The Python Library Reference
Release 2.7

Guido van Rossum

Fred L. Drake, Jr., editor

July 03, 2010

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 23
Built-in Constants 25
4.1 Constants added by the sitemodule L e 25
Built-in Types 27
5.1 Truth Value Testing L 0 o e e e e e e e e e e 27
5.2 Boolean Operations — and, OF, NOT . .+« v v v vt v e et e e e e e e e e e 27
53 ComPpariSONS v v v v e e e e e e e e e e e e e e e e e 28
5.4 Numeric Types — int, float, 10Nng, COMPLEX + . v v v v v v v v v v e et e e e e e e e 28
5.5 Tterator TYPES . . o v o v v e e e e e e e e e e e e e e 32
5.6 Sequence Types — str,unicode, list, tuple, buffer, xrange 32
5.7 SetTypes — set, frozenset o o i i i e e e e e 42
5.8 Mapping Types — dict o o o o e e 45
5.9 File ObjJects o vt i e e e e e e e e e e e e 48
5.10 MeMOTYVIEW LYPE . & v v o v v e i e 52
5.11 Context Manager Types i i e e e 53
5.12 Other Built-in Types e 54
5.13 Special Attributeso e e e e e e 56
Built-in Exceptions 59
6.1 Exceptionhierarchy L e 63
String Services 65
7.1 string-— Common String Operationso e 65
7.2 re — Regular expression Operations v it et e e e e e e e e e e e e e e 77
7.3 struct — Interpret strings as packed binarydata Lo 92
7.4 difflib— Helpers for computingdeltas 96
7.5 StringIO—Readand writestringsasfiles L o 106
7.6 cStringIO—Faster version of StringIO ot e e e 107
777 textwrap — Textwrappingandfilling Lo oL 107
7.8 codecs — Codec registry and base classeso 110
7.9 unicodedata —Unicode Database 123
7.10 stringprep — Internet String Preparation L Lo 125
7.11 fpformat — Floating point cCONVErsionso v v v vt i i e e 126

8

9

Data Types

8.1 datetime —Basicdateand imetypes it e e e e e e e e e
8.2 calendar — General calendar-related functions L.
8.3 collections — High-performance container datatypes
8.4 heapg—Heapqueuealgorithm
8.5 bisect — Array bisection algorithm oL
8.6 array — Efficient arrays of numeric values L L e
8.7 sets — Unordered collections of unique elements
8.8 sched—Eventscheduler
8.9 mutex — Mutual exclusion supporto
8.10 queue — A synchronized queueclass
8.11 weakref — Weakreferences L
8.12 UserDict — Class wrapper for dictionary objects i vt
8.13 UserList — Class wrapper for listobjects
8.14 UserString— Class wrapper for stringobjects
8.15 types—Names forbuilt-intypes L
8.16 new — Creation of runtime internal objects L. oo
8.17 copy — Shallow and deep cOpy OPerations v v v v v v v vt e e e e e e e
8.18 pprint — Datapretty printer e e e e e e e e e e e e
8.19 repr — Alternate repr () implementation Lo

Numeric and Mathematical Modules

9.1 numbers — Numeric abstractbaseclasses o ...
9.2 math — Mathematical functions e
9.3 cmath — Mathematical functions for complex numbers
9.4 decimal — Decimal fixed point and floating point arithmetic
9.5 fractions—Rationalnumbers L o
9.6 random — Generate pseudo-random nUMDbETSo ..ol e e e e e
9.7 itertools — Functions creating iterators for efficient looping
9.8 functools — Higher order functions and operations on callable objects
9.9 operator — Standard operators as functions L. L Lo

10 File and Directory Access

10.1 os.path — Common pathname manipulations
10.2 fileinput — Iterate over lines from multiple input streams
10.3 stat — Interpreting stat () results e e e
104 statvfs — Constants used with os.statvEs ()
10.5 filecmp — File and Directory Comparisons v ...
10.6 tempfile — Generate temporary files and directories
10.7 glob — Unix style pathname pattern expansion oo v vt et
10.8 fnmatch — Unix filename pattern matching L ...
109 linecache —Randomaccesstotextlines
10.10 shutil — High-level file operations
10.11 dircache — Cached directory listings
10.12 macpath — Mac OS 9 path manipulation functions

11 Data Persistence

11.1 pickle — Python object serialization e
11.2 cPickle—Afasterpickle i i i e
11.3 copy_reg—Register pickle support functions oL
11.4 shelve —Pythonobject persistence o v i v v i v v et e e e e
11.5 marshal — Internal Python object serialization
11.6 anydbm — Generic access to DBM-style databases
11.7 whichdb — Guess which DBM module created a database

129
129
152
155
168
171
172
175
178
179
180
182
186
187
188
188
191
191
192
195

199
199
202
206
208
232
234
238
251
253

261
261
264
266
269
270
272
274
275
276
276
280
281

11.8 dbm— Simple “database” interface e
11.9 gdbm — GNU’s reinterpretationofdbm
11.10 dbhash — DBM-style interface to the BSD database library
11.11 bsddb — Interface to Berkeley DB library
11.12 dumbdbm — Portable DBM implementation
11.13 sglite3 — DB-API 2.0 interface for SQLite databases

12 Data Compression and Archiving
12.1 zlib — Compression compatible with gzip
12.2 gzip—Supportforgzipfiles
12.3 Dbz2 — Compression compatible withbzip2
124 zipfile— Work withZIP archives e
12.5 tarfile — Read and write tar archive files L o oL

13 File Formats
13.1 csv—CSV File Reading and Writing i e
13.2 ConfigParser — Configuration file parser
13.3 robotparser —Parser forrobots.tXt e e e e e
13.4 netrc—netrc file processingo e e
13.5 xdrlib —Encode and decode XDRdata,
13.6 plistlib — Generate and parse Mac OS X .plistfiles.

14 Cryptographic Services
14.1 hashlib — Secure hashes and message digests o v i it
142 hmac — Keyed-Hashing for Message Authentication
143 md5 — MD5 message digest algorithm o oL
14.4 sha — SHA-1 message digest algorithm

15 Generic Operating System Services
15.1 os — Miscellaneous operating system interfaces L.
15.2 io— Core tools for working with streams L oo
15.3 time — Time access and CONVEISIONS o v v v v v v v it e e e e et e e e e e
15.4 argparse — Parser for command line options, arguments and sub-commands
15.5 optparse — Parser for command lineoptions Lo
15.6 getopt — C-style parser for command line options
15.7 logging — Logging facility for Python L
15.8 getpass — Portable passwordinputo o
15.9 curses — Terminal handling for character-cell displays
15.10 curses.textpad — Text input widget for curses programs« o v v v v v vt ...
15.11 curses.wrapper — Terminal handler for curses programs
15.12 curses.ascii — Utilities for ASCIl characters
15.13 curses.panel — A panel stack extension forcurses oL
15.14 plat form — Access to underlying platform’s identifyingdata
15.15 errno — Standard errno system symbols L. L
15.16 ctypes — A foreign function library for Python 0 0.

16 Optional Operating System Services
16.1 select — Waiting for[/Ocompletion e
16.2 threading — Higher-level threading interface
16.3 thread— Multiple threads of control L oo
16.4 dummy_threading — Drop-in replacement for the threadingmodule
16.5 dummy_thread — Drop-in replacement for the threadmodule
16.6 multiprocessing— Process-based “threading” interface
16.7 mmap — Memory-mapped file support
16.8 readline —GNUreadlineinterface

325
325
327
329
331
335

345
345
352
358
359
359
362

365
365
366
367
368

371
371
396
405
410
437
461
463
507
507
522
524
524
526
527
530
536

569
569
573
582
584
584
585
634
636

17

18

19

20

169 rlcompleter — Completion function for GNU readline

Interprocess Communication and Networking

17.1 subprocess — Subprocess managemento b . et e e e e e e e e
17.2 socket — Low-level networking interface L L.
17.3 ss1 — SSL wrapper for socketobjects e e
17.4 signal — Set handlers for asynchronous events
17.5 popen2 — Subprocesses with accessible /O streams
17.6 asyncore — Asynchronous sockethandler
17.7 asynchat — Asynchronous socket command/response handler

Internet Data Handling

18.1 email — Anemail and MIME handling package
18.2 json—IJSONencoderanddecoder
183 mailcap—Mailcapfilehandling
18.4 mailbox — Manipulate mailboxes in various formats o oL
18.5 mhlib — Accessto MHmailboxes e
18.6 mimetools — Tools for parsing MIME messages
18.7 mimetypes — Map filenames to MIME types o
18.8 MimeWriter — Generic MIME filewriter
18.9 mimify — MIME processing of mail messages i
18.10 multifile — Support for files containing distinct parts
18.11 r£c822 — Parse RFC 2822 mail headers
18.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
18.13 binhex — Encode and decode binhex4 files L oo,
18.14 binascii — Convert between binary and ASCII
18.15 quopri — Encode and decode MIME quoted-printabledata
18.16 uu — Encode and decode uuencode files L oo

Structured Markup Processing Tools

19.1 HTMLParser — Simple HTML and XHTML parser
19.2 sgmllib —Simple SGML parser e
193 htmllib — A parser for HTML documents
19.4 htmlentitydefs — Definitions of HTML general entities
19.5 xml.parsers.expat — Fast XML parsingusing Expat
19.6 xml.dom — The Document Object Model API
19.7 xml.dom.minidom — Lightweight DOM implementation
19.8 xml.dom.pulldom — Support for building partial DOM trees
199 xml.sax — Support for SAX2 parsers v vttt e e e e e e
19.10 xml.sax.handler — Base classes for SAX handlers
19.11 xml.sax.saxutils — SAX Utilities e
19.12 xml.sax.xmlreader — Interface for XML parsers
19.13 xml.etree.ElementTree — The ElementTree XML APl

Internet Protocols and Support

20.1 webbrowser — Convenient Web-browser controller
20.2 cgi — Common Gateway Interface support
20.3 cgitb — Traceback manager for CGIscripts v ittt
20.4 wsgiref — WSGI Utilities and Reference Implementation
20.5 urllib — Open arbitrary resourcesby URL
20.6 urllib2 — extensible library foropening URLs
20.7 httplib —HTTP protocolclient o o et e
20.8 ftplib—FTPprotocolclient L i e
209 poplib—POP3 protocolclient e e e e
20.10 imaplib —IMAP4 protocol client e e

641
641
648
659
667
670
672
675

679
679
709
714
715
733
735
737
739
740
741
743
747
749
749
751
752

753
753
755
758
759
760
768
778
782
783
784
789
790
794

20.11 nntplib —NNTP protocolclient e
20.12 smtplib — SMTP protocolclient i e e
20.13 smtpd — SMTP Server e e e e
20.14 telnetlib—Telnetclient e
20.15 uuid — UUID objects according to RFC 4122
20.16 urlparse — Parse URLs into components oot i it vin ..
20.17 SocketServer — A framework for network servers oL Lo
20.18 BaseHTTPServer — Basic HTTPserver
20.19 SimpleHTTPServer — Simple HTTP requesthandler
20.20 CGIHTTPServer — CGl-capable HTTP requesthandler
20.21 cookielib — Cookie handling for HTTP clients
20.22 Cookie — HTTP state management v v i v v v it e ettt e e e
20.23 xmlrpclib — XML-RPCclient access o v v v v i i et e e e e e e e
20.24 SimpleXMLRPCServer — Basic XML-RPCserver
20.25 DocXMLRPCServer — Self-documenting XML-RPCserver

21 Multimedia Services
21.1 audioop —Manipulateraw audiodata oL oL
21.2 imageop — Manipulate raw imagedata00
21.3 aifc—Readand write AIFFand AIFCfiles
214 sunau—Readand write Sun AUfiles Lo
21.5 wave —Read and write WAV files L
21.6 chunk —Read IFFchunkeddata
217 colorsys — Conversions between colorsystems
21.8 imghdr — Determine the type of animage
21.9 sndhdr — Determine type of sound file L oo
21.10 ossaudiodev — Access to OSS-compatible audio devices

22 Internationalization
22.1 gettext — Multilingual internationalization services
22.2 locale — Internationalization SEIVICES v v v v v v v v e e e e e e e e e e e e e

23 Program Frameworks
23.1 cmd — Support for line-oriented command interpreterso
23.2 shlex —Simple lexical analysis o o L e e e e

24 Graphical User Interfaces with Tk
24.1 Tkinter — Pythoninterfaceto Tcl/Tk
242 ttk —Tkthemed widgets o o e e e e e
243 Tix —Extensionwidgetsfor Tk L
244 ScrolledText — Scrolled Text Widget
245 turtle —Turtle graphics for Tk
24.6 IDLE
24.7 Other Graphical User Interface Packages

25 Development Tools
25.1 pydoc — Documentation generator and online help system
25.2 doctest — Testinteractive Pythonexamples
253 unittest — Unittesting framework oo oo
25.4 2to3 - Automated Python 2 to 3 code translation L.
25.5 test — Regression tests package for Python. oo o oo
25.6 test.test_support — Utility functions fortests,

26 Debugging and Profiling
26.1 bdb — Debugger framework e

907
907
910
911
913
916
918
919
919
920
921

927
927
936

943
943
945

27

28

29

30

31

26.2 pdb — The Python Debugger e
26.3 Debugger Commands e e e e e e e e e e e e e e
26.4 The Python Profilers e e e
26.5 hotshot — High performance logging profiler
26.6 timeit — Measure execution time of small code snippets
26.7 trace — Trace or track Python statementexecution

Python Runtime Services

27.1 sys — System-specific parameters and functions oL
27.2 sysconfig— Provide access to Python’s configuration information.
273 __builtin__ —Built-inobjects e e e e e
274 future_builtins—Python3builtins
275 __main__ — Top-level script environment L oL
27.6 warnings — Warningcontrol Lo e
27.7 contextlib — Utilities for with-statementcontexts
27.8 abc—Abstract Base Classes e
279 atexit —Exithandlers
27.10 traceback — Print or retrieve a stack tracebacko o oL oo
27.11 __ future_ — Future statement definitions e
27.12 gc — Garbage Collector interface e
27.13 inspect — Inspectlive objects e
27.14 site — Site-specific configurationhook oL L e
27.15 user — User-specific configurationhook oo oo
27.16 fpectl — Floating point exceptioncontrol oL oL
27.17 distutils — Building and installing Python modules

Custom Python Interpreters
28.1 code —Interpreter base classes e
28.2 codeop — Compile Pythoncode

Restricted Execution
29.1 rexec — Restricted execution framework L e
29.2 Bastion — Restricting access to 0bjectso e

Importing Modules

30.1 imp— Accessthe importinternals e e
30.2 importlib — Convenience wrappers for ___import_ ()
303 dimputil —Importutilities 0 e e e e e e e e e e
304 zipimport — Import modules from Zip archives oL
30.5 pkgutil — Package extensionutility Lo Lo
30.6 modulefinder —Find modulesused by ascript L 0oL,
30.7 runpy — Locating and executing Pythonmodules 0oL,

Python Language Services

31.1 parser — Access Pythonparsetrees e
31.2 Abstract Syntax Trees L e e e e e
31.3 symtable — Access to the compiler’s symboltables
31.4 symbol — Constants used with Python parse trees
31.5 token — Constants used with Python parse trees
31.6 keyword — Testing for Pythonkeywords L.
31.7 tokenize — Tokenizer for Pythonsource L.
31.8 tabnanny — Detection of ambiguous indentation L.
31.9 pyclbr —Pythonclass browser support i e e e e
31.10 py_compile — Compile Python source files
31.11 compileall — Byte-compile Python libraries

vi

31.12 dis — Disassembler for Python bytecode oo L. 1186

31.13 pickletools — Tools for pickle developers 1195
32 Python compiler package 1197
32.1 Thebasicinterface e 1197
322 LImItations o o e e e e e e e e e e e e e e e e 1198
32.3 Python Abstract Syntax e e e e 1198
32.4 Using Visitors to Walk ASTS 0o e 1203
32,5 Bytecode Generationo e e e e e e e e e 1203
33 Miscellaneous Services 1205
33.1 formatter — Generic output formatting L. 1205
34 MS Windows Specific Services 1209
34.1 msilib — Read and write Microsoft Installer files 1209
34.2 msvcrt — Useful routines from the MS VC++ runtime, 1214
343 _winreg— Windows registry aCCeSS« v v vttt e e e e e e e e e e e 1216
344 winsound — Sound-playing interface for Windows oL oL 1223
35 Unix Specific Services 1227
35.1 posix — The most common POSIX systemcalls 1227
35.2 pwd—The password database e e e e e e e e e 1228
35.3 spwd — The shadow password database e 1229
354 grp—Thegroupdatabase 1229
35.5 crypt — Function to check Unix passwords L oo 1230
35.6 dl —Call Cfunctions in shared objects 1230
3577 termios —POSIXstylettycontrol e e 1232
35.8 tty— Terminal control functions e 1233
359 pty—Pseudo-terminal utilities L. e e e e e 1233
35.10 fcntl —The fentl () and ioctl () systemecalls L. 1234
35.11 pipes — Interface to shell pipelines 1236
35.12 posixfile — File-like objects with locking support 1237
35.13 resource — Resource usage information L e e 1239
35.14 nis — Interface to Sun’s NIS (Yellow Pages) 1241
35.15 syslog— Unix syslog library routines oo i e e 1242
35.16 commands — Utilities for running commands oL 1243
36 Mac OS X specific services 1245
36.1 ic— Accesstothe Mac OS X Internet Config 1245
36.2 MacOS — Access to Mac OS interpreter features Lo 1246
36.3 macostools — Convenience routines for file manipulation 1248
36.4 findertools — The finder‘s Apple Eventsinterface 1248
36.5 EasyDialogs — Basic Macintosh dialogs 1249
36.6 FrameWork — Interactive application framework 1251
36.7 autoGIL — Global Interpreter Lock handling ineventloops 1255
36.8 Mac OS Toolbox Modules e e 1255
369 ColorPicker —Colorselectiondialog i 1261
37 MacPython OSA Modules 1263
37.1 gensuitemodule — Generate OSA stub packages 1264
37.2 aetools —OSACHENt SUPPOTt v v v v e e e e e e e e e e e e e e e 1265
37.3 aepack — Conversion between Python variables and AppleEvent data containers 1266
374 aetypes—AppleEventobjects L e e e 1267
37.5 MiniAEFrame — Open Scripting Architecture server support 1268

vii

38 SGI IRIX Specific Services
38.1 al — Audio functionsonthe SGI
38.2 AL — Constants used with the al module
38.3 cd— CD-ROM access on SGI systems
38.4 £1 — FORMS library for graphical user interfaces
38.5 FL — Constants used with the £1 module
38.6 f1lp — Functions for loading stored FORMS designs . .
38.7 fm— Font Manager interface
38.8 gl — Graphics Library interface
38.9 DEVICE — Constants used with the g1 module
38.10 GL — Constants used with the g1 module
38.11 imgfile — Support for SGIl imglib files
38.12 jpeg — Read and write JPEGfiles

39 SunOS Specific Services
39.1 sunaudiodev — Access to Sun audio hardware
39.2 SUNAUDIODEV — Constants used with sunaudiodev

40 Undocumented Modules
40.1 Miscellaneous useful utilities
40.2 Platform specific modules
40.3 Multimedia
40.4 Undocumented Mac OS modules
40.5 Obsolete
40.6 SGl-specific Extension modules

A Glossary
Bibliography

B About these documents
B.1 Contributors to the Python Documentation

C History and License

C.1 Historyofthe software 0 e e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Module Index

Index

1271
1271
1273
1273
1276
1281
1281
1281
1282
1284
1284
1284
1285

1287
1287
1288

1289
1289
1289
1289
1290
1291
1291

1293
1301

1303
1303

1305
1305
1306
1308

1317
1319

1325

viii

The Python Library Reference, Release 2.7

Release 2.7
Date July 03, 2010

While The Python Language Reference (in The Python Language Reference) describes the exact syntax and semantics
of the Python language, this library reference manual describes the standard library that is distributed with Python. It
also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.7

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual), or
look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a section or two. Regardless of the order
in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the remainder of the
manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.7

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass for st r and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance (obj, basestring) is
equivalentto isinstance (obj, (str, unicode)).New in version 2.3.

bin (x)
Convert an integer number to a binary string. The result is a valid Python expression. If x is not a Python int
object, it has to define an ___index__ () method that returns an integer. New in version 2.6.

bool (/x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True. New in version 2.2.1.Changed in version 2.3: If no
argument is given, this function returns False.

The Python Library Reference, Release 2.7

callable (object)
Return True if the object argument appears callable, Fa 1 se if not. If this returns true, it is still possible that a
call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns
a new instance); class instances are callable if they havea ___call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord (). The argument must be in the range [0..255], inclusive; ValueError will
be raised if i is outside that range. See also unichr ().

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. f ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see stat icmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in The stan-
dard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4: Function
decorator syntax added.

cmp (X, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if
x < y,zeroif x == y and strictly positive if x > y.

compile (source, filename, mode, [flags, [dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec statement or evaluated
by acall to eval (). source can either be a string or an AST object. Refer to the ast module documentation
for information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be " exec’ if source consists of a
sequence of statements, ' eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements (see PEP 236) affect the compi-
lation of source. If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the call
to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.7

instance inthe _ future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source contains
null bytes.

Note: When compiling a string with multi-line code in ’ single’ or ' eval’ mode, input must be terminated
by at least one newline character. This is to facilitate detection of incomplete and complete statements in the
code module. Changed in version 2.3: The flags and dont_inherit arguments were added.Changed in version
2.6: Support for compiling AST objects.Changed in version 2.7: Allowed use of Windows and Mac newlines.
Also input in * exec’ mode does not have to end in a newline anymore.

complex ([real, [imag]])
Create a complex number with the value real + imag*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int (), long () and £loat (). If both arguments are omitted, returns 0 j.

The complex type is described in Numeric Types — int, float, long, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in Mapping
Types — dict.

For other containers see the builtin 1ist, set, and tuple classes, and the col lections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to cus-
tomize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # doctest: +SKIP
["__builtins__ ', ’_doc__ ', '__name__ ', ’struct’]
>>> dir (struct) # doctest: +NORMALIZE WHITESPACE

["Struct’, ’'__builtins_ ', ’'__doc_ ', ' file. ', ’'__ _name_ ',

The Python Library Reference, Release 2.7

' __package__ ', ’'_clearcache’, ’'calcsize’, ’error’, ’'pack’, ’'pack_into’,
"unpack’, ’unpack_from’]
>>> class Foo (object):
def _ dir_ (self):
return ["kan", "ga", "roo"]

>>> f = Foo/()
>>> dir (f)
["ga’, ’"kan’, ’'roo’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (qa, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the same as (a // b, a % b). For floating point numbers the
resultis (q, a % b), where gis usually math.floor (a / b) but may be 1 less than that. In any case g
* b + a % bisveryclosetoa,if a % b isnon-zero it has the same sign as b, and 0 <= abs(a % b)

< abs (b). Changed in version 2.3: Using divmod () with complex numbers is deprecated.

enumerate (sequence, [start=0])
Return an enumerate object. sequence must be a sequence, an iterator, or some other object which supports iter-
ation. The next () method of the iterator returned by enumerate () returns a tuple containing a count (from
start which defaults to 0) and the corresponding value obtained from iterating over iferable. enumerate () is
useful for obtaining an indexed series: (0, seq[0]), (1, seq[l]), (2, seq[2]), ... For example:

>>> for i, season in enumerate ([’ Spring’, ’'Summer’, 'Fall’, 'Winter’]):
. print i, season

Spring
Summer
Fall
Winter

w N = O

New in version 2.3.New in version 2.6: The start parameter.

eval (expression, [globals, [locals]])

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a dictionary. The
expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present
and lacks ‘__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard __builtin__ module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval () is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x =1
>>> print eval ("x+1")
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with ’ exec’ as the mode

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile().

execfile (filename, [globals, [locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module. '

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using the globals and locals dictionaries as global and local names-
pace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required
to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries
are omitted, the expression is executed in the environment where execfile () is called. The return value is
None.

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code
on locals after function execfile () returns. execfile () cannot be used reliably to modify a function’s
locals.

file (filename, [mode, [bufsize]])
Constructor function for the £i1e type, described further in section File Objects. The constructor’s arguments
are the same as those of the open () built-in function described below.

When opening a file, it’s preferable to use open () instead of invoking this constructor directly. £i1e is more
suited to type testing (for example, writing isinstance (£, file)). New in version 2.2.

filter (function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either a se-
quence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also has
that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements
of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to [item for item in iterable if
function (item)] if functionis not None and [item for item in iterable if item] if func-
tion is None.

See itertools.ifilterfalse () for the complementary function that returns elements of iterable for
which function returns false.

float (/x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+I-]nan or
[+l-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point
number with the same value (within Python’s floating point precision) is returned. If no argument is given,
returns 0. 0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a
leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan,
inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

11t is used relatively rarely so does not warrant being made into a statement.

The Python Library Reference, Release 2.7

format (value, [format_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of format_spec
will depend on the type of the value argument, however there is a standard formatting syntax that is used by
most built-in types: Format Specification Mini-Language.

Note: format (value, format_spec) merely calls value._ format__ (format_spec). New
in version 2.6.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in Set
Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module. New
in version 2.4.

getattr (object, name, [default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method. Changed in
version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value.

CPython implementation detail: This is the address of the object.

input (/prompt])
Equivalent to eval (raw_input (prompt)).

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

Warning: This function is not safe from user errors! It expects a valid Python expression as input; if the
input is not syntactically valid, a SyntaxError will be raised. Other exceptions may be raised if there
is an error during evaluation. (On the other hand, sometimes this is exactly what you need when writing a
quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Consider using the raw_input () function for general input from users.

int ([x, [base]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The base parameter gives
the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or zero. If
base is zero, the proper radix is determined based on the contents of string; the interpretation is the same as
for integer literals. (See Numeric literals (in The Python Language Reference).) If base is specified and x is
not a string, TypeError is raised. Otherwise, the argument may be a plain or long integer or a floating point
number. Conversion of floating point numbers to integers truncates (towards zero). If the argument is outside
the integer range a long object will be returned instead. If no arguments are given, returns O.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. Also return true if classinfo is a type object (new-style class) and object is an object of that type or of a
(direct or indirect) subclass thereof. If object is not a class instance or an object of the given type, the function
always returns false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accepted). If classinfo is not
a class, type, or tuple of classes, types, and such tuples, a TypeError exception is raised. Changed in version
2.2: Support for a tuple of type information was added.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter (o, [sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, o must be a collection object which supports the iteration protocol
(the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method with
integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object. The iterator created in this case
will call o with no arguments for each call to its next () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.

One useful application of the second form of iter () isto read lines of a file until a certain line is reached. The

following example reads a file until "STOP" is reached:

with open ("mydata.txt") as fp:
for line in iter (fp.readline, "STOP"):
process_line (line)

New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or

11

The Python Library Reference, Release 2.7

a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iterable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made and
returned, similar to iterable[:]. Forinstance, 1ist (" abc’) returns ["a’, ’'b’, ’'c’] and list (
(1, 2, 3))returns [1, 2, 3].Ifnoargumentis given, returns a new empty list, [].

1ist is a mutable sequence type, as documented in Sequence Types — str; unicode, list, tuple, buffer, xrange.
For other containers see the built in dict, set, and tuple classes, and the col lect ions module.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

long ([x, [base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. The base argument is interpreted in the same way as for
int (), and may only be given when x is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, returns 0L.

The long type is described in Numeric Types — int, float, long, complex.

map (function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are
passed, function must take that many arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extended with None items. If function is None, the identity
function is assumed; if there are multiple arguments, map () returns a list consisting of tuples containing the
corresponding items from all iterables (a kind of transpose operation). The iferable arguments may be a sequence
or any iterable object; the result is always a list.

max (iterable, [args...], [key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort (). The
key argument, if supplied, must be in keyword form (for example, max (a, b, ¢, key=func)). Changed in
version 2.5: Added support for the optional key argument.

memoryview (obj)
Return a “memory view” object created from the given argument. See memoryview type for more information.

min (iterable, [args...], [key])
With a single argument iferable, return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort (). The
key argument, if supplied, must be in keyword form (for example, min (a, b, ¢, key=func)). Changed in
version 2.5: Added support for the optional key argument.

next (iterator, [default])
Retrieve the next item from the iferator by calling its next () method. If default is given, it is returned if the
iterator is exhausted, otherwise StopIteration israised. New in version 2.6.

object ()
Return a new featureless object. ob ject is a base for all new style classes. It has the methods that are common

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function does not accept
any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]])
Open a file, returning an object of the £1 1 e type described in section File Objects. If the file cannot be opened,
IOError israised. When opening a file, it’s preferable to use open () instead of invoking the £i 1e construc-
tor directly.

The first two arguments are the same as for stdio‘s fopen () : filename is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are ' r’ for reading, ' w’ for writing (truncating the file if it already
exists), and * a’ for appending (which on some Unix systems means that all writes append to the end of the file
regardless of the current seek position). If mode is omitted, it defaults to ’ r’. The default is to use text mode,
which may convert ’ \n’ characters to a platform-specific representation on writing and back on reading. Thus,
when opening a binary file, you should append ’ b’ to the mode value to open the file in binary mode, which will
improve portability. (Appending ’ b’ is useful even on systems that don’t treat binary and text files differently,
where it serves as documentation.) See below for more possible values of mode. The optional bufsize argument
specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default, which is usually
line buffered for tty devices and fully buffered for other files. If omitted, the system default is used. >

Modes ’ r+’, "w+’ and ’ a+’ open the file for updating (note that * w+’ truncates the file). Append b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems
that don’t have this distinction, adding the ’ b’ has no effect.

In addition to the standard fopen () values mode may be ’ U’ or ’ rU’ . Python is usually built with universal
newline support; supplying ’ U’ opens the file as a text file, but lines may be terminated by any of the following:
the Unix end-of-line convention ’ \n’, the Macintosh convention ’ \r’, or the Windows convention ' \r\n’.
All of these external representations are seen as ' \n’ by the Python program. If Python is built without
universal newline support a mode with ’ U’ is the same as normal text mode. Note that file objects so opened
also have an attribute called newl ines which has a value of None (if no newlines have yet been seen), / \n’,
"\r’, " \r\n’, or atuple containing all the newline types seen.

Python enforces that the mode, after stripping ' U’ , begins with ' r’, " w’ or " a’.

Python provides many file handling modules including fileinput, os, os.path, tempfile, and
shutil. Changed in version 2.5: Restriction on first letter of mode string introduced.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (" a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for 8-bit
strings and of unichr () for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and a TypeError will be raised.

pow (x, y, [z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, y) % z). The two-argument form pow (x, vy) isequivalent to using the power operator: x* xy.

2 Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the buffer size is not done
using a method that calls setvbuf (), because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

13

The Python Library Reference, Release 2.7

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result is
delivered. For example, 10 %2 returns 100, but 10x+-2 returns 0.01. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted. If z
is present, x and y must be of integer types, and y must be non-negative. (This restriction was added in Python
2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results depending on
floating-point rounding accidents.)

print ([object, ...], [sep=""], [end="\n"], [file=sys.stdout])

Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

Note: This function is not normally available as a built-in since the name print is recognized as the print
statement. To disable the statement and use the print () function, use this future statement at the top of your
module:

from _ future import print_function

New in version 2.6.

property ([fget, [fset, [fdel, [doc]]]])

Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object) :
def _ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, wvalue):
self._x = value
def delx(self):
del self._x
x = property(getx, setx, delx, "I'm the

’

x’ property.")

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot (object) :
def _ init_ (self):
self._voltage = 100000

@property
def voltage(self):

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C(object):
def @ init_ (self):
self._x = None

@property

def x(self):
"""IIm the /X/ property. mmn
return self._x

@x.setter
def x(self, wvalue):

self._x = wvalue
@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property also has the attributes fget, fset, and £del corresponding to the constructor argu-
ments. New in version 2.2.Changed in version 2.5: Use fget‘s docstring if no doc given.Changed in version 2.6:
The getter, setter, and deleter attributes were added.

range ([start], stop, [step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in for loops.
The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start
+ 2 % step, ...].Ifstepispositive, the last element is the largest start + 1 * step less than stop;
if step is negative, the last element is the smallest start + i x step greater than sfop. step must not be
zero (or else ValueError is raised). Example:

>>> range (10)

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(l, 11)

(L, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(¢, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

>>> range (1, O0)

15

The Python Library Reference, Release 2.7

raw_input ([prompt])

If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input (' --> ')

—-—> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, iterable, [initializer])

Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce the
iterable to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5]) calcu-
lates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y, is the
update value from the iterable. If the optional initializer is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is empty. If initializer is not given and iterable contains
only one item, the first item is returned.

reload (module)

Reload a previously imported module. The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
the module argument).

When reload (module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. The init function of extension modules is not
called a second time.

*As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
Zero.

*The names in the module namespace are updated to point to any new or changed objects.

*Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys .modules. To reload the module
you must first import it again (this will bind the name to the partially initialized module object) before you
can reload () it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with a t ry statement it can test
for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys,
__main__and__builtin__. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import .., calling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the from
statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed to eval (), otherwise the representation is a string enclosed in angle brackets that contains the name of
the type of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by defininga ___repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a ___reversed__ () method or supports the

sequence protocol (the __len__ () method andthe __getitem__ () method with integer arguments starting
at 0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom __reversed__ ()
method.

round (x, [n])
Return the floating point value x rounded to n digits after the decimal point. If 7 is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus 7;
if two multiples are equally close, rounding is done away from O (so. for example, round (0.5) is 1.0 and
round (-0.5) is -1.0).

set ([iterable])
Return a new set, optionally with elements taken from iferable. The set type is described in Set Types — set,
frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module. New
in version 2.4.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice ([start], stop, [step])
Return a slice object representing the set of indices specified by range (start, stop, step). The start
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop, i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, [cmp, [key, [reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort () method
(described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or

17

The Python Library Reference, Release 2.7

larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower ()). The default
value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once. Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

For sorting examples and a brief sorting tutorial, see Sorting HowTo. New in version 2.4.

staticmethod (function)

Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in The stan-
dard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4: Function
decorator syntax added.

str ([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string itself.
The difference with repr (object) isthat str (object) does not always attempt to return a string that is
acceptable to eval () ; its goal is to return a printable string. If no argument is given, returns the empty string,

14

For more information on strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which describes
sequence functionality (strings are sequences), and also the string-specific methods described in the String
Methods section. To output formatted strings use template strings or the % operator described in the String
Formatting Operations section. In addition see the String Services section. See also unicode ().

sum (iterable, [start])

Sums start and the items of an iferable from left to right and returns the total. start defaults to 0. The iter-
able‘s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by calling ” . join (sequence). Note that sum (range (n), m) is equivalent
to reduce (operator.add, range(n), m) To add floating point values with extended precision, see
math. fsum (). New in version 2.3.

super (type, [object-or-type])

Return a proxy object that delegates method calls to a parent or sibling class of fype. This is useful for accessing
inherited methods that have been overridden in a class. The search order is same as that used by getattr ()
except that the type itself is skipped.

The __mro___ attribute of the type lists the method resolution search order used by both getattr () and
super (). The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

18

Chapter 2. Built-in Functions

http://wiki.python.org/moin/HowTo/Sorting/

The Python Library Reference, Release 2.7

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

Note: super () only works for new-style classes.

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single
inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super (C, self) .method(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such as
super () .__getitem__ (name). It does so by implementing its own __getattribute__ () method
for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that super () is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. New in version 2.2.

tuple ([iterable])
Return a tuple whose items are the same and in the same order as iterable‘s items. iterable may be a sequence, a
container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned unchanged. For
instance, tuple (' abc’) returns (‘a’, ’'b’, ’c’)andtuple([1, 2, 3])returns (1, 2, 3).If
no argument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer,
xrange. For other containers see the built in dict, 11ist, and set classes, and the col lect ions module.

type (object)
Return the type of an object. The return value is a type object. The isinstance () built-in function is
recommended for testing the type of an object.

With three arguments, t ype () functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name___ attribute; the bases tuple itemizes the base classes and becomes
the __bases___ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the ___dict___ attribute. For example, the following two statements create identical t ype objects:

>>> class X (object) :
a =1

>>> X = type(’'X’, (object,), dict(a=1))

New in version 2.2.

19

The Python Library Reference, Release 2.7

unichr (i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u’ a’ . This is the inverse of ord () for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError
is raised otherwise. For ASCII and 8-bit strings see chr (). New in version 2.0.

unicode ([object, [encoding, [errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errorsis ' strict’ (the
default), a ValueError is raised on errors, while a value of ’ ignore’ causes errors to be silently ignored,
and a value of * replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace
input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encoding in ’ strict’ mode.

For more information on Unicode strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which
describes sequence functionality (Unicode strings are sequences), and also the string-specific methods described
in the String Methods section. To output formatted strings use template strings or the $ operator described in
the String Formatting Operations section. In addition see the String Services section. See also str (). New in
version 2.0.Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without an argument, act like 1ocals ().

With a module, class or class instance object as argument (or anything else that has a __dict___ attribute),
return that attribute.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined. *

xrange ([start], stop, [step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage of xrange () over range () is minimal (since xrange () still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminated with break).

CPython implementation detail: xrange () is intended to be simple and fast. Implementations may im-
pose restrictions to achieve this. The C implementation of Python restricts all arguments to native C longs
(“short” Python integers), and also requires that the number of elements fit in a native C long. If a larger range
is needed, an alternate version can be crafted using the itertools module: islice (count (start,
step), (stop-start+step-1)//step).

zip ([iterable, ...])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same length, zip () is similar to map () with an initial

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.7

argument of None. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s) 1*n).

z1ip () in conjunction with the » operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)

>>> zipped

(1, 4, (2, 5, (3, 6)]

>>> x2, y2 = zip(xzipped)

>>> x == list(x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formerly, zip () required at least one argument and zip () raised
a TypeError instead of returning an empty list.

__import__ (name, [globals, [locals, [fromlist, [level]]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by the import statement. It can be replaced (by importingthe __builtin__ module
and assigning to __builtin__.__ import__) in order to change semantics of the import statement, but
nowadays it is usually simpler to use import hooks (see PEP 302). Direct use of __import__ () is rare,
except in cases where you want to import a module whose name is only known at runtime.

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all,
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. The default is —1 which indicates both absolute and
relative imports will be attempted. 0 means only perform absolute imports. Positive values for /evel indicate the
number of parent directories to search relative to the directory of the module calling ___import__ ().

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:
spam = __import__ (’spam’, globals(), locals(), [1, -1)

The statement import spam.ham results in this call:

spam = ___import__ (’/spam.ham’, globals(), locals(), [], -1)

Note how __import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ (’spam.ham’, globals (), locals(), [’'eggs’, ’'sausage’], -1)
eggs = _temp.eggs
saus = _temp.sausage

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.7

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can call ___import__ ()
and then look it up in sys .modules:

>>> import sys

>>> name = ’foo.bar.baz’

>>> _ import__ (name)

<module ’foo’ from ...>

>>> baz = sys.modules|[name]

>>> baz

<module ’foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for parameters
was added.

22 Chapter 2. Built-in Functions

CHAPTER
THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without concerns
about missing something important.

apply (function, args, [keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or a class object)
and the args argument must be a sequence. The function is called with args as the argument list; the number of
arguments is the length of the tuple. If the optional keywords argument is present, it must be a dictionary whose
keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling apply ()

is different from just calling function (args), since in that case there is always exactly one argument. The
use of apply () is equivalent to function (xargs, =*xkeywords). Deprecated since version 2.3: Use
the extended call syntax with xargs and «xkeywords instead.

buffer (object, [offset, [size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend to the end of object (or will have a
length given by the size argument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value of intern () around to benefit from it.

23

The Python Library Reference, Release 2.7

24 Chapter 3. Non-essential Built-in Functions

CHAPTER
FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the boo1l type. New in version 2.3.

None
The sole value of t ypes.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Changed in version 2.4: Assignments to None are illegal and
raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), __1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with an —O option. Assignments to ___debug___ are illegal and
raise a SyntaxError. See also the assert statement.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.
quit
exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code.

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.7

26 Chapter 4. Built-in Constants

CHAPTER
FIVE

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not
possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists. The
principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some operations
are supported by several object types; in particular, practically all objects can be compared, tested for truth value,
and converted to a string (with the repr () function or the slightly different st r () function). The latter function is
implicitly used when an object is written by the print () function.

5.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

¢ None

* False

* zero of any numeric type, for example, 0, 0L, 0.0, 0.
 any empty sequence, for example, ", (), [].

* any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class definesa ___nonzero__ () or__len__ () method, when that
method returns the integer zero or bool value False.

All other values are considered true — so objects of many types are always true. Operations and built-in functions that
have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated. (Important
exception: the Boolean operations or and and always return one of their operands.)

5.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (Basic customization (in The Python Language
Reference)).

27

The Python Library Reference, Release 2.7

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == b isinterpreted as not (a == b),and
a == not b isasyntax error.

5.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x < y
and y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
= not equal 1)
is object identity
is not negated object identity
Notes:
1. !'=can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New code should
always use !=.

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number. Instances of a class normally compare as non-equal
unless the class defines the ___cmp___ () method. Refer to Basic customization (in The Python Language Reference))
for information on the use of this method to effect object comparisons.

CPython implementation detail: Objects of different types except numbers are ordered by their type names; objects
of the same types that don’t support proper comparison are ordered by their address. Two more operations with the
same syntactic priority, in and not 1in, are supported only by sequence types (below).

5.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are implemented using
long in C, which gives them at least 32 bits of precision (sys .maxint is always set to the maximum plain integer
value for the current platform, the minimum value is —sys.maxint - 1). Long integers have unlimited precision.

28 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

Floating point numbers are implemented using double in C. All bets on their precision are off unless you happen to
know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract these
parts from a complex number z, use z . real and z.imag. Numbers are created by numeric literals or as the result
of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain
integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long
integer. Integer literals with an * .7 or * 1’ suffix yield long integers (’ L is preferred because 11 looks too much
like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Appending
"j’ or’ J’ to anumeric literal yields a complex number with a zero real part. A complex numeric literal is the sum of
areal and an imaginary part. Python fully supports mixed arithmetic: when a binary arithmetic operator has operands
of different numeric types, the operand with the “narrower” type is widened to that of the other, where plain integer is
narrower than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule. % The constructors int (), long (), float (), and complex () can be used to
produce numbers of a specific type.

All built-in numeric types support the following operations. See The power operator (in The Python Language Refer-
ence) and later sections for the operators’ priorities.

Operation Result Notes

X +y sum of x and y

X -y difference of x and y

X *x Y product of x and y

x /y quotient of x and y D

x //y (floored) quotient of x and y @(5)

X %y remainderof x / vy @

-X x negated

+x x unchanged

abs (x) absolute value or magnitude of x 3)

int (x) x converted to integer 2)

long (x) x converted to long integer 2)

float (x) x converted to floating point 6)

complex (re, im) | acomplex number with real part re, imaginary part im. im defaults to zero.

c.conjugate () conjugate of the complex number c. (Identity on real numbers)

divmod (x, V) the pair (x // y, x % V) 3)4)

pow (x, V) X to the power y 37

X *%x Y X to the power y @)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/21is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

2. Conversion from floats using int () or long() truncates toward zero like the related function,
math.trunc (). Use the function math.floor () to round downward and math.ceil () to round up-
ward.

3. See Built-in Functions for a full description.

4. Complex floor division operator, modulo operator, and divmod (). Deprecated since version 2.3: Instead
convert to float using abs () if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

5.4. Numeric Types — int, float, long, complex 29

The Python Library Reference, Release 2.7

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python defines pow (0, 0) and 0 % O tobe 1, as is common for programming languages.

All numbers.Real types (int, long, and £ 1oat) also include the following operations:

Operation Result Notes
math.trunc (x) | x truncated to Integral

round(x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >=x

5.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
x |y bitwise or of x and y
x Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H(©2)
X >> n x shifted right by n bits (HA3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow (2, n). A long integer is returned if the result
exceeds the range of plain integers.

3. A right shift by n bits is equivalent to division by pow (2, n).

5.4.2 Additional Methods on Integer Types

bit_length ()

bit_length ()
Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
’-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that 2 (k-1)
<= abs (x) < 2x=*k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).Ifxiszero,then x.bit_length () returns 0.

30 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> 7-0b100101"
s = s.lstrip(’'-0b’) # remove leading zeros and minus sign
return len(s) # len(’1001017) ——-> 6

New in version 2.7.

5.4.3 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a ValueError on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent. New in version 2.6.

fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and trailing
whitespace. New in version 2.6.

Note that f1oat .hex () is an instance method, while f1loat . fromhex () is a class method.
A hexadecimal string takes the form:
[sign] [’0x’] integer [’.’ fraction] [’'p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of float .hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1loat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number (3
+ 10./16 + 7./16%%x2) % 2.0%%x10,0r3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
"0x1.d380000000000p+11"

5.4. Numeric Types — int, float, long, complex 31

The Python Library Reference, Release 2.7

5.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

5.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter__ () and next () methods. More information about generators can be found in the docu-
mentation for the yield expression (in The Python Language Reference).

5.6 Sequence Types — str, unicode, list, tuple, buffer, xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the built in dict and set classes, and the collections module. String literals are
written in single or double quotes: ' xyzzy’, "frobozz". See String literals (in The Python Language Reference)
for more about string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding
"u’ character: u’abc’, u"def". In addition to the functionality described here, there are also string-specific
methods described in the String Methods section. Lists are constructed with square brackets, separating items with
commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a, b, cor (). A single
item tuple must have a trailing comma, such as (d,).

32 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

Buffer objects are not directly supported by Python syntax, but can be created by calling the built-in function
buffer (). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using
the xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in,min () or
max () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities as
the comparison operations. The + and « operations have the same priority as the corresponding numeric operations. *
Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and 7 are sequences of the same type; n, i and j are integers:

Operation Result Notes
X in s True if an item of s is equal to x, else False | (1)

x not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n » s | nshallow copies of s concatenated)
s[i] i‘th item of s, origin O 3)
s[i:7] slice of s from i to j 34
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full details see Comparisons (in The Python Language
Reference) in the language reference.) Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In Python
versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists
>>> lists
(er, 01, I
>>> lists]|
>>> lists

(31, 31,

]
0

(e1l = 3

]
] .append (3)

[311]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists
>>> lists]|
>>> lists]|
>>> lists]|
>>> lists
(031, [51,

0
1
2

[[] for i in range(3)]
] .append(3)
] .append(5)
] .append (7)

[71]

3. If i orj is negative, the index is relative to the end of the string: len (s)
But note that —0 is still O.

3 They must have since the parser can’t tell the type of the operands.

+ iorlen(s)

+ j is substituted.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange

33

The Python Library Reference, Release 2.7

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j. Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If i
is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step & is defined as the sequence of items with index x = i + nxk such that
0 <= n < (j-1i)/k. In other words, the indices are i, i +k, 1+2+xk, 1+3+k and so on, stopping when j is
reached (but never including j). If i or j is greater than len (s), use len (s). If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

6. CPython implementation detail: If s and ¢ are both strings, some Python implementations such as CPython
can usually perform an in-place optimization for assignments of the foom s = s + t or s += t. When
applicable, this optimization makes quadratic run-time much less likely. This optimization is both version and
implementation dependent. For performance sensitive code, it is preferable to use the str. join () method
which assures consistent linear concatenation performance across versions and implementations. Changed in
version 2.4: Formerly, string concatenation never occurred in-place.

5.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode, list,
tuple, buffer, xrange section. To output formatted strings use template strings or the % operator described in the String
Formatting Operations section. Also, see the re module for string functions based on regular expressions.

capitalize ()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width, [fillchar])
Return centered in a string of length widrth. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count (sub, [start, [end]])
Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional arguments
start and end are interpreted as in slice notation.

decode ([encoding, [errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is * strict’, meaning that encod-
ing errors raise UnicodeError. Other possible values are * ignore’, ' replace’ and any other name
registered via codecs . register_error (), see section Codec Base Classes. New in version 2.2.Changed
in version 2.3: Support for other error handling schemes added.Changed in version 2.7: Support for keyword
arguments added.

encode ([encoding, [errors]])

Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
"strict’, meaning that encoding errors raise a UnicodeError. Other possible values are ’ ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered via
codecs.register_error (), see section Codec Base Classes. For a list of possible encodings, see sec-
tion Standard Encodings. New in version 2.0.Changed in version 2.3: Support for ’ xmlcharrefreplace’
and 'backslashreplace’ and other error handling schemes added.Changed in version 2.7: Support for
keyword arguments added.

endswith (suffix, [start, [end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of

34 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position. Changed in version 2.5: Accept tuples as suffix.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other non-printing characters
or escape sequences.

£ind (sub, [start, [end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the slice
s[start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a posi-
tional argument, or the name of a keyword argument. Returns a copy of the string where each replacement field
is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0}".format (1+2)
"The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferred to the $ formatting
described in String Formatting Operations in new code. New in version 2.6.

index (sub, [start, [end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 35

The Python Library Reference, Release 2.7

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (iterable)
Return a string which is the concatenation of the strings in the iterable iterable. The separator between elements
is the string providing this method.

1just (width, [fillchar])
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than 1en (s) . Changed in version 2.4: Support for the
fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

1strip ([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " .1lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip (/ cmowz.’)
"example.com’

Changed in version 2.2.2: Support for the chars argument.

partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings. New in version 2.5.

replace (old, new, [count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub, [start, [end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on fail-
ure.

rindex (sub, [start, [end]])
Like rfind () butraises ValueError when the substring sub is not found.

rijust (width, [fillchar])
Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than len (s). Changed in version 2.4: Support for
the fillchar argument.

rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself. New in version 2.5.

36 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

rsplit ([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below. New in
version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious ".rstrip()
! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

split ([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there
is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, ' 1,2’ .split (’,’) returns ["1’, ", ’2’1]). The sep argument may consist of multiple char-
acters (for example, ' 1<>2<>3" .split (' <>") returns [*1’, ’"2’, ’3’]). Splitting an empty string
with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

Forexample,” 1 2 3 ’.split () returns ["1’, '2’, '3’],and’ 1 2 3 ’.split (None, 1)
returns [717, "2 3 '].

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

startswith (prefix, [start, [end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string at
that position. Changed in version 2.5: Accept tuples as prefix.

strip ([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> 7 spacious " .strip()

" spacious’

>>> 'www.example.com’ .strip(’ cmowz.’)
"example’

Changed in version 2.2.2: Support for the chars argument.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 37

The Python Library Reference, Release 2.7

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they’re bill’s friends from the UK".title()
"They’Re Bill’S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za-z]+
lambda mo: mo.group(0) [0] .upper () +
mo.group (0) [1:].lower (),

R

s)

>>> titlecase("they’re bill’s friends.")
"They’re Bill’s Friends."

For 8-bit strings, this method is locale-dependent.

translate (table, [deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

You can use the maketrans () helper function in the st ring module to create a translation table. For string
objects, set the table argument to None for translations that only delete characters:

>>> ’"read this short text’ .translate (None, ’'aeiou’)
"rd ths shrt txt’

New in version 2.6: Support for a None fable argument. For Unicode objects, the t ranslate () method does
not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters have been
mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals,
Unicode strings or None. Unmapped characters are left untouched. Characters mapped to None are deleted.
Note, a more flexible approach is to create a custom character mapping codec using the codecs module (see
encodings.cpl251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

z£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than 1en (s). New in version 2.2.2.

The following methods are present only on unicode objects:

38 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

isnumeric()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include digit char-
acters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION
ONE FIFTH.

isdecimal ()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

5.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format % values (where format is a string or Unicode object),
% conversion specifications in format are replaced with zero or more elements of values. The effect is similar to the
using sprintf () in the C language. If format is a Unicode object, or if any of the objects being converted using the
%s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object. * Otherwise, values must be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The ’ %’ character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an * =’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), givenasa ’ .’ (dot) followed by the precision. If specified as / =’ (an asterisk), the actual
width is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-
thesised mapping key into that dictionary inserted immediately after the * $’ character. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print ' has % (#)03d quote types.’ % \
{’ language’ : "Python", "#": 2}

Python has 002 quote types.
In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning

r# The value conversion will use the “alternate form” (where defined below).

"o’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

ro (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
r4 A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

5.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 39

The Python Library Reference, Release 2.7

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical

to %d.

The conversion types are:

Conver- | Meaning Notes

sion

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. 1)

ru’ Obsolete type — it is identical to " d’ . @)

5 Signed hexadecimal (lowercase). 2)

"X’ Signed hexadecimal (uppercase). 2)

re’ Floating point exponential format (lowercase). 3)

"E’ Floating point exponential format (uppercase). 3)

rE! Floating point decimal format. 3)

"E’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not (@)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not “)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

"¢’ String (converts any Python object using repr ()). (&)

"'s’ String (converts any Python object using st ()). ©6)

I No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0) to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ’ 0x’ or ’ 0X’ (depending on whether the ’ x’ or ’ X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

5. The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

6. If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that \ 0’ is the end of the string. Changed
in version 2.7: $£ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g conver-
sions. Additional string operations are defined in standard modules st ring and re.

40

Chapter 5. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.7

5.6

The

.3 XRange Type

xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type

is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

5.6

4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the
iterable ¢
del s[i:7] sameass[i:3] = []
s[i:3:k] =t the elements of s [1: j:k] are replaced by those of ¢ @))
del s[i:]j:k] removes the elements of s [1:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x] 2)
s.extend (x) sameas s[len(s) :len(s)] = x 3)
s.count (x) return number of i‘s for which s [1] == x
s.index (x[, 1[, 7J11) return smallest £ such that s [k] == xandi <= k 4)
<
S.insert (i, x) sameas s[i:1] = [x] (@)
s.pop([il) sameas x = s[i]; del s[i]; return x (6)
s.remove (X) same as del s[s.index (x)] 4)
s.reverse () reverses the items of s in place @)
s.sort ([cmp[, keyl[, sort the items of s in place (7N (8)(9)(10)
reversel]l])
Notes:
1. ¢ must have the same length as the slice it is replacing.

2.

The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

. x can be any iterable object.

. Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter
to the index () method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments for specifying start
and stop positions.

. When a negative index is passed as the first parameter to the insert () method, the list length is added, as for

slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

. The pop () method is only supported by the list and array types. The optional argument i defaults to —1, so

that by default the last item is removed and returned.

. The sort () and reverse () methods modify the list in place for economy of space when sorting or reversing

a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed list.

5.6.

Sequence Types — str, unicode, list, tuple, buffer, xrange 41

The Python Library Reference, Release 2.7

8. The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative, zero or
positive number depending on whether the first argument is considered smaller than, equal to, or larger than the
second argument: cmp=lambda x,y: cmp(x.lower (), y.lower ()). The defaultvalueis None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once. Use functools.cmp_to_key () to convert an old-style cmp function to a key function. Changed in
version 2.3: Support for None as an equivalent to omitting cmp was added.Changed in version 2.4: Support for
key and reverse was added.

9. Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

10. CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and newer makes the list appear empty for
the duration, and raises ValueError if it can detect that the list has been mutated during a sort.

5.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing, remov-
ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtin dict, 1ist, and tuple classes, and the collections
module.) New in version 2.4. Like other collections, sets support x in set, len(set), and for x in set.
Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not
support indexing, slicing, or other sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {’ jack’, ’sjoerd’},in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Instances of set and frozenset provide the following operations:

len(s)

Return the cardinality of set s.
X in s

Test x for membership in s.

42 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their intersec-
tion is the empty set. New in version 2.6.

issubset (other)
set <= other ()
Test whether every element in the set is in other.

set < other ()
Test whether the set is a true subset of other, that is, set <= other and set != other.

issuperset (other)
set >= other()
Test whether every element in other is in the set.

set > other ()
Test whether the set is a true superset of other, thatis, set >= other and set != other.

union (other, ...)

set | other | ... ()
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection (other; ...)

set & other & ... ()
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference (other ...)

set - other - ... ()
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set * other ()
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set (“abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For
example, set (’abc’) == frozenset (’abc’) returns True and so does set (’abc’) in
set ([frozenset ("abc’)]).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==Db,
or a>b. Accordingly, sets do not implement the ___cmp___ () method.

5.7. Set Types — set, frozenset 43

The Python Library Reference, Release 2.7

Since sets only define partial ordering (subset relationships), the output of the 1ist .sort () method is unde-
fined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ("ab’) | set ("bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (other; ...)
set |= other | ... ()
Update the set, adding elements from all others. Changed in version 2.6: Accepts multiple input iterables.

intersection_update (other; ...)

set &= other & ... ()
Update the set, keeping only elements found in it and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference_update (other, ...)

set —== other | ... ()
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input iter-
ables.

symmetric_difference_update (other)
set “= other ()
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set. To
support searching for an equivalent frozenset, the elem set is temporarily mutated during the search and then
restored. During the search, the elem set should not be read or mutated since it does not have a meaningful
value.

See Also:

Comparison to the built-in set types Differences between the set s module and the built-in set types.

44 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

5.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the builtin 1ist, set, and tuple classes, and
the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictionaries
or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (suchas 1 and 1. 0)
then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for example:
{"jack’: 4098, ’'sjoerd’: 4127} or {4098: 'Jjack’, 4127: ’sjoerd’}, orby the dict
constructor.

class dict (/arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argument arg is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary equal to { "one":
2, "two": 3}:

edict (one=2, two=3)

edict ({’one’: 2, 'two’: 3})
edict (zip(('one’, ’"two’), (2, 3)))
edict ([["two’, 31, [’one’, 211)

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionary d.

dlkey]

Return the item of d with key key. Raises a KeyError if key is not in the map. New in version 2.5:
If a subclass of dict defines a method __missing__ (), if the key key is not present, the d[key]
operation calls that method with the key key as argument. The d [key] operation then returns or raises
whatever is returned or raised by the __missing__ (key) call if the key is not present. No other
operations or methods invoke __missing__ (). If __missing__ () is not defined, KeyError is
raised. __missing__ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict.

d[key] = value
Set d [key] to value.

del d[key]
Remove d [key] from d. Raises a KeyError if key is not in the map.

5.8. Mapping Types — dict 45

The Python Library Reference, Release 2.7

key in d
Return True if d has a key key, else False. New in version 2.2.

key not in d
Equivalent to not key in d. New in version 2.2.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iterkeys ().

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

fromkeys (seq, [value])
Create a new dictionary with keys from seq and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. New in version
2.3.

get (key, [default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

has_key (key)
Test for the presence of key in the dictionary. has_key () is deprecated in favor of key in d.

items ()
Return a copy of the dictionary’s list of (key, value) pairs.

CPython implementation detail: Keys and values are listed in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary’s history of insertions and deletions.

If items (), keys (), values (), iteritems (), iterkeys (), and itervalues () are called
with no intervening modifications to the dictionary, the lists will directly correspond. This allows
the creation of (value, key) pairsusing zip (): pairs = zip(d.values(), d.keys()).

The same relationship holds for the iterkeys () and itervalues () methods: pairs =
zip(d.itervalues (), d.iterkeys()) provides the same value for pairs. Another way to
create the same listis pairs = [(v, k) for (k, v) in d.iteritems()].

iteritems ()
Return an iterator over the dictionary’s (key, value) pairs. See the note for dict.items ().

Using iteritems () while adding or deleting entries in the dictionary may raise a Runt imeError or
fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the note for dict .items ().

Using iterkeys () while adding or deleting entries in the dictionary may raise a RuntimeError or
fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the note for dict.items ().

Using itervalues () while adding or deleting entries in the dictionary may raise a RuntimeError
or fail to iterate over all entries. New in version 2.2.

keys ()
Return a copy of the dictionary’s list of keys. See the note for dict.items ().

46

Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

pop (key, [default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and key
is not in the dictionary, a KeyError is raised. New in version 2.3.

popitem /()
Remove and return an arbitrary (key, wvalue) pair from the dictionary.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

setdefault (key, [default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2). Changed in version 2.4: Allowed the argument to be
an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the note for dict .items ().

viewitems ()
Return a new view of the dictionary’s items ((key, value) pairs). See below for documentation of
view objects. New in version 2.7.

viewkeys ()
Return a new view of the dictionary’s keys. See below for documentation of view objects. New in version
2.7.

viewvalues ()
Return a new view of the dictionary’s values. See below for documentation of view objects. New in version
2.7.

5.8.1 Dictionary view objects

The objects returned by dict .viewkeys (), dict.viewvalues () and dict.viewitems () are view ob-
jects. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the
view reflects these changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in an arbitrary order which is non-random, varies across Python implementa-
tions, and depends on the dictionary’s history of insertions and deletions. If keys, values and items views are
iterated over with no intervening modifications to the dictionary, the order of items will directly correspond. This
allows the creation of (value, key) pairsusing zip (): pairs = zip(d.values (), d.keys()).
Another way to create the same listis pairs = [(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

5.8. Mapping Types — dict 47

The Python Library Reference, Release 2.7

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value) pairs
are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since the entries
are generally not unique.) Then these set operations are available (“other” refers either to another view or a set):

dictview & other
Return the intersection of the dictview and the other object as a new set.

dictview | other
Return the union of the dictview and the other object as a new set.

dictview - other
Return the difference between the dictview and the other object (all elements in dictview that aren’t in other) as
a new set.

dictview #* other
Return the symmetric difference (all elements either in dictview or other, but not in both) of the dictview and
the other object as a new set.

An example of dictionary view usage:

>>> dishes = {’eggs’: 2, ’sausage’: 1, ’"bacon’: 1, ’'spam’: 500}
>>> keys = dishes.viewkeys ()
>>> values = dishes.viewvalues ()

>>> # 1teration

>>n = 0

>>> for val in values:
R n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order
>>> list (keys)

["eggs’, ’'bacon’, ’'sausage’, ’'spam’]

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|[’eggs’]

>>> del dishes[’sausage’]

>>> list (keys)

["spam’, ’'bacon’]

>>> # set operations
>>> keys & {’eggs’, ’'bacon’, ’'salad’}
{"bacon’}

5.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in open () function. File
objects are also returned by some other built-in functions and methods, such as os.popen () and os. fdopen ()
and the makefile () method of socket objects. Temporary files can be created using the tempfile module, and

48 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

high-level file operations such as copying, moving, and deleting files and directories can be achieved with the shutil
module.

When a file operation fails for an I/O-related reason, the exception TOError is raised. This includes situations where
the operation is not defined for some reason, like seek () on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a ValueError after the file has been closed. Calling c1ose () more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you use the with statement. For
example, the following code will automatically close f when the with block is exited:

from _ future import with_statement # This isn’t required in Python 2.6

with open("hello.txt") as f:
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close()

Note: Not all “file-like” types in Python support use as a context manager for the with statement. If your code
is intended to work with any file-like object, you can use the function contextlib.closing () instead of
using the object directly.

flush ()
Flush the internal buffer, like stdio‘s £f1lush (). This may be a no-op on some file-like objects.

Note: flush () does not necessarily write the file’s data to disk. Use f1ush () followed by os. fsync ()
to ensure this behavior.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fentl module or os . read () and friends.

Note: File-like objects which do not have a real file descriptor should not provide this method!

isatty ()
Return True if the file is connected to a tty(-like) device, else False.

Note: If a file-like object is not associated with a real file, this method should not be implemented.

next ()
A file object is its own iterator, for example iter (£) returns f (unless f is closed). When a file is used as an
iterator, typically in a for loop (for example, for line in f: print line),the next () method is
called repeatedly. This method returns the next input line, or raises StopIteration when EOF is hit when
the file is open for reading (behavior is undefined when the file is open for writing). In order to make a for loop
the most efficient way of looping over the lines of a file (a very common operation), the next () method uses
a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combining next () with other file

5.9. File Objects 49

The Python Library Reference, Release 2.7

methods (like readline ()) does not work right. However, using seek () to reposition the file to an absolute
position will flush the read-ahead buffer. New in version 2.3.

read ([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C function fread () more than
once in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less
data than was requested may be returned, even if no size parameter was given.

Note: This function is simply a wrapper for the underlying fread () C function, and will behave the same in
corner cases, such as whether the EOF value is cached.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete line). > If the size argument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is returned only
when EOF is encountered immediately.

Note: Unlike stdio‘s fgets (), the returned string contains null characters (* \ 0") if they occurred in the
input.

readlines ([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thing as iter (£). New in version 2.1.Deprecated since version 2.3: Use for
line in file instead.

seek (offset, [whence])
Set the file’s current position, like stdio‘s fseek (). The whence argument is optional and defaults to
os.SEEK_SET or 0 (absolute file positioning); other values are os.SEEK_CUR or 1 (seek relative to the
current position) and os . SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek (2, os.SEEK_CUR) advances the position by two and f.seek (-3,
os.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mode ' a’ or ’ a+’), any seek () operations will be undone at
the next write. If the file is only opened for writing in append mode (mode ’ a’), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled (mode ’ a+’). If the file
is opened in text mode (without ' b’), only offsets returned by tel1 () are legal. Use of other offsets causes
undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

tell ()
Return the file’s current position, like stdio‘s ftell ().

Note: On Windows, tell () can return illegal values (after an fgets ()) when reading files with Unix-style
line-endings. Use binary mode (’ rb’) to circumvent this problem.

5 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

50 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

truncate ([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Unix variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until the f1ush () or close () method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to match readlines (); writelines () does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same result as file.readline (), and iteration ends
when the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attribute; the c1lose () method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file
uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/O mode for the file. If the file was created using the open () built-in function, this will be the value of
the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created using open (), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form <. . . >. This is a read-only attribute and may not be present on all file-like
objects.

newlines
If Python was built with the —~with-universal-newlines option to configure (the default) this read-
only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can take are * \r’, "\n’, " \r\n’, None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newline read mode the value of this attribute will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the print
statement. Classes that are trying to simulate a file object should also have a writable softspace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute.

5.9. File Objects 51

The Python Library Reference, Release 2.7

Note: This attribute is not used to control the print statement, but to allow the implementation of print to
keep track of its internal state.

5.10 memoryview type

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying. Memory is generally interpreted as simple bytes.

class memoryview (0bj)
Create a memoryview that references obj. obj must support the buffer protocol. Builtin objects that support
the buffer protocol include st r and bytearray (but not unicode).

len (view) returns the total number of bytes in the memoryview, view.

A memoryview supports slicing to expose its data. Taking a single index will return a single byte. Full slicing
will result in a subview:

>>> v = memoryview (' abcefg’)
>>> v [1]

Ibl

>>> vi[-1]

"9
>>> v[l:4]

<memory at 0x77ab28>
>>> str(v[1l:4])

"bce’

>>> v[3:-1]

<memory at 0x744f18>
>>> str(v([4:-1])

Ifl

4

If the object the memory view is over supports changing its data, the memoryview supports slice assignment:

>>> data = bytearray (’abcefg’)

>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = "z’

>>> data

bytearray (b’ zbcefg’)

>>> v[1l:4] = 123"

>>> data

bytearray (b’ z123fg’)

>>> v[2] = ’spam’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot modify size of memoryview object

Notice how the size of the memoryview object cannot be changed.

memoryview has two methods:

tobytes ()
Return the data in the buffer as a bytestring (an object of class st r).

52 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

tolist ()
Return the data in the buffer as a list of integers.

>>> memoryview (b’ abc’) .tolist ()
[97, 98, 99]

There are also several readonly attributes available:

format
A string containing the format (in st ruct module style) for each element in the view. This defaults to
" B’ , a simple bytestring.

itemsize
The size in bytes of each element of the memoryview.

shape
A tuple of integers the length of ndim giving the shape of the memory as a N-dimensional array.

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

5.11 Context Manager Types

New in version 2.5. Python’s with statement supports the concept of a runtime context defined by a context manager.
This is implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

The context management protocol consists of a pair of methods that need to be provided for a context manager object
to define a runtime context:

__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext (). These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of the with statement without affecting code outside the with statement.

__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body of the with statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

5.11. Context Manager Types 53

The Python Library Reference, Release 2.7

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (such as contextlib.nested) to easily detect whether ornotan __exit__ ()
method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the context 11b module for some examples.

Python’s generators and the contextlib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the contextlib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C APIL.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

5.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

5.12.1 Modules

The only special operation on a module is attribute access: m.name, where m is a module and name accesses a name
defined in m‘s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict___
attribute is not possible (you can write m.__dict__["a’] = 1, which defines m.a to be 1, but you can’t write
m.__dict__ = {}). Modifying ___dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>.

5.12.2 Classes and Class Instances

See Objects, values and types (in The Python Language Reference) and Class definitions (in The Python Language
Reference) for these.

5.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See Function definitions (in The Python Language Reference) for more information.

54 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

5.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object

on which the method operates, and m. im_func is the function implementing the method. Calling m (arg-1,

arg-2, ..., arg-n) is completely equivalent to calling m.im_func (m.im_self, arg-1, arg-2,
., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an instance
or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an explicit
self object must be passed as the first argument. In this case, self must be an instance of the unbound method’s
class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self) :
pass

c = C()
c.method.im_func.whoami = 'my name is c’

See The standard type hierarchy (in The Python Language Reference) for more information.

5.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their func_code attribute. See also the code module. A code object can be executed or evaluated by
passing it (instead of a source string) to the exec statement or the built-in eval () function.

See The standard type hierarchy (in The Python Language Reference) for more information.

5.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <type ’int’>.

5.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

5.12. Other Built-in Types 55

The Python Library Reference, Release 2.7

5.12.8 The Ellipsis Object

This object is used by extended slice notation (see Slicings (in The Python Language Reference)). It supports no
special operations. There is exactly one ellipsis object, named E11ipsis (a built-in name).

Itis writtenas E11ipsis.

5.12.9 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used to
cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written as False and True, respectively.

5.12.10 Internal Objects

See The standard type hierarchy (in The Python Language Reference) for this information. It describes stack frame
objects, traceback objects, and slice objects.

5.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

_ _methods_
Deprecated since version 2.2: Use the built-in function dir () to geta list of an object’s attributes. This attribute
is no longer available.

__members_
Deprecated since version 2.2: Use the built-in function dir () to get alist of an object’s attributes. This attribute
is no longer available.

__class___
The class to which a class instance belongs.

__bases_
The tuple of base classes of a class object.

__name___
The name of the class or type.

The following attributes are only supported by new-style classes.

__mro___
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in __mro___

56 Chapter 5. Built-in Types

The Python Library Reference, Release 2.7

__subclasses__ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int.__ subclasses__ ()
[<type ’"bool’>]

5.13. Special Attributes 57

The Python Library Reference, Release 2.7

58 Chapter 5. Built-in Types

CHAPTER
SIX

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module. For class exceptions, in a t ry statement with an except clause that mentions a particular class, that clause
also handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name. The
built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to the raise statement. If the exception class is derived from the standard root class BaseException,
the associated value is present as the exception instance’s args attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Except ion class and not BaseExcept ion. More information on defining excep-
tions is available in the Python Tutorial under User-defined Exceptions (in Python Tutorial).

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that
use Exception). If str () or unicode () is called on an instance of this class, the representation of the
argument(s) to the instance are returned or the empty string when there were no arguments. All arguments are
stored in args as a tuple. New in version 2.5.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class. Changed in version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except Stoplteration, GeneratorExit,
KeyboardInterrupt and SystemExit. StandardError itself is derived from Except ion.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

59

The Python Library Reference, Release 2.7

exception EnvironmentError

The base class for exceptions that can occur outside the Python system: TOError, OSError. When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’s errno attribute (it is assumed
to be an error number), and the second item is available on the st rerror attribute (it is usually the associated
error message). The tuple itself is also available on the args attribute. New in version 1.5.2. When an
EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as above, while
the third item is available on the fi 1ename attribute. However, for backwards compatibility, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was created with other than 2 or 3 arguments. In this
last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see Attribute references (in The Python Language Reference)) or assignment
fails. (When an object does not support attribute references or attribute assignments at all, TypeError is
raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the file.read () and file.readline () methods return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the ——with-fpect 1 option, or the WANT_SIGFPE_HANDLER symbol is defined
in the pyconfig.h file.

exception GeneratorExit
Raise when a generator‘s close () method is called. It directly inherits from BaseExcept ion instead of
StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6: Changed to
inherit from BaseException.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open () function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on exception
instance attributes. Changed in version 2.6: Changed socket .error to use this as a base class.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails
to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in function input () or raw_input () is waiting
for input also raise this exception. The exception inherits from BaseException so as to not be accidentally

60 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7

caught by code that catches Except ion and thus prevent the interpreter from exiting. Changed in version 2.5:
Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This exception is derived from EnvironmentError. It is raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). The errno attribute is a numeric error code
from errno, and the strerror attribute is the corresponding string, as would be printed by the C function
perror (). See the module errno, which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (such as chdir () or unlink ()), the exception instance will
contain a third attribute, £i lename, which is the file name passed to the function. New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception handling
in C, most floating point operations also aren’t checked.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module. New in version 2.2: Previously known as the weakref.ReferenceError
exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator‘s next () method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval () or input (), or when reading the initial script or standard
input (also interactively).

Instances of this class have attributes £ilename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to

61

The Python Library Reference, Release 2.7

abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys . version; itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from BaseException and not StandardError, since it is not techni-
cally an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork ()).

The exception inherits from BaseException instead of StandardError or Exception so that it is not
accidentally caught by code that catches Except ion. This allows the exception to properly propagate up and
cause the interpreter to exit. Changed in version 2.5: Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError. New in
version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New in
version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception VMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno
value. The winerror and strerror values are created from the return values of the GetLastError ()
and FormatMessage () functions from the Windows Platform API. The errno value maps the winerror

62 Chapter 6. Built-in Exceptions

The Python Library Reference, Release 2.7

value to corresponding errno.h values. This is a subclass of OSError. New in version 2.0.Changed in
version 2.5: Previous versions put the GetLastError () codes into errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception Runt imeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

6.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+-—— KeyboardInterrupt
+-— GeneratorExit
+-— Exception
+-— StopIteration
+—— StandardError
+-— BufferError
+-— ArithmeticError
| +-— FloatingPointError

|

|

|

| | +-— OverflowError

| \ +—— ZeroDivisionError
| +-— AssertionError

| +-— AttributeError

| +—— EnvironmentError

| | +—— IOError

| \ +—— OSError

| \ +-— WindowsError (Windows)

6.1. Exception hierarchy 63

The Python Library Reference, Release 2.7

+-— VMSError (VMS)
EOFError
ImportError
LookupError
+—— IndexError
+—-— KeyError
MemoryError
NameError
+—— UnboundLocalError
ReferenceError
RuntimeError
+-— NotImplementedError
SyntaxError
+-— IndentationError
+—— TabError
SystemError
TypeError
ValueError
+-— UnicodeError
+-— UnicodeDecodeError
+-— UnicodeEncodeError
+—— UnicodeTranslateError

+-— Warning

DeprecationWarning
PendingDeprecationWarning
RuntimeWarning
SyntaxWarning

UserWarning

FutureWarning
ImportWarning
UnicodeWarning
BytesWarning

64

Chapter 6. Built-in Exceptions

CHAPTER
SEVEN

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods described in the Sequence Types — str,
unicode, list, tuple, buffer, xrange section, and also the string-specific methods described in the String Methods section.
To output formatted strings use template strings or the % operator described in the String Formatting Operations
section. Also, see the re module for string functions based on regular expressions.

7.1 string — Common string operations

The st ring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. In addition, Python’s built-in string classes support the sequence type
methods described in the Sequence Types — str, unicode, list, tuple, buffer, xrange section, and also the string-specific
methods described in the String Methods section. To output formatted strings use template strings or the $ operator
described in the String Formatting Operations section. Also, see the re module for string functions based on regular
expressions.

7.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letters ' abcdefghi jklmnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii_uppercase
The uppercase letters / ABCDEFGHIJKLMNOPQRSTUVWXYZ' . This value is not locale-dependent and will not
change.

digits
The string 7 0123456789".

hexdigits
The string 0123456789%abcde fABCDEF' .

letters
The concatenation of the strings 1owercase and uppercase described below. The specific value is locale-
dependent, and will be updated when locale.setlocale () is called.

65

The Python Library Reference, Release 2.7

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijklmnopgrstuvwxyz’. The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

octdigits
The string 01234567

punctuation
String of ASCII characters which are considered punctuation characters in the C locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
" ABCDEFGHIJKLMNOPQRSTUVWXYZ’ . The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

7.1.2 String Formatting

New in version 2.6. The built-in str and unicode classes provide the ability to do complex variable substitutions and
value formatting via the str. format () method described in PEP 3101. The Formatter class in the string
module allows you to create and customize your own string formatting behaviors using the same implementation as
the built-in format () method.

class Formatter ()
The Formatter class has the following public methods:

format (format_string, *args, *kwargs)
format () is the primary API method. It takes a format template string, and an arbitrary set of positional
and keyword argument. format () is just a wrapper that calls vformat ().

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using the xargs and *xkwds syntax. vformat () does the work of breaking up
the format template string into character data and replacement fields. It calls the various methods described
below.

In addition, the Formatter defines a number of methods that are intended to be replaced by subclasses:

pacrse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, conver-
sion). This is used by vformat () to break the string in to either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as

66 Chapter 7. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.7

“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer, it
represents the index of the positional argument in args; if it is a string, then it represents a named argument
in kwargs.

The args parameter is set to the list of positional arguments to vformat (), and the kwargs parameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key ar-
gument of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError should
be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The set
of unused args can be calculated from these parameters. check_unused_args () is assumed to throw
an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get_field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

7.1.3 Format String Syntax
The str.format () method and the Formatter class share the same syntax for format strings (although in the
case of Formatter, subclasses can define their own format string syntax).

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doubling: {{ and } }.

The grammar for a replacement field is as follows:

replacement_field = “{"” [field_name] [”!” conversion] [”:” format_spec] “}”
field_name = arg_name (“.” attribute_name | “[” element_index “]”)x
arg_name = [identifier | integer]

attribute_name = identifier

element_index = integer | index_string

index_string <any source character except “]”> +
conversion W W

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a

7.1. string — Common string operations 67

The Python Library Reference, Release 2.7

conversion field, which is preceded by an exclamation point ’ !, and a format_spec, which is preceded by a colon
’ : 7. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either either a number or a keyword. If it’s a number, it refers
to a positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in
a format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be
automatically inserted in that order. The arg_name can be followed by any number of index or attribute expressions.
An expression of the form ’ .name’ selects the named attribute using getattr (), while an expression of the
form ’ [index]’ does an index lookup using __getitem__ (). Changed in version 2.7: The positional argument
specifiers can be omitted, so * {} {}’ isequivalentto’ {0} {1}’. Some simple format string examples:

"First, thou shalt count to {0}" # References first positional argument

"Bring me a {}" # Implicitly references the first positional argument
"From {} to {}" Same as "From {0} to {1}"

"My quest is {name}" References keyword argument ’‘name’

"Weight in tons {0.weight}" "weight’ attribute of first positional arg

H HHR H

"Units destroyed: {players[0]}" # First element of keyword argument ’‘players’.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done by the
___format__ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before calling __ format__ (),
the normal formatting logic is bypassed.

Two conversion flags are currently supported: ’ ! s’ whichcalls str () on the value, and ’ ! v’ which calls repr ().
Some examples:

"Harold’s a clever {0O!s}™" # Calls str() on the argument first
"Bring out the holy {name!r}" # Calls repr() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to be
dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (see Format String Syntax). They can also be passed directly to the built-in format () function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format string (" ") produces the same result as if you had called st r () on the
value. A non-empty format string typically modifies the result.

The general form of a standard format specifier is:

68 Chapter 7. String Services

The Python Library Reference, Release 2.7

format_spec = [[fill]lalign] [sign] [#][0] [width][,][.precision] [type]

fill = <a character other than ‘}’'>

align :: \\<II | \\>II ‘ \\:II | A\Waw/4

Sign I — \\+II | A\ /4 ‘ ” w

width = integer

precision = integer

type ::= \\bl’ | \\cll ‘ \\dll | \\ell | \\EII I \\f" | \\FII I \\gll | \\GII ‘ \\nll |

The fill character can be any character other than ‘}’ (which signifies the end of the field). The presence of a fill
character is signaled by the next character, which must be one of the alignment options. If the second character of
format_spec is not a valid alignment option, then it is assumed that both the fill character and the alignment option are
absent.

The meaning of the various alignment options is as follows:

A4

O

Op- Meaning
tion

r<s Forces the field to be left-aligned within the available space (this is the default).

"> Forces the field to be right-aligned within the available space.

r=r Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields
in the form ‘+000000120°. This alignment option is only valid for numeric types.

rar Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Option | Meaning

"4 indicates that a sign should be used for both positive as well as negative numbers.

r—r indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The ” #’ option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that
the output will be prefixed by ' 0b’, ’ 0o’ , or ' 0x’, respectively.

The ’ ,’ option signals the use of a comma for a thousands separator. For a locale aware separator, use the " n’
integer presentation type instead. Changed in version 2.7: Added the ’ ,’ option (see also PEP 378). width is a
decimal integer defining the minimum field width. If not specified, then the field width will be determined by the
content.

If the width field is preceded by a zero (* 0’) character, this enables zero-padding. This is equivalent to an alignment
type of /=’ and a fill character of " 0" .

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with / £/ and ' F’, or before and after the decimal point for a floating point value formatted with
"g’ or ' G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. The precision is not allowed for integer values.

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning
rs’ String format. This is the default type for strings and may be omitted.
None | The sameas’s’.

The available integer presentation types are:

7.1. string — Common string operations 69

“Wg

http://www.python.org/dev/peps/pep-0378

The Python Library Reference, Release 2.7
Type | Meaning
"o’ Binary format. Outputs the number in base 2.
el Character. Converts the integer to the corresponding unicode character before printing.
"d’ | Decimal Integer. Outputs the number in base 10.
"o’ Octal format. Outputs the number in base 8.
rx’ Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.
"X’ Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.
"n’ Number. This is the same as ’ d’, except that it uses the current locale setting to insert the appropriate
number separator characters.
None | The same as * d’.

In addition to

the above presentation types, integers can be formatted with the floating point presentation types listed

below (except ' n’ and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for floating point and decimal values are:

Type

Meaning

Ief
IEI
Ifl
IFI
Igl

Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the exponent.
Exponent notation. Same as ' e’ except it uses an upper case ‘E’ as the separator character.

Fixed point. Displays the number as a fixed-point number.

Fixed point. Same as " £'.

General format. For a given precision p >= 1, this rounds the number to p significant digits and then
formats the result in either fixed-point format or in scientific notation, depending on its magnitude.

The precise rules are as follows: suppose that the result formatted with presentation type ’ e’ and
precision p—1 would have exponent exp. Then if -4 <= exp < p, the number is formatted with
presentation type ’ £/ and precision p—1-exp. Otherwise, the number is formatted with presentation type
"e’ and precision p—1. In both cases insignificant trailing zeros are removed from the significand, and the
decimal point is also removed if there are no remaining digits following it.

Postive and negative infinity, positive and negative zero, and nans, are formatted as inf, —inf, 0, -0 and
nan respectively, regardless of the precision.

A precision of 0 is treated as equivalent to a precision of 1.

General format. Same as ’ g’ except switches to ' E’ if the number gets too large. The representations of
infinity and NaN are uppercased, too.

Number. This is the same as ' g’ , except that it uses the current locale setting to insert the appropriate
number separator characters.

Percentage. Multiplies the number by 100 and displays in fixed (* £/) format, followed by a percent sign.
The same as " g”’ .

Format examples

This section contains examples of the new format syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, * $03.2f’ can be translatedto ’ { : 03.2f}".

The new format syntax also supports new and different options, shown in the follow examples.

Accessing arguments by position:

>>> " {0},
"a, b, c’
>>> ' {},

14 4

a, b, c
>>> {2},
"c, b, a’
>>> {2},

{1}, {2}’ .format("a’, 'b’, ’'c’)
{}y, {}" .format(’a’, 'b’, 'c’) # 2.7+ only
{1}, {0}’ .format('a’, 'b’, 'c’)

{1}, {0}’ .format (" abc’) # unpacking argument sequence

70

Chapter 7. String Services

The Python Library Reference, Release 2.7

"c, b, a’

>>> " {0}{1}{0}" .format ("abra’, ’'cad’) # arguments’ indices can be repeated
"abracadabra’

Accessing arguments by name:

>>> ’Coordinates: {latitude}, {longitude}’.format (latitude=’37.24N’, longitude='"-115.81W")
"Coordinates: 37.24N, —-115.81W’

>>> coord = {’latitude’: ’37.24N’, ’longitude’: ’-115.81W’}

>>> ’Coordinates: {latitude}, {longitude}’.format (x+xcoord)

"Coordinates: 37.24N, -115.81W’

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> (’The complex number {0} is formed from the real part {0O.real}
"and the imaginary part {0O.imag}.’).format (c)
"The complex number (3-57j) is formed from the real part 3.0 and the imaginary part -5.0.7
>>> class Point (object):
def _ _init_ (self, x, y):
self.x, self.y = x, vy
def _ str__ (self):
return 'Point ({self.x}, {self.y})’.format (self=self)

4

>>> str (Point (4, 2))
"Point (4, 2)’

Accessing arguments’ items:

>>> coord = (3, 5)
>> 'X: {0[0]1}; Y: {O[1]}".format (coord)
"X: 3; Y: 57

Replacing %s and %$xr:

>>> "repr () shows quotes: {!r}; str() doesn’t: {!s}".format ('testl’, ’'test2’)
"repr () shows quotes: ’"testl’; str() doesn’t: test2"

Aligning the text and specifying a width:

>>> / {:<30}" .format (' left aligned’)

"left aligned !

>>> 7 {:>30}" .format (' right aligned’)

! right aligned’

>>> " {:730}" .format (' centered’)

! centered !

>>> " {:+x730}’ .format (' centered’) # use '+’ as a fill char

I xx*xkxxkrxxkxCcenteredrrxx*xx*xkxx %'
Replacing $+£f, $—f,and $ f and specifying a sign:

>>> " {:+f}; {:+f}’ .format (3.14, -3.14) # show it always
+3.140000; -3.140000"

>>> /" {: f}; {: £}’ .format(3.14, -3.14) # show a space for positive numbers
7 3.140000; -3.140000"
>>> " {:-f}; {:-f}’ . format(3.14, -3.14) # show only the minus ——- same as ’'{:f}; {:f}’

73.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

7.1. string — Common string operations 71

The Python Library Reference, Release 2.7

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; Dbin: {O:b}".format (42)
"int: 42; hex: 2a; oct: 52; bin: 101010’

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {O0:#0}; bin: {O0:#b}".format (42)
"int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010’

Using the comma as a thousands separator:

>>> 7 {:,}’ . format (1234567890)
r1,234,567,890"

Expressing a percentage:

>>> points = 19.5

>>> total = 22

>>> ’Correct answers: {:.2%}.’.format (points/total)
"Correct answers: 88.64%'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> 7 {:5Y-%m-3%d SH:%M:%S}’ . format (d)

72010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip(’<">’, [’left’, ’'center’, "right’]):
"{0:{align}{fill}16}’ .format (text, fill=align, align=align)

M left <<
Iannarfcentert AN
">>>>>>>>>>>right’
>>>
>>> octets = [192, 168, 0, 1]
>>> 7 { 02X} {:02X}{:02X}{:02X}" .format (xoctets)
"COAB0001”
>>> int (_, 16)
3232235521
>>>
>>> width = 5
>>> for num in range (5,12):

for base in ’dXob’:

print ' {0:{width} {base}}’.format (num, base=base, width=width),

print
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

72 Chapter 7. String Services

The Python Library Reference, Release 2.7

7.1.4 Template strings

New in version 2.4. Templates provide simpler string substitutions as described in PEP 292. Instead of the normal
%-based substitutions, Templates support $-based substitutions, using the following rules:

* $$ is an escape; it is replaced with a single $.

e Sidentifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" must spell a Python identifier. The first non-identifier character after the $ character termi-
nates this placeholder specification.

e ${identifier} is equivalent to Sidentifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "$ {noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping, [**kws])
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kws are given and there are duplicates, the
placeholders from kws take precedence.

safe_substitute (mapping, [**kws])
Like substitute (), except that if placeholders are missing from mapping and kws, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the $ will simply return $ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another sense, safe_substitute () may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s template argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template (’$who likes S$what’)

>>> s.substitute (who='"tim’, what=’kung pao’)

"tim likes kung pao’

>>> d = dict (who='tim’)

>>> Template (' Give $who $100’) .substitute (d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (' $who likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $who likes S$what’) .safe_substitute (d)
"tim likes S$what’

7.1. string — Common string operations 73

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.7

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

* idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expression [_a-z] [_a-z0-9] *.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

7.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s, [sep])
Split the argument into words using str.split (), capitalize each word using str.capitalize (), and
join the capitalized words using st r. join (). If the optional second argument sep is absent or None, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sep is used to split and join the words.

maketrans (from, to)
Return a translation table suitable for passing to t ranslate (), that will map each character in from into the
character at the same position in fo; from and fo must have the same length.

Note: Don’t use strings derived from 1owercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use str.lower () and str.upper ().

7.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see section String Methods
for more information on those. You should consider these functions as deprecated, although they will not be removed
until Python 3.0. The functions defined in this module are:

atof ()
Deprecated since version 2.0: Use the £1oat () built-in function. Convert a string to a floating point number.
The string must have the standard syntax for a floating point literal in Python, optionally preceded by a sign (+
or —). Note that this behaves identical to the built-in function £ 1oat () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

74 Chapter 7. String Services

The Python Library Reference, Release 2.7

atoi (s, [base])
Deprecated since version 2.0: Use the int () built-in function. Convert string s to an integer in the given base.
The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base defaults to 10. If
itis 0, a default base is chosen depending on the leading characters of the string (after stripping the sign): 0x or
0X means 16, 0 means 8, anything else means 10. If base is 16, a leading 0x or 0X is always accepted, though
not required. This behaves identically to the built-in function int () when passed a string. (Also note: for a
more flexible interpretation of numeric literals, use the built-in function eval ().)

atol (s, [base])
Deprecated since version 2.0: Use the 1ong () built-in function. Convert string s to a long integer in the given
base. The string must consist of one or more digits, optionally preceded by a sign (+ or —). The base argument
has the same meaning as for atoi (). A trailing 1 or L is not allowed, except if the base is 0. Note that when
invoked without base or with base set to 10, this behaves identical to the built-in function 1ong () when passed
a string.

capitalize (word)
Return a copy of word with only its first character capitalized.

expandtabs (s, [tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

£ind (s, sub, [start, [end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in
s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative values is
the same as for slices.

rfind (s, sub, [start, [end]])
Like £ind () but find the highest index.

index (s, sub, [start, [end]])
Like find () butraise ValueError when the substring is not found.

rindex (s, sub, [start, [end]])
Like rfind () butraise ValueError when the substring is not found.

count (s, sub, [start, [end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start :end]. Defaults for
start and end and interpretation of negative values are the same as for slices.

lower (s)
Return a copy of s, but with upper case letters converted to lower case.

split (s, [sep, [maxsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string. The
optional third argument maxsplit defaults to 0. If it is nonzero, at most maxsplit number of splits occur, and the
remainder of the string is returned as the final element of the list (thus, the list will have at most maxsplit+1
elements).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s, [sep, [maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting list
of words is the same as returned by split (), except when the optional third argument maxsplit is explicitly

7.1. string — Common string operations 75

The Python Library Reference, Release 2.7

specified and nonzero. When maxsplit is nonzero, at most maxsplit number of splits — the rightmost ones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit+1 elements). New in version 2.4.

splitfields (s, [sep, [maxsplit]])
This function behaves identically to split (). (Inthe past, split () was only used with one argument, while
splitfields () was only used with two arguments.)

join (words, [sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that string. join (string.split (s, sep), sep) equalss.

joinfields (words, [sep])
This function behaves identically to join (). (In the past, Jjoin () was only used with one argument, while
joinfields () was only used with two arguments.) Note that there is no joinfields () method on string
objects; use the join () method instead.

1strip (s, [chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3: The chars parameter was added.
The chars parameter cannot be passed in earlier 2.2 versions.

rstrip (s, [chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3: The chars parameter was added. The
chars parameter cannot be passed in earlier 2.2 versions.

strip (s, [chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.3: The chars parameter
was added. The chars parameter cannot be passed in earlier 2.2 versions.

swapcase (s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate (s, table, [deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal. If
table is None, then only the character deletion step is performed.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

1just (s, width, [fillchar])

rijust (s, width, [fillchar])

center (s, width, [fillchar])
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at least width characters wide, created by padding the string s with the character fillchar (default is
a space) until the given width on the right, left or both sides. The string is never truncated.

z£ill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new, [maxreplace])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

76 Chapter 7. String Services

The Python Library Reference, Release 2.7

7.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings
to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash character (’ \’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with * r’. So r"\n" is a two-character string containing ’ \’ and ' n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular Expressions Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

7.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO (in).

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 2’, "a’, or
70’ are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the string * 1ast’. (In the rest of this section, we’ll write RE’sin this special style, usually
without quotes, and strings to be matched ' in single quotes’.)

Some characters, like ’ | 7 or ’ (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using the \number notation, e.g., " \x00".

The special characters are:

" .7 (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

! A7 (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

7.2. re — Regular expression operations 77

The Python Library Reference, Release 2.7

I$I

I*I

I+I

rer

Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in ' fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a single $ in ’ foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

*?,+?,2? The '+, "+’ ,and ’ ?’ qualifiers are all greedy; they match as much text as possible. Sometimes this

behaviour isn’t desired; if the RE <. x> is matched against * <H1>title</H1>", it will match the entire
string, and not just ' <H1>’. Adding ’ ?’ after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using . ? in the previous expression will
match only / <H1>'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to

match. For example, a { 6} will match exactly six * a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many

repetitions as possible. For example, a{3, 5} will match from 3 to 5 " a’ characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a {4, }b will match
aaaab or a thousand ’ a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few

I\I

repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ' aaaaaa’,a{3, 5} willmatch 5 ” a’ characters, while a {3, 5} ? will only match 3 characters.

Either escapes special characters (permitting you to match characters like ” «”, * 2, and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated

by giving two characters and separating them by a ’ —’. Special characters are not active inside sets. For
example, [akm$] will match any of the characters “a’, k', 'm’,or ' $’; [a—z] will match any lowercase
letter, and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \'S (defined below) are
also acceptable inside a range, although the characters they match depends on whether LOCALE or UNICODE
mode is in force. If you want to include a ’] ora ’ -’ inside a set, precede it with a backslash, or place it as
the first character. The pattern []] will match ’], for example.

You can match the characters not within a range by complementing the set. This is indicated by includinga * ~*
as the first character of the set; ’ ~’ elsewhere will simply match the * ~ character. For example, [~5] will
match any character except ’ 5/, and [~"] will match any character except ' "’ .

Note that inside [] the special forms and special characters lose their meanings and only the syntaxes described
here are valid. For example, +, x, (,), and so on are treated as literals inside [], and backreferences cannot be
used inside [].

" |7 A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary

number of REs can be separated by the ’ |’ in this way. This can be used inside groups (see below) as well.

78

Chapter 7. String Services

The Python Library Reference, Release 2.7

As the target string is scanned, REs separated by ’ |/ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the * |’ operator is never greedy. To match a literal * | 7, use
\ |, or enclose it inside a character class, asin [|].

(. ..) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the literals * (* or) ’, use \ (or \), or
enclose them inside a character class: [(] [)].

(?...) This is an extension notation (a ’ ?’ following a ’ (' is not meaningful otherwise). The first character
after the ’ 2/ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported
extensions.

(?iLmsux) (One or more letters from the set " 1’, 'L’, 'm’, ' s’, "u’, ' x’.) The group matches the empty
string; the letters set the corresponding flags: re . I (ignore case), re . L (locale dependent), re . M (multi-line),
re.S (dot matches all), re .U (Unicode dependent), and re.X (verbose), for the entire regular expression.
(The flags are described in Module Contents.) This is useful if you wish to include the flags as part of the
regular expression, instead of passing a flag argument to the re . compile () function.

Note that the (?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) Anon-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group name name. Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group named id in the example below can also be referenced
as the numbered group 1.

For example, if the pattern is (?P<id>[a-zA-Z_]\wx), the group can be referenced by its name in argu-
ments to methods of match objects, such as m.group (id’) orm.end (’ id’), and also by name in the
regular expression itself (using (?P=1id)) and replacement text given to . sub () (using \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assert