
Python/C API Reference Manual
Release 1.5.1

Guido van Rossum

April 14, 1998

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright c© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addressftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

This manual documents the API used by C (or C++) programmers who want to write extension modules or embed
Python. It is a companion toExtending and Embedding the Python Interpreter, which describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. I hope that it is nevertheless useful. I will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

1 Introduction 1
1.1 Include Files. 1
1.2 Objects, Types and Reference Counts. 1

Reference Counts. 2
Types . 5

1.3 Exceptions. 5
1.4 Embedding Python. 7

2 The Very High Level Layer 9

3 Reference Counting 11

4 Exception Handling 13
4.1 Standard Exceptions. 15

5 Utilities 17
5.1 OS Utilities . 17
5.2 Process Control. 17
5.3 Importing Modules. 17

6 Abstract Objects Layer 21
6.1 Object Protocol. 21
6.2 Number Protocol. 23
6.3 Sequence Protocol. 24
6.4 Mapping Protocol. 25
6.5 Constructors. 26

7 Concrete Objects Layer 27
7.1 Fundamental Objects. 27

Type Objects . 27
The None Object . 27

7.2 Sequence Objects. 27
String Objects. 27
Tuple Objects. 28
List Objects . 28

7.3 Mapping Objects. 29
Dictionary Objects . 29

7.4 Numeric Objects . 30
Plain Integer Objects. 30
Long Integer Objects. 30

i

Floating Point Objects . 31
Complex Number Objects. 31

7.5 Other Objects. 32
File Objects . 32
CObjects . 33

8 Initialization, Finalization, and Threads 35
8.1 Thread State and the Global Interpreter Lock. 38

9 Defining New Object Types 43

10 Debugging 45

Index 47

ii

CHAPTER

ONE

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at
a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to writeextension
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to asembeddingPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward that writing an extension. Python 1.5
introduces a number of new API functions as well as some changes to the build process that make embedding much
simpler. This manual describes the 1.5.1 state of affairs.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headers:<stdio.h> , <string.h> , <errno.h> , and
<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes ‘Py’ or ‘ Py’. Names beginning with ‘Py’ are for internal use only. Structure member names do not have a
reserved prefix.

Important: user code should never define names that begin with ‘Py’ or ‘ Py’. This confuses the reader, and jeop-
ardizes the portability of the user code to future Python versions, which may define additional names beginning with
one of these prefixes.

1.2 Objects, Types and Reference Counts

1

Most Python/C API functions have one or more arguments as well as a return value of typePyObject * . This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is
only fitting that they should be represented by a single C type. All Python objects live on the heap: you never declare
an automatic or static variable of typePyObject , only pointer variables of typePyObject * can be declared.

All Python objects (even Python integers) have atypeand areference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in thePython Reference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList Check(a) ’ is true iff the object pointed to bya is a Python list.

Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that”.)

Reference counts are always manipulated explicitly. The normal way is to use the macroPy INCREF() to incre-
ment an object’s reference count by one, andPy DECREF() to decrement it by one. The decref macro is consid-
erably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator, which is a function pointer contained in the object’s type structure. The type-specific
deallocator takes care of decrementing the reference counts for other objects contained in the object, and so on, if
this is a compound object type such as a list. There’s no chance that the reference count can overflow; at least as
many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof(long) >= sizeof(char *)). Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user from aPy DECREF(),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with ‘PyObject ’,
‘PyNumber ’, ‘ PySequence ’ or ‘ PyMapping ’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility to callPy DECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best expelained in terms ofownership of references.
Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py DECREF() or Py XDECREF(). When a function passes ownership of a reference on to its caller, the caller is

2 Chapter 1. Introduction

said to receive anewreference. When no ownership is transferred, the caller is said toborrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList SetItem() andPyTuple SetItem() , which steal a reference to the item (but not to the tuple or list
into which the item is put!). These functions were designed to steal a reference because of a common idiom for popu-
lating a tuple or list with newly created objects; for example, the code to create the tuple(1, 2, "three") could
look like this (forgetting about error handling for the moment; a better way to code this is shown below anyway):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyInt_FromLong(1L));
PyTuple_SetItem(t, 1, PyInt_FromLong(2L));
PyTuple_SetItem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple SetItem() is the only way to set tuple items;PySequence SetItem() and Py-
Object SetItem() refuse to do this since tuples are an immutable data type. You should only usePyTu-
ple SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written usingPyList New() andPyList SetItem() . Such code
can also usePySequence SetItem() ; this illustrates the difference between the two (the extraPy DECREF()
calls):

PyObject *l, *x;

l = PyList_New(3);
x = PyInt_FromLong(1L);
PySequence_SetItem(l, 0, x); Py_DECREF(x);
x = PyInt_FromLong(2L);
PySequence_SetItem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_SetItem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic function,Py BuildValue() , that can
create most common objects from C values, directed by aformat string. For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

PyObject *t, *l;

t = Py_BuildValue("(iis)", 1, 2, "three");
l = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to usePyObject SetItem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

1.2. Objects, Types and Reference Counts 3

int set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

if (PyObject_SetItem(target, i, item) < 0)
return -1;

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject GetItem() andPySequence GetItem() , always return a new reference (i.e., the caller becomes
the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage(i.e., the type of the type of the object passed as an argument to the function)doesn’t enter into
it! Thus, if you extract an item from a list usingPyList GetItem() , you don’t own the reference — but if you
obtain the same item from the same list usingPySequence GetItem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList GetItem() , once usingPySequence GetItem() .

long sum_list(PyObject *list)
{

int i, n;
long total = 0;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can’t fail */
if (!PyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);

}
return total;

}

4 Chapter 1. Introduction

long sum_sequence(PyObject *sequence)
{

int i, n;
long total = 0;
PyObject *item;
n = PyObject_Size(list);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(list, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))

total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */

}
return total;

}

Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int , long , double andchar * . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type. These will be discussed together with the functions
that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, till they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULL or -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr Occurred() .

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded applica-
tion). A thread can be in one of two states: an exception has occurred, or not. The functionPyErr Occurred() can
be used to check for this: it returns a borrowed reference to the exception type object when an exception has occurred,
andNULLotherwise. There are a number of functions to set the exception state:PyErr SetString() is the most
common (though not the most general) function to set the exception state, andPyErr Clear() clears the exception
state.

The full exception state consists of three objects (all of which can beNULL): the exception type, the correspond-
ing exception value, and the traceback. These have the same meanings as the Python objectsys.exc type ,
sys.exc value , sys.exc traceback ; however, they are not the same: the Python objects represent the last
exception being handled by a Pythontry . . . except statement, while the C level exception state only exists while
an exception is being passed on between C functions until it reaches the Python interpreter, which takes care of trans-
ferring it tosys.exc type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code

1.3. Exceptions 5

is to call the functionsys.exc info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and returns an error indicator, but it shouldnotset another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in thesum sequence() example above.
It so happens that that example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError)) goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(0L);
if (item == NULL) goto error;

}

const_one = PyInt_FromLong(1L);
if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of thegoto statement in C! It illustrates the use ofPy-
Err ExceptionMatches() andPyErr Clear() to handle specific exceptions, and the use ofPy XDECREF()
to dispose of owned references that may beNULL (note the ‘X’ in the name;Py DECREF() would crash when con-
fronted with aNULLreference). It is important that the variables used to hold owned references are initialized toNULL
for this to work; likewise, the proposed return value is initialized to-1 (failure) and only set to success after the final
call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function isPy Initialize() . This initializes the table of loaded modules, and creates the
fundamental modulesbuiltin , main andsys . It also initializes the module search path (sys.path).

Py Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python code

1.4. Embedding Python 7

that will be executed later, it must be set explicitly with a call toPySys SetArgv(argc, argv) subsequent to the
call toPy Initialize() .

On most systems (in particular, on UNIX and Windows, although the details are slightly different),
Py Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named ‘lib/python1.5’ (replacing ‘1.5’ with the current in-
terpreter version) relative to the parent directory where the executable named ‘python’ is found on the shell command
search path (the environment variable $PATH).

For instance, if the Python executable is found in ‘/usr/local/bin/python’, it will assume that the libraries are in
‘ /usr/local/lib/python1.5’. (In fact, this particular path is also the “fallback” location, used when no executable file
named ‘python’ is found along $PATH.) The user can override this behavior by setting the environment variable
$PYTHONHOME, or insert additional directories in front of the standard path by setting $PYTHONPATH.

The embedding application can steer the search by callingPy SetProgramName(file) before calling
Py Initialize() . Note that $PYTHONHOME still overrides this and $PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py GetPath() , Py GetPrefix() , Py GetExecPrefix() , Py GetProgramFullPath() (all defined in
‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call to Py Initialize()) or the application is simply done with its use of Python and wants to free all memory
allocated by Python. This can be accomplished by callingPy Finalize() . The functionPy IsInitialized()
returns true iff Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER

TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

int PyRun AnyFile (FILE *fp, char *filename)

int PyRun SimpleString (char *command)

int PyRun SimpleFile (FILE *fp, char *filename)

int PyRun InteractiveOne (FILE *fp, char *filename)

int PyRun InteractiveLoop (FILE *fp, char *filename)

struct node* PyParser SimpleParseString (char *str, int start)

struct node* PyParser SimpleParseFile (FILE *fp, char *filename, int start)

PyObject* PyRun String (char *str, int start, PyObject *globals, PyObject *locals)

PyObject* PyRun File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals)

PyObject* Py CompileString (char *str, char *filename, int start)

9

10

CHAPTER

THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py INCREF(PyObject *o)
Increment the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’tNULL,
usePy XINCREF() .

void Py XINCREF(PyObject *o)
Increment the reference count for objecto. The object may beNULL, in which case the macro has no effect.

void Py DECREF(PyObject *o)
Decrement the reference count for objecto. The object must not beNULL; if you aren’t sure that it isn’tNULL,
usePy XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a del () method is deallocated). While exceptions in such code are not propagated, the executed code
has free access to all Python global variables. This means that any object that is reachable from a global variable
should be in a consistent state beforePy DECREF() is invoked. For example, code to delete an object from a
list should copy a reference to the deleted object in a temporary variable, update the list data structure, and then
call Py DECREF() for the temporary variable.

void Py XDECREF(PyObject *o)
Decrement the reference count for objecto. The object may beNULL, in which case the macro has no effect;
otherwise the effect is the same as forPy DECREF(), and the same warning applies.

The following functions or macros are only for internal use:Py Dealloc() , Py ForgetReference() ,
Py NewReference() , as well as the global variablePy RefTotal .

XXX Should mention PyMalloc(), Py Realloc(), PyFree(), PyMemMalloc(), PyMemRealloc(), PyMemFree(),
PyMem NEW(), PyMemRESIZE(), PyMemDEL(), PyMemXDEL().

11

12

CHAPTER

FOUR

Exception Handling

The functions in this chapter will let you handle and raise Python exceptions. It is important to understand some of
the basics of Python exception handling. It works somewhat like the UNIX errno variable: there is a global indicator
(per thread) of the last error that occurred. Most functions don’t clear this on success, but will set it to indicate the
cause of the error on failure. Most functions also return an error indicator, usuallyNULL if they are supposed to return
a pointer, or-1 if they return an integer (exception: thePyArg Parse*() functions return1 for success and0 for
failure). When a function must fail because some function it called failed, it generally doesn’t set the error indicator;
the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python variablessys.exc type ,
sys.exc value andsys.exc traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErr Print ()
Print a standard traceback tosys.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr Occurred ()
Test whether the error indicator is set. If set, return the exceptiontype (the first argument to the last call to
one of thePyErr Set*() functions or toPyErr Restore()). If not set, returnNULL. You do not own a
reference to the return value, so you do not need toPy DECREF() it. Note: do not compare the return value to
a specific exception; usePyErr ExceptionMatches() instead, shown below.

int PyErr ExceptionMatches (PyObject *exc)
Equivalent to ‘PyErr GivenExceptionMatches(PyErr Occurred(), exc) ’. This should only be
called when an exception is actually set.

int PyErr GivenExceptionMatches (PyObject *given, PyObject *exc)
Return true if thegivenexception matches the exception inexc. If exc is a class object, this also returns true
whengivenis a subclass. Ifexcis a tuple, all exceptions in the tuple (and recursively in subtuples) are searched
for a match. This should only be called when an exception is actually set.

void PyErr NormalizeException (PyObject**exc, PyObject**val, PyObject**tb)
Under certain circumstances, the values returned byPyErr Fetch() below can be “unnormalized”, meaning
that* excis a class object but* val is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens.

void PyErr Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables toNULL. If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may beNULL even when the type object is not.Note: this function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator

13

temporarily.

void PyErr Restore (PyObject *type, PyObject *value, PyObject *traceback)
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
areNULL, the error indicator is cleared. Do not pass aNULL type and non-NULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object, i.e. you must own a reference to each object before the call and after the call
you no longer own these references. (If you don’t understand this, don’t use this function. I warned you.)Note:
this function is normally only used by code that needs to save and restore the error indicator temporarily.

void PyErr SetString (PyObject *type, char *message)
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, e.g.PyExc RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr SetObject (PyObject *type, PyObject *value)
This function is similar toPyErr SetString() but lets you specify an arbitrary Python object for the “value”
of the exception. You need not increment its reference count.

void PyErr SetNone (PyObject *type)
This is a shorthand for ‘PyErr SetObject(type, Py None) ’.

int PyErr BadArgument ()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message) ’, where messageindicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr NoMemory()
This is a shorthand for ‘PyErr SetNone(PyExc MemoryError) ’; it returnsNULLso an object allocation
function can write ‘return PyErr NoMemory(); ’ when it runs out of memory.

PyObject* PyErr SetFromErrno (PyObject *type)
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variableerrno . It constructs a tuple object whose first item is the integererrno value
and whose second item is the corresponding error message (gotten fromstrerror()), and then calls
‘PyErr SetObject(type, object) ’. On UNIX , when theerrno value is EINTR, indicating an in-
terrupted system call, this callsPyErr CheckSignals() , and if that set the error indicator, leaves it
set to that. The function always returnsNULL, so a wrapper function around a system call can write
‘ return PyErr SetFromErrno(); ’ when the system call returns an error.

void PyErr BadInternalCall ()
This is a shorthand for ‘PyErr SetString(PyExc TypeError, message) ’, where messageindicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. If thesignal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect forSIGINT is to raise theKeyboadInterrupt
exception. If an exception is raised the error indicator is set and the function returns1; otherwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

void PyErr SetInterrupt ()
This function is obsolete (XXX or platform dependent?). It simulates the effect of aSIGINT signal arriving —
the next timePyErr CheckSignals() is called,KeyboadInterrupt will be raised.

PyObject* PyErr NewException (char *name, PyObject *base, PyObject *dict)
This utility function creates and returns a new exception object. Thenameargument must be the name of the
new exception, a C string of the formmodule.class . The baseanddict arguments are normallyNULL.
Normally, this creates a class object derived from the root for all exceptions, the built-in nameException

14 Chapter 4. Exception Handling

(accessible in C asPyExc Exception). In this case the module attribute of the new class is set to the
first part (up to the last dot) of thenameargument, and the class name is set to the last part (after the last dot).
When the user has specified the-X command line option to use string exceptions, for backward compatibility,
or when thebaseargument is not a class object (and notNULL), a string object created from the entirename
argument is returned. Thebaseargument can be used to specify an alternate base class. Thedict argument can
be used to specify a dictionary of class variables and methods.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose names are ‘PyExc ’ followed
by the Python exception name. These have the typePyObject * ; they are all either class objects
or string objects, depending on the use of the-X option to the interpreter. For completeness, here
are all the variables: PyExc Exception , PyExc StandardError , PyExc ArithmeticError ,
PyExc LookupError , PyExc AssertionError , PyExc AttributeError , PyExc EOFError ,
PyExc FloatingPointError , PyExc IOError , PyExc ImportError , PyExc IndexError ,
PyExc KeyError , PyExc KeyboardInterrupt , PyExc MemoryError , PyExc NameError ,
PyExc OverflowError , PyExc RuntimeError , PyExc SyntaxError , PyExc SystemError ,
PyExc SystemExit , PyExc TypeError , PyExc ValueError , PyExc ZeroDivisionError .

4.1. Standard Exceptions 15

16

CHAPTER

FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and constructing Python
values from C values.

5.1 OS Utilities

int Py FdIsInteractive (FILE *fp, char *filename)
Return true (nonzero) if the standard I/O filefp with namefilenameis deemed interactive. This is the case
for files for which ‘isatty(fileno(fp)) ’ is true. If the global flagPy InteractiveFlag is true, this
function also returns true if thenamepointer isNULLor if the name is equal to one of the strings"<stdin>"
or "???" .

long PyOS GetLastModificationTime (char *filename)
Return the time of last modification of the filefilename. The result is encoded in the same way as the timestamp
returned by the standard C library functiontime() .

5.2 Process Control

void Py FatalError (char *message)
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. On UNIX , the standard C library functionabort() is called
which will attempt to produce a ‘core’ file.

void Py Exit (int status)
Exit the current process. This callsPy Finalize() and then calls the standard C library function
exit(status) .

int Py AtExit (void (*func) ())
Register a cleanup function to be called byPy Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successful,Py AtExit() returns0; on failure, it returns-1 . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be called byfunc.

5.3 Importing Modules

17

PyObject* PyImport ImportModule (char *name)
This is a simplified interface toPyImport ImportModuleEx() below, leaving theglobalsandlocalsargu-
ments set toNULL. When thenameargument contains a dot (i.e., when it specifies a submodule of a package),
the fromlist argument is set to the list[’*’] so that the return value is the named module rather than the top-
level package containing it as would otherwise be the case. (Unfortunately, this has an additional side effect
whennamein fact specifies a subpackage instead of a submodule: the submodules specified in the package’s

all variable are loaded.) Return a new reference to the imported module, orNULLwith an exception set on
failure (the module may still be created in this case — examinesys.modules to find out).

PyObject* PyImport ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *fromlist)
Import a module. This is best described by referring to the built-in Python functionimport () , as the
standard import () function calls this function directly.

The return value is a new reference to the imported module or top-level package, orNULL with an exception
set on failure (the module may still be created in this case). Like forimport () , the return value when
a submodule of a package was requested is normally the top-level package, unless a non-emptyfromlist was
given.

PyObject* PyImport Import (PyObject *name)
This is a higher-level interface that calls the current “import hook function”. It invokes theimport ()
function from the builtins of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.g. byrexec or ihooks .

PyObject* PyImport ReloadModule (PyObject *m)
Reload a module. This is best described by referring to the built-in Python functionreload() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded module, orNULLwith
an exception set on failure (the module still exists in this case).

PyObject* PyImport AddModule (char *name)
Return the module object corresponding to a module name. Thename argument may be of the form
package.module). First check the modules dictionary if there’s one there, and if not, create a new one
and insert in in the modules dictionary. Because the former action is most common, this does not return a new
reference, and you do not own the returned reference. ReturnNULLwith an exception set on failure.

PyObject* PyImport ExecCodeModule (char *name, PyObject *co)
Given a module name (possibly of the formpackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functioncompile() , load the module. Return a new reference to the module
object, orNULLwith an exception set if an error occurred (the module may still be created in this case). (This
function would reload the module if it was already imported.)

long PyImport GetMagicNumber ()
Return the magic number for Python bytecode files (a.k.a. ‘.pyc’ and ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* PyImport GetModuleDict ()
Return the dictionary used for the module administration (a.k.a.sys.modules). Note that this is a per-
interpreter variable.

void PyImport Init ()
Initialize the import mechanism. For internal use only.

void PyImport Cleanup ()
Empty the module table. For internal use only.

void PyImport Fini ()
Finalize the import mechanism. For internal use only.

PyObject* PyImport FindExtension (char *, char *)
For internal use only.

PyObject* PyImport FixupExtension (char *, char *)

18 Chapter 5. Utilities

For internal use only.

int PyImport ImportFrozenModule (char *)
Load a frozen module. Return1 for success,0 if the module is not found, and-1 with an exception set if the
initialization failed. To access the imported module on a successful load, usePyImport ImportModule() .
(Note the misnomer — this function would reload the module if it was already imported.)

struct frozen
This is the structure type definition for frozen module descriptors, as generated by thefreeze utility (see
‘Tools/freeze/’ in the Python source distribution). Its definition is:

struct _frozen {
char *name;
unsigned char *code;
int size;

};

struct frozen* PyImport FrozenModules
This pointer is initialized to point to an array ofstruct frozen records, terminated by one whose members
are allNULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

5.3. Importing Modules 19

20

CHAPTER

SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will flag
a Python exception.

6.1 Object Protocol

int PyObject Print (PyObject *o, FILE *fp, int flags)
Print an objecto, on file fp. Returns-1 on error The flags argument is used to enable certain printing options.
The only option currently supported isPy Print RAW.

int PyObject HasAttrString (PyObject *o, char *attrname)
Returns1 if o has the attributeattr name, and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr name) ’. This function always succeeds.

PyObject* PyObject GetAttrString (PyObject *o, char *attrname)
Retrieve an attribute namedattr namefrom objecto. Returns the attribute value on success, orNULLon failure.
This is the equivalent of the Python expression ‘o. attr name’.

int PyObject HasAttr (PyObject *o, PyObject *attrname)
Returns1 if o has the attributeattr name, and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr name) ’. This function always succeeds.

PyObject* PyObject GetAttr (PyObject *o, PyObject *attrname)
Retrieve an attribute namedattr namefrom objecto. Returns the attribute value on success, orNULLon failure.
This is the equivalent of the Python expression ‘o. attr name’.

int PyObject SetAttrString (PyObject *o, char *attrname, PyObject *v)
Set the value of the attribute namedattr name, for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement ‘o. attr name = v’.

int PyObject SetAttr (PyObject *o, PyObject *attrname, PyObject *v)
Set the value of the attribute namedattr name, for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement ‘o. attr name = v’.

int PyObject DelAttrString (PyObject *o, char *attrname)
Delete attribute namedattr name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statement: ‘del o. attr name’.

int PyObject DelAttr (PyObject *o, PyObject *attrname)
Delete attribute namedattr name, for objecto. Returns-1 on failure. This is the equivalent of the Python
statement ‘del o. attr name’.

int PyObject Cmp(PyObject *o1, PyObject *o2, int *result)

21

Compare the values ofo1ando2using a routine provided byo1, if one exists, otherwise with a routine provided
by o2. The result of the comparison is returned inresult. Returns-1 on failure. This is the equivalent of the
Python statement ‘result = cmp(o1, o2) ’.

int PyObject Compare(PyObject *o1, PyObject *o2)
Compare the values ofo1 ando2 using a routine provided byo1, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr Occurred() to detect an error. This is equivalent to the Python expression ‘cmp(o1, o2) ’.

PyObject* PyObject Repr (PyObject *o)
Compute the string representation of object,o. Returns the string representation on success,NULL on failure.
This is the equivalent of the Python expression ‘repr(o) ’. Called by therepr() built-in function and by
reverse quotes.

PyObject* PyObject Str (PyObject *o)
Compute the string representation of objecto. Returns the string representation on success,NULL on failure.
This is the equivalent of the Python expression ‘str(o) ’. Called by thestr() built-in function and by the
print statement.

int PyCallable Check (PyObject *o)
Determine if the objecto, is callable. Return1 if the object is callable and0 otherwise. This function always
succeeds.

PyObject* PyObject CallObject (PyObject *callableobject, PyObject *args)
Call a callable Python objectcallable object, with arguments given by the tupleargs. If no arguments are
needed, then args may beNULL. Returns the result of the call on success, orNULL on failure. This is the
equivalent of the Python expression ‘apply(o, args) ’.

PyObject* PyObject CallFunction (PyObject *callableobject, char *format, ...)
Call a callable Python objectcallable object, with a variable number of C arguments. The C arguments are
described using aPy BuildValue() style format string. The format may beNULL, indicating that no argu-
ments are provided. Returns the result of the call on success, orNULLon failure. This is the equivalent of the
Python expression ‘apply(o, args) ’.

PyObject* PyObject CallMethod (PyObject *o, char *m, char *format, ...)
Call the method namedm of objecto with a variable number of C arguments. The C arguments are described
by aPy BuildValue() format string. The format may beNULL, indicating that no arguments are provided.
Returns the result of the call on success, orNULL on failure. This is the equivalent of the Python expression
‘o. method(args) ’. Note that Special method names, such asadd () , getitem () , and so on are not
supported. The specific abstract-object routines for these must be used.

int PyObject Hash(PyObject *o)
Compute and return the hash value of an objecto. On failure, return-1 . This is the equivalent of the Python
expression ‘hash(o) ’.

int PyObject IsTrue (PyObject *o)
Returns1 if the objecto is considered to be true, and0 otherwise. This is equivalent to the Python expression
‘not not o’. This function always succeeds.

PyObject* PyObject Type (PyObject *o)
On success, returns a type object corresponding to the object type of objecto. On failure, returnsNULL. This is
equivalent to the Python expression ‘type(o) ’.

int PyObject Length (PyObject *o)
Return the length of objecto. If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On error,-1 is returned. This is the equivalent to the Python expression ‘len(o) ’.

PyObject* PyObject GetItem (PyObject *o, PyObject *key)
Return element ofo corresponding to the objectkeyor NULL on failure. This is the equivalent of the Python
expression ‘o[key] ’.

22 Chapter 6. Abstract Objects Layer

int PyObject SetItem (PyObject *o, PyObject *key, PyObject *v)
Map the objectkey to the valuev. Returns-1 on failure. This is the equivalent of the Python statement
‘o[key] = v’.

int PyObject DelItem (PyObject *o, PyObject *key, PyObject *v)
Delete the mapping forkey from o. Returns-1 on failure. This is the equivalent of the Python statement
‘del o[key] ’.

6.2 Number Protocol

int PyNumber Check (PyObject *o)
Returns1 if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber Add(PyObject *o1, PyObject *o2)
Returns the result of addingo1 ando2, or NULL on failure. This is the equivalent of the Python expression
‘o1 + o2’.

PyObject* PyNumber Subtract (PyObject *o1, PyObject *o2)
Returns the result of subtractingo2 from o1, or NULLon failure. This is the equivalent of the Python expression
‘o1 - o2’.

PyObject* PyNumber Multiply (PyObject *o1, PyObject *o2)
Returns the result of multiplyingo1ando2, or NULLon failure. This is the equivalent of the Python expression
‘o1 * o2’.

PyObject* PyNumber Divide (PyObject *o1, PyObject *o2)
Returns the result of dividingo1 by o2, or NULL on failure. This is the equivalent of the Python expression
‘o1 / o2’.

PyObject* PyNumber Remainder (PyObject *o1, PyObject *o2)
Returns the remainder of dividingo1by o2, or NULLon failure. This is the equivalent of the Python expression
‘o1 %o2’.

PyObject* PyNumber Divmod (PyObject *o1, PyObject *o2)
See the built-in functiondivmod() . ReturnsNULLon failure. This is the equivalent of the Python expression
‘divmod(o1, o2) ’.

PyObject* PyNumber Power (PyObject *o1, PyObject *o2, PyObject *o3)
See the built-in functionpow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(o1, o2, o3) ’, whereo3 is optional. Ifo3 is to be ignored, passPy None in its place.

PyObject* PyNumber Negative (PyObject *o)
Returns the negation ofo on success, orNULLon failure. This is the equivalent of the Python expression ‘- o’.

PyObject* PyNumber Positive (PyObject *o)
Returnso on success, orNULLon failure. This is the equivalent of the Python expression ‘+o’.

PyObject* PyNumber Absolute (PyObject *o)
Returns the absolute value ofo, or NULLon failure. This is the equivalent of the Python expression ‘abs(o) ’.

PyObject* PyNumber Invert (PyObject *o)
Returns the bitwise negation ofo on success, orNULLon failure. This is the equivalent of the Python expression
‘ ˜ o’.

PyObject* PyNumber Lshift (PyObject *o1, PyObject *o2)
Returns the result of left shiftingo1 by o2 on success, orNULLon failure. This is the equivalent of the Python
expression ‘o1 << o2’.

PyObject* PyNumber Rshift (PyObject *o1, PyObject *o2)
Returns the result of right shiftingo1by o2on success, orNULLon failure. This is the equivalent of the Python

6.2. Number Protocol 23

expression ‘o1 >> o2’.

PyObject* PyNumber And(PyObject *o1, PyObject *o2)
Returns the result of “anding”o2 ando2 on success andNULLon failure. This is the equivalent of the Python
expression ‘o1 and o2’.

PyObject* PyNumber Xor (PyObject *o1, PyObject *o2)
Returns the bitwise exclusive or ofo1by o2on success, orNULLon failure. This is the equivalent of the Python
expression ‘o1 ˆ o2’.

PyObject* PyNumber Or(PyObject *o1, PyObject *o2)
Returns the result ofo1 ando2 on success, orNULLon failure. This is the equivalent of the Python expression
‘o1 or o2’.

PyObject* PyNumber Coerce (PyObject **p1, PyObject **p2)
This function takes the addresses of two variables of typePyObject* .

If the objects pointed to by* p1 and * p2 have the same type, increment their reference count and return0
(success). If the objects can be converted to a common numeric type, replace*p1 and*p2 by their converted
value (with ’new’ reference counts), and return0. If no conversion is possible, or if some other error occurs,
return-1 (failure) and don’t increment the reference counts. The callPyNumber Coerce(&o1, &o2) is
equivalent to the Python statement ‘o1, o2 = coerce(o1, o2) ’.

PyObject* PyNumber Int (PyObject *o)
Returns theo converted to an integer object on success, orNULLon failure. This is the equivalent of the Python
expression ‘int(o) ’.

PyObject* PyNumber Long (PyObject *o)
Returns theo converted to a long integer object on success, orNULL on failure. This is the equivalent of the
Python expression ‘long(o) ’.

PyObject* PyNumber Float (PyObject *o)
Returns theo converted to a float object on success, orNULL on failure. This is the equivalent of the Python
expression ‘float(o) ’.

6.3 Sequence Protocol

int PySequence Check (PyObject *o)
Return1 if the object provides sequence protocol, and0 otherwise. This function always succeeds.

PyObject* PySequence Concat (PyObject *o1, PyObject *o2)
Return the concatenation ofo1 ando2 on success, andNULL on failure. This is the equivalent of the Python
expression ‘o1 + o2’.

PyObject* PySequence Repeat (PyObject *o, int count)
Return the result of repeating sequence objecto counttimes, orNULLon failure. This is the equivalent of the
Python expression ‘o * count’.

PyObject* PySequence GetItem (PyObject *o, int i)
Return theith element ofo, or NULLon failure. This is the equivalent of the Python expression ‘o[i] ’.

PyObject* PySequence GetSlice (PyObject *o, int i1, int i2)
Return the slice of sequence objecto betweeni1 andi2, or NULLon failure. This is the equivalent of the Python
expression ‘o[i1: i2] ’.

int PySequence SetItem (PyObject *o, int i, PyObject *v)
Assign objectv to the ith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
‘o[i] = v’.

int PySequence DelItem (PyObject *o, int i)

24 Chapter 6. Abstract Objects Layer

Delete theith element of objectv. Returns-1 on failure. This is the equivalent of the Python statement
‘del o[i] ’.

int PySequence SetSlice (PyObject *o, int i1, int i2, PyObject *v)
Assign the sequence objectv to the slice in sequence objecto from i1 to i2. This is the equivalent of the Python
statement ‘o[i1: i2] = v’.

int PySequence DelSlice (PyObject *o, int i1, int i2)
Delete the slice in sequence objecto from i1 to i2. Returns-1 on failure. This is the equivalent of the Python
statement ‘del o[i1: i2] ’.

PyObject* PySequence Tuple (PyObject *o)
Returns theo as a tuple on success, andNULLon failure. This is equivalent to the Python expressiontuple(o) .

int PySequence Count (PyObject *o, PyObject *value)
Return the number of occurrences ofvaluein o, that is, return the number of keys for whicho[key] == value.
On failure, return-1 . This is equivalent to the Python expression ‘o.count(value) ’.

int PySequence In (PyObject *o, PyObject *value)
Determine ifo containsvalue. If an item ino is equal tovalue, return1, otherwise return0. On error, return
-1 . This is equivalent to the Python expression ‘value in o’.

int PySequence Index (PyObject *o, PyObject *value)
Return the first indexi for which o[i] == value. On error, return-1 . This is equivalent to the Python
expression ‘o.index(value) ’.

6.4 Mapping Protocol

int PyMapping Check (PyObject *o)
Return1 if the object provides mapping protocol, and0 otherwise. This function always succeeds.

int PyMapping Length (PyObject *o)
Returns the number of keys in objecto on success, and-1 on failure. For objects that do not provide sequence
protocol, this is equivalent to the Python expression ‘len(o) ’.

int PyMapping DelItemString (PyObject *o, char *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statement ‘del o[key] ’.

int PyMapping DelItem (PyObject *o, PyObject *key)
Remove the mapping for objectkeyfrom the objecto. Return-1 on failure. This is equivalent to the Python
statement ‘del o[key] ’.

int PyMapping HasKeyString (PyObject *o, char *key)
On success, return1 if the mapping object has the keykeyand0 otherwise. This is equivalent to the Python
expression ‘o.has key(key) ’. This function always succeeds.

int PyMapping HasKey (PyObject *o, PyObject *key)
Return1 if the mapping object has the keykeyand0 otherwise. This is equivalent to the Python expression
‘o.has key(key) ’. This function always succeeds.

PyObject* PyMapping Keys (PyObject *o)
On success, return a list of the keys in objecto. On failure, returnNULL. This is equivalent to the Python
expression ‘o.keys() ’.

PyObject* PyMapping Values (PyObject *o)
On success, return a list of the values in objecto. On failure, returnNULL. This is equivalent to the Python
expression ‘o.values() ’.

PyObject* PyMapping Items (PyObject *o)

6.4. Mapping Protocol 25

On success, return a list of the items in objecto, where each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expression ‘o.items() ’.

int PyMapping Clear (PyObject *o)
Make objecto empty. Returns1 on success and0 on failure. This is equivalent to the Python statement
‘ for key in o.keys(): del o[key] ’.

PyObject* PyMapping GetItemString (PyObject *o, char *key)
Return element ofo corresponding to the objectkeyor NULL on failure. This is the equivalent of the Python
expression ‘o[key] ’.

PyObject* PyMapping SetItemString (PyObject *o, char *key, PyObject *v)
Map the objectkey to the valuev in object o. Returns-1 on failure. This is the equivalent of the Python
statement ‘o[key] = v’.

6.5 Constructors

PyObject* PyFile FromString (char *file name, char *mode)
On success, returns a new file object that is opened on the file given byfile name, with a file mode given by
mode, wheremodehas the same semantics as the standard C routinefopen() . On failure, return-1 .

PyObject* PyFile FromFile (FILE *fp, char *file name, char *mode, int closeon del)
Return a new file object for an already opened standard C file pointer,fp. A file name,file name, and open mode,
mode, must be provided as well as a flag,closeon del, that indicates whether the file is to be closed when the
file object is destroyed. On failure, return-1 .

PyObject* PyFloat FromDouble (double v)
Returns a new float object with the valuev on success, andNULLon failure.

PyObject* PyInt FromLong (long v)
Returns a new int object with the valuev on success, andNULLon failure.

PyObject* PyList New(int len)
Returns a new list of lengthlenon success, andNULLon failure.

PyObject* PyLong FromLong (long v)
Returns a new long object with the valuev on success, andNULLon failure.

PyObject* PyLong FromDouble (double v)
Returns a new long object with the valuev on success, andNULLon failure.

PyObject* PyDict New()
Returns a new empty dictionary on success, andNULLon failure.

PyObject* PyString FromString (char *v)
Returns a new string object with the valuev on success, andNULLon failure.

PyObject* PyString FromStringAndSize (char *v, int len)
Returns a new string object with the valuev and lengthlen on success, andNULLon failure. Ifv is NULL, the
contents of the string are uninitialized.

PyObject* PyTuple New(int len)
Returns a new tuple of lengthlenon success, andNULLon failure.

26 Chapter 6. Abstract Objects Layer

CHAPTER

SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; e.g. to check that an object is a dictionary, usePyDict Check() . The chapter is
structured like the “family tree” of Python object types.

7.1 Fundamental Objects

This section describes Python type objects and the singleton objectNone.

Type Objects

PyTypeObject

PyObject * PyType Type

The None Object

PyObject * Py None
XXX macro

7.2 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

String Objects

PyStringObject
This subtype ofPyObject represents a Python string object.

PyTypeObject PyString Type
This instance ofPyTypeObject represents the Python string type.

int PyString Check (PyObject *o)

PyObject* PyString FromStringAndSize (const char *v, int len)

27

PyObject* PyString FromString (const char *v)

int PyString Size (PyObject *string)

char* PyString AsString (PyObject *string)

void PyString Concat (PyObject **string, PyObject *newpart)

void PyString ConcatAndDel (PyObject **string, PyObject *newpart)

int PyString Resize (PyObject **string, int newsize)

PyObject* PyString Format (PyObject *format, PyObject *args)

void PyString InternInPlace (PyObject **string)

PyObject* PyString InternFromString (const char *v)

char* PyString AS STRING(PyObject *string)

int PyString GETSIZE (PyObject *string)

Tuple Objects

PyTupleObject
This subtype ofPyObject represents a Python tuple object.

PyTypeObject PyTuple Type
This instance ofPyTypeObject represents the Python tuple type.

int PyTuple Check (PyObject *p)
Return true if the argument is a tuple object.

PyObject* PyTuple New(int s)
Return a new tuple object of sizes.

int PyTuple Size (PyTupleObject *p)
Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple GetItem (PyTupleObject *p, int pos)
Returns the object at positionposin the tuple pointed to byp. If posis out of bounds, returnsNULLand raises
anIndexError exception.

PyObject* PyTuple GETITEM(PyTupleObject *p, int pos)
Does the same, but does no checking of its arguments.

PyObject* PyTuple GetSlice (PyTupleObject *p, int low, int high)
Takes a slice of the tuple pointed to byp from low to highand returns it as a new tuple.

int PyTuple SetItem (PyTupleObject *p, int pos, PyObject *o)
Inserts a reference to objecto at positionposof the tuple pointed to byp. It returns0 on success.

void PyTuple SET ITEM(PyTupleObject *p, int pos, PyObject *o)
Does the same, but does no error checking, and shouldonlybe used to fill in brand new tuples.

int PyTuple Resize (PyTupleObject *p, int new, int lastis sticky)
Can be used to resize a tuple. Because tuples aresupposedto be immutable, this should only be used if there is
only one module referencing the object. Donot use this if the tuple may already be known to some other part
of the code.last is stickyis a flag — if set, the tuple will grow or shrink at the front, otherwise it will grow or
shrink at the end. Think of this as destroying the old tuple and creating a new one, only more efficiently.

List Objects

28 Chapter 7. Concrete Objects Layer

PyListObject
This subtype ofPyObject represents a Python list object.

PyTypeObject PyList Type
This instance ofPyTypeObject represents the Python list type.

int PyList Check (PyObject *p)
Returns true if its argument is aPyListObject .

PyObject* PyList New(int size)

int PyList Size (PyObject *list)

PyObject* PyList GetItem (PyObject *list, int index)

int PyList SetItem (PyObject *list, int index, PyObject *item)

int PyList Insert (PyObject *list, int index, PyObject *index)

int PyList Append (PyObject *list, PyObject *item)

PyObject* PyList GetSlice (PyObject *list, int low, int high)

int PyList SetSlice (PyObject *list, int low, int high, PyObject *itemlist)

int PyList Sort (PyObject *list)

int PyList Reverse (PyObject *list)

PyObject* PyList AsTuple (PyObject *list)

PyObject* PyList GETITEM(PyObject *list, int i)

int PyList GETSIZE (PyObject *list)

7.3 Mapping Objects

Dictionary Objects

PyDictObject
This subtype ofPyObject represents a Python dictionary object.

PyTypeObject PyDict Type
This instance ofPyTypeObject represents the Python dictionary type.

int PyDict Check (PyObject *p)
Returns true if its argument is aPyDictObject .

PyObject* PyDict New()
Returns a new empty dictionary.

void PyDict Clear (PyDictObject *p)
Empties an existing dictionary of all key/value pairs.

int PyDict SetItem (PyDictObject *p, PyObject *key, PyObject *val)
Insertsvalueinto the dictionary with a key ofkey. Bothkeyandvalueshould be PyObjects, andkeyshould be
hashable.

int PyDict SetItemString (PyDictObject *p, char *key, PyObject *val)
Insertsvalue into the dictionary usingkeyas a key.keyshould be achar * . The key object is created using
PyString FromString(key) .

int PyDict DelItem (PyDictObject *p, PyObject *key)
Removes the entry in dictionaryp with keykey. keyis a PyObject.

7.3. Mapping Objects 29

int PyDict DelItemString (PyDictObject *p, char *key)
Removes the entry in dictionaryp which has a key specified by thechar * key.

PyObject* PyDict GetItem (PyDictObject *p, PyObject *key)
Returns the object from dictionaryp which has a keykey. ReturnsNULL if the keykeyis not present.

PyObject* PyDict GetItemString (PyDictObject *p, char *key)
Does the same, butkeyis specified as achar * , rather than aPyObject * .

PyObject* PyDict Items (PyDictObject *p)
Returns aPyListObject containing all the items from the dictionary, as in the mapping methoditems()
(see thePython Library Reference).

PyObject* PyDict Keys (PyDictObject *p)
Returns aPyListObject containing all the keys from the dictionary, as in the mapping methodkeys() (see
thePython Library Reference).

PyObject* PyDict Values (PyDictObject *p)
Returns aPyListObject containing all the values from the dictionaryp, as in the mapping methodval-
ues() (see thePython Library Reference).

int PyDict Size (PyDictObject *p)
Returns the number of items in the dictionary.

int PyDict Next (PyDictObject *p, int ppos, PyObject **pkey, PyObject **pvalue)

7.4 Numeric Objects

Plain Integer Objects

PyIntObject
This subtype ofPyObject represents a Python integer object.

PyTypeObject PyInt Type
This instance ofPyTypeObject represents the Python plain integer type.

int PyInt Check (PyObject *)

PyObject* PyInt FromLong (long ival)
Creates a new integer object with a value ofival.

The current implementation keeps an array of integer objects for all integers between-1 and100 , when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value of1. I suspect the behaviour of Python in this case is undefined. :-)

long PyInt AS LONG(PyIntObject *io)
Returns the value of the objectio. No error checking is performed.

long PyInt AsLong (PyObject *io)
Will first attempt to cast the object to aPyIntObject , if it is not already one, and then return its value.

long PyInt GetMax ()
Returns the systems idea of the largest integer it can handle (LONGMAX, as defined in the system header files).

Long Integer Objects

PyLongObject
This subtype ofPyObject represents a Python long integer object.

30 Chapter 7. Concrete Objects Layer

PyTypeObject PyLong Type
This instance ofPyTypeObject represents the Python long integer type.

int PyLong Check (PyObject *p)
Returns true if its argument is aPyLongObject .

PyObject* PyLong FromLong (long v)

PyObject* PyLong FromUnsignedLong (unsigned long v)

PyObject* PyLong FromDouble (double v)

long PyLong AsLong (PyObject *pylong)

unsigned long PyLong AsUnsignedLong (PyObject *pylong)

double PyLong AsDouble (PyObject *pylong)

PyObject* PyLong FromString (char *str, char **pend, int base)

Floating Point Objects

PyFloatObject
This subtype ofPyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance ofPyTypeObject represents the Python floating point type.

int PyFloat Check (PyObject *p)
Returns true if its argument is aPyFloatObject .

PyObject* PyFloat FromDouble (double v)

double PyFloat AsDouble (PyObject *pyfloat)

double PyFloat AS DOUBLE(PyObject *pyfloat)

Complex Number Objects

Py complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

PyComplexObject
This subtype ofPyObject represents a Python complex number object.

PyTypeObject PyComplex Type
This instance ofPyTypeObject represents the Python complex number type.

int PyComplex Check (PyObject *p)
Returns true if its argument is aPyComplexObject .

Py complex Py c sum(Py complex left, Pycomplex right)

Py complex Py c diff (Py complex left, Pycomplex right)

7.4. Numeric Objects 31

Py complex Py c neg (Py complex complex)

Py complex Py c prod (Py complex left, Pycomplex right)

Py complex Py c quot (Py complex dividend, Pycomplex divisor)

Py complex Py c pow(Py complex num, Pycomplex exp)

PyObject* PyComplex FromCComplex (Py complex v)

PyObject* PyComplex FromDoubles (double real, double imag)

double PyComplex RealAsDouble (PyObject *op)

double PyComplex ImagAsDouble (PyObject *op)

Py complex PyComplex AsCComplex (PyObject *op)

7.5 Other Objects

File Objects

PyFileObject
This subtype ofPyObject represents a Python file object.

PyTypeObject PyFile Type
This instance ofPyTypeObject represents the Python file type.

int PyFile Check (PyObject *p)
Returns true if its argument is aPyFileObject .

PyObject* PyFile FromString (char *name, char *mode)
Creates a newPyFileObject pointing to the file specified innamewith the mode specified inmode.

PyObject* PyFile FromFile (FILE *fp, char *name, char *mode, int (*close))
Creates a newPyFileObject from the already-openfp. The functionclosewill be called when the file should
be closed.

FILE * PyFile AsFile (PyFileObject *p)
Returns the file object associated withp as aFILE * .

PyObject* PyFile GetLine (PyObject *p, int n)
undocumented as yet

PyObject* PyFile Name(PyObject *p)
Returns the name of the file specified byp as aPyStringObject .

void PyFile SetBufSize (PyFileObject *p, int n)
Available on systems withsetvbuf() only. This should only be called immediately after file object creation.

int PyFile SoftSpace (PyFileObject *p, int newflag)
Sets thesoftspace attribute ofp to newflag. Returns the previous value. This function clears any errors, and
will return 0 as the previous value if the attribute either does not exist or if there were errors in retrieving it.
There is no way to detect errors from this function, but doing so should not be needed.

int PyFile WriteObject (PyObject *obj, PyFileObject *p, int flags)
Writes objectobj to file objectp.

int PyFile WriteString (char *s, PyFileObject *p, int flags)
Writes strings to file objectp.

32 Chapter 7. Concrete Objects Layer

CObjects

XXX

7.5. Other Objects 33

34

CHAPTER

EIGHT

Initialization, Finalization, and Threads

void Py Initialize ()
Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exception ofPy SetProgramName() , PyEval InitThreads() ,
PyEval ReleaseLock() , andPyEval AcquireLock() . This initializes the table of loaded modules
(sys.modules), and creates the fundamental modulesbuiltin , main andsys . It also initializes
the module search path (sys.path). It does not setsys.argv ; usePySys SetArgv() for that. This is a
no-op when called for a second time (without callingPy Finalize() first). There is no return value; it is a
fatal error if the initialization fails.

int Py IsInitialized ()
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize() is called, this returns false untilPy Initialize() is called again.

void Py Finalize ()
Undo all initializations made byPy Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (seePy NewInterpreter() below) that were created and not yet destroyed
since the last call toPy Initialize() . Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without callingPy Initialize() again first). There is no
return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors (del () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extension may not work properly if their initialization routine is called more than once; this can happen if an
applcation callsPy Initialize() andPy Finalize() more than once.

PyThreadState* Py NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the
fundamental modulesbuiltin , main andsys . The table of loaded modules (sys.modules) and
the module search path (sys.path) are also separate. The new environment has nosys.argv variable. It
has new standard I/O stream file objectssys.stdin , sys.stdout andsys.stderr (however these refer
to the same underlyingFILE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation

35

of the new interpreter is unsuccessful,NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extension’sinit function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by callingPy Finalize() and
Py Initialize() ; in that case, the extension’sinit function is called again.

Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the same process, the insu-
lation between them isn’t perfect — for example, using low-level file operations likeos.close() they can
(accidentally or maliciously) affect each other’s open files. Because of the way extensions are shared between
(sub-)interpreters, some extensions may not work properly; this is especially likely when the extension makes
use of (static) global variables, or when the extension manipulates its module’s dictionary after its initialization.
It is possible to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this
should be done with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dic-
tionary of loaded modules. (XXX This is a hard-to-fix bug that will be addressed in a future release.)

void Py EndInterpreter (PyThreadState *tstate)
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thread state isNULL.
All thread states associated with this interpreted are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it returns.)Py Finalize() will destroy all sub-interpreters that
haven’t been explicitly destroyed at that point.

void Py SetProgramName (char *name)
This function should be called beforePy Initialize() is called for the first time, if it is called at all. It tells
the interpreter the value of theargv[0] argument to themain() function of the program. This is used by
Py GetPath() and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value is"python" . The argument should point to a zero-terminated character string
in static storage whose contents will not change for the duration of the program’s execution. No code in the
Python interpreter will change the contents of this storage.

char* Py GetProgramName ()
Return the program name set withPy SetProgramName() , or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated rules
from the program name set withPy SetProgramName() and some environment variables; for example, if
the program name is"/usr/local/bin/python" , the prefix is"/usr/local" . The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the
top-level ‘Makefile’ and the--prefix argument to theconfigurescript at build time. The value is available to
Python code assys.prefix . It is only useful on UNIX . See also the next function.

char* Py GetExecPrefix ()
Return theexec-prefixfor installed platform-dependent files. This is derived through a number of complicated
rules from the program name set withPy SetProgramName() and some environment variables; for example,
if the program name is"/usr/local/bin/python" , the exec-prefix is"/usr/local" . The returned
string points into static storage; the caller should not modify its value. This corresponds to the execprefix
variable in the top-level ‘Makefile’ and the--exec prefix argument to theconfigure script at build time.
The value is available to Python code assys.exec prefix . It is only useful on UNIX .

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent

36 Chapter 8. Initialization, Finalization, and Threads

files may be installed in the"/usr/local/plat" subtree while platform independent may be installed in
"/usr/local" .

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-UNIX operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure themount or automount programs to share
"/usr/local" between platforms while having"/usr/local/plat" be a different filesystem for each
platform.

char* Py GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (set byPy SetProgramName() above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable .

char* Py GetPath ()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is’:’
on UNIX , ’;’ on DOS/Windows, and’n’ (the ASCII newline character) on Macintosh. The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as the list
sys.path , which may be modified to change the future search path for loaded modules.

const char* Py GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as the listsys.version .

const char* Py GetPlatform ()
Return the platform identifier for the current platform. On UNIX , this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which
is also known as SunOS 5.x, the value is"sunos5" . On Macintosh, it is"mac" . On Windows, it is"win" .
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code assys.platform .

const char* Py GetCopyright ()
Return the official copyright string for the current Python version, for example

"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as the listsys.copyright .

const char* Py GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variablesys.version .

37

const char* Py GetBuildInfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variablesys.version .

int PySys SetArgv (int argc, char **argv)

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count could end up being incremented only once instead
of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on Python
objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter reg-
ularly release and reacquires the lock — by default, every ten bytecode instructions (this can be changed with
sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking I/O opera-
tions like reading or writing a file, so that other threads can run while the thread that requests the I/O is waiting for the
I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data
structure calledPyThreadState . This is new in Python 1.5; in earlier versions, such state was stored in global
variables, and switching threads could cause problems. In particular, exception handling is now thread safe, when the
application usessys.exc info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the currentPyThreadState structure. While most thread
packages have a way to store “per-thread global data,” Python’s internal platform independent thread abstraction
doesn’t support this yet. Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.
...Do some blocking I/O operation...
Reacquire the interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py_END_ALLOW_THREADS

The Py BEGIN ALLOWTHREADSmacro opens a new block and declares a hidden local variable; the
Py ENDALLOWTHREADSmacro closes the block. Another advantage of using these two macros is that when Python
is compiled without thread support, they are defined empty, thus saving the thread state and lock manipulations.

When thread support is enabled, the block above expands to the following code:

38 Chapter 8. Initialization, Finalization, and Threads

{
PyThreadState *_save;
_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

}

Using even lower level primitives, we can get roughly the same effect as follows:

{
PyThreadState *_save;
_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();
...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

}

There are some subtle differences; in particular,PyEval RestoreThread() saves and restores the value of the
global variableerrno , since the lock manipulation does not guarantee thaterrno is left alone. Also, when thread
support is disabled,PyEval SaveThread() andPyEval RestoreThread() don’t manipulate the lock; in
this case,PyEval ReleaseLock() andPyEval AcquireLock() are not available. This is done so that dy-
namically loaded extensions compiled with thread support enabled can be loaded by an interpreter that was compiled
with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving
the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread
could immediately acquire the lock and store its own thread state in the global variable). Reversely, when acquiring
the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am I going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves into
existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread state
pointer, before they can start using the Python/C API. When they are done, they should reset the thread state pointer,
release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter state
data structure hold global data that is shared by all threads in an interpreter, for example the module administration
(sys.modules). Depending on your needs, you can either create a new interpreter state data structure, or share the
interpreter state data structure used by the Python main thread (to access the latter, you must obtain the thread state
and access itsinterp member; this must be done by a thread that is created by Python or by the main thread after
Python is initialized).

XXX More?

PyInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp , which points to this thread’s interpreter state.

8.1. Thread State and the Global Interpreter Lock 39

void PyEval InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations such asPyEval ReleaseLock() or
PyEval ReleaseThread(tstate) . It is not needed before callingPyEval SaveThread() or PyE-
val RestoreThread() .

This is a no-op when called for a second time. It is safe to call this function before callingPy Initialize() .

When only the main thread exists, no lock operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the lock, it also acquires it. Before the Python
thread module creates a new thread, knowing that either it has the lock or the lock hasn’t been created yet, it
callsPyEval InitThreads() . When this call returns, it is guaranteed that the lock has been created and
that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

void PyEval AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaseLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available when
thread support is disabled at compile time.

void PyEval AcquireThread (PyThreadState *tstate)
Acquire the global interpreter lock and then set the current thread state totstate, which should not beNULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is not
available when thread support is disabled at compile time.

void PyEval ReleaseThread (PyThreadState *tstate)
Reset the current thread state toNULLand release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. Thetstateargument, which must not beNULL, is only used
to check that it represents the current thread state — if it isn’t, a fatal error is reported. This function is not
available when thread support is disabled at compile time.

PyThreadState* PyEval SaveThread ()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state to
NULL, returning the previous thread state (which is notNULL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval RestoreThread (PyThreadState *tstate)
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the thread state totstate,
which must not beNULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

Py BEGIN ALLOWTHREADS
This macro expands to ‘{PyThreadState * save; save = PyEval SaveThread(); ’. Note that
it contains an opening brace; it must be matched with a followingPy ENDALLOWTHREADSmacro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py ENDALLOWTHREADS
This macro expands to ‘PyEval RestoreThread(save); } ’. Note that it contains a closing brace; it
must be matched with an earlierPy BEGIN ALLOWTHREADSmacro. See above for further discussion of this
macro. It is a no-op when thread support is disabled at compile time.

Py BEGIN BLOCKTHREADS
This macro expands to ‘PyEval RestoreThread(save); ’ i.e. it is equivalent to

40 Chapter 8. Initialization, Finalization, and Threads

Py ENDALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py BEGIN UNBLOCKTHREADS
This macro expands to ‘save = PyEval SaveThread(); ’ i.e. it is equivalent to
Py BEGIN ALLOWTHREADSwithout the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the interpreter lock has been created.

PyInterpreterState* PyInterpreterState New()
Create a new interpreter state object. The interpreter lock must be held.

void PyInterpreterState Clear (PyInterpreterState *interp)
Reset all information in an interpreter state object. The interpreter lock must be held.

void PyInterpreterState Delete (PyInterpreterState *interp)
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have been
reset with a previous call toPyInterpreterState Clear() .

PyThreadState* PyThreadState New(PyInterpreterState *interp)
Create a new thread state object belonging to the given interpreter object. The interpreter lock must be held.

void PyThreadState Clear (PyThreadState *tstate)
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState Delete (PyThreadState *tstate)
Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset with
a previous call toPyThreadState Clear() .

PyThreadState* PyThreadState Get ()
Return the current thread state. The interpreter lock must be held. When the current thread state isNULL, this
issues a fatal error (so that the caller needn’t check forNULL).

PyThreadState* PyThreadState Swap(PyThreadState *tstate)
Swap the current thread state with the thread state given by the argumenttstate, which may beNULL. The
interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 41

42

CHAPTER

NINE

Defining New Object Types

PyObject* PyObject New(PyTypeObject *type)

PyObject* PyObject NewVar(PyTypeObject *type, int size)

TYPE PyObject NEW(TYPE, PyTypeObject *)

TYPE PyObject NEWVAR(TYPE, PyTypeObject *, int size)

PyObject, PyVarObject

PyObjectHEAD, PyObjectHEAD INIT, PyObjectVAR HEAD

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintob-
jargproc, objobjargproc, getreadbufferproc, getwritebufferproc, getsegcountproc, destructor, printfunc, getattrfunc,
getattrofunc, setattrfunc, setattrofunc, cmpfunc, reprfunc, hashfunc

PyNumberMethods

PySequenceMethods

PyMappingMethods

PyBufferProcs

PyTypeObject

DL IMPORT

PyTypeType

Py* Check

Py None, Py NoneStruct

43

44

CHAPTER

TEN

Debugging

XXX Explain Py DEBUG, PyTRACE REFS, PyREF DEBUG.

45

46

INDEX

Symbols
PyImport FindExtension() , 18
PyImport Fini() , 18
PyImport FixupExtension() , 19
PyImport Init() , 18
PyObject NEW(), 43
PyObject NEWVAR() , 43
PyObject New() , 43
PyObject NewVar() , 43
PyString Resize() , 28
PyTuple Resize() , 28
Py c diff() , 32
Py c neg() , 32
Py c pow() , 32
Py c prod() , 32
Py c quot() , 32
Py c sum() , 32
builtin (built-in module), 7, 35
import () (built-in function), 18
main (built-in module), 7, 35

C
compile() (built-in function), 18

D
divmod() (built-in function), 23

E
environment variables

$PATH, 8
$PYTHONHOME, 8
$PYTHONPATH, 8

F
freeze utility, 19

I
ihooks (standard module), 18

M
module

search path, 7, 35, 37

P
$PATH, 8
path

module search, 7, 35, 37
pow() (built-in function), 23
Py AtExit() , 17
Py BEGIN ALLOWTHREADS, 40
Py BEGIN BLOCKTHREADS, 40
Py BEGIN UNBLOCKTHREADS, 41
Py CompileString() , 9
Py complex , 31
Py DECREF(), 11
Py ENDALLOWTHREADS, 40
Py EndInterpreter() , 36
Py Exit() , 17
Py FatalError() , 17
Py FdIsInteractive() , 17
Py Finalize() , 35
Py GetBuildInfo() , 38
Py GetCompiler() , 37
Py GetCopyright() , 37
Py GetExecPrefix() , 36
Py GetPath() , 37
Py GetPlatform() , 37
Py GetPrefix() , 36
Py GetProgramFullPath() , 37
Py GetProgramName() , 36
Py GetVersion() , 37
Py INCREF() , 11
Py Initialize() , 35
Py IsInitialized() , 35
Py NewInterpreter() , 35
Py None, 27
Py SetProgramName() , 36
Py XDECREF(), 11
Py XINCREF() , 11
PyCallable Check() , 22
PyComplex AsCComplex() , 32
PyComplex Check() , 32
PyComplex FromCComplex() , 32

47

PyComplex FromDoubles() , 32
PyComplex ImagAsDouble() , 32
PyComplex RealAsDouble() , 32
PyComplex Type , 31
PyComplexObject , 31
PyDict Check() , 29
PyDict Clear() , 29
PyDict DelItem() , 30
PyDict DelItemString() , 30
PyDict GetItem() , 30
PyDict GetItemString() , 30
PyDict Items() , 30
PyDict Keys() , 30
PyDict New() , 26, 29
PyDict Next() , 30
PyDict SetItem() , 29
PyDict SetItemString() , 29
PyDict Size() , 30
PyDict Type , 29
PyDict Values() , 30
PyDictObject , 29
PyErr BadArgument() , 14
PyErr BadInternalCall() , 14
PyErr CheckSignals() , 14
PyErr Clear() , 13
PyErr ExceptionMatches() , 13
PyErr Fetch() , 13
PyErr GivenExceptionMatches() , 13
PyErr NewException() , 14
PyErr NoMemory() , 14
PyErr NormalizeException() , 13
PyErr Occurred() , 13
PyErr Print() , 13
PyErr Restore() , 14
PyErr SetFromErrno() , 14
PyErr SetInterrupt() , 14
PyErr SetNone() , 14
PyErr SetObject() , 14
PyErr SetString() , 14
PyEval AcquireLock() , 40
PyEval AcquireThread() , 40
PyEval InitThreads() , 40
PyEval ReleaseLock() , 40
PyEval ReleaseThread() , 40
PyEval RestoreThread() , 40
PyEval SaveThread() , 40
PyFile AsFile() , 32
PyFile Check() , 32
PyFile FromFile() , 26, 32
PyFile FromString() , 26, 32
PyFile GetLine() , 32
PyFile Name() , 32
PyFile SetBufSize() , 32
PyFile SoftSpace() , 32

PyFile Type , 32
PyFile WriteObject() , 32
PyFile WriteString() , 33
PyFileObject , 32
PyFloat AS DOUBLE(), 31
PyFloat AsDouble() , 31
PyFloat Check() , 31
PyFloat FromDouble() , 26, 31
PyFloat Type , 31
PyFloatObject , 31
PyImport AddModule() , 18
PyImport Cleanup() , 18
PyImport ExecCodeModule() , 18
PyImport FrozenModules , 19
PyImport GetMagicNumber() , 18
PyImport GetModuleDict() , 18
PyImport Import() , 18
PyImport ImportFrozenModule() , 19
PyImport ImportModule() , 18
PyImport ImportModuleEx() , 18
PyImport ReloadModule() , 18
PyInt AS LONG() , 30
PyInt AsLong() , 30
PyInt Check() , 30
PyInt FromLong() , 26, 30
PyInt GetMax() , 30
PyInt Type , 30
PyInterpreterState , 39
PyInterpreterState Clear() , 41
PyInterpreterState Delete() , 41
PyInterpreterState New() , 41
PyIntObject , 30
PyList Append() , 29
PyList AsTuple() , 29
PyList Check() , 29
PyList GETITEM() , 29
PyList GETSIZE() , 29
PyList GetItem() , 29
PyList GetSlice() , 29
PyList Insert() , 29
PyList New() , 26, 29
PyList Reverse() , 29
PyList SetItem() , 29
PyList SetSlice() , 29
PyList Size() , 29
PyList Sort() , 29
PyList Type , 29
PyListObject , 29
PyLong AsDouble() , 31
PyLong AsLong() , 31
PyLong AsUnsignedLong() , 31
PyLong Check() , 31
PyLong FromDouble() , 26, 31
PyLong FromLong() , 26, 31

48 Index

PyLong FromString() , 31
PyLong FromUnsignedLong() , 31
PyLong Type , 31
PyLongObject , 31
PyMapping Check() , 25
PyMapping Clear() , 26
PyMapping DelItem() , 25
PyMapping DelItemString() , 25
PyMapping GetItemString() , 26
PyMapping HasKey() , 25
PyMapping HasKeyString() , 25
PyMapping Items() , 25
PyMapping Keys() , 25
PyMapping Length() , 25
PyMapping SetItemString() , 26
PyMapping Values() , 25
PyNumber Absolute() , 23
PyNumber Add() , 23
PyNumber And() , 24
PyNumber Check() , 23
PyNumber Coerce() , 24
PyNumber Divide() , 23
PyNumber Divmod() , 23
PyNumber Float() , 24
PyNumber Int() , 24
PyNumber Invert() , 23
PyNumber Long() , 24
PyNumber Lshift() , 23
PyNumber Multiply() , 23
PyNumber Negative() , 23
PyNumber Or() , 24
PyNumber Positive() , 23
PyNumber Power() , 23
PyNumber Remainder() , 23
PyNumber Rshift() , 23
PyNumber Subtract() , 23
PyNumber Xor() , 24
PyObject CallFunction() , 22
PyObject CallMethod() , 22
PyObject CallObject() , 22
PyObject Cmp() , 21
PyObject Compare() , 22
PyObject DelAttr() , 21
PyObject DelAttrString() , 21
PyObject DelItem() , 23
PyObject GetAttr() , 21
PyObject GetAttrString() , 21
PyObject GetItem() , 22
PyObject HasAttr() , 21
PyObject HasAttrString() , 21
PyObject Hash() , 22
PyObject IsTrue() , 22
PyObject Length() , 22
PyObject Print() , 21

PyObject Repr() , 22
PyObject SetAttr() , 21
PyObject SetAttrString() , 21
PyObject SetItem() , 23
PyObject Str() , 22
PyObject Type() , 22
PyOS GetLastModificationTime() , 17
PyParser SimpleParseFile() , 9
PyParser SimpleParseString() , 9
PyRun AnyFile() , 9
PyRun File() , 9
PyRun InteractiveLoop() , 9
PyRun InteractiveOne() , 9
PyRun SimpleFile() , 9
PyRun SimpleString() , 9
PyRun String() , 9
PySequence Check() , 24
PySequence Concat() , 24
PySequence Count() , 25
PySequence DelItem() , 24
PySequence DelSlice() , 25
PySequence GetItem() , 24
PySequence GetSlice() , 24
PySequence In() , 25
PySequence Index() , 25
PySequence Repeat() , 24
PySequence SetItem() , 24
PySequence SetSlice() , 25
PySequence Tuple() , 25
PyString AS STRING() , 28
PyString AsString() , 28
PyString Check() , 27
PyString Concat() , 28
PyString ConcatAndDel() , 28
PyString Format() , 28
PyString FromString() , 26, 28
PyString FromStringAndSize() , 26, 27
PyString GETSIZE() , 28
PyString InternFromString() , 28
PyString InternInPlace() , 28
PyString Size() , 28
PyString Type , 27
PyStringObject , 27
PySys SetArgv() , 38
$PYTHONHOME, 8
$PYTHONPATH, 8
PyThreadState , 39
PyThreadState Clear() , 41
PyThreadState Delete() , 41
PyThreadState Get() , 41
PyThreadState New() , 41
PyThreadState Swap() , 41
PyTuple Check() , 28
PyTuple GETITEM() , 28

Index 49

PyTuple GetItem() , 28
PyTuple GetSlice() , 28
PyTuple New() , 26, 28
PyTuple SET ITEM() , 28
PyTuple SetItem() , 28
PyTuple Size() , 28
PyTuple Type , 28
PyTupleObject , 28
PyType Type , 27
PyTypeObject , 27

R
reload() (built-in function), 18
repr() (built-in function), 22
rexec (standard module), 18

S
search

path, module, 7, 35, 37
signal (built-in module), 14
str() (built-in function), 22
struct frozen , 19
sys (built-in module), 7, 35

T
thread (built-in module), 40
type() (built-in function), 22

50 Index

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions

	5 Utilities
	5.1 OS Utilities
	5.2 Process Control
	5.3 Importing Modules

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Constructors

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	Type Objects
	The None Object

	7.2 Sequence Objects
	String Objects
	Tuple Objects
	List Objects

	7.3 Mapping Objects
	Dictionary Objects

	7.4 Numeric Objects
	Plain Integer Objects
	Long Integer Objects
	Floating Point Objects
	Complex Number Objects

	7.5 Other Objects
	File Objects
	CObjects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock

	9 Defining New Object Types
	10 Debugging
	Index

