libstdc++
bits/hashtable.h
Go to the documentation of this file.
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  * This is an internal header file, included by other library headers.
27  * Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41  template<typename _Tp, typename _Hash>
42  using __cache_default
43  = __not_<__and_<// Do not cache for fast hasher.
44  __is_fast_hash<_Hash>,
45  // Mandatory to have erase not throwing.
46  __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48  /**
49  * Primary class template _Hashtable.
50  *
51  * @ingroup hashtable-detail
52  *
53  * @tparam _Value CopyConstructible type.
54  *
55  * @tparam _Key CopyConstructible type.
56  *
57  * @tparam _Alloc An allocator type
58  * ([lib.allocator.requirements]) whose _Alloc::value_type is
59  * _Value. As a conforming extension, we allow for
60  * _Alloc::value_type != _Value.
61  *
62  * @tparam _ExtractKey Function object that takes an object of type
63  * _Value and returns a value of type _Key.
64  *
65  * @tparam _Equal Function object that takes two objects of type k
66  * and returns a bool-like value that is true if the two objects
67  * are considered equal.
68  *
69  * @tparam _H1 The hash function. A unary function object with
70  * argument type _Key and result type size_t. Return values should
71  * be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72  *
73  * @tparam _H2 The range-hashing function (in the terminology of
74  * Tavori and Dreizin). A binary function object whose argument
75  * types and result type are all size_t. Given arguments r and N,
76  * the return value is in the range [0, N).
77  *
78  * @tparam _Hash The ranged hash function (Tavori and Dreizin). A
79  * binary function whose argument types are _Key and size_t and
80  * whose result type is size_t. Given arguments k and N, the
81  * return value is in the range [0, N). Default: hash(k, N) =
82  * h2(h1(k), N). If _Hash is anything other than the default, _H1
83  * and _H2 are ignored.
84  *
85  * @tparam _RehashPolicy Policy class with three members, all of
86  * which govern the bucket count. _M_next_bkt(n) returns a bucket
87  * count no smaller than n. _M_bkt_for_elements(n) returns a
88  * bucket count appropriate for an element count of n.
89  * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90  * current bucket count is n_bkt and the current element count is
91  * n_elt, we need to increase the bucket count. If so, returns
92  * make_pair(true, n), where n is the new bucket count. If not,
93  * returns make_pair(false, <anything>)
94  *
95  * @tparam _Traits Compile-time class with three boolean
96  * std::integral_constant members: __cache_hash_code, __constant_iterators,
97  * __unique_keys.
98  *
99  * Each _Hashtable data structure has:
100  *
101  * - _Bucket[] _M_buckets
102  * - _Hash_node_base _M_before_begin
103  * - size_type _M_bucket_count
104  * - size_type _M_element_count
105  *
106  * with _Bucket being _Hash_node* and _Hash_node containing:
107  *
108  * - _Hash_node* _M_next
109  * - Tp _M_value
110  * - size_t _M_hash_code if cache_hash_code is true
111  *
112  * In terms of Standard containers the hashtable is like the aggregation of:
113  *
114  * - std::forward_list<_Node> containing the elements
115  * - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116  *
117  * The non-empty buckets contain the node before the first node in the
118  * bucket. This design makes it possible to implement something like a
119  * std::forward_list::insert_after on container insertion and
120  * std::forward_list::erase_after on container erase
121  * calls. _M_before_begin is equivalent to
122  * std::forward_list::before_begin. Empty buckets contain
123  * nullptr. Note that one of the non-empty buckets contains
124  * &_M_before_begin which is not a dereferenceable node so the
125  * node pointer in a bucket shall never be dereferenced, only its
126  * next node can be.
127  *
128  * Walking through a bucket's nodes requires a check on the hash code to
129  * see if each node is still in the bucket. Such a design assumes a
130  * quite efficient hash functor and is one of the reasons it is
131  * highly advisable to set __cache_hash_code to true.
132  *
133  * The container iterators are simply built from nodes. This way
134  * incrementing the iterator is perfectly efficient independent of
135  * how many empty buckets there are in the container.
136  *
137  * On insert we compute the element's hash code and use it to find the
138  * bucket index. If the element must be inserted in an empty bucket
139  * we add it at the beginning of the singly linked list and make the
140  * bucket point to _M_before_begin. The bucket that used to point to
141  * _M_before_begin, if any, is updated to point to its new before
142  * begin node.
143  *
144  * On erase, the simple iterator design requires using the hash
145  * functor to get the index of the bucket to update. For this
146  * reason, when __cache_hash_code is set to false the hash functor must
147  * not throw and this is enforced by a static assertion.
148  *
149  * Functionality is implemented by decomposition into base classes,
150  * where the derived _Hashtable class is used in _Map_base,
151  * _Insert, _Rehash_base, and _Equality base classes to access the
152  * "this" pointer. _Hashtable_base is used in the base classes as a
153  * non-recursive, fully-completed-type so that detailed nested type
154  * information, such as iterator type and node type, can be
155  * used. This is similar to the "Curiously Recurring Template
156  * Pattern" (CRTP) technique, but uses a reconstructed, not
157  * explicitly passed, template pattern.
158  *
159  * Base class templates are:
160  * - __detail::_Hashtable_base
161  * - __detail::_Map_base
162  * - __detail::_Insert
163  * - __detail::_Rehash_base
164  * - __detail::_Equality
165  */
166  template<typename _Key, typename _Value, typename _Alloc,
167  typename _ExtractKey, typename _Equal,
168  typename _H1, typename _H2, typename _Hash,
169  typename _RehashPolicy, typename _Traits>
171  : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172  _H1, _H2, _Hash, _Traits>,
173  public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175  public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177  public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179  public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180  _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182  __alloc_rebind<_Alloc,
183  __detail::_Hash_node<_Value,
184  _Traits::__hash_cached::value>>>
185  {
186  using __traits_type = _Traits;
187  using __hash_cached = typename __traits_type::__hash_cached;
189  using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
190 
192 
193  using __value_alloc_traits =
195  using __node_alloc_traits =
197  using __node_base = typename __hashtable_alloc::__node_base;
198  using __bucket_type = typename __hashtable_alloc::__bucket_type;
199 
200  public:
201  typedef _Key key_type;
202  typedef _Value value_type;
203  typedef _Alloc allocator_type;
204  typedef _Equal key_equal;
205 
206  // mapped_type, if present, comes from _Map_base.
207  // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
208  typedef typename __value_alloc_traits::pointer pointer;
209  typedef typename __value_alloc_traits::const_pointer const_pointer;
210  typedef value_type& reference;
211  typedef const value_type& const_reference;
212 
213  private:
214  using __rehash_type = _RehashPolicy;
215  using __rehash_state = typename __rehash_type::_State;
216 
217  using __constant_iterators = typename __traits_type::__constant_iterators;
218  using __unique_keys = typename __traits_type::__unique_keys;
219 
220  using __key_extract = typename std::conditional<
221  __constant_iterators::value,
222  __detail::_Identity,
223  __detail::_Select1st>::type;
224 
225  using __hashtable_base = __detail::
226  _Hashtable_base<_Key, _Value, _ExtractKey,
227  _Equal, _H1, _H2, _Hash, _Traits>;
228 
229  using __hash_code_base = typename __hashtable_base::__hash_code_base;
230  using __hash_code = typename __hashtable_base::__hash_code;
231  using __ireturn_type = typename __hashtable_base::__ireturn_type;
232 
233  using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
234  _Equal, _H1, _H2, _Hash,
235  _RehashPolicy, _Traits>;
236 
237  using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
238  _ExtractKey, _Equal,
239  _H1, _H2, _Hash,
240  _RehashPolicy, _Traits>;
241 
242  using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
243  _Equal, _H1, _H2, _Hash,
244  _RehashPolicy, _Traits>;
245 
246  using __reuse_or_alloc_node_type =
247  __detail::_ReuseOrAllocNode<__node_alloc_type>;
248 
249  // Metaprogramming for picking apart hash caching.
250  template<typename _Cond>
251  using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
252 
253  template<typename _Cond>
254  using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
255 
256  // Compile-time diagnostics.
257 
258  // _Hash_code_base has everything protected, so use this derived type to
259  // access it.
260  struct __hash_code_base_access : __hash_code_base
261  { using __hash_code_base::_M_bucket_index; };
262 
263  // Getting a bucket index from a node shall not throw because it is used
264  // in methods (erase, swap...) that shall not throw.
265  static_assert(noexcept(declval<const __hash_code_base_access&>()
266  ._M_bucket_index((const __node_type*)nullptr,
267  (std::size_t)0)),
268  "Cache the hash code or qualify your functors involved"
269  " in hash code and bucket index computation with noexcept");
270 
271  // Following two static assertions are necessary to guarantee
272  // that local_iterator will be default constructible.
273 
274  // When hash codes are cached local iterator inherits from H2 functor
275  // which must then be default constructible.
276  static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
277  "Functor used to map hash code to bucket index"
278  " must be default constructible");
279 
280  template<typename _Keya, typename _Valuea, typename _Alloca,
281  typename _ExtractKeya, typename _Equala,
282  typename _H1a, typename _H2a, typename _Hasha,
283  typename _RehashPolicya, typename _Traitsa,
284  bool _Unique_keysa>
285  friend struct __detail::_Map_base;
286 
287  template<typename _Keya, typename _Valuea, typename _Alloca,
288  typename _ExtractKeya, typename _Equala,
289  typename _H1a, typename _H2a, typename _Hasha,
290  typename _RehashPolicya, typename _Traitsa>
291  friend struct __detail::_Insert_base;
292 
293  template<typename _Keya, typename _Valuea, typename _Alloca,
294  typename _ExtractKeya, typename _Equala,
295  typename _H1a, typename _H2a, typename _Hasha,
296  typename _RehashPolicya, typename _Traitsa,
297  bool _Constant_iteratorsa, bool _Unique_keysa>
298  friend struct __detail::_Insert;
299 
300  public:
301  using size_type = typename __hashtable_base::size_type;
302  using difference_type = typename __hashtable_base::difference_type;
303 
304  using iterator = typename __hashtable_base::iterator;
305  using const_iterator = typename __hashtable_base::const_iterator;
306 
307  using local_iterator = typename __hashtable_base::local_iterator;
308  using const_local_iterator = typename __hashtable_base::
309  const_local_iterator;
310 
311  private:
312  __bucket_type* _M_buckets = &_M_single_bucket;
313  size_type _M_bucket_count = 1;
314  __node_base _M_before_begin;
315  size_type _M_element_count = 0;
316  _RehashPolicy _M_rehash_policy;
317 
318  // A single bucket used when only need for 1 bucket. Especially
319  // interesting in move semantic to leave hashtable with only 1 buckets
320  // which is not allocated so that we can have those operations noexcept
321  // qualified.
322  // Note that we can't leave hashtable with 0 bucket without adding
323  // numerous checks in the code to avoid 0 modulus.
324  __bucket_type _M_single_bucket = nullptr;
325 
326  bool
327  _M_uses_single_bucket(__bucket_type* __bkts) const
328  { return __builtin_expect(__bkts == &_M_single_bucket, false); }
329 
330  bool
331  _M_uses_single_bucket() const
332  { return _M_uses_single_bucket(_M_buckets); }
333 
335  _M_base_alloc() { return *this; }
336 
337  __bucket_type*
338  _M_allocate_buckets(size_type __n)
339  {
340  if (__builtin_expect(__n == 1, false))
341  {
342  _M_single_bucket = nullptr;
343  return &_M_single_bucket;
344  }
345 
346  return __hashtable_alloc::_M_allocate_buckets(__n);
347  }
348 
349  void
350  _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
351  {
352  if (_M_uses_single_bucket(__bkts))
353  return;
354 
355  __hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
356  }
357 
358  void
359  _M_deallocate_buckets()
360  { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
361 
362  // Gets bucket begin, deals with the fact that non-empty buckets contain
363  // their before begin node.
364  __node_type*
365  _M_bucket_begin(size_type __bkt) const;
366 
367  __node_type*
368  _M_begin() const
369  { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
370 
371  template<typename _NodeGenerator>
372  void
373  _M_assign(const _Hashtable&, const _NodeGenerator&);
374 
375  void
376  _M_move_assign(_Hashtable&&, std::true_type);
377 
378  void
379  _M_move_assign(_Hashtable&&, std::false_type);
380 
381  void
382  _M_reset() noexcept;
383 
384  _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
385  const _Equal& __eq, const _ExtractKey& __exk,
386  const allocator_type& __a)
387  : __hashtable_base(__exk, __h1, __h2, __h, __eq),
388  __hashtable_alloc(__node_alloc_type(__a))
389  { }
390 
391  public:
392  // Constructor, destructor, assignment, swap
393  _Hashtable() = default;
394  _Hashtable(size_type __bucket_hint,
395  const _H1&, const _H2&, const _Hash&,
396  const _Equal&, const _ExtractKey&,
397  const allocator_type&);
398 
399  template<typename _InputIterator>
400  _Hashtable(_InputIterator __first, _InputIterator __last,
401  size_type __bucket_hint,
402  const _H1&, const _H2&, const _Hash&,
403  const _Equal&, const _ExtractKey&,
404  const allocator_type&);
405 
406  _Hashtable(const _Hashtable&);
407 
408  _Hashtable(_Hashtable&&) noexcept;
409 
410  _Hashtable(const _Hashtable&, const allocator_type&);
411 
412  _Hashtable(_Hashtable&&, const allocator_type&);
413 
414  // Use delegating constructors.
415  explicit
416  _Hashtable(const allocator_type& __a)
417  : __hashtable_alloc(__node_alloc_type(__a))
418  { }
419 
420  explicit
421  _Hashtable(size_type __n,
422  const _H1& __hf = _H1(),
423  const key_equal& __eql = key_equal(),
424  const allocator_type& __a = allocator_type())
425  : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
426  __key_extract(), __a)
427  { }
428 
429  template<typename _InputIterator>
430  _Hashtable(_InputIterator __f, _InputIterator __l,
431  size_type __n = 0,
432  const _H1& __hf = _H1(),
433  const key_equal& __eql = key_equal(),
434  const allocator_type& __a = allocator_type())
435  : _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
436  __key_extract(), __a)
437  { }
438 
440  size_type __n = 0,
441  const _H1& __hf = _H1(),
442  const key_equal& __eql = key_equal(),
443  const allocator_type& __a = allocator_type())
444  : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
445  __key_extract(), __a)
446  { }
447 
448  _Hashtable&
449  operator=(const _Hashtable& __ht);
450 
451  _Hashtable&
452  operator=(_Hashtable&& __ht)
453  noexcept(__node_alloc_traits::_S_nothrow_move()
454  && is_nothrow_move_assignable<_H1>::value
455  && is_nothrow_move_assignable<_Equal>::value)
456  {
457  constexpr bool __move_storage =
458  __node_alloc_traits::_S_propagate_on_move_assign()
459  || __node_alloc_traits::_S_always_equal();
460  _M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
461  return *this;
462  }
463 
464  _Hashtable&
465  operator=(initializer_list<value_type> __l)
466  {
467  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
468  _M_before_begin._M_nxt = nullptr;
469  clear();
470  this->_M_insert_range(__l.begin(), __l.end(), __roan);
471  return *this;
472  }
473 
474  ~_Hashtable() noexcept;
475 
476  void
477  swap(_Hashtable&)
478  noexcept(__is_nothrow_swappable<_H1>::value
479  && __is_nothrow_swappable<_Equal>::value);
480 
481  // Basic container operations
482  iterator
483  begin() noexcept
484  { return iterator(_M_begin()); }
485 
486  const_iterator
487  begin() const noexcept
488  { return const_iterator(_M_begin()); }
489 
490  iterator
491  end() noexcept
492  { return iterator(nullptr); }
493 
494  const_iterator
495  end() const noexcept
496  { return const_iterator(nullptr); }
497 
498  const_iterator
499  cbegin() const noexcept
500  { return const_iterator(_M_begin()); }
501 
502  const_iterator
503  cend() const noexcept
504  { return const_iterator(nullptr); }
505 
506  size_type
507  size() const noexcept
508  { return _M_element_count; }
509 
510  bool
511  empty() const noexcept
512  { return size() == 0; }
513 
514  allocator_type
515  get_allocator() const noexcept
516  { return allocator_type(this->_M_node_allocator()); }
517 
518  size_type
519  max_size() const noexcept
520  { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
521 
522  // Observers
523  key_equal
524  key_eq() const
525  { return this->_M_eq(); }
526 
527  // hash_function, if present, comes from _Hash_code_base.
528 
529  // Bucket operations
530  size_type
531  bucket_count() const noexcept
532  { return _M_bucket_count; }
533 
534  size_type
535  max_bucket_count() const noexcept
536  { return max_size(); }
537 
538  size_type
539  bucket_size(size_type __n) const
540  { return std::distance(begin(__n), end(__n)); }
541 
542  size_type
543  bucket(const key_type& __k) const
544  { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
545 
546  local_iterator
547  begin(size_type __n)
548  {
549  return local_iterator(*this, _M_bucket_begin(__n),
550  __n, _M_bucket_count);
551  }
552 
553  local_iterator
554  end(size_type __n)
555  { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
556 
557  const_local_iterator
558  begin(size_type __n) const
559  {
560  return const_local_iterator(*this, _M_bucket_begin(__n),
561  __n, _M_bucket_count);
562  }
563 
564  const_local_iterator
565  end(size_type __n) const
566  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
567 
568  // DR 691.
569  const_local_iterator
570  cbegin(size_type __n) const
571  {
572  return const_local_iterator(*this, _M_bucket_begin(__n),
573  __n, _M_bucket_count);
574  }
575 
576  const_local_iterator
577  cend(size_type __n) const
578  { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
579 
580  float
581  load_factor() const noexcept
582  {
583  return static_cast<float>(size()) / static_cast<float>(bucket_count());
584  }
585 
586  // max_load_factor, if present, comes from _Rehash_base.
587 
588  // Generalization of max_load_factor. Extension, not found in
589  // TR1. Only useful if _RehashPolicy is something other than
590  // the default.
591  const _RehashPolicy&
592  __rehash_policy() const
593  { return _M_rehash_policy; }
594 
595  void
596  __rehash_policy(const _RehashPolicy& __pol)
597  { _M_rehash_policy = __pol; }
598 
599  // Lookup.
600  iterator
601  find(const key_type& __k);
602 
603  const_iterator
604  find(const key_type& __k) const;
605 
606  size_type
607  count(const key_type& __k) const;
608 
610  equal_range(const key_type& __k);
611 
613  equal_range(const key_type& __k) const;
614 
615  protected:
616  // Bucket index computation helpers.
617  size_type
618  _M_bucket_index(__node_type* __n) const noexcept
619  { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
620 
621  size_type
622  _M_bucket_index(const key_type& __k, __hash_code __c) const
623  { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
624 
625  // Find and insert helper functions and types
626  // Find the node before the one matching the criteria.
627  __node_base*
628  _M_find_before_node(size_type, const key_type&, __hash_code) const;
629 
630  __node_type*
631  _M_find_node(size_type __bkt, const key_type& __key,
632  __hash_code __c) const
633  {
634  __node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
635  if (__before_n)
636  return static_cast<__node_type*>(__before_n->_M_nxt);
637  return nullptr;
638  }
639 
640  // Insert a node at the beginning of a bucket.
641  void
642  _M_insert_bucket_begin(size_type, __node_type*);
643 
644  // Remove the bucket first node
645  void
646  _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
647  size_type __next_bkt);
648 
649  // Get the node before __n in the bucket __bkt
650  __node_base*
651  _M_get_previous_node(size_type __bkt, __node_base* __n);
652 
653  // Insert node with hash code __code, in bucket bkt if no rehash (assumes
654  // no element with its key already present). Take ownership of the node,
655  // deallocate it on exception.
656  iterator
657  _M_insert_unique_node(size_type __bkt, __hash_code __code,
658  __node_type* __n);
659 
660  // Insert node with hash code __code. Take ownership of the node,
661  // deallocate it on exception.
662  iterator
663  _M_insert_multi_node(__node_type* __hint,
664  __hash_code __code, __node_type* __n);
665 
666  template<typename... _Args>
668  _M_emplace(std::true_type, _Args&&... __args);
669 
670  template<typename... _Args>
671  iterator
672  _M_emplace(std::false_type __uk, _Args&&... __args)
673  { return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
674 
675  // Emplace with hint, useless when keys are unique.
676  template<typename... _Args>
677  iterator
678  _M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
679  { return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
680 
681  template<typename... _Args>
682  iterator
683  _M_emplace(const_iterator, std::false_type, _Args&&... __args);
684 
685  template<typename _Arg, typename _NodeGenerator>
687  _M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
688 
689  template<typename _Arg, typename _NodeGenerator>
690  iterator
691  _M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
692  std::false_type __uk)
693  {
694  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
695  __uk);
696  }
697 
698  // Insert with hint, not used when keys are unique.
699  template<typename _Arg, typename _NodeGenerator>
700  iterator
701  _M_insert(const_iterator, _Arg&& __arg,
702  const _NodeGenerator& __node_gen, std::true_type __uk)
703  {
704  return
705  _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
706  }
707 
708  // Insert with hint when keys are not unique.
709  template<typename _Arg, typename _NodeGenerator>
710  iterator
711  _M_insert(const_iterator, _Arg&&,
712  const _NodeGenerator&, std::false_type);
713 
714  size_type
715  _M_erase(std::true_type, const key_type&);
716 
717  size_type
718  _M_erase(std::false_type, const key_type&);
719 
720  iterator
721  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
722 
723  public:
724  // Emplace
725  template<typename... _Args>
726  __ireturn_type
727  emplace(_Args&&... __args)
728  { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
729 
730  template<typename... _Args>
731  iterator
732  emplace_hint(const_iterator __hint, _Args&&... __args)
733  {
734  return _M_emplace(__hint, __unique_keys(),
735  std::forward<_Args>(__args)...);
736  }
737 
738  // Insert member functions via inheritance.
739 
740  // Erase
741  iterator
742  erase(const_iterator);
743 
744  // LWG 2059.
745  iterator
746  erase(iterator __it)
747  { return erase(const_iterator(__it)); }
748 
749  size_type
750  erase(const key_type& __k)
751  { return _M_erase(__unique_keys(), __k); }
752 
753  iterator
754  erase(const_iterator, const_iterator);
755 
756  void
757  clear() noexcept;
758 
759  // Set number of buckets to be appropriate for container of n element.
760  void rehash(size_type __n);
761 
762  // DR 1189.
763  // reserve, if present, comes from _Rehash_base.
764 
765  private:
766  // Helper rehash method used when keys are unique.
767  void _M_rehash_aux(size_type __n, std::true_type);
768 
769  // Helper rehash method used when keys can be non-unique.
770  void _M_rehash_aux(size_type __n, std::false_type);
771 
772  // Unconditionally change size of bucket array to n, restore
773  // hash policy state to __state on exception.
774  void _M_rehash(size_type __n, const __rehash_state& __state);
775  };
776 
777 
778  // Definitions of class template _Hashtable's out-of-line member functions.
779  template<typename _Key, typename _Value,
780  typename _Alloc, typename _ExtractKey, typename _Equal,
781  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
782  typename _Traits>
783  auto
784  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
785  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
786  _M_bucket_begin(size_type __bkt) const
787  -> __node_type*
788  {
789  __node_base* __n = _M_buckets[__bkt];
790  return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
791  }
792 
793  template<typename _Key, typename _Value,
794  typename _Alloc, typename _ExtractKey, typename _Equal,
795  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
796  typename _Traits>
797  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
798  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
799  _Hashtable(size_type __bucket_hint,
800  const _H1& __h1, const _H2& __h2, const _Hash& __h,
801  const _Equal& __eq, const _ExtractKey& __exk,
802  const allocator_type& __a)
803  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
804  {
805  auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
806  if (__bkt > _M_bucket_count)
807  {
808  _M_buckets = _M_allocate_buckets(__bkt);
809  _M_bucket_count = __bkt;
810  }
811  }
812 
813  template<typename _Key, typename _Value,
814  typename _Alloc, typename _ExtractKey, typename _Equal,
815  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
816  typename _Traits>
817  template<typename _InputIterator>
818  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
819  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
820  _Hashtable(_InputIterator __f, _InputIterator __l,
821  size_type __bucket_hint,
822  const _H1& __h1, const _H2& __h2, const _Hash& __h,
823  const _Equal& __eq, const _ExtractKey& __exk,
824  const allocator_type& __a)
825  : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
826  {
827  auto __nb_elems = __detail::__distance_fw(__f, __l);
828  auto __bkt_count =
829  _M_rehash_policy._M_next_bkt(
830  std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
831  __bucket_hint));
832 
833  if (__bkt_count > _M_bucket_count)
834  {
835  _M_buckets = _M_allocate_buckets(__bkt_count);
836  _M_bucket_count = __bkt_count;
837  }
838 
839  for (; __f != __l; ++__f)
840  this->insert(*__f);
841  }
842 
843  template<typename _Key, typename _Value,
844  typename _Alloc, typename _ExtractKey, typename _Equal,
845  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
846  typename _Traits>
847  auto
848  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
849  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
850  operator=(const _Hashtable& __ht)
851  -> _Hashtable&
852  {
853  if (&__ht == this)
854  return *this;
855 
856  if (__node_alloc_traits::_S_propagate_on_copy_assign())
857  {
858  auto& __this_alloc = this->_M_node_allocator();
859  auto& __that_alloc = __ht._M_node_allocator();
860  if (!__node_alloc_traits::_S_always_equal()
861  && __this_alloc != __that_alloc)
862  {
863  // Replacement allocator cannot free existing storage.
864  this->_M_deallocate_nodes(_M_begin());
865  _M_before_begin._M_nxt = nullptr;
866  _M_deallocate_buckets();
867  _M_buckets = nullptr;
868  std::__alloc_on_copy(__this_alloc, __that_alloc);
869  __hashtable_base::operator=(__ht);
870  _M_bucket_count = __ht._M_bucket_count;
871  _M_element_count = __ht._M_element_count;
872  _M_rehash_policy = __ht._M_rehash_policy;
873  __try
874  {
875  _M_assign(__ht,
876  [this](const __node_type* __n)
877  { return this->_M_allocate_node(__n->_M_v()); });
878  }
879  __catch(...)
880  {
881  // _M_assign took care of deallocating all memory. Now we
882  // must make sure this instance remains in a usable state.
883  _M_reset();
884  __throw_exception_again;
885  }
886  return *this;
887  }
888  std::__alloc_on_copy(__this_alloc, __that_alloc);
889  }
890 
891  // Reuse allocated buckets and nodes.
892  __bucket_type* __former_buckets = nullptr;
893  std::size_t __former_bucket_count = _M_bucket_count;
894  const __rehash_state& __former_state = _M_rehash_policy._M_state();
895 
896  if (_M_bucket_count != __ht._M_bucket_count)
897  {
898  __former_buckets = _M_buckets;
899  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
900  _M_bucket_count = __ht._M_bucket_count;
901  }
902  else
903  __builtin_memset(_M_buckets, 0,
904  _M_bucket_count * sizeof(__bucket_type));
905 
906  __try
907  {
908  __hashtable_base::operator=(__ht);
909  _M_element_count = __ht._M_element_count;
910  _M_rehash_policy = __ht._M_rehash_policy;
911  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
912  _M_before_begin._M_nxt = nullptr;
913  _M_assign(__ht,
914  [&__roan](const __node_type* __n)
915  { return __roan(__n->_M_v()); });
916  if (__former_buckets)
917  _M_deallocate_buckets(__former_buckets, __former_bucket_count);
918  }
919  __catch(...)
920  {
921  if (__former_buckets)
922  {
923  // Restore previous buckets.
924  _M_deallocate_buckets();
925  _M_rehash_policy._M_reset(__former_state);
926  _M_buckets = __former_buckets;
927  _M_bucket_count = __former_bucket_count;
928  }
929  __builtin_memset(_M_buckets, 0,
930  _M_bucket_count * sizeof(__bucket_type));
931  __throw_exception_again;
932  }
933  return *this;
934  }
935 
936  template<typename _Key, typename _Value,
937  typename _Alloc, typename _ExtractKey, typename _Equal,
938  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
939  typename _Traits>
940  template<typename _NodeGenerator>
941  void
942  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
943  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
944  _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
945  {
946  __bucket_type* __buckets = nullptr;
947  if (!_M_buckets)
948  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
949 
950  __try
951  {
952  if (!__ht._M_before_begin._M_nxt)
953  return;
954 
955  // First deal with the special first node pointed to by
956  // _M_before_begin.
957  __node_type* __ht_n = __ht._M_begin();
958  __node_type* __this_n = __node_gen(__ht_n);
959  this->_M_copy_code(__this_n, __ht_n);
960  _M_before_begin._M_nxt = __this_n;
961  _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
962 
963  // Then deal with other nodes.
964  __node_base* __prev_n = __this_n;
965  for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
966  {
967  __this_n = __node_gen(__ht_n);
968  __prev_n->_M_nxt = __this_n;
969  this->_M_copy_code(__this_n, __ht_n);
970  size_type __bkt = _M_bucket_index(__this_n);
971  if (!_M_buckets[__bkt])
972  _M_buckets[__bkt] = __prev_n;
973  __prev_n = __this_n;
974  }
975  }
976  __catch(...)
977  {
978  clear();
979  if (__buckets)
980  _M_deallocate_buckets();
981  __throw_exception_again;
982  }
983  }
984 
985  template<typename _Key, typename _Value,
986  typename _Alloc, typename _ExtractKey, typename _Equal,
987  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
988  typename _Traits>
989  void
990  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
991  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
992  _M_reset() noexcept
993  {
994  _M_rehash_policy._M_reset();
995  _M_bucket_count = 1;
996  _M_single_bucket = nullptr;
997  _M_buckets = &_M_single_bucket;
998  _M_before_begin._M_nxt = nullptr;
999  _M_element_count = 0;
1000  }
1001 
1002  template<typename _Key, typename _Value,
1003  typename _Alloc, typename _ExtractKey, typename _Equal,
1004  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1005  typename _Traits>
1006  void
1007  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1008  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1009  _M_move_assign(_Hashtable&& __ht, std::true_type)
1010  {
1011  this->_M_deallocate_nodes(_M_begin());
1012  _M_deallocate_buckets();
1013  __hashtable_base::operator=(std::move(__ht));
1014  _M_rehash_policy = __ht._M_rehash_policy;
1015  if (!__ht._M_uses_single_bucket())
1016  _M_buckets = __ht._M_buckets;
1017  else
1018  {
1019  _M_buckets = &_M_single_bucket;
1020  _M_single_bucket = __ht._M_single_bucket;
1021  }
1022  _M_bucket_count = __ht._M_bucket_count;
1023  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1024  _M_element_count = __ht._M_element_count;
1025  std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1026 
1027  // Fix buckets containing the _M_before_begin pointers that can't be
1028  // moved.
1029  if (_M_begin())
1030  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1031  __ht._M_reset();
1032  }
1033 
1034  template<typename _Key, typename _Value,
1035  typename _Alloc, typename _ExtractKey, typename _Equal,
1036  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1037  typename _Traits>
1038  void
1039  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1040  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1041  _M_move_assign(_Hashtable&& __ht, std::false_type)
1042  {
1043  if (__ht._M_node_allocator() == this->_M_node_allocator())
1044  _M_move_assign(std::move(__ht), std::true_type());
1045  else
1046  {
1047  // Can't move memory, move elements then.
1048  __bucket_type* __former_buckets = nullptr;
1049  size_type __former_bucket_count = _M_bucket_count;
1050  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1051 
1052  if (_M_bucket_count != __ht._M_bucket_count)
1053  {
1054  __former_buckets = _M_buckets;
1055  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1056  _M_bucket_count = __ht._M_bucket_count;
1057  }
1058  else
1059  __builtin_memset(_M_buckets, 0,
1060  _M_bucket_count * sizeof(__bucket_type));
1061 
1062  __try
1063  {
1064  __hashtable_base::operator=(std::move(__ht));
1065  _M_element_count = __ht._M_element_count;
1066  _M_rehash_policy = __ht._M_rehash_policy;
1067  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1068  _M_before_begin._M_nxt = nullptr;
1069  _M_assign(__ht,
1070  [&__roan](__node_type* __n)
1071  { return __roan(std::move_if_noexcept(__n->_M_v())); });
1072  __ht.clear();
1073  }
1074  __catch(...)
1075  {
1076  if (__former_buckets)
1077  {
1078  _M_deallocate_buckets();
1079  _M_rehash_policy._M_reset(__former_state);
1080  _M_buckets = __former_buckets;
1081  _M_bucket_count = __former_bucket_count;
1082  }
1083  __builtin_memset(_M_buckets, 0,
1084  _M_bucket_count * sizeof(__bucket_type));
1085  __throw_exception_again;
1086  }
1087  }
1088  }
1089 
1090  template<typename _Key, typename _Value,
1091  typename _Alloc, typename _ExtractKey, typename _Equal,
1092  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1093  typename _Traits>
1094  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1095  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1096  _Hashtable(const _Hashtable& __ht)
1097  : __hashtable_base(__ht),
1098  __map_base(__ht),
1099  __rehash_base(__ht),
1100  __hashtable_alloc(
1101  __node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1102  _M_buckets(nullptr),
1103  _M_bucket_count(__ht._M_bucket_count),
1104  _M_element_count(__ht._M_element_count),
1105  _M_rehash_policy(__ht._M_rehash_policy)
1106  {
1107  _M_assign(__ht,
1108  [this](const __node_type* __n)
1109  { return this->_M_allocate_node(__n->_M_v()); });
1110  }
1111 
1112  template<typename _Key, typename _Value,
1113  typename _Alloc, typename _ExtractKey, typename _Equal,
1114  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1115  typename _Traits>
1116  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1117  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1118  _Hashtable(_Hashtable&& __ht) noexcept
1119  : __hashtable_base(__ht),
1120  __map_base(__ht),
1121  __rehash_base(__ht),
1122  __hashtable_alloc(std::move(__ht._M_base_alloc())),
1123  _M_buckets(__ht._M_buckets),
1124  _M_bucket_count(__ht._M_bucket_count),
1125  _M_before_begin(__ht._M_before_begin._M_nxt),
1126  _M_element_count(__ht._M_element_count),
1127  _M_rehash_policy(__ht._M_rehash_policy)
1128  {
1129  // Update, if necessary, buckets if __ht is using its single bucket.
1130  if (__ht._M_uses_single_bucket())
1131  {
1132  _M_buckets = &_M_single_bucket;
1133  _M_single_bucket = __ht._M_single_bucket;
1134  }
1135 
1136  // Update, if necessary, bucket pointing to before begin that hasn't
1137  // moved.
1138  if (_M_begin())
1139  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1140 
1141  __ht._M_reset();
1142  }
1143 
1144  template<typename _Key, typename _Value,
1145  typename _Alloc, typename _ExtractKey, typename _Equal,
1146  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1147  typename _Traits>
1148  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1149  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1150  _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1151  : __hashtable_base(__ht),
1152  __map_base(__ht),
1153  __rehash_base(__ht),
1154  __hashtable_alloc(__node_alloc_type(__a)),
1155  _M_buckets(),
1156  _M_bucket_count(__ht._M_bucket_count),
1157  _M_element_count(__ht._M_element_count),
1158  _M_rehash_policy(__ht._M_rehash_policy)
1159  {
1160  _M_assign(__ht,
1161  [this](const __node_type* __n)
1162  { return this->_M_allocate_node(__n->_M_v()); });
1163  }
1164 
1165  template<typename _Key, typename _Value,
1166  typename _Alloc, typename _ExtractKey, typename _Equal,
1167  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1168  typename _Traits>
1169  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1170  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1171  _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1172  : __hashtable_base(__ht),
1173  __map_base(__ht),
1174  __rehash_base(__ht),
1175  __hashtable_alloc(__node_alloc_type(__a)),
1176  _M_buckets(nullptr),
1177  _M_bucket_count(__ht._M_bucket_count),
1178  _M_element_count(__ht._M_element_count),
1179  _M_rehash_policy(__ht._M_rehash_policy)
1180  {
1181  if (__ht._M_node_allocator() == this->_M_node_allocator())
1182  {
1183  if (__ht._M_uses_single_bucket())
1184  {
1185  _M_buckets = &_M_single_bucket;
1186  _M_single_bucket = __ht._M_single_bucket;
1187  }
1188  else
1189  _M_buckets = __ht._M_buckets;
1190 
1191  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1192  // Update, if necessary, bucket pointing to before begin that hasn't
1193  // moved.
1194  if (_M_begin())
1195  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1196  __ht._M_reset();
1197  }
1198  else
1199  {
1200  _M_assign(__ht,
1201  [this](__node_type* __n)
1202  {
1203  return this->_M_allocate_node(
1204  std::move_if_noexcept(__n->_M_v()));
1205  });
1206  __ht.clear();
1207  }
1208  }
1209 
1210  template<typename _Key, typename _Value,
1211  typename _Alloc, typename _ExtractKey, typename _Equal,
1212  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1213  typename _Traits>
1214  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1215  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1216  ~_Hashtable() noexcept
1217  {
1218  clear();
1219  _M_deallocate_buckets();
1220  }
1221 
1222  template<typename _Key, typename _Value,
1223  typename _Alloc, typename _ExtractKey, typename _Equal,
1224  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1225  typename _Traits>
1226  void
1227  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1228  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1229  swap(_Hashtable& __x)
1230  noexcept(__is_nothrow_swappable<_H1>::value
1231  && __is_nothrow_swappable<_Equal>::value)
1232  {
1233  // The only base class with member variables is hash_code_base.
1234  // We define _Hash_code_base::_M_swap because different
1235  // specializations have different members.
1236  this->_M_swap(__x);
1237 
1238  std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1239  std::swap(_M_rehash_policy, __x._M_rehash_policy);
1240 
1241  // Deal properly with potentially moved instances.
1242  if (this->_M_uses_single_bucket())
1243  {
1244  if (!__x._M_uses_single_bucket())
1245  {
1246  _M_buckets = __x._M_buckets;
1247  __x._M_buckets = &__x._M_single_bucket;
1248  }
1249  }
1250  else if (__x._M_uses_single_bucket())
1251  {
1252  __x._M_buckets = _M_buckets;
1253  _M_buckets = &_M_single_bucket;
1254  }
1255  else
1256  std::swap(_M_buckets, __x._M_buckets);
1257 
1258  std::swap(_M_bucket_count, __x._M_bucket_count);
1259  std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1260  std::swap(_M_element_count, __x._M_element_count);
1261  std::swap(_M_single_bucket, __x._M_single_bucket);
1262 
1263  // Fix buckets containing the _M_before_begin pointers that can't be
1264  // swapped.
1265  if (_M_begin())
1266  _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1267 
1268  if (__x._M_begin())
1269  __x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1270  = &__x._M_before_begin;
1271  }
1272 
1273  template<typename _Key, typename _Value,
1274  typename _Alloc, typename _ExtractKey, typename _Equal,
1275  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1276  typename _Traits>
1277  auto
1278  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1279  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1280  find(const key_type& __k)
1281  -> iterator
1282  {
1283  __hash_code __code = this->_M_hash_code(__k);
1284  std::size_t __n = _M_bucket_index(__k, __code);
1285  __node_type* __p = _M_find_node(__n, __k, __code);
1286  return __p ? iterator(__p) : end();
1287  }
1288 
1289  template<typename _Key, typename _Value,
1290  typename _Alloc, typename _ExtractKey, typename _Equal,
1291  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1292  typename _Traits>
1293  auto
1294  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1295  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1296  find(const key_type& __k) const
1297  -> const_iterator
1298  {
1299  __hash_code __code = this->_M_hash_code(__k);
1300  std::size_t __n = _M_bucket_index(__k, __code);
1301  __node_type* __p = _M_find_node(__n, __k, __code);
1302  return __p ? const_iterator(__p) : end();
1303  }
1304 
1305  template<typename _Key, typename _Value,
1306  typename _Alloc, typename _ExtractKey, typename _Equal,
1307  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1308  typename _Traits>
1309  auto
1310  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1311  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1312  count(const key_type& __k) const
1313  -> size_type
1314  {
1315  __hash_code __code = this->_M_hash_code(__k);
1316  std::size_t __n = _M_bucket_index(__k, __code);
1317  __node_type* __p = _M_bucket_begin(__n);
1318  if (!__p)
1319  return 0;
1320 
1321  std::size_t __result = 0;
1322  for (;; __p = __p->_M_next())
1323  {
1324  if (this->_M_equals(__k, __code, __p))
1325  ++__result;
1326  else if (__result)
1327  // All equivalent values are next to each other, if we
1328  // found a non-equivalent value after an equivalent one it
1329  // means that we won't find any new equivalent value.
1330  break;
1331  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1332  break;
1333  }
1334  return __result;
1335  }
1336 
1337  template<typename _Key, typename _Value,
1338  typename _Alloc, typename _ExtractKey, typename _Equal,
1339  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1340  typename _Traits>
1341  auto
1342  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1343  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1344  equal_range(const key_type& __k)
1345  -> pair<iterator, iterator>
1346  {
1347  __hash_code __code = this->_M_hash_code(__k);
1348  std::size_t __n = _M_bucket_index(__k, __code);
1349  __node_type* __p = _M_find_node(__n, __k, __code);
1350 
1351  if (__p)
1352  {
1353  __node_type* __p1 = __p->_M_next();
1354  while (__p1 && _M_bucket_index(__p1) == __n
1355  && this->_M_equals(__k, __code, __p1))
1356  __p1 = __p1->_M_next();
1357 
1358  return std::make_pair(iterator(__p), iterator(__p1));
1359  }
1360  else
1361  return std::make_pair(end(), end());
1362  }
1363 
1364  template<typename _Key, typename _Value,
1365  typename _Alloc, typename _ExtractKey, typename _Equal,
1366  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1367  typename _Traits>
1368  auto
1369  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1370  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1371  equal_range(const key_type& __k) const
1372  -> pair<const_iterator, const_iterator>
1373  {
1374  __hash_code __code = this->_M_hash_code(__k);
1375  std::size_t __n = _M_bucket_index(__k, __code);
1376  __node_type* __p = _M_find_node(__n, __k, __code);
1377 
1378  if (__p)
1379  {
1380  __node_type* __p1 = __p->_M_next();
1381  while (__p1 && _M_bucket_index(__p1) == __n
1382  && this->_M_equals(__k, __code, __p1))
1383  __p1 = __p1->_M_next();
1384 
1385  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1386  }
1387  else
1388  return std::make_pair(end(), end());
1389  }
1390 
1391  // Find the node whose key compares equal to k in the bucket n.
1392  // Return nullptr if no node is found.
1393  template<typename _Key, typename _Value,
1394  typename _Alloc, typename _ExtractKey, typename _Equal,
1395  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1396  typename _Traits>
1397  auto
1398  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1399  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1400  _M_find_before_node(size_type __n, const key_type& __k,
1401  __hash_code __code) const
1402  -> __node_base*
1403  {
1404  __node_base* __prev_p = _M_buckets[__n];
1405  if (!__prev_p)
1406  return nullptr;
1407 
1408  for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1409  __p = __p->_M_next())
1410  {
1411  if (this->_M_equals(__k, __code, __p))
1412  return __prev_p;
1413 
1414  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1415  break;
1416  __prev_p = __p;
1417  }
1418  return nullptr;
1419  }
1420 
1421  template<typename _Key, typename _Value,
1422  typename _Alloc, typename _ExtractKey, typename _Equal,
1423  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1424  typename _Traits>
1425  void
1426  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1427  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1428  _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1429  {
1430  if (_M_buckets[__bkt])
1431  {
1432  // Bucket is not empty, we just need to insert the new node
1433  // after the bucket before begin.
1434  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1435  _M_buckets[__bkt]->_M_nxt = __node;
1436  }
1437  else
1438  {
1439  // The bucket is empty, the new node is inserted at the
1440  // beginning of the singly-linked list and the bucket will
1441  // contain _M_before_begin pointer.
1442  __node->_M_nxt = _M_before_begin._M_nxt;
1443  _M_before_begin._M_nxt = __node;
1444  if (__node->_M_nxt)
1445  // We must update former begin bucket that is pointing to
1446  // _M_before_begin.
1447  _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1448  _M_buckets[__bkt] = &_M_before_begin;
1449  }
1450  }
1451 
1452  template<typename _Key, typename _Value,
1453  typename _Alloc, typename _ExtractKey, typename _Equal,
1454  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1455  typename _Traits>
1456  void
1457  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1458  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1459  _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1460  size_type __next_bkt)
1461  {
1462  if (!__next || __next_bkt != __bkt)
1463  {
1464  // Bucket is now empty
1465  // First update next bucket if any
1466  if (__next)
1467  _M_buckets[__next_bkt] = _M_buckets[__bkt];
1468 
1469  // Second update before begin node if necessary
1470  if (&_M_before_begin == _M_buckets[__bkt])
1471  _M_before_begin._M_nxt = __next;
1472  _M_buckets[__bkt] = nullptr;
1473  }
1474  }
1475 
1476  template<typename _Key, typename _Value,
1477  typename _Alloc, typename _ExtractKey, typename _Equal,
1478  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1479  typename _Traits>
1480  auto
1481  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1482  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1483  _M_get_previous_node(size_type __bkt, __node_base* __n)
1484  -> __node_base*
1485  {
1486  __node_base* __prev_n = _M_buckets[__bkt];
1487  while (__prev_n->_M_nxt != __n)
1488  __prev_n = __prev_n->_M_nxt;
1489  return __prev_n;
1490  }
1491 
1492  template<typename _Key, typename _Value,
1493  typename _Alloc, typename _ExtractKey, typename _Equal,
1494  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1495  typename _Traits>
1496  template<typename... _Args>
1497  auto
1498  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1499  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1500  _M_emplace(std::true_type, _Args&&... __args)
1501  -> pair<iterator, bool>
1502  {
1503  // First build the node to get access to the hash code
1504  __node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1505  const key_type& __k = this->_M_extract()(__node->_M_v());
1506  __hash_code __code;
1507  __try
1508  {
1509  __code = this->_M_hash_code(__k);
1510  }
1511  __catch(...)
1512  {
1513  this->_M_deallocate_node(__node);
1514  __throw_exception_again;
1515  }
1516 
1517  size_type __bkt = _M_bucket_index(__k, __code);
1518  if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1519  {
1520  // There is already an equivalent node, no insertion
1521  this->_M_deallocate_node(__node);
1522  return std::make_pair(iterator(__p), false);
1523  }
1524 
1525  // Insert the node
1526  return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1527  true);
1528  }
1529 
1530  template<typename _Key, typename _Value,
1531  typename _Alloc, typename _ExtractKey, typename _Equal,
1532  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1533  typename _Traits>
1534  template<typename... _Args>
1535  auto
1536  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1537  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1538  _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1539  -> iterator
1540  {
1541  // First build the node to get its hash code.
1542  __node_type* __node =
1543  this->_M_allocate_node(std::forward<_Args>(__args)...);
1544 
1545  __hash_code __code;
1546  __try
1547  {
1548  __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1549  }
1550  __catch(...)
1551  {
1552  this->_M_deallocate_node(__node);
1553  __throw_exception_again;
1554  }
1555 
1556  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1557  }
1558 
1559  template<typename _Key, typename _Value,
1560  typename _Alloc, typename _ExtractKey, typename _Equal,
1561  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1562  typename _Traits>
1563  auto
1564  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1565  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1566  _M_insert_unique_node(size_type __bkt, __hash_code __code,
1567  __node_type* __node)
1568  -> iterator
1569  {
1570  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1571  std::pair<bool, std::size_t> __do_rehash
1572  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1573 
1574  __try
1575  {
1576  if (__do_rehash.first)
1577  {
1578  _M_rehash(__do_rehash.second, __saved_state);
1579  __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1580  }
1581 
1582  this->_M_store_code(__node, __code);
1583 
1584  // Always insert at the beginning of the bucket.
1585  _M_insert_bucket_begin(__bkt, __node);
1586  ++_M_element_count;
1587  return iterator(__node);
1588  }
1589  __catch(...)
1590  {
1591  this->_M_deallocate_node(__node);
1592  __throw_exception_again;
1593  }
1594  }
1595 
1596  // Insert node, in bucket bkt if no rehash (assumes no element with its key
1597  // already present). Take ownership of the node, deallocate it on exception.
1598  template<typename _Key, typename _Value,
1599  typename _Alloc, typename _ExtractKey, typename _Equal,
1600  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1601  typename _Traits>
1602  auto
1603  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1604  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1605  _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1606  __node_type* __node)
1607  -> iterator
1608  {
1609  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1610  std::pair<bool, std::size_t> __do_rehash
1611  = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1612 
1613  __try
1614  {
1615  if (__do_rehash.first)
1616  _M_rehash(__do_rehash.second, __saved_state);
1617 
1618  this->_M_store_code(__node, __code);
1619  const key_type& __k = this->_M_extract()(__node->_M_v());
1620  size_type __bkt = _M_bucket_index(__k, __code);
1621 
1622  // Find the node before an equivalent one or use hint if it exists and
1623  // if it is equivalent.
1624  __node_base* __prev
1625  = __builtin_expect(__hint != nullptr, false)
1626  && this->_M_equals(__k, __code, __hint)
1627  ? __hint
1628  : _M_find_before_node(__bkt, __k, __code);
1629  if (__prev)
1630  {
1631  // Insert after the node before the equivalent one.
1632  __node->_M_nxt = __prev->_M_nxt;
1633  __prev->_M_nxt = __node;
1634  if (__builtin_expect(__prev == __hint, false))
1635  // hint might be the last bucket node, in this case we need to
1636  // update next bucket.
1637  if (__node->_M_nxt
1638  && !this->_M_equals(__k, __code, __node->_M_next()))
1639  {
1640  size_type __next_bkt = _M_bucket_index(__node->_M_next());
1641  if (__next_bkt != __bkt)
1642  _M_buckets[__next_bkt] = __node;
1643  }
1644  }
1645  else
1646  // The inserted node has no equivalent in the
1647  // hashtable. We must insert the new node at the
1648  // beginning of the bucket to preserve equivalent
1649  // elements' relative positions.
1650  _M_insert_bucket_begin(__bkt, __node);
1651  ++_M_element_count;
1652  return iterator(__node);
1653  }
1654  __catch(...)
1655  {
1656  this->_M_deallocate_node(__node);
1657  __throw_exception_again;
1658  }
1659  }
1660 
1661  // Insert v if no element with its key is already present.
1662  template<typename _Key, typename _Value,
1663  typename _Alloc, typename _ExtractKey, typename _Equal,
1664  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1665  typename _Traits>
1666  template<typename _Arg, typename _NodeGenerator>
1667  auto
1668  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1669  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1670  _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1671  -> pair<iterator, bool>
1672  {
1673  const key_type& __k = this->_M_extract()(__v);
1674  __hash_code __code = this->_M_hash_code(__k);
1675  size_type __bkt = _M_bucket_index(__k, __code);
1676 
1677  __node_type* __n = _M_find_node(__bkt, __k, __code);
1678  if (__n)
1679  return std::make_pair(iterator(__n), false);
1680 
1681  __n = __node_gen(std::forward<_Arg>(__v));
1682  return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1683  }
1684 
1685  // Insert v unconditionally.
1686  template<typename _Key, typename _Value,
1687  typename _Alloc, typename _ExtractKey, typename _Equal,
1688  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1689  typename _Traits>
1690  template<typename _Arg, typename _NodeGenerator>
1691  auto
1692  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1693  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1694  _M_insert(const_iterator __hint, _Arg&& __v,
1695  const _NodeGenerator& __node_gen, std::false_type)
1696  -> iterator
1697  {
1698  // First compute the hash code so that we don't do anything if it
1699  // throws.
1700  __hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1701 
1702  // Second allocate new node so that we don't rehash if it throws.
1703  __node_type* __node = __node_gen(std::forward<_Arg>(__v));
1704 
1705  return _M_insert_multi_node(__hint._M_cur, __code, __node);
1706  }
1707 
1708  template<typename _Key, typename _Value,
1709  typename _Alloc, typename _ExtractKey, typename _Equal,
1710  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1711  typename _Traits>
1712  auto
1713  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1714  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1715  erase(const_iterator __it)
1716  -> iterator
1717  {
1718  __node_type* __n = __it._M_cur;
1719  std::size_t __bkt = _M_bucket_index(__n);
1720 
1721  // Look for previous node to unlink it from the erased one, this
1722  // is why we need buckets to contain the before begin to make
1723  // this search fast.
1724  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1725  return _M_erase(__bkt, __prev_n, __n);
1726  }
1727 
1728  template<typename _Key, typename _Value,
1729  typename _Alloc, typename _ExtractKey, typename _Equal,
1730  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1731  typename _Traits>
1732  auto
1733  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1734  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1735  _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1736  -> iterator
1737  {
1738  if (__prev_n == _M_buckets[__bkt])
1739  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1740  __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1741  else if (__n->_M_nxt)
1742  {
1743  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1744  if (__next_bkt != __bkt)
1745  _M_buckets[__next_bkt] = __prev_n;
1746  }
1747 
1748  __prev_n->_M_nxt = __n->_M_nxt;
1749  iterator __result(__n->_M_next());
1750  this->_M_deallocate_node(__n);
1751  --_M_element_count;
1752 
1753  return __result;
1754  }
1755 
1756  template<typename _Key, typename _Value,
1757  typename _Alloc, typename _ExtractKey, typename _Equal,
1758  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1759  typename _Traits>
1760  auto
1761  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1762  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1763  _M_erase(std::true_type, const key_type& __k)
1764  -> size_type
1765  {
1766  __hash_code __code = this->_M_hash_code(__k);
1767  std::size_t __bkt = _M_bucket_index(__k, __code);
1768 
1769  // Look for the node before the first matching node.
1770  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1771  if (!__prev_n)
1772  return 0;
1773 
1774  // We found a matching node, erase it.
1775  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1776  _M_erase(__bkt, __prev_n, __n);
1777  return 1;
1778  }
1779 
1780  template<typename _Key, typename _Value,
1781  typename _Alloc, typename _ExtractKey, typename _Equal,
1782  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1783  typename _Traits>
1784  auto
1785  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1786  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1787  _M_erase(std::false_type, const key_type& __k)
1788  -> size_type
1789  {
1790  __hash_code __code = this->_M_hash_code(__k);
1791  std::size_t __bkt = _M_bucket_index(__k, __code);
1792 
1793  // Look for the node before the first matching node.
1794  __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1795  if (!__prev_n)
1796  return 0;
1797 
1798  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1799  // 526. Is it undefined if a function in the standard changes
1800  // in parameters?
1801  // We use one loop to find all matching nodes and another to deallocate
1802  // them so that the key stays valid during the first loop. It might be
1803  // invalidated indirectly when destroying nodes.
1804  __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1805  __node_type* __n_last = __n;
1806  std::size_t __n_last_bkt = __bkt;
1807  do
1808  {
1809  __n_last = __n_last->_M_next();
1810  if (!__n_last)
1811  break;
1812  __n_last_bkt = _M_bucket_index(__n_last);
1813  }
1814  while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1815 
1816  // Deallocate nodes.
1817  size_type __result = 0;
1818  do
1819  {
1820  __node_type* __p = __n->_M_next();
1821  this->_M_deallocate_node(__n);
1822  __n = __p;
1823  ++__result;
1824  --_M_element_count;
1825  }
1826  while (__n != __n_last);
1827 
1828  if (__prev_n == _M_buckets[__bkt])
1829  _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1830  else if (__n_last && __n_last_bkt != __bkt)
1831  _M_buckets[__n_last_bkt] = __prev_n;
1832  __prev_n->_M_nxt = __n_last;
1833  return __result;
1834  }
1835 
1836  template<typename _Key, typename _Value,
1837  typename _Alloc, typename _ExtractKey, typename _Equal,
1838  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1839  typename _Traits>
1840  auto
1841  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1842  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1843  erase(const_iterator __first, const_iterator __last)
1844  -> iterator
1845  {
1846  __node_type* __n = __first._M_cur;
1847  __node_type* __last_n = __last._M_cur;
1848  if (__n == __last_n)
1849  return iterator(__n);
1850 
1851  std::size_t __bkt = _M_bucket_index(__n);
1852 
1853  __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1854  bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1855  std::size_t __n_bkt = __bkt;
1856  for (;;)
1857  {
1858  do
1859  {
1860  __node_type* __tmp = __n;
1861  __n = __n->_M_next();
1862  this->_M_deallocate_node(__tmp);
1863  --_M_element_count;
1864  if (!__n)
1865  break;
1866  __n_bkt = _M_bucket_index(__n);
1867  }
1868  while (__n != __last_n && __n_bkt == __bkt);
1869  if (__is_bucket_begin)
1870  _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1871  if (__n == __last_n)
1872  break;
1873  __is_bucket_begin = true;
1874  __bkt = __n_bkt;
1875  }
1876 
1877  if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1878  _M_buckets[__n_bkt] = __prev_n;
1879  __prev_n->_M_nxt = __n;
1880  return iterator(__n);
1881  }
1882 
1883  template<typename _Key, typename _Value,
1884  typename _Alloc, typename _ExtractKey, typename _Equal,
1885  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1886  typename _Traits>
1887  void
1888  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1889  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1890  clear() noexcept
1891  {
1892  this->_M_deallocate_nodes(_M_begin());
1893  __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1894  _M_element_count = 0;
1895  _M_before_begin._M_nxt = nullptr;
1896  }
1897 
1898  template<typename _Key, typename _Value,
1899  typename _Alloc, typename _ExtractKey, typename _Equal,
1900  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1901  typename _Traits>
1902  void
1903  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1904  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1905  rehash(size_type __n)
1906  {
1907  const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1908  std::size_t __buckets
1909  = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1910  __n);
1911  __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1912 
1913  if (__buckets != _M_bucket_count)
1914  _M_rehash(__buckets, __saved_state);
1915  else
1916  // No rehash, restore previous state to keep a consistent state.
1917  _M_rehash_policy._M_reset(__saved_state);
1918  }
1919 
1920  template<typename _Key, typename _Value,
1921  typename _Alloc, typename _ExtractKey, typename _Equal,
1922  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1923  typename _Traits>
1924  void
1925  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1926  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1927  _M_rehash(size_type __n, const __rehash_state& __state)
1928  {
1929  __try
1930  {
1931  _M_rehash_aux(__n, __unique_keys());
1932  }
1933  __catch(...)
1934  {
1935  // A failure here means that buckets allocation failed. We only
1936  // have to restore hash policy previous state.
1937  _M_rehash_policy._M_reset(__state);
1938  __throw_exception_again;
1939  }
1940  }
1941 
1942  // Rehash when there is no equivalent elements.
1943  template<typename _Key, typename _Value,
1944  typename _Alloc, typename _ExtractKey, typename _Equal,
1945  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1946  typename _Traits>
1947  void
1948  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1949  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1950  _M_rehash_aux(size_type __n, std::true_type)
1951  {
1952  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1953  __node_type* __p = _M_begin();
1954  _M_before_begin._M_nxt = nullptr;
1955  std::size_t __bbegin_bkt = 0;
1956  while (__p)
1957  {
1958  __node_type* __next = __p->_M_next();
1959  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1960  if (!__new_buckets[__bkt])
1961  {
1962  __p->_M_nxt = _M_before_begin._M_nxt;
1963  _M_before_begin._M_nxt = __p;
1964  __new_buckets[__bkt] = &_M_before_begin;
1965  if (__p->_M_nxt)
1966  __new_buckets[__bbegin_bkt] = __p;
1967  __bbegin_bkt = __bkt;
1968  }
1969  else
1970  {
1971  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1972  __new_buckets[__bkt]->_M_nxt = __p;
1973  }
1974  __p = __next;
1975  }
1976 
1977  _M_deallocate_buckets();
1978  _M_bucket_count = __n;
1979  _M_buckets = __new_buckets;
1980  }
1981 
1982  // Rehash when there can be equivalent elements, preserve their relative
1983  // order.
1984  template<typename _Key, typename _Value,
1985  typename _Alloc, typename _ExtractKey, typename _Equal,
1986  typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1987  typename _Traits>
1988  void
1989  _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1990  _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1991  _M_rehash_aux(size_type __n, std::false_type)
1992  {
1993  __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1994 
1995  __node_type* __p = _M_begin();
1996  _M_before_begin._M_nxt = nullptr;
1997  std::size_t __bbegin_bkt = 0;
1998  std::size_t __prev_bkt = 0;
1999  __node_type* __prev_p = nullptr;
2000  bool __check_bucket = false;
2001 
2002  while (__p)
2003  {
2004  __node_type* __next = __p->_M_next();
2005  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2006 
2007  if (__prev_p && __prev_bkt == __bkt)
2008  {
2009  // Previous insert was already in this bucket, we insert after
2010  // the previously inserted one to preserve equivalent elements
2011  // relative order.
2012  __p->_M_nxt = __prev_p->_M_nxt;
2013  __prev_p->_M_nxt = __p;
2014 
2015  // Inserting after a node in a bucket require to check that we
2016  // haven't change the bucket last node, in this case next
2017  // bucket containing its before begin node must be updated. We
2018  // schedule a check as soon as we move out of the sequence of
2019  // equivalent nodes to limit the number of checks.
2020  __check_bucket = true;
2021  }
2022  else
2023  {
2024  if (__check_bucket)
2025  {
2026  // Check if we shall update the next bucket because of
2027  // insertions into __prev_bkt bucket.
2028  if (__prev_p->_M_nxt)
2029  {
2030  std::size_t __next_bkt
2031  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2032  __n);
2033  if (__next_bkt != __prev_bkt)
2034  __new_buckets[__next_bkt] = __prev_p;
2035  }
2036  __check_bucket = false;
2037  }
2038 
2039  if (!__new_buckets[__bkt])
2040  {
2041  __p->_M_nxt = _M_before_begin._M_nxt;
2042  _M_before_begin._M_nxt = __p;
2043  __new_buckets[__bkt] = &_M_before_begin;
2044  if (__p->_M_nxt)
2045  __new_buckets[__bbegin_bkt] = __p;
2046  __bbegin_bkt = __bkt;
2047  }
2048  else
2049  {
2050  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2051  __new_buckets[__bkt]->_M_nxt = __p;
2052  }
2053  }
2054  __prev_p = __p;
2055  __prev_bkt = __bkt;
2056  __p = __next;
2057  }
2058 
2059  if (__check_bucket && __prev_p->_M_nxt)
2060  {
2061  std::size_t __next_bkt
2062  = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2063  if (__next_bkt != __prev_bkt)
2064  __new_buckets[__next_bkt] = __prev_p;
2065  }
2066 
2067  _M_deallocate_buckets();
2068  _M_bucket_count = __n;
2069  _M_buckets = __new_buckets;
2070  }
2071 
2072 _GLIBCXX_END_NAMESPACE_VERSION
2073 } // namespace std
2074 
2075 #endif // _HASHTABLE_H
constexpr conditional< __move_if_noexcept_cond< _Tp >::value, const _Tp &, _Tp && >::type move_if_noexcept(_Tp &__x) noexcept
Conditionally convert a value to an rvalue.
Definition: move.h:121
initializer_list
integral_constant
Definition: type_traits:69
Uniform interface to all allocator types.
Node const_iterators, used to iterate through all the hashtable.
_GLIBCXX14_CONSTEXPR const _Tp & max(const _Tp &, const _Tp &)
This does what you think it does.
Definition: stl_algobase.h:219
constexpr const _Tp * begin(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to the first element of the initializer_list.
integral_constant< bool, true > true_type
The type used as a compile-time boolean with true value.
Definition: type_traits:87
constexpr auto cend(const _Container &__cont) noexcept(noexcept(std::end(__cont))) -> decltype(std::end(__cont))
Return an iterator pointing to one past the last element of the const container.
Definition: range_access.h:127
_T1 first
second_type is the second bound type
Definition: stl_pair.h:199
Uniform interface to C++98 and C++11 allocators.
constexpr auto cbegin(const _Container &__cont) noexcept(noexcept(std::begin(__cont))) -> decltype(std::begin(__cont))
Return an iterator pointing to the first element of the const container.
Definition: range_access.h:116
ISO C++ entities toplevel namespace is std.
Node iterators, used to iterate through all the hashtable.
constexpr const _Tp * end(initializer_list< _Tp > __ils) noexcept
Return an iterator pointing to one past the last element of the initializer_list. ...
iterator_traits< _InputIterator >::difference_type distance(_InputIterator __first, _InputIterator __last)
A generalization of pointer arithmetic.
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:497
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:194
_T2 second
first is a copy of the first object
Definition: stl_pair.h:200