The Python Library Reference
Release 3.1.3

Guido van Rossum

Fred L. Drake, Jr., editor

November 27, 2010

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Built-in Constants 21
3.1 Constants added by the sitemodule e 21
Built-in Objects 23
Built-in Types 25
5.1 Truth Value Testing e 25
5.2 Boolean Operations — and, 0r, NOL vt v v vt v e i e e e e e e 25
53 CompariSONS v v v vt e e e e e e e e e e e e e e e e e e e 26
5.4 Numeric Types — int, float, CompleX . . . v v v v v v v v v e e e e e e e e e e 26
5.5 Tterator TYPES . . . v v v v i e e e e e e e e e e e e 29
5.6 Sequence Types — str, bytes, bytearray, list, tuple,range 30
5.7 SetTypes — set, frozenset L L e 39
5.8 Mapping Types — dict o oo e e e 42
5.9 memoryview TYPES o v i e e e e e e e e e e e e e e e e e e 44
5.10 Context Manager TYPes o v v i i i e e e e e e e e e e e e e e 46
5.11 Other Built-in Types L e 47
5.12 Special Attributeso e e 49
Built-in Exceptions 51
6.1 Exception hierarchy e 55
String Services 57
7.1 string— Common String Operationst a e e e 57
7.2 re —Regular expression Operationso i e e e e e 66
7.3 struct — Interpret bytes as packed binary data o000 80
74 difflib — Helpers for computingdeltas, 84
7.5 textwrap — Textwrappingandfilling 94
7.6 codecs — Codec registry and base classes e 96
7.7 unicodedata — Unicode Database, 108
7.8 stringprep — Internet String Preparation oo, 110
Data Types 113
8.1 datetime —Basicdateandtimetypes o 113
8.2 calendar — General calendar-related functions L. 134
83 collections— Containerdatatypesot e e 137
84 heapg—Heap queuealgorithm 150
8.5 Dbisect — Array bisection algorithm L 154
8.6 array — Efficient arrays of numeric values oL o oL 156
8.7 sched—Eventscheduler e 158

10

11

12

13

14

15

8.8 queue — A synchronized queueclass
89 weakref —Weakreferences e
8.10 types —Names forbuilt-intypes e e
8.11 copy — Shallow and deep copy operationst it
8.12 pprint —Datapretty printer e e e e e e e e
8.13 reprlib— Alternate repr () implementation oL

Numeric and Mathematical Modules

9.1 numbers — Numeric abstract baseclasses i
9.2 math — Mathematical functions
9.3 cmath — Mathematical functions for complex numbers,
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers
9.6 random— Generate pseudo-random numberso
9.7 itertools — Functions creating iterators for efficient looping
9.8 functools — Higher order functions and operations on callable objects
9.9 operator — Standard operators as functions Lo

File and Directory Access

10.1 os.path — Common pathname manipulations
10.2 fileinput — Iterate over lines from multiple input streams
10.3 stat — Interpreting stat () results L
10.4 filecmp — File and Directory CompariSons v v v v v v v v
10.5 tempfile — Generate temporary files and directories
10.6 glob — Unix style pathname pattern eXpansion v v v v v v v v v v v v e e e
10.7 fnmatch — Unix filename pattern matching,
10.8 linecache —Randomaccesstotextlines,
10.9 shutil — High-level file operations L oo
10.10 macpath — Mac OS 9 path manipulation functions

Data Persistence

11.1 pickle — Python object serialization,
11.2 copyreg—Register pickle support functions,
11.3 shelve —Pythonobjectpersistence oo i ittt
11.4 marshal — Internal Python object serialization
11.5 dbm — Interfaces to Unix “databases” i
11.6 sglite3 — DB-API 2.0 interface for SQLite databases

Data Compression and Archiving

12.1 zlib — Compression compatible withgzip
12.2 gzip—Supportforgzipfiles
12.3 bz2 — Compression compatible withbzip2 0.
124 zipfile— Work with ZIP archives i
12.5 tarfile —Readand write tararchivefiles L.

File Formats

13.1 csv—CSV File Readingand Writing o i ittt e e e
13.2 configparser — Configuration fileparser,
13.3 netrc—netrcfile processing oL e e
134 xdrlib —Encode and decode XDRdata,
13.5 plistlib — Generate and parse Mac OS X .plistfiles.

Cryptographic Services
14.1 hashlib — Secure hashes and message digests
14.2 hmac — Keyed-Hashing for Message Authentication

Generic Operating System Services
15.1 os — Miscellaneous operating system interfaces
15.2 io— Core tools for working with streams oo

161

173
173
176
179
181
204
205
208
219
221

227
227
230
232
235
236
238
239
240
240
242

243
243
253
254
256
257
260

277
277
279
280
282
287

295
295
300
305
306
308

311
311
312

153 time — Time access and CONVEISIONS v v v v v v vt e e e e e e e e e e e e e 345

15.4 optparse — More powerful command line option parser 350
15.5 getopt — Parser for command line optionso 373
15.6 logging — Logging facility for Python oo 000, 374
15.7 getpass — Portable passwordinput 411
15.8 curses — Terminal handling for character-cell displays 411
159 curses.textpad— Text input widget for curses programs v v v w . 425
15.10 curses.wrapper — Terminal handler for curses programs 427
15.11 curses.ascii — Utilities for ASCII characters 427
15.12 curses.panel — A panel stack extension forcurses 429
15.13 plat form — Access to underlying platform’s identifyingdata 430
15.14 errno — Standard errno system symbolso oo 433
15.15 ctypes — A foreign function library for Python 438
16 Optional Operating System Services 469
16.1 select — Waiting for[/Ocompletion e 469
16.2 threading — Higher-level threading interface 473
16.3 dummy_threading — Drop-in replacement for the threadingmodule 482
164 _thread — Low-level threading APT 482
16.5 _dummy_thread — Drop-in replacement for the _threadmodule 483
16.6 multiprocessing— Process-based “threading” interface 484
16.7 mmap — Memory-mapped file support e e e 530
16.8 readline —GNUreadlineinterface 532
16.9 rlcompleter — Completion function for GNU readline 535
17 Interprocess Communication and Networking 537
17.1 subprocess — Subprocess management vt e e e e e e e e e 537
17.2 socket — Low-level networking interface 0. 544
17.3 ss1 — SSL wrapper for socket objects L 554
17.4 signal — Set handlers for asynchronousevents 561
17.5 asyncore — Asynchronous sockethandler 564
17.6 asynchat — Asynchronous socket command/response handler 567
18 Internet Data Handling 571
18.1 email — Anemail and MIME handling package 571
18.2 json—IJSONencoderanddecoder 598
183 mailcap —Mailcap filehandling oL oo 603
18.4 mailbox — Manipulate mailboxes in various formats 604
18.5 mimetypes — Map filenames to MIME types 619
18.6 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 622
18.7 binhex — Encode and decode binhex4 files L. 623
18.8 binascii — Convert between binaryand ASCIT 624
18.9 quopri — Encode and decode MIME quoted-printable data 626
18.10 uu — Encode and decode uuencode files oo oo 626
19 Structured Markup Processing Tools 629
19.1 html.parser — Simple HTML and XHTML parser 629
19.2 html.entities — Definitions of HTML general entities 631
19.3 xml.parsers.expat — Fast XML parsingusing Expat 631
19.4 xml.dom — The Document Object Model APT 639
19.5 xml.dom.minidom — Lightweight DOM implementation 649
19.6 xml.dom.pulldom — Support for building partial DOM trees 653
19.7 xml.sax — Support for SAX2 parsers oot e e e 653
19.8 xml.sax.handler — Baseclasses for SAX handlers 655
199 xml.sax.saxutils —SAXUtilities e 659
19.10 xml.sax.xmlreader — Interface for XML parsers 660
19.11 xml.etree.ElementTree — The ElementTree XML APl 663

20 Internet Protocols and Support 671

21

22

23

24

25

20.1 webbrowser — Convenient Web-browser controller 671

20.2 cgi — Common Gateway Interface support e 673
20.3 cgitb — Traceback manager for CGlscripts 679
20.4 wsgiref — WSGI Utilities and Reference Implementation 679
20.5 urllib.request — extensible library foropening URLs 687
20.6 urllib.response — Response classesused by urllib.o 700
20.7 urllib.parse —Parse URLsintocomponentso v v v v v v ... 701
20.8 urllib.error — Exception classes raised by urllibrequest 705
209 urllib.robotparser — Parser forrobots.txt L. 706
20.10 http.client — HTTP protocolclient, 706
20.11 ftplib —FTPprotocolclient L o i e 711
20.12 poplib —POP3 protocol client e 714
20.13 imaplib —IMAP4 protocol client e 716
20.14 nntplib — NNTP protocolclient 721
20.15 smtplib — SMTP protocolclient L 724
20.16 smtpd — SMTP Server e 728
20.17 telnetlib —Telnetclient e 729
20.18 uuid — UUID objects accordingto RFC 4122 i 731
20.19 socketserver — A framework for network servers o oL 734
20.20 http.server — HTTPservers et 741
20.21 http.cookies — HTTP state management 744
20.22 http.cookiejar — Cookie handling for HTTPclients 747
20.23 xmlrpc.client — XML-RPCclientaccess v v i vt i v v i e oo 755
20.24 xmlrpc.server — Basic XML-RPCservers 761
Multimedia Services 767
21.1 audiocop — Manipulate raw audiodata Lo 767
21.2 aifc—Read and write AIFFand AIFCfiles 770
21.3 sunau—Readandwrite Sun AUfiles 772
21.4 wave —Read and write WAV files 774
21.5 chunk —ReadIFFchunkeddata 776
21.6 colorsys — Conversions between color Systems v v v v it 777
21.7 imghdr — Determine the type of animage 778
21.8 sndhdr — Determine type of sound file o 778
21.9 ossaudiodev — Access to OSS-compatible audio devices 779
Internationalization 783
22.1 gettext — Multilingual internationalization services 783
22.2 locale — Internationalization SEIViCes it i et e 791
Program Frameworks 797
23.1 turtle —Turtle graphics L e 797
23.2 cmd — Support for line-oriented command interpreters oL L 828
23.3 shlex — Simple lexical analysis L 830
Graphical User Interfaces with Tk 833
24.1 tkinter — Pythoninterfaceto Tcl/Tk 833
242 tkinter.ttk —Tkthemedwidgets 842
243 tkinter.tix —Extensionwidgetsfor Tk 858
244 tkinter.scrolledtext — Scrolled Text Widget 862
245 IDLE e e 863
24.6 Other Graphical User Interface Packages 866
Development Tools 867
25.1 pydoc — Documentation generator and online help system 867
25.2 doctest — Testinteractive Pythonexamples 868
253 unittest — Unittesting framework L Lo 889
25.4 2to3 - Automated Python 2 to 3 code translation L 904
25.5 test — Regression tests package forPython. oo 908

26

27

28

29

30

31

32

25.6 test.support — Utility functions fortests

Debugging and Profiling

26.1 bdb — Debugger framework L
26.2 pdb — The Python Debugger e
26.3 The Python Profilers e e e e
26.4 timeit — Measure execution time of small code snippets
26.5 trace — Trace or track Python statement execution

Python Runtime Services

27.1 sys — System-specific parameters and functions o oL
272 builtins —Built-inobjects L
273 __main___ —Top-level script environment
274 warnings —Warningcontrolo L
27.5 contextlib — Utilities for with-statementcontextso ...
27.6 abc—Abstract Base Classes o e
2777 atexit —Exithandlers L.
27.8 traceback — Print or retrieve a stack traceback o oL
279 _ future_ — Future statement definitions
27.10 gc — Garbage Collectorinterface e e e
27.11 inspect — Inspectlive objects o . e e e e
27.12 site — Site-specific configurationhook o oL 0oL
27.13 fpectl — Floating point exception control Lo

Custom Python Interpreters
28.1 code —Interpreter base classes L. e
28.2 codeop — Compile Pythoncode L

Importing Modules

29.1 imp — Accessthe importinternals L oL e
29.2 zipimport — Import modules from Zip archives
29.3 pkgutil — Package extension utility oL
29.4 modulefinder — Find modules used by ascript,
29.5 runpy — Locating and executing Pythonmodules
29.6 importlib - Animplementation of import Lo

Python Language Services

30.1 parser — Access Pythonparsetrees i e
30.2 ast — Abstract Syntax Treeso e
30.3 symtable — Access to the compiler’s symbol tables
30.4 symbol — Constants used with Python parsetrees
30.5 token — Constants used with Python parsetrees
30.6 keyword— Testing for Pythonkeywords
30.7 tokenize — Tokenizer for Pythonsource L.
30.8 tabnanny — Detection of ambiguous indentation
30.9 pyclbr — Python class browser support oL
30.10 py_compile — Compile Python source files
30.11 compileall — Byte-compile Python libraries
30.12 dis — Disassembler for Python bytecode o oL
30.13 pickletools — Tools for pickle developers
30.14 distutils — Building and installing Python modules

Miscellaneous Services
31.1 formatter — Generic output formattingo

MS Windows Specific Services

32.1 msilib — Read and write Microsoft Installer files
32.2 msvcrt — Useful routines from the MS VC++runtime
323 winreg— WIindows registry aCCeSS« ¢ v v v v v v v e e e e e e e e e e e e e

915
915
919
923
930
933

935
935
944
945
945
949
950
953
954
957
958
961
965
966

969
969
971

973
973
9717
978
981
982
983

32.4 winsound — Sound-playing interface for Windows oL 1032

33 Unix Specific Services 1035
33.1 posix — The most common POSIX systemcalls 1035
33.2 pwd—The password database 1036
33.3 spwd — The shadow password database e 1036
334 grp—Thegroupdatabase e 1037
33.5 crypt — Function to check Unix passwords 1038
33.6 termios —POSIXstylettycontrol L 1038
33.7 tty— Terminal control functions 1039
33.8 pty —Pseudo-terminal utilities e 1040
339 fcntl —The fentl () and ioctl () systemealls Lo 1040
33.10 pipes — Interface to shell pipelines Lo 1042
33.11 resource — Resource usage information oo oL 1043
33.12 nis — Interface to Sun’s NIS (Yellow Pages) 1045
33.13 syslog— Unix syslog library routines v v i i v ittt 1046

34 Undocumented Modules 1047
34.1 Platform specificmodules L e 1047

A Glossary 1049

Bibliography 1055

B About these documents 1057
B.1 Contributors to the Python Documentation, 1057

C History and License 1059
C.1 Historyof the software e e 1059
C.2 Terms and conditions for accessing or otherwise using Python 1060
C.3 Licenses and Acknowledgements for Incorporated Software 1062

D Copyright 1073

Module Index 1075

Index 1079

vi

The Python Library Reference, Release 3.1.3

Release 3.1
Date November 27, 2010

While The Python Language Reference (in The Python Language Reference) describes the exact syntax and se-
mantics of the Python language, this library reference manual describes the standard library that is distributed with
Python. It also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 3.1.3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Functions, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 3.1.3

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed

here in alphabetical order.

Built-in Functions

abs () dir () hex () next () slice ()
all() divmod () id() object () sorted ()

any () enumerate () input () oct () staticmethod ()
ascii() eval () int () open () str()

bin () exec () isinstance () ord () sum ()

bool () filter () issubclass () pow () super ()
bytearray () float () iter () print () tuple ()
bytes () format () len () property () | type ()

chr () frozenset () list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed () _ _import__ ()
complex () hasattr() max () round ()

delattr () hash () memoryview () set ()

dict () help () min () setattr ()
abs (x)

Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable) :
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.1.3

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

bool ([x])

Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True.

bytearray ([source, [encoding, [errors]]])
Return a new array of bytes. The bytearray type is a mutable sequence of integers in the range 0 <=x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well
as most methods that the by tes type has, see Bytes and Byte Array Methods.

The optional source parameter can be used to initialize the array in a few different ways:

eIf it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray ()
then converts the string to bytes using str.encode ().

oIf it is an integer, the array will have that size and will be initialized with null bytes.

oIf it is an object conforming to the buffer interface, a read-only buffer of the object will be used to
initialize the bytes array.

oIf it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as
the initial contents of the array.

Without an argument, an array of size 0 is created.

bytes ([source, [encoding, [errors]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray — it has the same non-mutating methods and the same
indexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

Bytes objects can also be created with literals, see String and Bytes literals (in The Python Language Ref-
erence).

chr (i)
Return the string representing a character whose Unicode codepoint is the integer i. For example, chr (97)
returns the string ” a’. This is the inverse of ord (). The valid range for the argument is from O through
1,114,111 (Ox10FFFF in base 16). ValueError will be raised if i is outside that range.

Note that on narrow Unicode builds, the result is a string of length two for i greater than 65,535 (OxFFFF in
hexadecimal).

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.1.3

For more information on class methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference).

compile (source, filename, mode, flags=0, dont_inherit=False)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval ().
source can either be a string or an AST object. Refer to the a st module documentation for information on
how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, ’ eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None
will be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the
compilation of source. If neither is present (or both are zero) the code is compiled with those future state-
ments that are in effect in the code that is calling compile. If the flags argument is given and dont_inherit
is not (or is zero) then the future statements specified by the flags argument are used in addition to those
that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_flag attribute on the
_Featureinstance inthe __ future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes.

Note: When compiling a string with multi-line statements, line endings must be represented by a single
newline character (’ \n’), and the input must be terminated by at least one newline character. If line endings
are represented by “ \r\n’,use str.replace () to change them into ' \n’.

complex ([real, [imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int () and f1loat (). If both arguments are omitted, returns 0 J.

The complex type is described in Numeric Types — int, float, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.

For other containers see the builtin 1ist, set, and tuple classes, and the collections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute_ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 3.1.3

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # doctest: +SKIP
["__builtins__ ', ' _doc_ ', ’'__name__ ', ’struct’]
>>> dir (struct) # doctest: +NORMALIZE WHITESPACE

["Struct’, ’'__builtins_ ', ’'__doc_ ', 7’__file_ ', '"_ _name_ '
' __package__ ', ’'_clearcache’, ’'calcsize’, ’"error’, ’'pack’, ’'pack_into’,
"unpack’, ’unpack_from’]
>>> class Foo:
def _ dir_ (self):
return ["kan", "ga", "roo"]

4

>>> f = Foo()
>>> dir (f)
["ga’, ’"kan’, ’'roo’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % Db). For floating point numbers the result is

(q, a % b), where gisusually math.floor(a / b) but may be 1 less than that. In any case g =
b + a % bisveryclosetoa,if a % b is non-zero it has the same sign as b,and 0 <= abs(a % b)
< abs (b).

enumerate (iterable, start=0)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The ___next___ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the corresponding value obtained from iterating over iter-
able. enumerate () is useful for obtaining an indexed series: (0, seq[0]), (1, seql[ll), (2,
seq[2]), ... For example:

>>> for i, season in enumerate ([’ Spring’, ’'Summer’, 'Fall’, ’'Winter’]):
. print (i, season)

Spring
Summer
Fall
Winter

w N R O -

eval (expression, globals=None, locals=None)
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition
list) using the globals and locals dictionaries as global and local namespace. If the globals dictionary is
present and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.1.3

This means that expression normally has full access to the standard builtins module and restricted
environments are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where eval () is called. The return
value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval (’/
2

x+17)

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with ' exec’ as the
kind argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () or exec ().

See ast.literal_eval () for a function that can safely evaluate strings with expressions containing
only literals.

exec (object, [globals, [locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs). ! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the return and
yield statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary, which will be used for both the global and the local variables. If globals
and locals are given, they are used for the global and local variables, respectively. If provided, locals can be
any mapping object.

If the globals dictionary does not contain a value for the key _ _builtins__, areference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins
are available to the executed code by inserting your own ___builtins___ dictionary into globals before
passing it to exec ().

Note: The built-in functions globals () and locals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec () .

Note: The default locals act as described for function 1ocals () below: modifications to the default
locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the
code on locals after function exec () returns.

filter (function, iterable)
Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly
signed decimal or floating point number, possibly embedded in whitespace. The argument may also be
"[+]|-]nan’ or ' [+|-]inf’. Otherwise, the argument may be an integer or a floating point number,

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

The Python Library Reference, Release 3.1.3

and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, 0. 0 is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings ' nan’, " inf’ and ' —inf’ for NaN and positive or negative infinity.
The case and a leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN
and infinity as nan, inf or —inf.

The float type is described in Numeric Types — int, float, complex.

format (value, [format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that
is used by most built-in types: Format Specification Mini-Language.

Note: format (value, format_spec) merely calls value.__ format__ (format_spec).

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collect ions module.

getattr (object, name, [default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one of
the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’) is
equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module.

hex (x)
Convert an integer number to a hexadecimal string. The result is a valid Python expression. If x is not a
Python int object, it has to define an __index__ () method that returns an integer.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object.

input ([/prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.1.3

then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> 5 = input (' ——> ')
—-—> Monty Python’s Flying Circus
>>> g

"Monty Python’s Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

int ([number | string, [base]])

Convert a number or string to an integer. If no arguments are given, return 0. If a number is given, return
number.__int__ (). Conversion of floating point numbers to integers truncates towards zero. A string
must be a base-radix integer literal optionally preceded by ‘+’ or ‘-* (with no space in between) and option-
ally surrounded by whitespace. A base-n literal consists of the digits O to n-1, with ‘a’ to ‘z’ (or ‘A’ to Z’)
having values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 liter-
als can be optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means
to interpret exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int (* 010", 0)
is not legal, while int (010’) is,as wellas int (* 010’ , 8).

The integer type is described in Numeric Types — int, float, complex.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. If object is not an object of the given type, the function always returns false. If classinfo is not a
class (type object), it may be a tuple of type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object, [sentinel])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the _ _getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator
created in this case will call object with no arguments for each call to its __next___ () method; if the
value returned is equal to sentinel, StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () is to read lines of a file until a certain line is reached.
The following example reads a file until "STOP" is reached:

with open ("mydata.txt") as fp:
for line in iter (fp.readline, "STOP"):
process_line(line)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. Forinstance, 1ist (' abc’) returns ["a’, ’'b’, ’'c’] and
list((1, 2, 3)) returns [1, 2, 3].Ifnoargument is given, returns a new empty list, [].

11

The Python Library Reference, Release 3.1.3

list is a mutable sequence type, as documented in Sequence Types — str, bytes, bytearray, list, tuple,
range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
and free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases
where the function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, [args...], * [key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview Types for more infor-
mation.

min (iterable, [args...], *, [key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional keyword-only key argument specifies a one-argument ordering function like that used for
list.sort ().

next (iterator, [default])
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is
returned if the iterator is exhausted, otherwise StopIteration is raised.

object ()
Return a new featureless object. object is a base for all classes. It has the methods that are common to
all instances of Python classes. This function does not accept any arguments.

Note: object does not have a __dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x)
Convert an integer number to an octal string. The result is a valid Python expression. If x is not a Python
int object, it has to define an ___index__ () method that returns an integer.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
Open file and return a corresponding stream. If the file cannot be opened, an TOError is raised.

file is either a string or bytes object giving the pathname (absolute or relative to the current working direc-
tory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is
given, it is closed when the returned I/O object is closed, unless closefd is setto False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ’ r’ which means
open for reading in text mode. Other common values are ' w’ for writing (truncating the file if it already
exists), and ” a’ for appending (which on some Unix systems, means that all writes append to the end of the
file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is
platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.1.3

Character | Meaning

ol open for reading (default)

"’ open for writing, truncating the file first

ra’ open for writing, appending to the end of the file if it exists

b’ binary mode

e’ text mode (default)

_ open a disk file for updating (reading and writing)

"y’ universal newline mode (for backwards compatibility; should not be used in new code)

The default mode is r’ (open for reading text, synonym of rt /). For binary read-write access, the mode
"w+b’ opens and truncates the file to 0 bytes. * r+b’ opens the file without truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary
mode (including " b’ in the mode argument) return contents as bytes objects without any decoding. In
text mode (the default, or when ’ t’ is included in the mode argument), the contents of the file are returned
as str, the bytes having been first decoded using a platform-dependent encoding or using the specified
encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the the processing
is done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

*Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

*“Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever locale.getpreferredencoding ()
returns), but any encoding supported by Python can be used. See the codecs module for the list of
supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. Pass " strict’ toraise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ignore’ to ignore errors. (Note that ignoring encoding
errors can lead to data loss.) ’replace’ causes a replacement marker (such as ’ ?’) to be inserted
where there is malformed data. When writing, ' xmlcharrefreplace’ (replace with the appropriate
XML character reference) or ' backslashreplace’ (replace with backslashed escape sequences) can
be used. Any other error handling name that has been registered with codecs.register_error () is
also valid.

newline controls how universal newlines works (it only applies to text mode). It can be None, ”, /' \n’,
"\r’,and ' \r\n’. It works as follows:

*On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in \n",
"\r’,or "\r\n’, and these are translated into * \n’ before being returned to the caller. If it is ",
universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has
any of the other legal values, input lines are only terminated by the given string, and the line ending is
returned to the caller untranslated.

*On output, if newline is None, any ' \n’ characters written are translated to the system default line
separator, os . linesep. If newline is ", no translation takes place. If newline is any of the other
legal values, any ’ \n’ characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd has no effect and must be True (the
default).

13

The Python Library Reference, Release 3.1.3

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode (w’, "r’, 'wt’, ' rt’, etc.), it returns a subclass of io.Text IOBase
(specifically io.TextIOWrapper). When used to open a file in a binary mode with buffering, the re-
turned class is a subclass of io. Buf feredIOBase. The exact class varies: in read binary mode, it returns
aio.BufferedReader;in write binary and append binary modes, itreturns a io . BufferediWriter,
and in read/write mode, it returns a io.Buf feredRandom. When buffering is disabled, the raw stream,
a subclass of io.RawIOBase, io.FileIO, is returned. See also the file handling modules, such as,
fileinput, io (where open () is declared), os, os.path, tempfile,and shutil.

ord (c)

Given a string representing one Uncicode character, return an integer representing the Unicode code point
of that character. For example, ord (” a’) returns the integer 97 and ord (’ \u2020') returns 8224.
This is the inverse of chr ().

On wide Unicode builds, if the argument length is not one, a TypeError will be raised. On narrow
Unicode builds, strings of length two are accepted when they form a UTF-16 surrogate pair.

pow (x,), [z])

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, vy) % z). The two-argument form pow (x, y) is equivalent to using the power operator:
X**y.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10 %2 returns 100, but 10+ -2 returns 0. 01. If the second argument is negative, the third
argument must be omitted. If z is present, x and y must be of integer types, and y must be non-negative.

print ([object, ...], * sep="", end="\n’, file=sys.stdout)

Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C:
def @ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = wvalue
def delx(self):
del self._x
x = property(getx, setx, delx, "I'm the

’ 4

x’" property.")

If then c is an instance of C, c.x will invoke the getter, c.x = wvalue will invoke the setter and del
c . x the deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.1.3

class Parrot:
def @ init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def @ init_ (self):
self._x = None

@property

def x(self):
"""Ilm the /XI property- mmn
return self._x

@x.setter
def x(self, wvalue):
self. _x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

range ([start], stop, [step])
This is a versatile function to create iterables yielding arithmetic progressions. It is most often used in
for loops. The arguments must be integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns an iterable of integers [start, start +
step, start + 2 x step, ...]. If stepis positive, the last element is the largest start + i
x step less than stop; if step is negative, the last element is the smallest start + i * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> list (range (10))

(0o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list(range (0, 10, 3))

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

(o, -1, -2, -3, -4, -5, -o, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

15

The Python Library Reference, Release 3.1.3

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object
together with additional information often including the name and address of the object. A class can control
what this function returns for its instances by defininga __repr__ () method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a __reversed__ () method or supports the
sequence protocol (the _ len__ () method and the __getitem__ () method with integer arguments
starting at 0).

round (x, [n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. Delegates to x .__round___ (n).

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus 7; if two multiples are equally close, rounding is done toward the even choice (so, for example, both
round (0.5) and round (-0.5) are 0, and round (1.5) is 2). The return value is an integer if called
with one argument, otherwise of the same type as x.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2. 68. This is not a bug: it’s a result of the fact that most decimal fractions
can’t be represented exactly as a float. See Floating Point Arithmetic: Issues and Limitations (in Python
Tutorial) for more information.

set ([iterable])
Return a new set, optionally with elements taken from iterable. The set type is described in Set Types — set,
frozenset.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

slice ([start], stop, [step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
i].See itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, [key], [reverse])
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

To convert an old-style cmp function to a key function, see the CmpToKey recipe in the ASPN cookbook.
For sorting examples and a brief sorting tutorial, see Sorting HowTo.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

16 Chapter 2. Built-in Functions

http://code.activestate.com/recipes/576653/
http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 3.1.3

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod formis a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference).

str ([object, [encoding, [errors]]])
Return a string version of an object, using one of the following modes:

If encoding and/or errors are given, str () will decode the object which can either be a byte string or a
character buffer using the codec for encoding. The encoding parameter is a string giving the name of an en-
coding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errorsis ' strict’
(the default), a ValueError is raised on errors, while a value of / ignore’ causes errors to be silently
ignored, and a value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be
used to replace input characters which cannot be decoded. See also the codecs module.

When only object is given, this returns its nicely printable representation. For strings, this is the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that
is acceptable to eval () ; its goal is to return a printable string. With no arguments, this returns the empty
string.

Objects can specify what str (object) returns by defininga ___str__ () special method.

For more information on strings see Sequence Types — str, bytes, bytearray, list, tuple, range which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings, see the String Formatting section. In addition see the
String Services section.

sum (iterable, [start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum () . The preferred, fast way to concatenate a sequence
of strings is by calling ” . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

super ([type, [object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of zype. This is useful for
accessing inherited methods that have been overridden in a class. The search order is same as that used by
getattr () except that the type itself is skipped.

The __mro___ attribute of the rype lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to
refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes it possible to implement “diamond diagrams” where multiple base

17

The Python Library Reference, Release 3.1.3

classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of calls is determined at runtime, because that order adapts to changes in
the class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:

super (C, self).method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implici