
DisplayCluster Manual
DisplayCluster is a software environment for interactively driving large-scale tiled displays. The
software allows users to interactively view media such as high-resolution imagery and video,
as well as stream content from remote sources such as laptops / desktops or high-performance
remote visualization machines. Many users can simultaneously interact with DisplayCluster
with devices such as joysticks or touch-enabled devices such as the iPhone / iPad / iTouch or
Android devices. Users can even interact using gestures via support for the Microsoft Kinect.
Additionally, a Python scripting interface is provided to automate interaction with DisplayCluster.

This manual provides information on the installation and usage of DisplayCluster.

Table of Contents

License
Installation

Dependencies
Building
Configuration
Optional Features

Joystick Interaction
Kinect Interaction
Python Scripting Support
Touch Device Interaction

Usage
Prerequisites
Starting DisplayCluster
Joystick Interaction
Kinect Interaction
Python Scripting
Touch Device Interaction
Desktop Streaming

1

License
Copyright (c) 2011 - 2012, The University of Texas at Austin.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

 1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT AUSTIN ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT
AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those of the
authors and should not be interpreted as representing official policies, either expressed or
implied, of The University of Texas at Austin.

2

Installation
Dependencies
The following required dependencies should be installed prior to building DisplayCluster. Many
of these can be installed with a package manager. Any packages built manually should be
installed outside of the DisplayCluster source / build directory, for example in /usr/local/.

● CMake 2.4 or higher (2.8+ recommended)
● MPI (tested with OpenMPI 1.4.1)
● Qt 4.8.0 or higher
● Boost 1.44.0 or higher
● FFMPEG 0.8.x or higher (tested with 0.8.2 and 0.9.1)
● libjpeg-turbo (tested with 1.1.90)

Building
After unpacking the DisplayCluster source, change to the source directory, create a build
directory, and change to that build directory:

cd DisplayCluster
mkdir build
cd build

Run CMake to configure the build:

ccmake ../

Press ‘c’ to configure.

Initially you will be presented with two build options, BUILD_DESKTOPSTREAMER and
BUILD_DISPLAYCLUSTER. These options enable the DesktopStreamer client application for
streaming remote content to a DisplayCluster instance, and the DisplayCluster application for
driving the tiled display, respectively. For a default installation, set these both to ON:

● Build option: BUILD_DESKTOPSTREAMER: ON
● Build option: BUILD_DISPLAYCLUSTER: ON

Press ‘c’ to configure the build again. CMake will attempt to automatically locate all of the
required dependencies. It will produce error messages if it cannot find a particular dependency.
In these cases, the CMake settings must be edited manually with the proper locations.
Pressing ‘t’ will show all build settings. The installation prefix CMAKE_INSTALL_PREFIX should
be changed. The recommended setting is /opt/displaycluster. It may be necessary to run the
configuration multiple times (by pressing ‘c’). After the build has been successfully configured,
the Makefile can be generated by pressing ‘g’.

3

http://www.cmake.org
http://www.open-mpi.org
http://qt.nokia.com
http://www.boost.org
http://www.ffmpeg.org
http://libjpeg-turbo.org
http://libjpeg-turbo.org
http://libjpeg-turbo.org

After CMake has generated the Makefile, simply run:

make
make install

Configuration
A single configuration file configuration.xml must be created to describe the tiled display cluster
and screen layout. An example is provided in the distribution and can be modified to a particular
tiled display.

Change to the directory where DisplayCluster was installed and copy the example configuration
file into place:

cd /opt/displaycluster
cp examples/configuration.xml ./

An example configuration.xml is:

<configuration>
 <dimensions numTilesWidth="2" numTilesHeight="2" screenWidth="400"
screenHeight="400" mullionWidth="50" mullionHeight="50" fullscreen="0"/>

 <process host="localhost" display=":0">
 <screen x="0" y="0" i="0" j="0"/>
 <screen x="400" y="0" i="1" j="0"/>
 </process>
 <process host="localhost" display=":0">
 <screen x="0" y="400" i="0" j="1"/>
 <screen x="400" y="400" i="1" j="1"/>
 </process>
</configuration>

numTilesWidth and numTilesHeight represent the monitor layout of the tiled display.
screenWidth and screenHeight represent the resolution of each monitor. mullionWidth and
mullionHeight represent pixels hidden behind monitor mullions / bezels. Finally, fullscreen (0 or
1) represents if the window on each monitor should be opened in OpenGL fullscreen mode or
not.

Each render node must have at least one process. If the node has only display (in Linux
this refers to the X display, for example :0 or :1), only one process should be used for best
performance. The host attribute is required and represents the host name for the given process.
The display attribute is required on Linux and represents the X display.

4

All of the screens for a process must be specified. The x and y attributes represent the pixel
displacement to the upper-left corner of the screen in the given display. The origin is located
at the upper-left corner of all the screens in the display. The i and j attributes represent the tile
coordinates of the screen in the tiled display. The origin (0,0) represents the upper-left screen.

Optional Features
There are several optional features which can be enabled at build time. These are described
below. After enabling any of these features, it will be necessary to reconfigure in CMake,
generate a new Makefile, and run ‘make’ and ‘make install’ again as described in the Building
section above.

Joystick Interaction
An arbitrary number of joysticks can be used to interact with DisplayCluster. Logitech gamepad
and Xbox 360 controllers are known to work well. The following additional dependency and
CMake build option is required:

● SDL 1.2
● Build option: ENABLE_JOYSTICK_SUPPORT: ON

Kinect Interaction (EXPERIMENTAL)
A Kinect device can be used to interact with DisplayCluster. The following additional
dependencies need to be installed (in order listed):

● OpenNI 1.5+ (Select unstable binaries)
● NITE 1.5+ (OpenNI compliant middle-ware binaries)
● SensorKinect
● Build option: ENABLE_SKELETON_SUPPORT: ON

Python Scripting Support
DisplayCluster can be controlled via a Python interface. This allows users to interact via a
Python console or run Python scripts. The following additional dependencies and CMake build
option are required:

● PythonQt 2.0.1.DC (provided in dependencies/ directory)
● SIP 4.x (tested with 4.13.1)
● PyQt 4.x (tested with 4.9)
● Build option: ENABLE_PYTHON_SUPPORT: ON

Note that a modified version of PythonQt is required. This is provided with the source
distribution.

Touch Device Interaction
Touch interaction is possible using iOS devices (iPhone, iPad, iTouch) and Android devices.
In fact, any device that uses the TUIO protocol can operate with DisplayCluster. The following

5

http://www.libsdl.org/
http://75.98.78.94/default.aspx
http://75.98.78.94/default.aspx
https://github.com/avin2/SensorKinect
http://www.riverbankcomputing.co.uk/
http://www.riverbankcomputing.co.uk/
http://www.tuio.org/

additional dependency and CMake build option is required:

● TUIO C++ Client Reference Implementation 1.4 (provided in dependencies/ directory)
● Build option: ENABLE_TUIO_TOUCH_LISTENER: ON

6

http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software
http://www.tuio.org/?software

Usage
The following describes how to start and use DisplayCluster after installation.

Prerequisites
Before running DisplayCluster, you should make sure that your MPI environment is working
correctly. You should be able to run an MPI ‘hello world’ application across the cluster. In
general this requires MPI to be installed on all nodes of the cluster, and for SSH public key
authentication (passwordless SSH) to be setup.

You should make sure that the tiled display monitors are all on and not in a power-saving mode.
In Linux this can be accomplished by executing the following commands on all nodes of the
cluster (the display :0 can be adjusted as necessary):

xset -display :0 dpms force on
xset -display :0 s reset

In Linux environments, you need to make sure that remotely executed applications can display
to the X server. A simple test is to make sure an xterm can be launched on a render node
remotely (the display :0 can be adjusted as necessary):

ssh <rendernode> DISPLAY=:0 xterm

If successful, you will see an xterm appear on a screen of the tiled display. If unsuccessful, it will
be necessary to adjust permissions on the X server, possibly by editing the X configuration file
or using the xhost command.

Starting DisplayCluster
DisplayCluster can be started by executing in a terminal on the head node:

/opt/displaycluster/bin/startdisplaycluster

For convenenience, you may wish to add /opt/displaycluster/bin to the $PATH environment
variable. Afterward, you can launch by simpling running startdisplaycluster. The user interface
(shown below) should then appear on the head node’s display, and the tiled display should turn
black.

7

The user interface shows a representation of the tiled display as specified in the
configuration.xml file. A test pattern can be displayed across the tiled display to verify everything
has been configured correctly by selecting Show Test Pattern in the View menu. The test
pattern shows a colored diagonal grid and information about each screen. If the test pattern
appears incorrectly on the tiled display, you may need to edit the configuration.xml file and re-
launch DisplayCluster.

Once launched, imagery and movie content can be opened using the Open Content dialog.
Entire directories of content can be opened and shown in a grid layout using the Open Contents
Directory dialog. State files representing all of the currently shown content can be saved and
loading via the Save State and Load State dialogs.

Extremely high-resolution imagery is supported by DisplayCluster. These images can be
opened and processed in real time by simply opening them via Open Content. For best
performance, an image pyramid can be computed and stored to disk for later use. This is
accomplished using the Compute Image Pyramid dialog. A new directory will be created
with the processed pyramid files. A .pyr file representing the image pyramid (for example
image.jpg.pyr) will be created in the same directory as the original image. This pyramid file can
be opened via the Open Content dialog. Note that the .pyr file can be renamed and relocated
for convenience. If the pyramid directory moves however, the .pyr file will need to be edited to
reference the new location.

Joystick Interaction
Multiple joysticks or gamepad controllers can be used simultaneously to interact with
DisplayCluster. Logitech gamepad and Xbox 360 controllers are known to work well. Controllers
should be connected to the head node before launching DisplayCluster. Note that controllers
should be used in analog mode if they have that option. The controllers can then be used to
interact with windows on the tiled display according to the following diagram:

8

Kinect Interaction
A Microsoft Kinect device can be used to control DisplayCluster with space-based gestures,
giving a “touch-less” interface. The Kinect should be connected to the head node of the cluster.
When a user is detected in front of the Kinect, a representation of their skeleton is shown on the
display. Up to four concurrent users are supported simultaneously.

To take control of the display, the user raises their left hand and the skeleton joints will change
color indicating the user has control of a cursor:

9

The cursor is controlled with the right hand, and when the right hand passes the depth
threshold, shown in the figure above by the circular plane, the cursor is mapped on the display.
To activate a window, the cursor must hover over the window for 2 seconds.

When a window is active, the right hand pans the content of the window, and using both the left
and right hands simultaneously will zoom the content. Panning will not work until the window is
zoomed in. The zoom and pan gestures are shown below:

If the left hand is raised above the head while over an active window, the alternative interaction
mode is enabled that allows the user to scale and move the active window. The window is
moved with the right hand as shown in the pan gesture above, and the window is scaled when
both hands cross the depth threshold as shown in the zoom gestures above. This mode is
shown visually by a change in color of the user’s skeleton.

Python Scripting
Documentation for the Python scripting API is coming soon.

Touch Device Interaction
Documentation for touch device interaction is coming soon.

Desktop Streaming
Desktop contents can be streamed directly to DisplayCluster. The DesktopStreamer application
can be launched with the command:

/opt/displaycluster/bin/desktopstreamer

After launch the application will appear as

10

If launching on the head node where DisplayCluster was started, the hostname should be
specified as localhost. The stream name is a user-selected unique identifier to name the
displayed window. X, Y, Width, and Height specify the rectangle on the desktop to stream. The
origin (X, Y) is located at the upper-left corner of the desktop. The maximum frame rate of the
stream can be adjusted as well. This can be used, for example, to limit the outgoing network
bandwidth from the DesktopStreamer application.

For convenience, the Show Rectangle button allows users to select the rectangle graphically.
After rectangle selection, click the Exit selection mode button at the upper-left to hide the
rectangle.

The DesktopStreamer application can be built on other machines and allows for streaming of
remote content from laptops / desktops or high-performance remote visualization machines. In
these cases, simply change the hostname to the DisplayCluster head node address. Port 1701
will need to be publicly accessible.

11

