PrettyPrinter is set and the object is deeper than allowed, this retoahse .

isrecursive (objec)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The
default implementation uses the internals of shérepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versiorobfectas a string, a flag indicating whether the result is
readable, and a flag indicating whether recursion was detected. The first argument is the object to be
presented. The second is a dictionary which containsdfje of objects that are part of the current
presentation context (direct and indirect containerefipectthat are affecting the presentation) as the keys;
if an object needs to be presented which is already representmhtax} the third return value should
be True . Recursive calls to theormat() method should add additional entries for containers to this

174 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

dictionary. The third argumentaxlevelsgives the requested limit to recursion; this will ®éf there is no
requested limit. This argument should be passed unmodified to recursive calls. The fourth artpuelent,
gives the current level; recursive calls should be passed a value less than that of the current call. New in
version 2.3.

9.18.2 pprint Example

This example demonstrates several uses opthient() function and its parameters.

>>> import pprint

>>> tup = ("spam’, ("eggs’, ('lumberjack ', (' knights ', ('ni’, (' dead’,
.. (' parrot ', (' fresh fruit "I
>>> stuff =["a * 10, tup, ['a * 30, b’ * 30}, ['c¢’ * 20, 'd * 20]]

>>> pprint . pprint(stuff)
[aaaaaaaaaa’,
('spam’,
(eggs’,
('lumberjack’,

(knights’, (ni’, (dead’, (parrot’, (‘fresh fruit’))))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’]
[‘ccecccceccceccccccceec’, 'dddddddddddddddddddd™]]

>>> pprint . pprint(stuff, depth =3)
[aaaaaaaaaa’,
(‘'spam’, (eggs’, (...)),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’]
[‘ccecccceccccccccccec’, 'dddddddddddddddddddd™]]
>>> pprint . pprint(stuff, width =60)
[aaaaaaaaaa’,
('spam’,
(eggs’,
('lumberjack’,
(knights’,
(ni’, (dead’, ('parrot’, (fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa),
'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
['ccecececccceccecceccee’, 'dddddddddddddddddddd’]]

9.19 repr — Alternate repr() implementation

Note: Therepr module has been renamedréprlib in Python 3.0. Theto3tool will automatically adapt
imports when converting your sources to 3.0.

Therepr module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the buglpif)
size limits for different object types are added to avoid the generation of representations which are exces-
sively long.

aRepr
This is an instance dkepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits useddaypr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

9.19. repr — Alternate repr() implementation 175

The Python Library Reference, Release 2.6.4

9.19.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of
different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The defadittrisnaxdict , 5
for maxarray , and6 for the others. New in version 2.4naxset , maxfrozenset , andset .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation
of the string is used as the character source: if escape sequences are needed in the representation, these may
be mangled when the representation is shortened. The def&0lt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on
theRepr object. Itis applied in a similar manner asxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used bypr() . This uses the type abbj to determine which formatting
method to call, passing itbj andlevel The type-specific methods should calprl() to perform recur-
sive formatting, withevel - 1 for the value ofevelin the recursive call.

repr_TYPE (obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method namelYPE is replaced bystring.join(string.split(type(obj). _name__,
")) . Dispatch to these methods is handledregrl() . Type-specific methods which need to recur-
sively format a value should cagklf.reprl(subobj, level - 1)

9.19.2 Subclassing Repr Objects

The use of dynamic dispatching B8epr.reprl() allows subclasses dtepr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how special
support for file objects could be added:

import repr as reprlib
import sys

class MyRepr(reprlib . Repr):
def repr_file (self , obj, level):
if obj.name in [’<stdin> ', ’<stdout> ', ’<stderr> ']
return obj . name
else :

return repr (obj)

176 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4

aRepr = MyRepr()
print aRepr . repr(sys . stdin) # prints '<stdin>’

9.19. repr — Alternate repr() implementation 177

The Python Library Reference, Release 2.6.4

178 Chapter 9. Data Types

CHAPTER

TEN

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data typesi{Jdre

module defines an abstract hierarchy of numeric types. rithign andcmath modules contain various mathe-
matical functions for floating-point and complex numbers. For users more interested in decimal accuracy than in
speed, thelecimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

10.1 numbers — Numeric abstract base classes

New in version 2.6. Theumbers module PEP 314) defines a hierarchy of numeric abstract base classes which
progressively define more operations. None of the types defined in this module can be instantiated.

classNumber()
The root of the numeric hierarchy. If you just want to check if an argumésita number, without caring
what kind, useésinstance(x, Number)

10.1.1 The numeric tower

classComplex ()
Subclasses of this type describe complex humbers and include the operations that work on the built-in
complex type. These are: conversions ¢complex andbool , real , imag, +, -, *, /, abs() ,
conjugate() , ==, and!=. All except- and!= are abstract.

real
Abstract. Retrieves theeal component of this number.
imag
Abstract. Retrieves theeal component of this number.
conjugate ()
Abstract. Returns the complex conjugate. For exanifte3j).conjugate() == (1-3))

classReal ()
To Complex , Real adds the operations that work on real numbers.

In short, those are: a conversionftoat , trunc() , round() , math.floor() , math.ceil() ,
divmod() ,// ,%<,<=,>, and>=,

Real also provides defaults foomplex() ,real ,imag, andconjugate()

classRational ()
SubtypesReal and addsiwumerator anddenominator properties, which should be in lowest terms.
With these, it provides a default fdpat()

179

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.6.4

numerator
Abstract.

denominator
Abstract.

classintegral ()
SubtypesRational and adds a conversion ot . Provides defaults folloat() , numerator , and
denominator , and bit-string operations<, >>, & ", | , ~.

10.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may
be subtle if there are two different extensions of the real numbers. For exafmgagons.Fraction
implementshash() as follows:

def _ hash__ (self):

if self .denominator == 1:
Get integers right.
return hash (self . numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else :
Use tuple’s hash to avoid a high collision rate on
simple fractions.
return hash ((self . numerator, self . denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can atityFoo betweenComplex andReal with:

class MyFoo(Complex):
MyFoo. register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation
whose author knew about the types of both arguments, or convert both to the nearest built in type and do the
operation there. For subtypeslafegral , this meansthat add__ () and__radd_ () should be defined

as:

class Myintegral (Integral):

def __ add__ (self , other):
if isinstance (other, Mylntegral):
return do_my_adding_stuff(self , other)
elif isinstance (other, OtherTypelKnowAbout):
return do_my_other_adding_stuff(self , other)
else :
return Notlmplemented

def _ radd__ (self , other):
if isinstance (other, Mylintegral):

return do_my_adding_stuff(other, self)
elif isinstance (other, OtherTypelKnowAbout):
return do_my_other_adding_stuff(other, self)

180 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

elif isinstance (other, Integral):
return int (other) + int (self)
elif isinstance (other, Real):
return float (other) + float (self)
elif isinstance (other, Complex):
return complex (other) + complex (self)

else :
return Notlmplemented
There are 5 different cases for a mixed-type operation on subclassesigflex . I'll refer to all of the above
code that doesn't refer talylntegral andOtherTypelKnowAbout as “boilerplate”.a will be an instance
of A, which is a subtype ofomplex (a : A < Complex),andb : B <: Complex . I'll consider

a + b:
1. If Adefinesan _add__ () which acceptd, all is well.

2. If Afalls back to the boilerplate code, and it were to return a value froadd__ () , we’d miss the possi-
bility that B defines a more intelligent radd__ () , so the boilerplate should retukiptimplemented
from__add_ () .(OrAmaynotimplement add () atall)

3. ThenB's _radd__() gets achance. If it acceps all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default

implementation should live.

5.1f B <¢ A, Python triesB.__radd__ beforeA.__add__ . This is ok, because it was implemented
with knowledge ofA, so it can handle those instances before delegatiqptoplex .

If A <t Complex andB <: Real withoutsharing any other knowledge, then the appropriate shared oper-

ation is the one involving the built inomplex ,and both_radd__ () sland there, sa+b == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function

which generates the forward and reverse instances of any given operator. For examipbes.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback operator):
def forward (a, b):
if isinstance (b, (int , long , Fraction)):
return monomorphic_operator(a, b)
elif isinstance (b, float):

return fallback operator(float (a), b)
elif isinstance (b, complex):
return fallback operator(complex (a), b)
else :
return NotiImplemented
forward . _name__ ="' _ ' + fallback_operator ._hame__ + '
forward . __doc__ = monomorphic_operator . __doc__

def reverse (b, a):
if isinstance (a, Rational):
Includes ints.
return monomorphic_operator(a, b)
elif isinstance (a, numbers . Real):

return fallback operator(float (a), float (b))
elif isinstance (a, numbers . Complex):
return fallback_operator(complex (a), complex (b))
else :
return Notlmplemented
reverse . _name__ ="' r’' + fallback_operator ._hame__ + '
reverse . _doc__ = monomorphic_operator . doc

return forward, reverse

10.1. numbers — Numeric abstract base classes 181

The Python Library Reference, Release 2.6.4

def _add(a, b):

return Fraction(a . numerator * b.denominator +
b. numerator * a. denominator,
a. denominator * b. denominator)

add, radd = _operator_fallbacks(_add, operator . add)

10.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name fromathhe

module if you require support for complex numbers. The distinction between functions which support complex
numbers and those which don’t is made since most users do not want to learn quite as much mathematics as
required to understand complex numbers. Receiving an exception instead of a complex result allows earlier
detection of the unexpected complex number used as a parameter, so that the programmer can determine how and
why it was generated in the first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values
are floats.

10.2.1 Number-theoretic and representation functions

ceil (X
Return the ceiling ok as a float, the smallest integer value greater than or equal to

copysign (Xx,Y)
Returnx with the sign ofy. copysign copies the sign bit of an IEEE 754 floabpysign(1, -0.0)
returns-1.0. New in version 2.6.

fabs (X)
Return the absolute value »f

factorial (%)
Returnx factorial. Raise&/alueError if X is not integral or is negative. New in version 2.6.

floor (Xx)
Return the floor ok as a float, the largest integer value less than or equal ©hanged in version 2.6:
Added__ floor_ () delegation.

fmod (x, y)
Returnfmod(x, y) , as defined by the platform C library. Note that the Python expressiéf y may
not return the same result. The intent of the C standard idittad(x, y) be exactly (mathematically;
to infinite precision) equal t& - n*y for some integen such that the result has the same sigx aad
magnitude less thaabs(y) . Python’sx % vy returns a result with the sign gfinstead, and may not
be exactly computable for float arguments. For examiped(-1e-100, 1e100) is -1e-100 , but
the result of Python’sle-100 % 1e100 is 1e100-1e-100 , which cannot be represented exactly as
a float, and rounds to the surprisifig100 . For this reason, functiormod() is generally preferred when
working with floats, while Python's % Yyis preferred when working with integers.

frexp (X)
Return the mantissa and exponenkafs the pai{m, e) . mis a float anck is an integer such that ==
m * 2**e exactly. Ifxis zero, returng0.0, 0) , otherwise0.5 <= abs(m) < 1 . Thisis used to
“pick apart” the internal representation of a float in a portable way.

182 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

fsum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]
0.99999999999999989

>>> fsum(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the round-
ing mode is half-even. On some non-Windows builds, the underlying C library uses extended precision
addition and may occasionally double-round an intermediate sum causing it to be off in its least significant
bit.

For further discussion and two alternative approaches, se€3Rél cookbook recipes for accurate floating
point summationNew in version 2.6.

isinf (X)
Checks if the floak is positive or negative infinite. New in version 2.6.

isnan (X)
Checks if the floak is a NaN (not a number). NaNs are part of the IEEE 754 standards. Operation like but
not limited toinf * O ,inf / inf or any operation involving a NaN, e.gqpan * 1 , return a NaN.
New in version 2.6.

Idexp (X, i)
Returnx * (2**) . This is essentially the inverse of functiéexp()
modf (X)
Return the fractional and integer partsxoBoth results carry the sign afand are floats.
trunc (X)
Return the Real value x truncated to anintegral (usually a long integer). Delegates to
X.__trunc__() . New in version 2.6.

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For theceil() , floor() , andmodf() functions, note thaall floating-point numbers of sufficiently large
magnitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any fleavith abs(x) >= 2**52 necessarily has no fractional bits.

10.2.2 Power and logarithmic functions

exp (X)
Returne**x .

log (X, [base)
With one argument, return the natural logarithnxgfo baseg).

With two arguments, return the logarithm »fto the givenbase calculated asog(x)/log(base)
Changed in version 2.31aseargument added.

loglp (x)
Return the natural logarithm df+x (basee). The result is calculated in a way which is accuratexfaear
zero. New in version 2.6.

l0g10 (X)
Return the base-10 logarithm xf This is usually more accurate thig(x, 10)

pow(X, y)
Returnx raised to the powey. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible.
In particular,pow(1.0, x) andpow(x, 0.0) always returnl.0 , even wherx is a zero or a NaN.

10.2. math — Mathematical functions 183

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 2.6.4

If both x andy are finite,x is negative, ang is not an integer thepow(x, y) is undefined, and raises
ValueError . Changed in version 2.6: The outcomeléfnan andnan**0 was undefined.

sqrt (X)
Return the square root &f

10.2.3 Trigonometric functions

acos (X)
Return the arc cosine af in radians.
asin (x)
Return the arc sine of, in radians.
atan (x)
Return the arc tangent a&f in radians.
atan2 (y, %
Returnatan(y / x) , in radians. The result is betweegpi andpi . The vector in the plane from the

origin to point(x, y) makes this angle with the positive X axis. The pointtdn2() is that the signs
of both inputs are known to it, so it can compute the correct quadrant for the angle. For exatamp(E,)
andatan2(1, 1) are bothpi/4 , butatan2(-1, -1) is -3*pi/4

cos (x)
Return the cosine ofradians.

hypot (X,)
Return the Euclidean normgrt(x*x + y*y) . This is the length of the vector from the origin to point
*)

sin (X)
Return the sine of radians.

tan (x)
Return the tangent ofradians.

10.2.4 Angular conversion
degrees (X)
Converts angle from radians to degrees.

radians (X)
Converts angle from degrees to radians.

10.2.5 Hyperbolic functions

acosh (x)

Return the inverse hyperbolic cosinexofNew in version 2.6.
asinh (x)

Return the inverse hyperbolic sinexfNew in version 2.6.

atanh (x)
Return the inverse hyperbolic tangentoiNew in version 2.6.

cosh (x)
Return the hyperbolic cosine gf

sinh (x)
Return the hyperbolic sine af

tanh (x)
Return the hyperbolic tangent wf

184 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

10.2.6 Constants

pi
The mathematical constapi

The mathematical constaat

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C

math library functions. Behavior in exceptional cases is loosely specified by the C standards, and Python inherits
much of its math-function error-reporting behavior from the platform C implementation. As a result, the specific
exceptions raised in error cases (and even whether some arguments are considered to be exceptional at all) are
not defined in any useful cross-platform or cross-release way. For example, whettieltog(0) returns

-Inf or raisesValueError or OverflowError isn't defined, and in cases whemgath.log(0) raises
OverflowError , math.log(OL) may raisevalueError instead.

All functions return a quietNaN if at least one of the args iMaN SignalingNaNs raise an exception. The
exception type still depends on the platform and libm implementation. It's usdallyeError ~ for EDOM and
OverflowError for errnoERANGE Changed in version 2.6: In earlier versions of Python the outcome of an
operation with NaN as input depended on platform and libm implementation.

See Also:

Module cmath Complex number versions of many of these functions.

10.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex numbers as arguments. They will also accept
any Python object that has either acomplex__ () ora__float_ () method: these methods are used to
convert the object to a complex or floating-point number, respectively, and the function is then applied to the result
of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous orbothsides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

10.3.1 Conversions to and from polar coordinates

A Python complex numbez is stored internally usingectangularor Cartesiancoordinates. It is completely
determined by itseal partz.real and itsimaginary partz.imag . In other words:

z == z.real + z.imag*1j

Polar coordinategjive an alternative way to represent a complex number. In polar coordinates, a complex number
zis defined by the modulusand the phase angf#hi. The modulug is the distance froma to the origin, while
the phasehi is the counterclockwise angle from the positive x-axis to the line segment that joins the orgin to

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and
back.

phase (X)
Return the phase of (also known as theargumentof x), as a float. phase(x) is equivalent to
math.atan2(x.imag, x.real) . The result lies in the range; 7], and the branch cut for this

operation lies along the negative real axis, continuous from above. On systems with support for signed
zeros (which includes most systems in current use), this means that the sign of the result is the same as the
sign ofx.imag , even whernx.imag is zero:

>>> phase(complex (-1.0, 0.0))
3.1415926535897931

10.3. cmath — Mathematical functions for complex numbers 185

The Python Library Reference, Release 2.6.4

>>> phase(complex (-1.0, -0.0))
-3.1415926535897931
New in version 2.6.

Note: The modulus (absolute value) of a complex numbean be computed using the builtdfs() function.
There is no separatenath module function for this operation.

polar (X)
Return the representation »fn polar coordinates. Returns a péir phi) wherer is the modulus ok
and phi is the phase af polar(x) is equivalent tdabs(x), phase(x)) . New in version 2.6.
rect (r, phi)
Return the complex numbegmwith polar coordinates andphi. Equivalentta * (math.cos(phi) +
math.sin(phi)*1j) . New in version 2.6.

10.3.2 Power and logarithmic functions

exp (x)
Return the exponential valug*x .

log (%, [base)
Returns the logarithm of to the givenbase If the baseis not specified, returns the natural logarithm of
X. There is one branch cut, from 0 along the negative real axisctocontinuous from above. Changed in
version 2.4:baseargument added.

log1l0 (X)
Return the base-10 logarithm xf This has the same branch cutiag()

sqrt (X)
Return the square root &f This has the same branch cutasg()

10.3.3 Trigonometric functions

acos (X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axisf@entinuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

atan (x)
Return the arc tangent af There are two branch cuts: One extends frijmalong the imaginary axis to
ooj , continuous from the right. The other extends fraijp along the imaginary axis toooj , continuous
from the left. Changed in version 2.6: direction of continuity of upper cut reversed

cos (X)

Return the cosine of.
sin (X)

Return the sine af.

tan (X)
Return the tangent of

10.3.4 Hyperbolic functions

acosh (x)
Return the hyperbolic arc cosine xf There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

186 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

asinh (x)
Return the hyperbolic arc sine gf There are two branch cuts: One extends fijmalong the imaginary
axis toooj , continuous from the right. The other extends fretlj along the imaginary axis teooj ,
continuous from the left. Changed in version 2.6: branch cuts moved to match those recommended by the
C99 standard

atanh (x)
Return the hyperbolic arc tangentofThere are two branch cuts: One extends ffbaiong the real axis to
oo, continuous from below. The other extends fremalong the real axis te co, continuous from above.
Changed in version 2.6: direction of continuity of right cut reversed

cosh (X)

Return the hyperbolic cosine &f
sinh (x)

Return the hyperbolic sine af

tanh (X)
Return the hyperbolic tangent rf

10.3.5 Classification functions

isinf (X)
ReturnTrueif the real or the imaginary part of x is positive or negative infinity. New in version 2.6.

isnan (X)
ReturnTrueif the real or imaginary part of x is not a number (NaN). New in version 2.6.

10.3.6 Constants

pi
The mathematical constant as a float.

The mathematical constagatas a float.

Note that the selection of functions is similar, but not identical, to that in modalén . The reason for having

two modules is that some users aren'’t interested in complex numbers, and perhaps don’t even know what they
are. They would rather haweath.sqrt(-1) raise an exception than return a complex number. Also note that

the functions defined inmath always return a complex number, even if the answer can be expressed as a real
number (in which case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlighten-
ment. For information of the proper choice of branch cuts for numerical purposes, a good reference should be the
following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A.,
and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

10.4 decimal — Decimal fixed point and floating point arithmetic

New in version 2.4. Thdecimal module provides support for decimal floating point arithmetic. It offers several
advantages over tHimat datatype:

10.4. decimal — Decimal fixed point and floating point arithmetic 187

The Python Library Reference, Release 2.6.4

« Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

« Decimal numbers can be represented exactly. In contrast, numberd.likedo not have an ex-
act representation in binary floating point. End users typically would not expéctto display as
1.1000000000000001 as it does with binary floating point.

* The exactness carries over into arithmetic. In decimal floating p6idt,+ 0.1 + 0.1 - 0.3 is
exactly equal to zero. In binary floating point, the resub.8511151231257827e-017 . While near
to zero, the differences prevent reliable equality testing and differences can accumulate. For this reason,
decimal is preferred in accounting applications which have strict equality invariants.

« The decimal module incorporates a notion of significant places soltBat + 1.20 is 2.50 . The
trailing zero is kept to indicate significance. This is the customary presentation for monetary applications.
For multiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instaBce,

* 1.2 givesl.56 while1.30 * 1.20 gives1.5600 .

< Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting
to 28 places) which can be as large as needed for a given problem:

>>> getcontext() .prec =6

>>> Decimal(1) / Decimal(7)
Decimal(’0.142857’)

>>> getcontext() .prec = 28

>>> Decimal(1) / Decimal(7)
Decimal(’0.1428571428571428571428571429")

» Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts
of the standard. When needed, the programmer has full control over rounding and signal handling. This
includes an option to enforce exact arithmetic by using exceptions to block any inexact operations.

» The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance,
the coefficient digits do not truncate trailing zeros. Decimals also include special values dudinigs
-Infinity , andNaN The standard also differentiatés from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options includBOUND_CEILING ROUND_DOWROUND_FLOQROUND_HALF_DOWN
ROUND_HALF_EVEROUND_HALF_UROUND_URNAROUND_05UP

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals
in the decimal module areClamped, InvalidOperation , DivisionByZero , Inexact , Rounded,
Subnormal , Overflow , andUnderflow

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the
trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring
a calculation.

See Also:
« IBM’'s General Decimal Arithmetic Specificatiomhe General Decimal Arithmetic Specification
 |EEE standard 854-198¥nofficial IEEE 854 Text

188 Chapter 10. Numeric and Mathematical Modules

http://speleotrove.com/decimal/
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 2.6.4

10.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current contextatdtintext() and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext() .prec =7 # Set a new precision

Decimal instances can be constructed from integers, strings, or tuples. To create a Decimaldigam afirst

convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values suciNalN which stands for “Not a number”, positive and
negativelnfinity , and-0 .

>>> getcontext() .prec = 28

>>> Decimal(10)

Decimal('10")

>>> Decimal(' 3.14 ")

Decimal(’3.14")

>>> Decimal((0, (3, 1, 4), -2))
Decimal(’3.14")

>>> Decimal(str (2.0 ** 0.5))
Decimal('1.41421356237’)

>>> Decimal(2) ** Decimal(' 0.5")
Decimal('1.414213562373095048801688724")
>>> Decimal(' NaN)

Decimal('NaN’)

>>> Decimal(' -Infinity ")
Decimal(’-Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and
rounding only come into play during arithmetic operations.

>>> getcontext() .prec =6
>>> Decimal(' 3.0 ")
Decimal(’3.0")

>>> Decimal(' 3.1415926535 ')

Decimal(’3.1415926535")

>>> Decimal(' 3.1415926535 ') + Decimal(' 2.7182818285 ')
Decimal(’5.85987’)

>>> getcontext() .rounding = ROUND_UP

>>> Decimal(' 3.1415926535 ') + Decimal(' 2.7182818285 ')
Decimal(’5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = map(Decimal, "1.34 1.87 3.45 2.35 1.00 0.03 9.25 " split()
>>> max(data)

Decimal(’'9.25")

>>> min (data)

Decimal(’0.03)

>>> sorted(data)

[Decimal(’0.03’), Decimal(’'1.00"), Decimal(’'1.34’), Decimal(’1.87’),
Decimal(’2.35"), Decimal(’3.45"), Decimal(’9.25")]

>>> sum(data)

Decimal(’19.29’)

>>> a,b,c = data} 3]

>>> str (a)

10.4. decimal — Decimal fixed point and floating point arithmetic 189

The Python Library Reference, Release 2.6.4

'1.34

>>> float (a)
1.3400000000000001
>>> round (a, 1) # round() first converts to binary floating point
1.3

>>> int (a)

1

>>> g * 5
Decimal(’6.70")

>>> a * b
Decimal(’2.5058’)
>>> ¢ % a
Decimal(’0.77")

And some mathematical functions are also available to Decimal:

>>> getcontext() .prec = 28

>>> Decimal(2). sqrt()
Decimal('1.414213562373095048801688724")
>>> Decimal(1) . exp()
Decimal(’2.718281828459045235360287471")
>>> Decimal(" 10"). In()
Decimal(’2.302585092994045684017991455")
>>> Decimal(' 10’). logl0()

Decimal(’'1’)

Thequantize() method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal(' 7.325 ') . quantize(Decimal(".01 "), rounding =ROUND_DOWN)
Decimal(’7.32")

>>> Decimal(' 7.325 ') . quantize(Decimal("1.7), rounding =ROUND_UP)
Decimal(’8’)

As shown above, thgetcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make
an alternate active, use thetcontext() function.

In accordance with the standard, tf@ecimal module provides two ready to use standard contexts,
BasicContext andExtendedContext . The former is especially useful for debugging because many of
the traps are enabled:

>>> myothercontext = Context(prec =60, rounding =ROUND_HALF_DOWN)
>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857142857142857142857142857’)

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal(’0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal(’Infinity’)

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>" , line 1, in -toplevel-

190 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

Decimal(42) / Decimal(0)
DivisionByZero : x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by
using theclear_flags() method.

>>> setcontext(ExtendedContext)

>>> getcontext() . clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal(’3.14159292)

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Rounded, Inexact], traps=[])

Theflagsentry shows that the rational approximatiorPiowas rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in thegos field of a context:

>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal(’Infinity’)
>>> getcontext() . traps[DivisionByZero] =1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>" , line 1, in -toplevel-
Decimal(1) / Decimal(0)
DivisionByZero : x/ 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted tDecimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

10.4.2 Decimal objects

classDecimal ([value, [context]]
Construct a nevidecimal object based fromalue

value can be an integer, string, tuple, or anothlieecimal object. If no value is given, returns
Decimal(’0’) . If valueis a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed:

sign =Y

digit =0 |2 | |4 |56 | T8 | Y
indicator = e | PR

digits = digit [digit]...

decimal-part = digits ' [digits] | [.'] digits

exponent-part ::= indicator [sign] digits

infinity = Infinity’ | ’Inf

nan = ’'NaN’ [digits] | 'sNaN’ [digits]

numeric-value = decimal-part [exponent-part] | infinity
numeric-string = [sign] numeric-value | [sign] nan

If valueis a unicode string then other Unicode decimal digits are also permitted wliggte appears
above. These include decimal digits from various other alphabets (for example, Arabic-Indic and De-
varagar digits) along with the fullwidth digits'\uff10’ throughu\uff19’

If valueis atuple , it should have three components, a si@rfdr positive orl for negative), guple
of digits, and an integer exponent. For exampdbecimal((0, (1, 4, 1, 4), -3)) returns
Decimal('1.414")

10.4. decimal — Decimal fixed point and floating point arithmetic 191

The Python Library Reference, Release 2.6.4

The contextprecision does not affect how many digits are stored. That is determined exclusively by the
number of digits invalue For examplePecimal(’3.00000’) records all five zeros even if the context
precision is only three.

The purpose of theontextargument is determining what to dovi&lueis a malformed string. If the context
trapsinvalidOperation , an exception is raised; otherwise, the constructor returns a new Decimal with
the value ofNaN

Once constructed)ecimal objects are immutable. Changed in version 2.6: leading and trailing whites-
pace characters are permitted when creating a Decimal instance from a string. Decimal floating point objects
share many properties with the other built-in numeric types sudlba@s andint . All of the usual math
operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed, used as
dictionary keys, used as set elements, compared, sorted, and coerced to another typef(sach as

long).

In addition to the standard numeric properties, decimal floating point objects also have a number of special-
ized methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains:Decimal(’321e+5’).adjusted() returns seven. Used for determining the position

of the most significant digit with respect to the decimal point.

as_tuple ()
Return a named tuplerepresentation of the number:DecimalTuple(sign, digits,
exponent) . Changed in version 2.6: Use a named tuple.

canonical ()
Return the canonical encoding of the argument. Currently, the encodin@etianal instance is
always canonical, so this operation returns its argument unchanged. New in version 2.6.

compare (other, [context)
Compare the values of two Decimal instances. This operation behaves in the same way as the usual
comparison method cmp__ () , exceptthatompare() returns a Decimal instance rather than an
integer, and if either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal(’NaN")
a<b ==> Decimal(’-1’)
a == ==> Decimal(’0’)
a>hb ==> Decimal(’'1l’)

compare_signal (other, [context]
This operation is identical to theompare() method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.
New in version 2.6.

compare_total (other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
thecompare() method, but the result gives a total orderinglmecimal instances. Tw@®ecimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal(' 12.0 ') . compare_total(Decimal("127)
Decimal(’-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal(’0’) if both operands have the same representatidecimal(’-1") if the first
operand is lower in the total order than the second,Recimal(’1’) if the first operand is higher

in the total order than the second operand. See the specification for details of the total order. New in
version 2.6.

compare_total mag (other)
Compare two operands using their abstract representation rather than their value as in

192 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

compare_total() , but ignoring the sign of each operand.compare_total_mag(y) is
equivalent tak.copy_abs().compare_total(y.copy_abs()) . New in version 2.6.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification. New in version 2.6.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed. New in version 2.6.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed. New in version 2.6.

copy_sign (othen
Return a copy of the first operand with the sign set to be the same as the sign of the second operand.
For example:

>>> Decimal(' 2.3). copy_sign(Decimal("-1.5 "))
Decimal(’-2.3)

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is
performed. New in version 2.6.

exp ([context)
Return the value of the (natural) exponential funcidtx at the given number. The resultis correctly
rounded using thROUND_HALF_EVENunding mode.

>>> Decimal(1) . exp()
Decimal(’2.718281828459045235360287471")

>>> Decimal(321) . exp()
Decimal(’2.561702493119680037517373933E+139")

New in version 2.6.

fma (other, third, [context]
Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal(2).fma(3, 5)
Decimal(’11)

New in version 2.6.

is_canonical ()
ReturnTrue if the argument is canonical arithlse otherwise. Currently, ®ecimal instance is
always canonical, so this operation always retuinss . New in version 2.6.

is_finite 0
ReturnTrue if the argument is a finite number, afidlse if the argument is an infinity or a NaN.
New in version 2.6.

is_infinite 0
ReturnTrue if the argument is either positive or negative infinity afralse otherwise. New in
version 2.6.

is_nan ()
ReturnTrue if the argument is a (quiet or signaling) NaN aralse otherwise. New in version 2.6.

is_normal ()
ReturnTrue if the argument is aormalfinite non-zero number with an adjusted exponent greater
than or equal tcmin ReturnFalse if the argument is zero, subnormal, infinite or a NaN. Note, the
termnormalis used here in a different sense with ttemalize() method which is used to create
canonical values. New in version 2.6.

10.4. decimal — Decimal fixed point and floating point arithmetic 193

The Python Library Reference, Release 2.6.4

is_gnan ()
ReturnTrue if the argument is a quiet NaN, amdhise otherwise. New in version 2.6.

is_signed ()
ReturnTrue if the argument has a negative sign aredse otherwise. Note that zeros and NaNs can
both carry signs. New in version 2.6.

is_snan ()
ReturnTrue if the argument is a signaling NaN aR@lse otherwise. New in version 2.6.

is_subnormal ()
ReturnTrue if the argument is subnormal, amdlse otherwise. A number is subnormal is if it is
nonzero, finite, and has an adjusted exponent lessEh@n New in version 2.6.

is_zero ()
ReturnTrue if the argument is a (positive or negative) zero &wdse otherwise. New in version
2.6.

In ([context)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVENunding mode. New in version 2.6.

log10 ([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVENunding mode. New in version 2.6.

logb ([context)
For a nonzero number, return the adjusted exponent of its operan@asimal instance. If the
operand is a zero thdbecimal(’-Infinity”) is returned and th®ivisionByZero flag is
raised. If the operand is an infinity th&gecimal(’Infinity’) is returned. New in version 2.6.

logical_and (other, [context]
logical_and() is a logical operation which takes twogical operandgseelLogical operandg
The result is the digit-wisand of the two operands. New in version 2.6.

logical_invert ([context])
logical_invert() is a logical operation. The result is the digit-wise inversion of the operand.
New in version 2.6.

logical_or (other, [context]
logical_or() is a logical operation which takes tdagical operand{seelogical operands The
result is the digit-wiser of the two operands. New in version 2.6.

logical_xor (other, [context]
logical_xor() is a logical operation which takes twogical operandgseelLogical operands
The result is the digit-wise exclusive or of the two operands. New in version 2.6.

max(other, [context]

Like max(self, other) except that the context rounding rule is applied before returning and that
NaNvalues are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag other, [context]
Similar to themax() method, but the comparison is done using the absolute values of the operands.
New in version 2.6.

min (other, [context]

Like min(self, other) except that the context rounding rule is applied before returning and that
NaNvalues are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag (other, [context]
Similar to themin() method, but the comparison is done using the absolute values of the operands.
New in version 2.6.

194

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

next_minus ([context)
Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand. New in version 2.6.

next_plus ([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand. New in version 2.6.

next_toward (other, [context]
If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the
sign set to be the same as the sign of the second operand. New in version 2.6.

normalize ([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal(’0") to Decimal(’0e0’) . Used for producing canonical values for members of an
equivalence class. For exampl2ecimal(’32.100") andDecimal(’0.321000e+2") both
normalize to the equivalent valizecimal(’32.1")

number_class ([context])
Return a string describing thiassof the operand. The returned value is one of the following ten

strings.
"-Infinity" , indicating that the operand is negative infinity.
*"-Normal" , indicating that the operand is a negative normal number.
*"-Subnormal” , indicating that the operand is negative and subnormal.

*"-Zero" , indicating that the operand is a negative zero.

*"+Zero" , indicating that the operand is a positive zero.

*"+Subnormal" , indicating that the operand is positive and subnormal.
*"+Normal" , indicating that the operand is a positive normal number.
"+Infinity" , indicating that the operand is positive infinity.

*"NaN" , indicating that the operand is a quiet NaN (Not a Number).
*"sNaN" , indicating that the operand is a signaling NaN.
New in version 2.6.

quantize (exp, [rounding, [context, [watchexp]]]
Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal(' 1.41421356 ') . quantize(Decimal("1.000 "))
Decimal(’1.414’)

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then amvalidOperation is signaled. This guarantees that, unless there is an
error condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and
inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined byrthunding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

If watchexps set (default), then an error is returned whenever the resulting exponent is greater than
Emaxor less tharktiny

10.4. decimal — Decimal fixed point and floating point arithmetic 195

The Python Library Reference, Release 2.6.4

radix ()
ReturnDecimal(10) , the radix (base) in which thieecimal class does all its arithmetic. Included
for compatibility with the specification. New in version 2.6.

remainder_near (other, [context]
Compute the modulo as either a positive or negative value depending on which is closest to zero.
For instanceDecimal(10).remainder_near(6) returnsDecimal(’-2") which is closer
to zero tharDecimal('4’)

If both are equally close, the one chosen will have the same sigelfas

rotate (other, [context]
Return the result of rotating the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to rotate. If the second operand is
positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand
is padded on the left with zeros to length precision if necessary. The sign and exponent of the first
operand are unchanged. New in version 2.6.

same_quantum (other, [context)
Test whether self and other have the same exponent or whether bdtaldre

scaleb (other, [context]
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other . The second operand must be an integer. New in version 2.6.

shift (other, [context]
Return the result of shifting the digits of the first operand by an amount specified by the second
operand. The second operand must be an integer in the range -precision through precision. The
absolute value of the second operand gives the number of places to shift. If the second operand is
positive then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient
are zeros. The sign and exponent of the first operand are unchanged. New in version 2.6.

sqrt ([context])
Return the square root of the argument to full precision.

to_eng_string ([context)
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the
decimal place. For example, conveltecimal('123E+1") to Decimal(’1.23E+3’)

to_integral ([rounding, [context])
Identical to theto_integral_value() method. Theo_integral name has been kept for
compatibility with older versions.

to_integral_exact ([rounding, [context]]
Round to the nearest integer, signalingxact orRounded as appropriate if rounding occurs. The
rounding mode is determined by theunding parameter if given, else by the giveontext . If
neither parameter is given then the rounding mode of the current context is used. New in version 2.6.

to_integral_value ([rounding, [context])
Round to the nearest integer without signalingxact or Rounded. If given, appliesrounding
otherwise, uses the rounding method in either the suppbetextor the current context. Changed in
version 2.6: renamed froto_integral toto_integral_value . The old name remains valid
for compatibility.

Logical operands

The logical_and() , logical_invert() , logical_or() , and logical_xor() methods expect
their arguments to biogical operands A logical operandis a Decimal instance whose exponent and sign
are both zero, and whose digits are all either 1.

196 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

10.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine
which signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed usingtthatext() and
setcontext() functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread.to

Beginning with Python 2.5, you can also use Wigh statement and thiecalcontext() function to tem-
porarily change the active context.

localcontext ([c])
Return a context manager that will set the current context for the active thread to a eogy eftry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified,
a copy of the current context is used. New in version 2.5. For example, the following code sets the current
decimal precision to 42 places, performs a calculation, and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx . prec = 42 # Perform a high precision calculation
s = calculate_something()

s = +s # Round the final result back to the default precision

New contexts can also be created using @wntext constructor described below. In addition, the module
provides three pre-made contexts:

classBasicContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tiROUND_HALF_URAII flags are cleared. All traps are enabled (treated as exceptions)
exceptinexact , Rounded, andSubnormal .

Because many of the traps are enabled, this context is useful for debugging.

classExtendedContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUND_HALF_EVENII flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have resultNaNe of
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence
of conditions that would otherwise halt the program.

classDefaultContext 0
This context is used by theontext constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating IGotitext constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created witlothext constructor.

10.4. decimal — Decimal fixed point and floating point arithmetic 197

The Python Library Reference, Release 2.6.4

classContext (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capijals=1
Creates a new context. If a field is not specified oiNisne, the default values are copied from the
DefaultContext . If the flagsfield is not specified or i8lone, all flags are cleared.

Theprecfield is a positive integer that sets the precision for arithmetic operations in the context.
Theroundingoption is one of:

*ROUND_CEILING(towardsInfinity),

*ROUND_DOWtdwards zero),

*ROUND_FLOOfwards-Infinity),

*ROUND_HALF_DOW(#N nearest with ties going towards zero),

*ROUND_HALF_EVE({Db nearest with ties going to nearest even integer),

*ROUND_HALF_URo nearest with ties going away from zero), or

*ROUND_URaway from zero).

*ROUND_O5URaway from zero if last digit after rounding towards zero would have been 0 or 5;
otherwise towards zero)

Thetrapsandflagsfields list any signals to be set. Generally, new contexts should only set traps and leave
the flags clear.

The EminandEmaxfields are integers specifying the outer limits allowable for exponents.

The capitalsfield is eitherO or 1 (the default). If set tdl, exponents are printed with a capitl oth-
erwise, a lowercase is used:Decimal('6.02e+23’) . Changed in version 2.6: THROUND_05UP
rounding mode was added. Thentext class defines several general purpose methods as well as a large
number of methods for doing arithmetic directly in a given context. In addition, for each @fetbienal
methods described above (with the exception ofatigisted() andas_tuple() methods) there is a
correspondingontext method. For examplé&.exp(x) is equivalent tox.exp(context=C)

clear_flags ()
Resets all of the flags 0.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance froombut usingself as context. Unlike th®ecimal constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the
current precision. In the following example, using unrounded inputs means that adding zero to a sum
can change the result:

>>> getcontext() . prec 3

>>> Decimal(' 3.4445 ') + Decimal(' 1.0023 ')

Decimal(’4.45’)

>>> Decimal(' 3.4445 ') + Decimal(0) + Decimal(' 1.0023 ")
Decimal(4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace is permitted.

Etiny ()
Returns a value equal &min - prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is setitoy

198 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

Etop ()
Returns a value equal max - prec + 1 .

The usual approach to working with decimals is to créadeimal instances and then apply arithmetic
operations which take place within the current context for the active thread. An alternative approach is
to use context methods for calculating within a specific context. The methods are similar to those for the
Decimal class and are only briefly recounted here.

abs (x)
Returns the absolute value xf

add(x,y)
Return the sum af andy.

canonical (X)
Returns the same Decimal object

compare (X, Y)
Comparex andy numerically.

compare_signal (X, y)
Compares the values of the two operands numerically.

compare_total (Xx,Y)
Compares two operands using their abstract representation.

compare_total_mag (X,)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (X)
Returns a copy of with the sign set to 0.

copy_negate (X)
Returns a copy of with the sign inverted.

copy_sign (x,Y)
Copies the sign fromy to x.
divide (x,Y)
Returnx divided byy.
divide_int (Xx,y)
Returnx divided byy, truncated to an integer.

divmod (Xx,)
Divides two numbers and returns the integer part of the result.

exp (X)
Returnse ** x.

fma(x,y, 2

Returnsx multiplied byy, plusz.
is_canonical (X)

Returns True ik is canonical; otherwise returns False.
is_finite (x)

Returns True ik is finite; otherwise returns False.
is_infinite (%)

Returns True ik is infinite; otherwise returns False.
is_nan (x)

Returns True ik is a gNaN or sNaN; otherwise returns False.
is_normal (x)

Returns True ik is a normal number; otherwise returns False.

10.4. decimal — Decimal fixed point and floating point arithmetic 199

The Python Library Reference, Release 2.6.4

is_gnan (X)

Returns True ik is a quiet NaN; otherwise returns False.
is_signed (x)

Returns True ik is negative; otherwise returns False.

is_shan (X)
Returns True ik is a signaling NaN; otherwise returns False.

is_subnormal (X)
Returns True ik is subnormal; otherwise returns False.

is_zero (X)

Returns True ik is a zero; otherwise returns False.
In (X)

Returns the natural (base e) logarithrmxof
logl0 (x)

Returns the base 10 logarithm»of

logb (X)
Returns the exponent of the magnitude of the operand’s MSD.

logical_and (Xx,Y)

Applies the logical operatioand between each operand’s digits.
logical_invert ()

Invert all the digits inx.
logical_or (x,y)

Applies the logical operatioar between each operand’s digits.
logical_xor (x,¥)

Applies the logical operatioror between each operand’s digits.

max(X, y)
Compares two values numerically and returns the maximum.

max_mag X, y)

Compares the values numerically with their sign ignored.
min (X, y)

Compares two values numerically and returns the minimum.
min_mag(x, y)

Compares the values numerically with their sign ignored.
minus (X)

Minus corresponds to the unary prefix minus operator in Python.
multiply (X, y)

Return the product of andy.
next_minus (X)

Returns the largest representable number smallenthan

next _plus (x)
Returns the smallest representable number largenthan

next_toward (Xx,Y)
Returns the number closestxpin direction towardy.

normalize (Xx)
Reducex to its simplest form.

number_class (x)
Returns an indication of the classof

200 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

plus (Xx)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context preci-
sion and rounding, so it isot an identity operation.

power (X, Yy, [modulo)
Returnx to the power ofy, reduced modulonodulo if given.

With two arguments, computeé*y . If x is negative thely must be integral. The result will be inexact
unlessy is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compufe**y) % modulo . For the three argument form, the following
restrictions on the arguments hold:

«all three arguments must be integral

*y must be nonnegative

eat least one ok ory must be nonzero

emodulo must be nonzero and have at most ‘precision’ digits

The result ofContext.power(x, y, modulo) is identical to the result that would be obtained
by computing(x**y) % modulo with unbounded precision, but is computed more efficiently. It
is always exact. Changed in version 2y6may now be nonintegral irR**y . Stricter requirements
for the three-argument version.

quantize (x,Y)
Returns a value equal to(rounded), having the exponentyf

radix ()
Just returns 10, as this is Decimal, :)

remainder (X,Y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (X,Y)
Returnsx - y * n , wherenis the integer nearest the exact valueof y (if the resultis 0 then
its sign will be the sign ok).

rotate (x,Y)
Returns a rotated copy a&fy times.

same_quantum (X, y)
Returns True if the two operands have the same exponent.

scaleb (x,Y)
Returns the first operand after adding the second value its exp.

shift (x,y)
Returns a shifted copy of y times.

sqrt (X)
Square root of a non-negative number to context precision.

subtract (x,Y)
Return the difference betwearandy.

to_eng_string (X)
Converts a number to a string, using scientific notation.

to_integral_exact (x)
Rounds to an integer.

to_sci_string (X)
Converts a number to a string using scientific notation.

10.4. decimal — Decimal fixed point and floating point arithmetic 201

The Python Library Reference, Release 2.6.4

10.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context
trap enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context's trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if theDivisionByZero trap is set, then BivisionByZero exception is raised upon encountering
the condition.

classClamped ()
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the contertis andEmaxlimits. If possible,
the exponent is reduced to fit by adding zeros to the coefficient.

classDecimalException ()
Base class for other signals and a subclagsrofimeticError

classDivisionByZero ()
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is
not trapped, returnfinity or -Infinity with the sign determined by the inputs to the calculation.

classlnexact ()
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal
flag or trap is used to detect when results are inexact.

classinvalidOperation 0
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trappedNeNuRGssible
causes include:

Infinity - Infinity

0 * Infinity

Infinity /' Infinity

X %0

Infinity % X

X. _rescale(non -integer)
sgrt(-x) and x > 0
0** 0

X ** (non - integer)
X ** Infinity

classOverflow ()
Numerical overflow.

Indicates the exponent is larger thBmax after rounding has occurred. If not trapped, the result depends
on the rounding mode, either pulling inward to the largest representable finite number or rounding outward
to Infinity . In either caselnexact andRounded are also signaled.

classRounded ()
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rdufding 5.0).
If not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

202 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

classSubnormal ()
Exponent was lower thalBmin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

classUnderflow ()
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by roundingxact and Subnormal are also
signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(lnexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

10.4.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent
exactly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities result-
ing in loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with
insufficient precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (U + V) +w

Decimal(’9.5111111")

>>> U+ (V+ w)

Decimal('10’)

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003")
>>> (utv) + (u*w)

Decimal(’0.01")

>>> U * (v+w)

Decimal(’0.0060000’)

Thedecimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid
loss of significance:

>>> getcontext() .prec = 20

>>> U, v, w = Decimal(11111113), Decimal(-11111111), Decimal(' 7.51111111 ")
>>> (U +vVv) +w

Decimal(’9.51111111")

>>> U + (Vv +w)

Decimal(’9.511111171")

>>>

10.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 2.6.4

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(' 6.0000003 ")
>>> (U*v) + (Uu*w)

Decimal(’0.0060000")

>>> u * (v +w)

Decimal(’0.0060000’)

Special values

The number system for théecimal module provides special values includibhgN sNaN, -Infinity ,
Infinity , and two zerost+0 and-0 .

Infinities can be constructed directly witfecimal(Infinity’) . Also, they can arise from dividing by
zero when théivisionByZero signal is not trapped. Likewise, when theerflow signal is not trapped,
infinity can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large,
indeterminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and retNai or if the InvalidOperation signal is trapped, raise an
exception. For exampl®/0 returnsNaNwhich means “not a number”. This variety NaNis quiet and, once
created, will flow through other computations always resulting in andflaé&t This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant issNaN which signals rather than remaining quiet after every operation. This is a useful return value
when an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising whieNas involved. A test

for equality where one of the operands is a quiet or signalafl always returns-alse (even when doing
Decimal('NaN’)==Decimal('NaN’)), while a test for inequality always returisue . An attempt to
compare two Decimals using any of the<=, > or >= operators will raise thénvalidOperation signal if

either operand is BlaN and returriFalse if this signal is not trapped. Note that the General Decimal Arithmetic
specification does not specify the behavior of direct comparisons; these rules for comparisons invblaig a

were taken from the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use
thecompare() andcompare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative
zeros are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with dif-
fering precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized
floating point representations, it is not immediately obvious that the following calculation returns a value equal to
zero:

>>> 1 |/ Decimal(’ Infinity ")
Decimal('0E-1000000026")

10.4.6 Working with threads

The getcontext() function accesses a differe@bntext object for each thread. Having separate thread
contexts means that threads may make changes (sughteantext.prec=10) without interfering with
other threads.

Likewise, thesetcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called befogetcontext() , thengetcontext() will automatically cre-
ate a new context for use in the current thread.

The new context is copied from a prototype context caldedaultContext To control the defaults so that each
thread will use the same values throughout the application, directly modiffpéfi@ultContextobject. This

204 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

should be dondeforeany threads are started so that there won't be a race condition between threads calling
getcontext() . For example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started
tl.start()
t2.start()
t3.start()

10.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work Witittimel class:

(IR

def moneyfmt (Value, p|aces =2, curr =", sep =7, dp =,
pos='", neg =" -’ , trailneg =)
""Convert Decimal to a money formatted string.

)

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+, space or blank
neg: optional sign for negative numbers: -, '(’, space or blank
trailneg:optional trailing minus indicator: -, ’)’, space or blank

>>> d = Decimal(’-1234567.8901")

>>> moneyfmt(d, curr="$")

’-$1,234,567.89’

>>> moneyfmt(d, places=0, sep="", dp=", neg=", trailneg="-)
'1.234.568-'

>>> moneyfmt(d, curr="$’, neg="(’, trailneg="))
'($1,234,567.89)’

>>> moneyfmt(Decimal(123456789), sep="")

'123 456 789.00°

>>> moneyfmt(Decimal(’-0.02"), neg='<’, trailneg=">")

'<0.02>’
g = Decimal(10) ** -places # 2 places --> '0.01
sign, digits, exp = value . quantize(q) . as_tuple()
result =]
digits = map(str , digits)
build, next = result . append, digits . pop
if sign:
build(trailneg)
for i in range (places):
build(next() if digits else '0")
build(dp)
if not digits:
build(" 0")

10.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 2.6.4

i =0
while digits:
build(next())
i +=1
if i == 3 and digits:
i =0
build(sep)
build(curr)
build(neg if sign else pos)
return '’ . join(reversed(result))

def pi ():
""Compute Pi to the current precision.

>>> print pi()
3.141592653589793238462643383

getcontext() .prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s

n, na = n+na, na +8

d, da = d+da, da +32

t =@t *n / d

s +=t
getcontext() .prec -=2
return +s # unary plus applies the new precision

def exp (x):

""Return e raised to the power of Xx. Result type matches input type.

>>> print exp(Decimal(1))
2.718281828459045235360287471
>>> print exp(Decimal(2))
7.389056098930650227230427461
>>> print exp(2.0)
7.38905609893

>>> print exp(2+0j)
(7.38905609893+0j)

getcontext() .prec += 2
i, lasts, s, fact, num =0, 0 1, 1, 1
while s = lasts:
lasts = s
i +=1
fact *= i
num *= X
s += num / fact
getcontext() .prec -= 2
return +s

def cos (x):
""Return the cosine of x as measured in radians.

>>> print cos(Decimal(’0.5%)

206 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

0.8775825618903727161162815826
>>> print cos(0.5)

0.87758256189

>>> print cos(0.5+0))
(0.87758256189+0j)

nnn

getcontext() .prec += 2
i, lasts, s, fact, num, sign =0, 0, 1, 1, 1, 1
while s != lasts:

lasts ='s

i += 2

fact *=1i * (i -1)

num *= x * X

sign *= -1
s += num / fact * sign
getcontext() .prec -= 2
return +s
def sin (x):

""Return the sine of x as measured in radians.

>>> print sin(Decimal(’0.5%))
0.4794255386042030002732879352
>>> print sin(0.5)

0.479425538604

>>> print sin(0.5+0j)
(0.479425538604+0j)

getcontext() .prec += 2
i, lasts, s, fact, num, sign =1, 0, %, 1,x 1
while s != lasts:

lasts = s

i += 2

fact *=1i * (i -1)

num *= x * x

sign *= -1

s += num / fact * sign
getcontext() .prec -=2
return +s

10.4.8 Decimal FAQ

Q. Itis cumbersome to typdecimal.Decimal(’1234.5’) . Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal . Decimal
>>> D(’1.23") + D(’'3.45")
Decimal(’4.68)

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded.
Others are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize() method rounds to a fixed number of decimal places. Ifitlexact trap is set, it is also
useful for validation:

>>> TWOPLACES- Decimal(10) ** -2 # same as Decimal(’0.01")

10.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 2.6.4

>>> # Round to two places
>>> Decimal(' 3.214 ') . quantize(TWOPLACES)
Decimal(’3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal(' 3.21 ') . quantize(TWOPLACES, context =Context(traps =[Inexact]))
Decimal(’3.21")

>>> Decimal(' 3.214 ') . quantize(TWOPLACES, context =Context(traps =[Inexact]))
Traceback (most recent call last):
Inexact : None

Q. Once | have valid two place inputs, how do | maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed
point. Others operations, like division and non-integer multiplication, will change the number of decimal places
and need to be followed-up withquantize() step:

>>> a = Decimal(' 102.72 ") # Initial fixed-point values
>>> b = Decimal(' 3.17 ')
>>> a + b # Addition preserves fixed-point

Decimal(’105.89’)
>>> a - b
Decimal(’99.55’)

>>> g * 42 # So does integer multiplication
Decimal(’4314.24")

>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal(’325.62)

>>> (b / a).quantize(TWOPLACES) # And quantize division

Decimal(’0.03")
In developing fixed-point applications, it is convenient to define functions to handtpidrgize() step:

>>> def mul(x, y, fp =TWOPLACES):
return (X * y) . quantize(fp)
>>> def div (x, ¥, fp =TWOPLACES):
. return (X / y) . quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point
Decimal(’325.62)

>>> div(b, a)

Decimal(’0.03")

Q. There are many ways to express the same value. The nu@der200.000 , 2E2, and02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. Thenormalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, ' 200 200.000 2E2 .02E+4 ' . split()
>>> [v . normalize() for v in values]
[Decimal('2E+2’), Decimal(’2E+2’), Decimal(2E+2’), Decimal(’2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential represen-
tation?

A. For some values, exponential notation is the only way to express the number of significant places in the co-
efficient. For example, expressifgOE+3 as5000 keeps the value constant but cannot show the original’s
two-place significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes,
losing significance, but keeping the value unchanged:

>>> def remove_exponent (d):
return d. quantize(Decimal(1)) if d == d. to_integral() else d. normalize()

208 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4

>>> remove_exponent(Decimal(" BE+3"))
Decimal(’50007)

Q. Is there a way to convert a regular float tbecimal ?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take
more precision than intuition would suggest, so we fregxact to signal a need for more precision:

def float_to_decimal :
"Convert a floating point number to a Decimal with no loss of information
n, d = f.as_integer_ratio()
numerator, denominator = Decimal(n), Decimal(d)
ctx = Context(prec =60)
result = ctx . divide(numerator, denominator)
while ctx . flags[Inexact]:
ctx . flags[inexact] = False
Cctx . prec *= 2
result = ctx . divide(hnumerator, denominator)

return result

>>> float_to_decimal(math . pi)
Decimal('3.141592653589793115997963468544185161590576171875")

Q. Why isn't thefloat_to_decimal() routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use
requires some care to avoid the representation issues associated with binary floating point:

>>> float_to_decimal(1.1)
Decimal(’1.100000000000000088817841970012523233890533447265625’)

Q. Within a complex calculation, how can | make sure that | haven't gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only
the results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that
the results can look odd if you forget that the inputs haven't been rounded:

>>> getcontext() .prec =3

>>> Decimal(' 3.104 ') + Decimal(' 2.104 ')

Decimal(’5.21)

>>> Decimal(' 3.104 ') + Decimal(’0.000 ') + Decimal(' 2.104 ")
Decimal(’5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext() .prec =3
>>> +Decimal(' 1.23456789 ') # unary plus triggers rounding
Decimal('1.23)

Alternatively, inputs can be rounded upon creation usingtbietext.create_decimal() method:

>>> Context(prec =5, rounding =ROUND_DOWNjreate decimal(' 1.2345678 ')
Decimal(’1.2345’)

10.5 fractions — Rational numbers

10.5. fractions — Rational numbers 209

The Python Library Reference, Release 2.6.4

New in version 2.6. Théactions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

classFraction (. numerator=0, denominator=1
classFraction (other_fractior)
classFraction (string)

The first version requires thatumeratorand denominatorare instances ofiumbers.Integral and
returns a newrraction instance with valueumerator/denominator . If denominatoris 0, it
raises aZeroDivisionError . The second version requires thather_fractionis an instance of
numbers.Rational and returns arraction instance with the same value. The last version of the
constructor expects a string or unicode instance in one of two possible forms. The first form is:

[sign] numerator [/' denominator]

where the optionasign may be either ‘+’ or ‘- andnumerator anddenominator (if present) are
strings of decimal digits. The second permitted form is that of a number containing a decimal point:

[sign] integer [fraction] | [sign] ' fraction
whereinteger andfraction are strings of digits. In either form the input string may also have leading
and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)

>>> Fraction(123)

Fraction(123, 1)

>>> Fraction()

Fraction(0, 1)

>>>