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WARNING: Even if we try to stay backward compatible, the only guaranteed
way to be 100% immune to changes is to copy/paste the .sty file of the library in
your main project folder. Please report any bug to https://github.com/leo-colisson/
robust-externalize!

WARNING 2: the recent versions 2.1 and 2.2 improves significantly the com-
pilation time compared with 2.0 that was surprisingly slow. Now, it is fairly well
optimized, and version 2.3 is even more optimized.

WARNING 3: If you read this documentation from the arXiv or CTAN, you might
prefer to read it from Github1 to get the latest version.

1 A taste of this library
This library allows you to cache any language: not only LATEX documents and TikZ images, taking
into account depth and overlays, but also arbitrary code. To use it, make sure to have v2.0 installed
(see instructions below), and load:

1https://github.com/leo-colisson/robust-externalize
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\usepackage{robust-externalize}
\robExtConfigure{
% To display instructions in the PDF to manually compile pictures if
% you forgot/do not want to compile with -shell-escape
enable fallback to manual mode,

}

Then type something like this (note the C for cached at the end of tikzpictureC, see below to
override the original tikz commands), and compile with pdflatex -shell-escape yourfile.tex
(or read below if you do not want to use -shell-escape (note that overleaf enables
shell-escape by default, and it is not needed once all pictures are cached)):

The next picture is cached My node respecting baseline ❤.
I am an overlay text

and you can see that overlay and
depth works.

\robExtConfigure{
add to preset={tikz}{

% we load some packages that will be loaded by figures based on the tikz preset
add to preamble={\usepackage{pifont}}

}
}
The next picture is cached %
\begin{tikzpictureC}[baseline=(A.base)]

\node[fill=red, rounded corners](A){My node respecting baseline \ding{164}.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};

\end{tikzpictureC} and you can see that overlay and depth works.

Since v2.3 we also provide a way to include online pictures with \includegraphicsWeb:

Here is a picture of cat downloaded online: .

Here is a picture of cat downloaded online: \includegraphicsWeb[width=3cm]{http://placekitten.com/400/300}.

You can also cache arbitrary code (e.g. python). You can also define arbitrary compilation
commands, inclusion commands, and presets to fit you need. For instance, you can create a preset
to obtain:

The for loop

1 for name in ["Alice", "Bob"]:
2 print(f"Hello {name}")

Output:

Hello Alice
Hello Bob

\begin{CacheMeCode}{python print code and result, set title={The for loop}}
for name in ["Alice", "Bob"]:

print(f"Hello {name}")
\end{CacheMeCode}

Actually, we also provide this style by default (and explain how to write it yourself), just make
sure to load:
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\usepackage{pythonhighlight}
\usepackage[most]{tcolorbox}

You can also cache any environment and command using something like:

• For environments:

A forest tree automatically cached

VP

DP

John

V’

V

sent

DP

Mary

DP

D

a

NP

letter

And one not cached:

VP

DP

John

V’

V

sent

DP

Mary

DP

D

a

NP

letter

% We cache the environment forest
\cacheEnvironment{forest}{latex, add to preamble={\usepackage{forest}}}

A forest tree automatically cached %
\begin{forest}

[VP
[DP[John]]
[V’

[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]

]
]

\end{forest}\\
And one not cached: %
\begin{forest}<disable externalization>

[VP
[DP[John]]
[V’

[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]

]
]

\end{forest}

People interested by tikz-cd might like this example:

A B
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\cacheEnvironment{tikzcd}{tikz, add to preamble={\usepackage{tikz-cd}}}
\begin{tikzcd}

A \rar & B
\end{tikzcd}

• For commands:

A ZX figure
α aπ

β bπ
, we can disable externalization:

α aπ

β bπ
or add more options:

α Hello Alice.

β bπ

% We cache the command \zx
% O{} = optional argument, m = mandatory argument.
% Autodetected if command defined with xparse (NewDocumentCommand)
% (in this example it is redundant since zx IS defined with xparse syntax)
\cacheCommand{zx}[O{}O{}O{}m]{latex, add to preamble={\usepackage{zx-calculus}}}

A ZX figure %
\zx{

\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

}, we can disable externalization: %
\zx<disable externalization>{

\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

} or add more options: %
\zx<add to preamble={\usepackage{amsmath}\def\hello#1{Hello #1.}}>{

\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{\hello{Alice}}} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

}

We also provide methods to cache automatically TikZit2 pictures (\cacheCommand alone would
not be sufficient as the source relies on an external file):

%%%%%%% In your preamble:
\cacheTikzitWithStyle{new_zxstyle.tikzstyles}

%%%%%%% In your document:
\tikzfig{demo} %figures/ can be omitted

You can also cache all tikz pictures by default, except those that are run from some commands
(as remember picture does not work yet, this is important). For instance, this code will allow you
to freely use the todonotes package (that uses internally tikz but is not cachable with this library
since it uses remember picture) while caching all other elements:

%% this will cache \tikz and tikzpictures by default (using the tikz preset)
\cacheTikz
%% possibly add stuff to the tikz preset
\robExtConfigure{

add to preset={tikz}{
add to preamble={

\def\whereIAm{(I am cached)}
}

},
}%
%% We say not to cache the todo commands:
\cacheCommand{todo}[O{}m]{disable externalization}%
\todo{Check how to use cacheCommand and cacheEnvironment}
\tikz[baseline=(A.base)] \node(A)[rounded corners,fill=green]{my cached node \whereIAm};

2https://tikzit.github.io/
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will gives you: my cached node (I am cached)Check
how to use
cacheCom-
mand and
cacheEnvi-
ronment

Note that most options can either be specified anywhere in the document like

\robExtConfigure{
disable externalization

}

, inside a preset (that is nothing more than a pgf style), or in the options of the cached en-
vironment (either inside CacheMe or inside the first parameter <...> for automatically cached
environments):

Hello Alice! See, you can cache
any data, including minipages,
define macros, combine presets,
override a single picture or a
whole part of a document etc.

\robExtConfigure{
new preset={my preset with xcolor}{
latex, % load the latex preset, you can also use the tikz preset and more
add to preamble={

% load xcolor in the preamble of the cached document
\usepackage{xcolor}

},
},

}
\begin{CacheMe}{my preset with xcolor, add to preamble={\def\hello#1{Hello #1!}} }

\begin{minipage}{5cm}
\textcolor{red}{\hello{Alice} See, you can cache any data, including minipages,

define macros, combine presets, override a single picture or a whole part of
a document etc.}

\end{minipage}
\end{CacheMe}

(see that CacheMe can be used to cache arbitrary pictures)
Or include images generated in python:

\begin{CacheMeCode}{python, set includegraphics options={width=.8\linewidth}}
import matplotlib.pyplot as plt
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{CacheMeCode}

You can also include files from the root folder, if you want, recompile all pictures if this files
changes (nice to ensure maximum purity):

The answer is 42.

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__common_inputs.tex}}}

The answer is \myValueDefinedInCommonInputs.
\end{CacheMe}

Since v2.1, we also provide easy ways to export counters:

The current page is 6.

\begin{tikzpictureC}<forward counter=page>
\node[rounded corners, fill=red]{The current page is \thepage.};

\end{tikzpictureC}
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or even macros (we can also export evaluated macros):

Alice Bob

\cacheTikz
\newcommand{\MyNodeWithNewCommand}[2][draw,thick]{\node[rounded corners,fill=red,#1]{#2};}
\begin{tikzpicture}<forward=\MyNodeWithNewCommand>
\MyNodeWithNewCommand{Alice}
\MyNodeWithNewCommand[xshift=2cm]{Bob}

\end{tikzpicture}

Since manually forwarding elements can be quite verbose, it is also possible to automatically
apply some styles depending on the content of the element to cache. For instance, we provide a
way to automatically forward some macros:

Recompiled only if MyNode is changed but not if the (unused) MyGreenNode is changed.

Recompiled only if MyGreenNode is changed but not if the (unused) MyNode is changed.

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyNode}[2][draw,thick]{\node[rounded corners,fill=red,#1]{#2};}
\newcommandAutoForward{\MyGreenNode}[2][draw,thick]{\node[rounded corners,fill=green,#1]{#2};}

\begin{tikzpicture}
\MyNode{Recompiled only if MyNode is changed}
\MyNode[xshift=8cm]{but not if the (unused) MyGreenNode is changed.}

\end{tikzpicture}\\

\begin{tikzpicture}
\MyGreenNode{Recompiled only if MyGreenNode is changed}
\MyGreenNode[xshift=8cm]{but not if the (unused) MyNode is changed.}

\end{tikzpicture}

We also provide a number of other functionalities, among others:

• To achieve a pleasant and configurable interface (e.g. pass options to a preset with default
values), we introduced placeholders, that can be of independent interest.

• To get maximum purity while minimizing the number of rebuild, we provide functions to
forward macros defined in the parent document, and the set of macros that must be forwarded
can be automatically detected for each element to cache. It is also possible to conditionally
import a library if the element contains a given macro.

• We provide a way to compile a template via:
new compiled preset={compiled ZX}{templateZX, compile latex template}{}
in order to make the compilation even faster (but you cannot use presets except add to preamble)

• We give a highly configurable template, compilation and inclusion system, to cache basically
anything

• We show how to compile all images in parallel using \robExtConfigure{compile in parallel}
or \robExtConfigure{compile in parallel after=5} (make sure to have xargs installed,
which is available by default on linux but must be installed on Windows via by installing the
lightweight GNU On Windows (Gow) https://github.com/bmatzelle/gow if you use the
default command) even during the first run, so that the first run becomes faster to compile
than a normal run(!)

• We furnish commands to automatically clean the cache while keeping cached elements that
are still needed.

• And more…
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3 Support
If you find this library useful, please consider citing the arXiv version of this documentation,
possibly using \nocite. If you want to support me financially and offer me a virtual coffee, you
can use my GitHub sponsor page3.

4 Introduction
4.1 Why do I need to cache (a.k.a. externalize) parts of my document?
One often wants to cache (i.e. store pre-compiled parts of the document, like figures) operations
that are long to do: For instance, TikZ is great, but TikZ figures often take time to compile
(it can easily take a few seconds per picture). This can become really annoying with documents
containing many pictures, as the compilation can take multiple minutes: for instance my thesis
needed roughly 30mn to compile as it contains many tiny figures, and LaTeX needs to compile
the document multiple times before converging to the final result. But even on much smaller
documents you can easily reach a few minutes of compilation, which is not only high to get a
useful feedback in real time, but worse, when using online LATEX providers (e.g. overleaf), this can
be a real pain as you are unable to process your document due to timeouts.

Similarly, you might want to cache the result of some codes, for instance a text or an image
generated via python and matplotlib, without manually compiling them externally.

4.2 Why not using TikZ’s externalize library?
TikZ has an externalize library to pre-compile these images on the first run. Even if this library is
quite simple to use, it has multiple issues:

• If you add a picture before existing pre-compiled pictures, the pictures that are placed after
will be recompiled from scratch. This can be mitigated by manually adding a different prefix
to each picture, but it is highly not practical to use.

• To compile each picture, TikZ’s externalize library reads the document’s preamble and needs
to process (quickly) the whole document. In large documents (or in documents relying on
many packages), this can result in a significant loading time, sometimes much bigger than the
time to compile the document without the externalize library: for instance, if the document
takes 10 seconds to be processed, and if you have 200 pictures that take 1s each to be
compiled, the first compilation with the TikZ’s externalize library will take roughly half an
hour (200 × 10s = 33mn) instead of 3mn without the library. And if you add a single picture
at the beginning of the document… you need to restart everything from scratch. For these
reasons, I was not even able to compile my thesis with TikZ’s external library in a reasonable
time.

• If two pictures share the same code, it will be compiled twice

• Little purity is enforced: if a macro changes before a pre-compiled picture that uses this
macro, the figure will not be updated. This can result in different documents depending on
whether the cache is cleared or not.

3https://github.com/sponsors/tobiasBora
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• As far as I know, it is made for TikZ picture mostly, and is not really made for inserting
other stuff, like matplotlib images generated from python etc...

• According to some maintainers of TikZ, “the code of the externalization library is mostly
unreadable gibberish4”, and therefore most of the above issues are unlikely to be solved in a
foreseable future.

4.3 FAQ
What is supported? You can cache most things, including tikz pictures, (including ones with
overlays (but not with remember picture), with depth etc.), python code etc. We tried to make
the library as customizable as possible to be useful in most scenarios. You can also send some data
(e.g. : the current page) to the compiled pictures, and feed some data back to the main document
(say that you want to compute a value that takes time to compute, or compute the number of
pages of the produced document in order to increase the number of pages accordingly…). Since
v2.0, you can also cache automatically any environment.

What is not supported? We do not yet support remember picture, and you can’t use (yet)
cross-references inside your images (at least not without further hacks) or links as links are stripped
when the pdf is included. I might have some ideas to solve this5, meanwhile you can just disable
locally the library on problematic figures. Note that this library is quite young, so expect untested
things.

What OS are supported? I tested the library on Linux and Windows, but the library should
work on all OS, including MacOs. Please let me know if it fails for you.

Do I need to compile using -shell-escape? Since we need to compile the images via an
external command the first time, the simpler option is to add the argument -shell-escape to let
the library run the compilation command automatically (this is also the case of TikZ’s externalize
library). Note that overleaf already defines this option by default, so you don’t need to do anything
special in overleaf. Moreover, this is only needed during the first compilation since once the
image is cached, -shell-escape is not needed anymore (therefore, on the arXiv website, you
can upload the robustExternalize folder containing the cached images without any issue, see
section 4.4 for details). However, people worried by security issues of -shell-escape (that allows
arbitrary code execution if you don’t trust the LATEX code) might be interested by these facts:

• You can choose to display a dummy content explaining how to manually compile the pictures
instead of giving an error until they are compiled, see enable fallback to manual mode.

• You can compile manually the images: all the commands that are left to be executed are
also listed in JOBNAME-robExt-compile-missing-figures.sh and you can just inspect and
run them, either with bash robExt-compile-missing-figures.sh or by typing them man-
ually (most of the time it’s only a matter of running pdflatex somefile.tex from the
robustExternalize folder).

• If you allowed:

– pdflatex (needed to compile latex documents)
– cd (not needed when using no cache folder)
– and mkdir (not needed when using no cache folder or if the cache folder that defaults

to robustExternalize is already created)

to run in restricted mode (so without enabling -shell-escape), then there is no need for
-shell-escape. In that case, set force compilation and this library will compile even if
-shell-escape is disabled.

4https://github.com/pgf-tikz/pgf/issues/758
5https://tex.stackexchange.com/questions/695277/clickable-includegraphics-for-cross-reference-data
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• If images are all already cached, you don’t need to enable -shell-escape (this might be
interesting e.g. to send a pre-cached document to the arxiv or to a publisher: just make sure
to include the cache folder).

• We use very few commands to compile latex files, basically only pdflatex, mkdir (to create
the cache folder if needed) and cd (if the cache folder is not present). You might want to
allow them in restricted mode.

Is it working on overleaf? Yes: overleaf automatically compiles documents with -shell-
escape, so nothing special needs to be done there (of course, if you use this library to run some
code, the programming language might not be available, but I heard that python is installed on
overleaf servers for instance, even if this needs to be doubled checked). If the first compilation of
the document to cache images times out, you can just repeat this operation multiple times until
all images are cached. In case of doubt, you can look at the log file to see which file is getting
cached. If overleaf still times out, read the next paragraph.

Overleaf still times-out, why? During the first compilation, the pictures are not compiled, so
you may obtain a time out. However, at each compilation, new pictures should be added to the
cache, so you should eventually be able to compile (check the log file, you should read “No need to
recompile XX.pdf” if the picture is already in the cache). If you want this to be faster, you can try
to enable \robExtConfigure{compile in parallel} in order to compile the pictures in parallel
(need 2 compilations). If you do not often change all pictures, you can also locally download the
project (it might be more practical to use the git bridge if you have it enabled), compile them
locally, and copy back the robustExternalize folder containing all cached pictures.

If all pictures are still compiled, but you still experience timeouts, you can try to use compiled
presets, with something like:

\robExtConfigure{
new compiled preset={compiled ZX}{templateZX, compile latex template}{}

}

to create a new, more efficient (we call it compiled) preset called compiled ZX from a preset
templateZX.

You can also try to reduce the compilation time by reducing the number of compilation passes.
Indeed, overleaf will run pdflatexmultiple times to make it converge to the final version, increasing
mechanically the compilation time (for instance a file that takes 6s to compile locally was not able
to compile online). You can force overleaf to compile a single time the document by creating a
latexmkrc file at the root of the project, containing:

$max_repeat=1

Of course, you might need to recompile more than once the document to reach the final version.

Do you have some benchmarks? We completely rewrote the original library to introduce
the notion of placeholders (before, the template was fixed forever), allowing for greater flexibility.
The original rewrite (1.0) had really poor performance compared to the original library (only x3
improvement compared to no externalization, while the old library could be 20x faster), but we
made some changes (v2.0) that correct this issue to recover the original speed (at least when using
compiled templates). Here is a benchmark we made on an article with 159 small pictures (ZX
diagrams from the zx-calculus library):

• without externalization: 1mn25

• with externalization, v2.0 (first run, not in parallel): 3mn05, so takes twice the time; but
(first run in parallel) takes 60s (so faster by a factor of 1.5).

• with externalization, v2.0 (next runs): 5.77s (it is 15x times faster)
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• with externalization, v2.0, with a “compiled” template (less flexible) like in the old version:
4.0s (22x faster)

• with externalization, old library (next runs): 4.16s (so 21x faster)

Can I compile pictures in parallel to speed up notably the first run? The first run
might be particularly long to compile since many elements are still not cached and re-starting
LATEX on each picture can take quite some time. If you have v2.1 or above, and if you have xargs
installed (installed by default on most linux, on Windows you need to install the lightweight GNU
On Windows (Gow) https://github.com/bmatzelle/gow), you can simply compile all images in
parallel by typing at the beginning of the file:
\robExtConfigure{
compile in parallel

}

In my benchmark, I observed a compilation 1.5x faster than a normal compilation without any
caching involved. We provide more options in section 6.3.10.

Can I use version-control to keep the cached files in my repository? Sure, each cached
figure is stored in a few files (typically one pdf and one LATEX file, plus the source) having the same
prefix (the hash), avoiding collision between runs. Just commit these files and you are good to go.

Can I deal with baseline position and overlays ? Yes, the depth of the box is automatically
computed and used to include the figure by default, and additional margin is added to the image
(30cm by default) to allow overlay text.

How is purity enforced? Purity is the property that if you remove the cached files and re-
compile your document, you should end-up with the same output. To enforce purity, we compute
the hash of the final program, including the compilation command, the dependency files used for
instance in \input{include.tex} (unless you prefer not to, for instance to keep parts of the pro-
cess impure for efficiency reasons), the forwarded macros, and put the code in a file named based
on this hash. Then we compile it if it has not been used before, and include the output. Changing
a single character in the file, the tracked dependencies, or the compilation command will lead to a
new hash, and therefore to a new generated picture.

What if I don’t want purity for all files? If you do not want your files to be recompiled if
you modify a given file, then just do not add this file to the list of dependencies.

Can I extend it easily? We tried to take a quite modular approach in order to allow easy
extensions. Internally, to support a new cache scheme, we only expect a string containing the
program (possibly produced using a template), a list of dependencies, a command to compile this
program (e.g. producing a pdf and possibly a tex file with the properties (depth…) of the pdf),
and a command to load the result of the compilation into the final document (called after loading
the previously mentioned optional tex file). Thanks to pgfkeys, it is then possible to create simple
pre-made settings to automatically apply when needed.

How does it compare with https://github.com/sasozivanovic/memoize? I recently be-
came aware of the great https://github.com/sasozivanovic/memoize. While we aim to solve
a similar goal, our approaches are quite different. While I focus on purity, and therefore create a
different file for each picture, the above project puts all pictures in a single file and compile them
all at once to avoid losing time to run the latex command for each picture (this mostly makes a
difference for the first compilation). Our understanding of the main differences is the following:

Pros of https://github.com/sasozivanovic/memoize:

• The above library might be easier to setup as they do not need to specify the preamble of
the file to compile (the preamble of the main file is used), and tikz pictures are automatically
memoized (we provide \cacheTikz for that, but you still need to specify the preamble once).
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• This library allows to compile multiple pictures while loading LATEX only once, saving the
time to start LATEX for each picture. However, it is not clear that it brings a faster compilation
time compared to our library for multiple reasons:

– While during the first run all pictures are compiled with a single LATEX instance6 (and
inserted at the beginning of the document), they still need to extract each picture in
a separate pdf file to include it at the right place in the document. This is done by
default using pdflatex, which means that you need to call pdflatex once per picture,
mitigating the advantage of compiling all pictures at once. Note that they also provide
a python script to separate the pictures more efficiently, but this needs further manual
interventions.

– We provide an option compile in parallel to compile all images in parallel, and the
time is in my benchmark 1.5x faster than a normal compilation without any caching.
Using this option, we should therefore compile faster than memoized that is not able to
run jobs in parallel.

• Even if it does not officially support contexts, context might be automatically transmitted
(while we need to do a bit of work to manually or semi-automatically define the context
needed to compile a picture). However, this can break purity (see below).

Cons of https://github.com/sasozivanovic/memoize:

• The purity is not enforced so strongly since all images are in the same file. Notably, the
hash only depends on the picture, but not on its context. So for instance if you define
\def\mycolor{blue} before the picture, and use \mycolor inside the picture, if you change
later the color to, say, \def\mycolor{red}, the picture will not be recompiled (so cleaning
the cache and recompiling would produce a different result). In our case, the purity is always
strictly enforced (unless you choose not to) since the context must be passed (explicitly or
semi-automatically) to the compiled file.

• As a result, the above library has poor support for contexts (in our case, you can easily,
for instance, make a picture depend on the current page, and recompile the picture only if
the current page changes: you can also do it the other way, and change some counters, say,
depending on the cached file).

• The above library only focuses on LATEX while our library works for any language.

• The above library can only cache in pdf format, while we can generate any format (text, tex,
jpg… and even videos that I include in my beamer presentations… but it is another topic!).

• We have an arguably more complete documentation.

Note that remember picture is not supported in both libraries, but we can provide multiple
methods to disable externalizations when remember picture is used.

4.4 How to use with arXiv
You can completely use this library with the arXiv’s website (this documentation is also compiled
in arXiv), but you need to follow a few steps due to arXiv’s particularities:

• First, arXiv does NOT allow -shell-escape. So you either need to disable externalization
(not recommended since this will of course increase the compilation time and will not work
when working with non-latex code like python or external images), or you need to compile
locally the document to cache all images locally7, and upload the robustExternalize/ folder
containing all cached images online in a zip file.

6We could also do something similar using some scripting to merge multiple cached files together, but this is not
yet implemented.

7Make sure to recompile from scratch, by removing the .aux file, if your cached pictures can depend on counters
(like the current page) that can change across compilations.
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• Moreover, if you choose to upload the robustExternalize/ folder, the arXiv website will
automatically remove all .pdf files if a .tex file is present (which will break this library,
since it puts all sources in the .tex file and the output in a .pdf file). The trick is to rename
all the source .tex files into .tex-backup (this library will automatically recreate the .tex
from the .tex-backup starting from v2.4). We provide two approaches for that:

– Solution 1: if you have python installed the most robust solution is to run

$ python robExt-prepare-for-arxiv.py

before sending the document to the arXiv. This will rename all the .tex files in the
robust-externalize folder that have a matching *.pdf file into .tex-backup, and list
these files in robExt-arxiv-files-to-rename.txt. Then, add in the preamble of your
document:

\robExtConfigure{
rename backup files for arxiv,

}

This will automatically rename back the .tex-backup files into .tex (without needing
shell-escape), based on the robExt-arxiv-files-to-rename.txt file (if this file exists
and if the files have not already been renamed: it is therefore safe to keep this option on
even without running the python code), allowing the rest of the document to compile
normally.

– Solution 2: if you do not have python installed, you can simply run:

\robExtConfigure{
backup source for arxiv,

}

This will automatically rename the source files .tex into .tex-backup (make sure to
comment this line on the final pdf sent to the arXiv). Note however that this is less
robust than solution 1 since the .tex-backup will be renamed into .tex only if it is in the
source, but sometimes other .tex files might need to be renamed as well: for instance,
gnuplot with cairolatex terminal creates two files -gnuplot-.tex and -gnuplot-
.pdf, and this file will not be renamed with this method, so the -gnuplot-.pdf file will
be lost.

• This should be enough to compile most documents. But note that since the arXiv uses
a different Texlive version and might try to compile other document formats, it might be
the case that the number of page varies from your original document: if you uses things
like forward counter=page, it might cause you some troubles since your local cache might
contain the cache for page=42 while the arXiv would ask for the cached value for page=45,
producing an error like enable -shell-escape. There are a few steps you can follow to fix
these issues:

– First, make sure to have the same margins/paper on your local file and online (by default
arXiv will create a document in letterpaper). To that end, you can force the paper
format with \documentclass[a4paper]{article}.

– ArXiv might try to compile with various output formats like eps, so it might help to
force a pdf output by starting your document with \pdfoutput=1 (not sure how helpful
this is, it might already be forced when we insert a pdf?).

– ArXiv will automatically remove all empty files. While for some files it is not an issue
(aux files and compilation logs), if this file is the .pdf it will be an issue. So make sure
to always generate non-empty output files.

– If despite these options, arXiv still tries to fetch a cached value that is not present in
your local cache, you can enable
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\robExtConfigure{print source when saving}

This will print in the log file the content of the .deps file, of the .tex file, and the
compilation command that would have been run without the error. You can then
recreate these files in the cache and compile it locally. If you do not want to copy/-
paste the content of the file, it might be simpler to simply see the value that differs
from your own local cache and just temporarily change this value in your local doc-
ument to automatically generate the correct cache entry. If the value is obtained via
forward counter=page, you can use forward counter force value={page}{45} to
force the value of the counter.

5 Tutorial
5.1 Installation
To install the library, just copy the robust-externalize.sty file into the root of the project.
Then, load the library using:

\usepackage{robust-externalize}

If you want to display a message in the pdf on how to manually compile the file if -shell-
escape is disabled, you can also load this configuration (only available on v2.0):

\robExtConfigure{
enable fallback to manual mode,

}

(otherwise, it will give you an error if -shell-escape is disabled and if some pictures are not yet
cached)

If you forget/do not want to enable -shell-escape, this will give you this kind of message
with instructions to follow to compile without shell escape:
Manual mode: either compile with -shell-escape or compile:
robustExternalize/robExt-9A58BBFD5C2B6C079891CF68E406829D.tex
via
cd robustExternalize/ && pdflatex -halt-on-error "robExt-
9A58BBFD5C2B6C079891CF68E406829D.tex"
or call
bash robust-externalize-robExt-compile-missing-figures.sh
to compile all missing figures.

If you use an editor, you can usually configure -shell-escape directly inside the editor, even
on a per-document basis. Shell-escape is enabled by default on overleaf. In emacs/auctex, just
add at the end of your document:

% Local Variables:
% TeX-command-extra-options: "--shell-escape"
% End:

save, and run M-x revert-buffer (Note that it seems that --shell-escape can be used with one
or two dashes on Linux, I am not sure about the number of dashes needed in Windows.)

For TeXstudio, you can enable shell-escape on the current document by adding in your docu-
ment:

% !TeX TXS-program:compile = txs:///pdflatex/[--shell-escape]

and you might also want to enable:

\robExtConfigure{textstudio}
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to get clearer error messages as TeXstudio is fairly bad at parsing error messages8 (see also
print whole file in error message).

If you use latexmk (with any editor), you can create a file called .latexmkrc containing:

$pdf_mode = 1;
$pdflatex = 'pdflatex --shell-escape';

For other editors, this answer9 describe pretty accurately the solutions you have depending on
your software.

5.2 Caching a tikz picture
If you only care about TikZ’s picture, you have 3 options:

1. Call once \cacheTikz that will redefine tikzpicture and \tikz to use our library (if you use
this solution, make sure to read how to disable externalization (section 6.3.6) as we do not
support for instance remember picture). Then, configure the default preamble for cached
files as explained below by extending the tikz or tikzpicture presets (that first loads tikz).

2. Use the generic commands that allows you to wrap an arbitrary environment:

% name environment ---v v----- preset options
\cacheEnvironment{tikzpicture}{tikzpicture}

Note that you can also wrap commands (that you call with \foo instead of \begin{foo}...\end{foo})
using this:
\cacheCommand{yourcommand}[O{default val}m]{your preset options}
(O{default val}m means that the command accepts one optional argument with de-
fault value default val and one mandatory argument) but we do recommend to use
\cacheCommand to cache \tikz since \tikz has a quite complicated parsing strategy
(e.g. you can write \tikz[options] \node{foo}; which has no mandatory argument en-
closed in {}). \cacheTikz takes care of this already and caches both the environment
\begin{tikzpicture} and the macro \tikz.

3. Use tikzpictureC instead of tikzpicture (this is mostly done to easily convert existing
code to this library, but works only for tikz pictures).

4. Use the more general CacheMe environment, that can cache TikZ, LATEX, python, and much
more.

These 4 options are illustrated below (note that all commands accept a first optional argument
enclosed in <...> that contains the options to pass to CacheMe after loading the tikzpicture
preset, that loads itself the tikz preset first):

Option 1:

I am a cached picture: Hello World! . I am a non-cached picture: Hello World! .

%% We override the default tikzpicture environment
%% to externalize all pictures
%% Warning: it will cause troubles with pictures relying on |remember pictures|
\cacheTikz

I am a cached picture: \begin{tikzpicture}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{tikzpicture}. %

I am a non-cached picture: \begin{tikzpicture}<disable externalization>[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{tikzpicture}.

8https://github.com/texstudio-org/texstudio/issues/1410
9https://tex.stackexchange.com/questions/598818/how-can-i-enable-shell-escape
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Option 2:

I am a cached picture: Hello World! .

\cacheEnvironment{tikzpicture}{tikzpicture}
I am a cached picture: \begin{tikzpicture}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{tikzpicture}.

Option 3:

I am a cached picture: Hello World! .

I am a cached picture: \begin{tikzpictureC}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{tikzpictureC}.

Option 4:

I am a cached picture: Hello World! .

I am a cached picture: \begin{CacheMe}{tikzpicture}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{CacheMe}.

Since CacheMe is more general as it applies also to non-tikz pictures (just replace tikzpicture
with the style of your choice), we will mostly use this syntax from now.

5.3 Custom preamble
Note that the pictures are compiled in a separate document, with a different preamble and class
(we use the standalone class). This is interesting to reduce the compilation time of each picture
(loading a large preamble is really time consuming) and to avoid unnecessary recompilation (do
you want to recompile all your pictures when you add a single new macro?) without sacrificing
the purity. But of course, you need to provide the preamble of the pictures. The easiest way is
probably to modify the tikz preset (since tikzpicture loads this style first, it will also apply to
tikzpictures. Note that you can also modify the latex preset if you want the change to apply to
all LATEX documents):

See, tikz’s style now packs the shadows library by default:

\robExtConfigure{
add to preset={tikz}{
add to preamble={\usetikzlibrary{shadows}},

},
}

See, tikz's style now packs the |shadows| library by default: %
\begin{CacheMe}{tikzpicture}[even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

and you can also create a new preset, and why not mix multiple presets together:
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VP

DP

Hello John.

V’

V

sent

DP

Mary

DP

D

a

NP

letter

\robExtConfigure{
new preset={load forest}{
latex,
add to preamble={\usepackage{forest}},

},
new preset={load hello}{
add to preamble={\def\hello#1{Hello #1.}},

},
}

\begin{CacheMe}{load forest, load hello}
\begin{forest}
[VP

[DP[\hello{John}]]
[V’
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]

]
]

\end{forest}
\end{CacheMe}

Note: the add to preset and new preset directives have been added in v2.0, together with
the tikzpicture preset. In v1.0, you would do tikz/.append style={...} (and you can still do
this if you prefer), the difference is that .append style and .style require the user to double all
hashes like \def\mymacro##1{Hello ##1.} which can lead to confusing errors.

You can also choose to overwrite the preset options for a single picture (or even a block of
picture if you run the \robExtConfigure and CacheMe inside a group { ... }):

See, you can add something to the preamble of a single picture:

See, you can add something to the preamble of a single picture: %
\begin{CacheMe}{tikzpicture, add to preamble={\usetikzlibrary{shadows}}}[even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

Note that if you use the tikzpictureC or tikzpicture syntax, you want to add the options
right after the name of the command or environment, enclosed in <> (by default):

See, you can add something to the preamble of a single picture:

See, you can add something to the preamble of a single picture: %
\begin{tikzpictureC}<add to preamble={\usetikzlibrary{shadows}}>[even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{tikzpictureC}
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Important: Note that the preset options can be specified in a number of places: in
\robExtConfigure (possibly in a group, or inside a preset), in the options of the picture, in
the default options of cacheEnvironment and cacheCommand etc. Most options can be used in all
these places, the only difference being the scope of the options.

If you find yourself duplicating code between the main document and the preamble of the
cached file, we provide multiple solutions with different properties:

• Recommended: \newcommandAutoForward etc, to automatically forward specific macros/-
colors etc: see section 5.7. Very useful if you want maximum purity without annoying
recompilation.

• \runHereAndInPreambleOfCachedFiles: mostly useful if you want to always add a text
both in the current file and in the cached files, like a font etc.

• Share a common input file with or without dependencies (see section 5.4), useful if you need
to work with external files or if you do NOT want purity (i.e. you can choose not to recompile
the file even if its content changes).

\runHereAndInPreambleOfCachedFiles{XXX} is very simple (need at least version 2.3), as it is
simply a shortcut for typing XXX in the current file and in the preamble of the cached files (default
to latex preset). For instance if you want the current file and all cached files to use the Times New
Roman font, you can do:

% By default adds
\runHereAndInPreambleOfCachedFiles{
\usepackage{fontspec}
% need lualatex or xelatex to compile
\setmainfont{Times New Roman}

}

\robExtConfigure{
add to preset={latex}{

use lualatex, % Make sure to compile with lualatex the cached images.
},

}

You can also define your common macros (even if we recommend \newcommandAutoForward to
avoid frequent recompilations when the definitions changes):

This is the picture of The great lady Alice and her friends.: The great lady Alice and her friends.

\runHereAndInPreambleOfCachedFiles{
\def\name#1{The great lady #1 and her friends.}
}

\cacheTikz
This is the picture of \name{Alice}:
\begin{tikzpicture}
\node[fill=orange]{\name{Alice}};
\end{tikzpicture}

5.4 Dependencies
Note: dependencies can sometimes be advantageously replaced with auto-forwarding
of arguments, cf. section 5.7, or .

It might be handy to have a file that is loaded in both the main document and in the cached
pictures. For instance, if you have a logo that might be included in the cached files, or if you have
a file common_inputs.tex that you want to input in both the main file and in the cached files,
that contains, say:
\def\myValueDefinedInCommonInputs{42}
then you can add it as a dependency this way (here we use the latex preset that does not wrap the
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code inside a tikzpicture only to illustrate that we can also cache things that are not generated
by tikz):

The answer is 42.

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__common_inputs.tex}}}

The answer is \myValueDefinedInCommonInputs.
\end{CacheMe}

Note that the placeholder __ROBEXT_WAY_BACK__ contains the path from the cache folder (con-
taining the .tex that will be cached) to the root folder, and will be replaced when creating the
file. This way, you can easily input files contained in the root folder. You can also create your own
placeholders, read more below.

You can note that we used add dependencies={common_inputs.tex}: this allows us to
recompile the files if common_inputs.tex changes. If you do not want this behavior (e.g.
common_inputs.tex changes too often and you do not want to recompile everything at every
change), you can remove this line, but beware: if you do a breaking changes in common_inputs.tex
(e.g. redefine 42 to 43), then the previously cached picture will not be recompiled! (So you will
still read 42 instead of 43.)

Sometimes, it can also be useful to copy a file in the cache folder. This can be done via:

\robExtConfigure{
copy file to cache={zx-calculus.sty},

}

5.5 Wrap arbitrary environments
You can wrap arbitrary environments using the already presented cacheEnvironment and
cacheCommand, where the first mandatory argument is the name of the environment/macro, and
the second mandatory argument contains the default preset. cacheEnvironment works for any
environment while cacheCommand might need a bit of help to determine the signature of the macro
if the function is defined via xparse. Long story short, O{foo} is an optional argument with default
value foo, m is a mandatory argument. By default, you can pass an optional arguments via the
first argument enclosed in <>:

α Hello Alice.

β Bye Bob.

\cacheCommand{zx}[O{}O{}O{}m]{latex, add to preamble={\usepackage{zx-
calculus}\def\hello#1{Hello #1.}}}
\zx<add to preamble={\usepackage{amsmath}\def\bye#1{Bye #1.}}>[mbr=1]{ % amsmath provides \text

\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{\hello{Alice}}} \\
\zxZ{\beta} \rar & \zxZ{\text{\bye{Bob}}}

}

you can also disable externalization for some commands using this same command, here is for
instance the code to use todonotes:

\cacheCommand{todo}[O{}m]{disable externalization}
\todo{Check how to use cacheCommand and cacheEnvironment}

Which gives youCheck
how to use
cacheCom-
mand and
cacheEnvi-
ronment

See section 6.7 for more details.

5.6 Disabling externalization
You can use disable externalization to disable externalization (which is particularly prac-
tical if you set \cacheTikz). You can configure the exact command run in that case using
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command if no externalization/.code={...}, but most of the time it should work out of the
box (see section 6.3.6 for details).

Point to me if you can
This figure is not externalized. This way, it can use remember picture.
This figure is not externalized. This way, it can use remember picture.
This figure is not externalized. This way, it can use remember picture.
This figure is externalized, but cannot use remember picture.

% In theory all pictures should be externalized (so remember picture should fail)
\tikz[remember picture,baseline=(pointtome1.base)]

\node[rounded corners, fill=orange](pointtome1){Point to me if you can};\\
\cacheTikz
% But we can disable it temporarily
\begin{tikzpicture}<disable externalization>[remember picture]

\node[rounded corners, fill=red](A){This figure is not externalized.
This way, it can use remember picture.};

\draw[->,overlay] (A) to[bend right] (pointtome1);
\end{tikzpicture}\\

% You can also disable it globally/in a group:
{

\robExtConfigure{disable externalization}

\begin{tikzpicture}[remember picture]
\node[rounded corners, fill=red](A){This figure is not externalized.

This way, it can use remember picture.};
\draw[->,overlay] (A.west) to[bend left] (pointtome1);

\end{tikzpicture}\\

\begin{tikzpicture}[remember picture]
\node[rounded corners, fill=red](A){This figure is not externalized.

This way, it can use remember picture.};
\draw[->,overlay] (A.east) to[bend right] (pointtome1);

\end{tikzpicture}\\
}

\begin{tikzpicture}
\node[rounded corners, fill=green](A){This figure is externalized, but cannot use remember picture.};

\end{tikzpicture}

You can also disable externalization for some kinds of commands. For instance, the pack-
age todonotes requires remember picture and is therefore not compatible with externalization
provided by this package. To disable externalization on all \todo, you can do:

\cacheCommand{todo}[O{}m]{disable externalization}
\todo{Check how to use cacheCommand and cacheEnvironment}

Which gives youCheck
how to use
cacheCom-
mand and
cacheEnvi-
ronment

You can also disable externalization on elements that contain a specific string/regex. For
instance, you can disable externalization on all elements containing remember picture:

Point to me Some text

20



\cacheTikz
\robExtConfigure{
add to preset={tikz}{

if matches={remember picture}{disable externalization},
},

}
\begin{tikzpicture}[remember picture]
\node[fill=green](my node){Point to me};

\end{tikzpicture} %
Some text %
\begin{tikzpicture}[overlay, remember picture]
\draw[->] (0,0) to[bend left] (my node);

\end{tikzpicture}

5.7 Feeding data from the main document to the cached documents
You can feed data from the main document to the cached file using placeholders, since
set placeholder eval={__foo__}{\bar} will evaluate \bar and put the result in __foo__. For
instance, if the picture depends on the current page, you can do:

The current page is 21.

\begin{tikzpictureC}<set placeholder eval={__thepage__}{\thepage}>
\node[rounded corners, fill=red]{The current page is __thepage__.};

\end{tikzpictureC}

However, since v2.1, we also provide a method to specifically export a counter using
forward counter=my counter and a macro using forward=\macroToExport, possibly by eval-
uating first using forward eval=\macroToEval:

Alice Bob

\cacheTikz
\NewDocumentCommand{\MyNode}{O{}m}{\node[rounded corners,fill=red,#1]{#2};}
\begin{tikzpicture}<forward=\MyNode>
\MyNode{Alice}
\MyNode[xshift=2cm]{Bob}

\end{tikzpicture}

To avoid manually writing forward=... for each picture, we can instead load auto forward
and define the macro for instance using \newcommandAutoForward (we also provide alternatives
for xparse and def-based definitions):

Recompiled only if MyNode is changed but not if the (unused) MyGreenNode is changed.

Recompiled only if MyGreenNode is changed but not if the (unused) MyNode is changed.

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyNode}[2][draw,thick]{\node[rounded corners,fill=red,#1]{#2};}
\newcommandAutoForward{\MyGreenNode}[2][draw,thick]{\node[rounded corners,fill=green,#1]{#2};}

\begin{tikzpicture}
\MyNode{Recompiled only if MyNode is changed}
\MyNode[xshift=8cm]{but not if the (unused) MyGreenNode is changed.}

\end{tikzpicture}\\

\begin{tikzpicture}
\MyGreenNode{Recompiled only if MyGreenNode is changed}
\MyGreenNode[xshift=8cm]{but not if the (unused) MyNode is changed.}

\end{tikzpicture}
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If a macro depends on another macro/package, it is possible to load any additional style like
using the last optional argument of \newcommandAutoForward:

❤ Alice: Recompiled if MyNode or MyName are changed

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyName}{Alice}
\newcommandAutoForward{\MyNode}[2][draw,thick]{
\node[rounded corners,fill=red,#1]{\ding{164} \MyName: #2};

}[forward=\MyName, add to preamble={\usepackage{pifont}}]

\begin{tikzpicture}
\MyNode{Recompiled if MyNode or MyName are changed}

\end{tikzpicture}

If instead of forwarding the macro you want to, say, load a package or any other style, you
should use instead \robExtConfigIfMacroPresent:

❤

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\robExtConfigIfMacroPresent{\ding}{add to preamble={\usepackage{pifont}}}

\begin{tikzpicture}
\node[fill=green, circle]{\ding{164}};

\end{tikzpicture}

For more details and functions, see section 6.3.8.

5.8 Defining macros
You can define macros in the preamble:

Hello my friend.

\cacheMe[latex, add to preamble={\def\sayhello#1{Hello #1.}}]{
\sayhello{my friend}

}

5.9 Feeding data back into the main document
For more advanced usage, you might want to compute a data and cache the result in a macro
that you could use later. This is possible if you write into the file \jobname-out.tex during the
compilation of the cached file (by default, we already open \writeRobExt to write to this file).
This file will be automatically loaded before loading the pdf (but you can customize all these
operations, for instance if you do not want to load the pdf at all; the only requirement is that you
should generate a .pdf file to specify that the compilation is finished).

For instance:

We computed the cached value 1.61803.
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\begin{CacheMe}{latex, add to preamble={\usepackage{tikz}}, do not include pdf}
We compute this data that is long to compute:
\pgfmathparse{(1 + sqrt(5))/2}% result is stored in \pgfmathresult
% We write the result to the -out file (\string\foo writes \foo to the file without evaluating it,
% so this will write "\gdef\myLongResult{1.61803}"):
% Note that CacheMe is evaluated in a group, so you want to use \gdef to define it
% outside of the group
\immediate\write\writeRobExt{%
\string\gdef\string\myLongResult{\pgfmathresult}%

}
\end{CacheMe}

We computed the cached value \myLongResult.

5.10 A note on font handling
Cached pictures are basically simple latex files that are compiled in a separate standalone doc-
ument. Therefore, if the main document loads a different font, there is no reason for the cached
document to also use that font. Fully-automatically forwarding the current font by default is
not so easy because there are so many ways to load a font in LaTeX (by loading a package like
\usepackage{times}, by using xelatex or lualatex, by calling locally \rmfamily, by loading a
different class… and here I’m not even mentioning math font where each symbol can use a different
font10, and this is even more complicated if the main file is compiled with a different engine (e.g.
what should I do if the main document is compiled with lualatex but the inner cached images are
compiled with pdflatex, that supports very few fonts by default?). For these reasons, it is simpler
to simply let the user load fonts as they want, for instance using something like:

See I am using times font

\robExtConfigure{
add to preset={latex}{

add to preamble={\usepackage{times}},
},

}

\begin{tikzpictureC}
\node[fill=green]{See I am using times font};
\end{tikzpictureC}

or:

See I am using a 12pt font

\robExtConfigure{
add to preset={latex}{

add to latex options={12pt},
},

}

\begin{tikzpictureC}
\node[fill=green]{See I am using a 12pt font};
\end{tikzpictureC}

But if you want to use the same font as the current document, you might want to avoid code
duplication (this might also be useful for any arbitrary code). Since v2.3, you can do:

10https://tex.stackexchange.com/questions/603475/is-there-any-command-to-find-out-the-current-math-font-used)

23

https://tex.stackexchange.com/questions/603475/is-there-any-command-to-find-out-the-current-math-font-used)
https://tex.stackexchange.com/questions/603475/is-there-any-command-to-find-out-the-current-math-font-used)
https://tex.stackexchange.com/questions/603475/is-there-any-command-to-find-out-the-current-math-font-used)


\runHereAndInPreambleOfCachedFiles{
\usepackage{fontspec}
% need lualatex or xelatex to compile
\setmainfont{Times New Roman}

}

\robExtConfigure{
add to preset={latex}{

use lualatex, % Make sure to compile with lualatex the cached images.
},

}

and it will automatically compile the cached images with lualatex, and configure the font of
the current document and of the cached documents to follow Times New Roman.

If you like to often change the font in the document, you can also do something like that to
always compile the document with the font currently in use if you use lualatex (this code fails with
xelatex11, currently trying to understand why):

\usepackage{fontspec}
\setmainfont{Times New Roman}

%% needed since \f@family contains a @ in its name:
\makeatletter
\def\myCurrentFont{\f@family}
\makeatother

\robExtConfigure{
add to preset={latex}{

use lualatex,
% create a new placeholder containing the name of the current font:
set placeholder eval={__MY_FONT__}{\myCurrentFont},
add to preamble={
\usepackage{fontspec}
\setmainfont{__MY_FONT__}

},
},

}

If you want this to work on xelatex, you can either manually attribute a NFSSFamily name
like:

\runHereAndInPreambleOfCachedFiles{
\usepackage{fontspec}
% need lualatex or xelatex to compile, make sure to use a different NFSSFamily for each new font you add here
\setmainfont[NFSSFamily=tmsnr]{Times New Roman}

}

and use the above solution for lualatex (you can change the font with \fontfamily{tmsnr}\selectfont),
or do instead something like this:

11https://tex.stackexchange.com/questions/705208/get-current-font
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% Create a new command \mysetmainfont which forwards the font to the picture.
\NewDocumentCommand{\mysetmainfont}{m}{%
\def\myCurrentFont{#1}% Stores the name of the current font in \myCurrentFont
\setmainfont{#1}%

}

% Use mysetmainfont from now to change font:
\mysetmainfont{Times New Roman}

\usepackage{robust-externalize}
\robExtConfigure{
add to preset={latex}{

use xelatex,
set placeholder eval={__MY_FONT__}{\myCurrentFont},
add to preamble={
\usepackage{fontspec}
\setmainfont{__MY_FONT__}

},
},

}

5.11 Compile in parallel
Make sure to have xargs installed (installed by default on most linux, on Windows you need to
install the lightweight GNU On Windows (Gow) https://github.com/bmatzelle/gow), and type
in your preamble:

\robExtConfigure{
compile in parallel

}

to compile all figures in parallel (you need to compile your document twice). Your document
should build significantly faster, possibly faster than a normal run. If you want to compile in
parallel only if you have more than, say, 5 new elements to cache, do:

\robExtConfigure{
compile in parallel after=5

}

5.12 Compile a preset
Long story short: you can compile even faster (around 1.5x in our tests) by compiling presets, but
beware that you will not be able to modify the placeholders except add to preamble with the
default compiler we provide:

HeyBob!
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% We create a latex-based preset and compile it
\robExtConfigure{
new preset={templateZX}{

latex,
add to preamble={
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{zx-calculus}

},
%% possibly add some dependencies

},
% We compile it into a new preset
new compiled preset={compiled ZX}{templateZX, compile latex template}{},

}

% we use that preset automatically for ZX environments
\cacheEnvironment{ZX}{compiled ZX}
\cacheCommand{zx}{compiled ZX}

% Usage: (you can't use placeholders except for the preamble, trade-off of the compiled template)
\begin{ZX}<add to preamble={\def\sayHey#1{Hey #1!}}>
\zxX{\sayHey{Bob}}

\end{ZX}

For details, see section 6.3.11.

5.13 For non-LATEX code
Due to the way LATEX works, non-LATEX code can’t be reliably read inside macros and some envi-
ronments that parse their body (e.g. align) as some characters are removed (e.g. percent symbols
are comments and are removed). For this reason, we sometimes need to separate the time where we
define the code and where we insert it (this is done using placeholders, see PlaceholderFromCode),
and we need to introduce new environments to populate the template (see section 6.5 for more
details, to generate them from filename, to get the path of a file etc).

The environment CacheMeCode can be used for this purpose.

5.13.1 Python code

Generate an image For instance, you can use the default python template to generate an image
with python. The following code:

\begin{CacheMeCode}{python, set includegraphics options={width=.8\linewidth}}
import matplotlib.pyplot as plt
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{CacheMeCode}

will produce the image visible in fig. 1. Importantly: you do not want to indent the
content of CacheMeCode, or the space will also appear in the final code.

Compute a value We also provide by default a number of helper functions. For instance,
write_to_out(text) will write text to the *-out.tex file that is loaded automatically by LATEX.
This is useful to compute data that is not an image (note that r"some string" does not consider
backslash as an escape string, which is handy to write LATEX code in python):

For instance:

→ The cosinus of 1 is 0.5403023058681398.
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Figure 1: Image generated with python.

\begin{CacheMeCode}{python, do not include pdf}
import math
write_to_out(r"\gdef\cosComputedInPython{" + str(math.cos(1)) + r"}")
\end{CacheMeCode}

$\rightarrow$ The cosinus of 1 is \cosComputedInPython.

Improve an existing preset If you often use the same code (e.g. load matplotlib, save the
file etc), you can directly modify the __ROBEXT_MAIN_CONTENT__ placeholder to add the redun-
dant information (or create a new template from scratch, see below). By default, it points to
__ROBEXT_MAIN_CONTENT_ORIG__ that contains directly the code typed by the user (this is true
for all presets, as CacheMe* is in charge of setting this placeholder). When dealing with LATEX code,
__ROBEXT_MAIN_CONTENT__ should ideally contain a code that can be inserted as-it in the docu-
ment in order to be compatible by default with disable externalization. So if you want to wrap
the content of the user in an environment like \begin{tikzpicture}...\end{tikzpicture}, this
is the placeholder to modify.
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%% Create your style:
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__}
import matplotlib.pyplot as plt
import sys
\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_AFTER__}
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\robExtConfigure{
new preset={my matplotlib}{

python,
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_AFTER__},

},
}

%% Use your style:
%% See, you don't need to load matplotlib or save the file:
\begin{CacheMeCode}{my matplotlib, set includegraphics options={width=.5\linewidth}}
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
\end{CacheMeCode}

Custom parameters and placeholders Let us say that you would like to define a default font
size for your figure, but that you would like to allow the user to change this font size. Then, you
should create a new placeholder with your default value, and use set placeholder to change this
value later (see also the documentation of CacheMeCode to see how to create a new command to
avoid typing set placeholder):
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Default font size:
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With font size 16:
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%% Create your style:

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__}
import matplotlib as mpl
import matplotlib.pyplot as plt
import sys
mpl.rcParams['font.size'] = __MY_MATPLOTLIB_FONT_SIZE__
\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE_AFTER__}
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\robExtConfigure{
new preset={my matplotlib}{

python,
% We create a new placeholder (it is simple enough that you don't need to use PlaceholderFromCode)
set placeholder={__MY_MATPLOTLIB_FONT_SIZE__}{12},
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_MATPLOTLIB_TEMPLATE_AFTER__},

},
}

%% Use your style:
%% See, you don't need to load matplotlib or save the file:
Default font size: \begin{CacheMeCode}{my matplotlib, set includegraphics options={width=.5\linewidth}}
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
\end{CacheMeCode}

With font size 16:
\begin{CacheMeCode}{my matplotlib,

set includegraphics options={width=.5\linewidth},
set placeholder={__MY_MATPLOTLIB_FONT_SIZE__}{16}}

year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
\end{CacheMeCode}

Note that if you manage to move all the code in the template and that the user can configure
everything using the options and an empty content, you can use CacheMeNoContent that takes no
argument and that consider its body as the options.

Custom include command There may be some cases where you do not want to include a
picture. We already saw the option do not include pdf if you do not want to include anything.
But you can customize the include function, using notably:
custom include command={your include command}

For instance, let us say that you would like to display both the source code used to obtain a
given code, together with the output of this code. Then, you can write this style:
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{
%% Create your style:
\begin{PlaceholderFromCode}{__MY_PRINT_BOTH_TEMPLATE_BEFORE__}
# File where print("bla") should be redirected
# get_filename_from_extension("-foo.txt") will give you the path of the file
# in the cache that looks like robExt-somehash-foo.txt
print_file = open(get_filename_from_extension("-print.txt"), "w")
sys.stdout = print_file
# This code will read the current code, and extract the lines between
# that starts with "### CODESTARTSHERE" and "### CODESTOPSHERE", and will write
# it into the *-code.text (we do not want to print all these functions in
# the final code)
with open(get_filename_from_extension("-code.txt"), "w") as f:

# The current script has extension .tex
with open(get_current_script(), "r") as script:

should_write = False
for line in script:

if line.startswith("### CODESTARTSHERE"):
should_write = True

elif line.startswith("### CODESTOPSHERE"):
should_write = False

elif "HIDEME" in line:
pass

else:
if should_write:

f.write(line)
### CODESTARTSHERE
\end{PlaceholderFromCode}

\begin{PlaceholderFromCode}{__MY_PRINT_BOTH_TEMPLATE_AFTER__}
### CODESTOPSHERE
print_file.close()
\end{PlaceholderFromCode}

\robExtConfigure{
new preset={my python print both}{

python,
add before placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_PRINT_BOTH_TEMPLATE_BEFORE__},
add to placeholder no space={__ROBEXT_MAIN_CONTENT__}{__MY_PRINT_BOTH_TEMPLATE_AFTER__},
set title/.style={
set placeholder={__MY_TITLE__}{#1},

},
set title={Example},
custom include command={

% Useful to replace __MY_TITLE__:
\evalPlaceholder{

\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,title=__MY_TITLE__]
\lstinputlisting[frame=single,

breakindent=.5\textwidth,
frame=single,
breaklines=true,
style=mypython]{\robExtAddCachePathAndName{\robExtFinalHash-code.txt}}

Output:
\verbatiminput{\robExtAddCachePathAndName{\robExtFinalHash-print.txt}}

\end{tcolorbox}
}

},
},

}

Once the style is defined (actually we already defined in the library under the name
python print code and result), you can just write:

\begin{CacheMeCode}{my python print both, set title={The for loop}}
for name in ["Alice", "Bob"]:

print(f"Hello {name}")
\end{CacheMeCode}

to get:
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The for loop

1 for name in ["Alice", "Bob"]:
2 print(f"Hello {name}")

Output:

Hello Alice
Hello Bob

5.13.2 Other languages

We also provide support for other languages, notably bash, but it is relatively easy to add basic
support for any new language. You only need to configure set compilation command to your
command, set template to the file to compile (__ROBEXT_MAIN_CONTENT__ contains the code
typed by the user), and possibly a custom include command with custom include command if you
do not want to do \includegraphics on the final pdf. For instance, to define a basic template for
bash, you just need to use:

Linux 5.15.90 #1-NixOS SMP Tue Jan 24 06:22:49 UTC 2023

% Create your style
\begin{PlaceholderFromCode}{__MY_BASH_TEMPLATE__}
# Quit if there is an error
set -e
__ROBEXT_MAIN_CONTENT__
# Create the pdf file to certify that no compilation error occured
# (non empty file to avoid arXiv error)
echo "ok" > "__ROBEXT_OUTPUT_PDF__"
\end{PlaceholderFromCode}

\robExtConfigure{
new preset={my bash}{

set compilation command={bash "__ROBEXT_SOURCE_FILE__"},
set template={__MY_BASH_TEMPLATE__},
%%% Version 1:
% verbatim output,
%%% Version 2:
custom include command={%
\evalPlaceholder{%

\verbatiminput{__ROBEXT_CACHE_FOLDER____ROBEXT_OUTPUT_PREFIX__-out.txt}%
}%

},
% Ensure that the code does not break when externalization is disabled
print verbatim if no externalization,

}
}

% Use your style
\begin{CacheMeCode}{my bash}
# Write the system conf to a file *-out.txt
uname -srv > "__ROBEXT_OUTPUT_PREFIX__-out.txt"
\end{CacheMeCode}

Code inside a macro Due to fundamental LATEX restrictions, it is impossible to use
CacheMeCode inside a macro or some environments as LATEX will strip all lines containing a percent
character for instance. The solution here is to define our main content before, and then set it using
set main content (that simply sets __ROBEXT_MAIN_CONTENT_ORIG__). In this example, we also
show how CacheMeNoContent can be used when their is no content (the arguments to CacheMe are
directly given in the body of CacheMeNoContent):
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\begin{PlaceholderFromCode}{__TMP_MAIN_CONTENT__}
import matplotlib.pyplot as plt
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

\fbox{\begin{CacheMeNoContent}
python,
set includegraphics options={width=.8\linewidth},
set main content={__TMP_MAIN_CONTENT__},

\end{CacheMeNoContent}}

5.14 Force to recompile or remove a cached item
If you want to recompile a file (e.g. an untracked dependency was changed… and you do not want
to track it to avoid recompilation when you change a single line in this file), you can use the
recompile style since v2.1:

A B

\cacheEnvironment{tikzcd}{tikz, add to preamble={\usepackage{tikz-cd}}}
\begin{tikzcd}<recompile>
A \rar & B

\end{tikzcd}

Note that this assumes that your compilation command is idempotent (so running it twice is
like running it once) since the aux files are not cached. If you want to clean aux files or if you run
an older version, see the documentation of recompile in section 6.3.3.
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6 Documentation
Before starting this documentation, note that all commands are prefixed with robExt and all
environments are prefixed with RobExt, but we also often define aliases without this prefix. The
user is free to use any version, but we recommend to use the non-prefixed version unless a clash
with a package forbids you from using it. In the following, we will only print the non-prefixed
name when it exists. Note also that we follow the convention that environment names start with
an upper case letter while commands start with a lower case letter.

6.1 How it works
This library must be able to generate 3 elements for any cached content:

• a source file, that will be compiled, and is obtained by expanding the placeholder
__ROBEXT_TEMPLATE__ (see section 6.5),

• a compilation command obtained by expanding the placeholder __ROBEXT_COMPILATION_COMMAND__,

• a dependency file, that contains the hash of all the dependencies (see section 5.4 for details)
and the compilation command,

• an inclusion command (this one is not used during the caching process, it is only used
when including the compiled document in the main document), that you can set using
custom include command={your command}.

The hash of all these elements is computed in order to obtain a reference hash, denoted
somehash that looks like a unique random value (note that __ROBEXT_OUTPUT_PDF__ and alike
are expanded after knowing the hash since they depend on the final hash value). This hash
somehash will change whenever a dependency changes, or if the compilation command changes,
ensuring purity. Then, the dependency file and the source file are written in the cache, by default in
robustExternalize/robExt-somehash.tex and robustExternalize/robExt-somehash.deps. Then,
the compilation command will be run from the cache folder. At the end, by default, we check if
a file robustExternalize/robExt-somehash.pdf exists: if not we abort, otherwise we \input
the file robustExternalize/robExt-somehash-out.tex and we run the include command (that
includes the pdf by default). As we saw earlier, this command can be customized to use other
files. Importantly, all the files created during the compilation must be prefixed by
robExt-somehash, which can be obtained at runtime using __ROBEXT_OUTPUT_PREFIX__. This
way, we can easily clean the cache while ensuring maximum purity.

In the following, we will denote by *-foo.bar the file in:
robustExternalize/robExt-somehash-foo.bar.

Note also that we usually define two names for each function, one normal and one prefixed with
robExt (or RobExt) for environments. In this documentation, we only write the first form, but the
second form is kept in case a conflicting package redefines some functions.

6.2 Placeholders
Placeholders are the main concept allowing this library to generate the content of a source file
based on a template (a template will itself be a placeholder containing other placeholders). A
placeholder is a special strings like __COLOR_IMAGE__ that should start and end with two un-
derscores, ideally containing no space or double underscores inside the name directly (we might
use this property even more in a future release to improve further the efficiency). Placeholders
are inserted for instance in a string and will be given a value later. This value will be used to
replace (recursively) the placeholder in the template. For instance, if a placeholder __LIKES__
contains I like __FRUIT__ and __VEGETABLE__, if the placeholder __FRUIT__ contains oranges
and if the placeholder __VEGETABLE__ contains salad, then evaluating __LIKES__ will output
I like oranges and salad.

Note that you are not strictly forced to follow the above convention (it allows us to
optimize the code to find and replace placeholders), but in that case you should enable
not all placeholders have underscores.
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Placeholders are local variables (internally just some LATEX 3 strings). You can therefore define
a placeholder in a local group surrounded by brackets { ... } if you want it to have a reduced
scope.

6.2.1 Reading a placeholder

\getPlaceholder[〈new placeholder name〉]{〈name placeholder or string〉}
\getPlaceholderInResult[〈new placeholder name〉]{〈name placeholder or string〉}
\getPlaceholderInResultFromList{〈list,of,placeholders,to,replace〉}[〈new placeholder

name〉]{〈name placeholder or string〉}
Get the value of a placeholder after replacing (recursively) all the inner placeholders.
\getPlaceholderInResult puts the resulting string in a LATEX 3 string \l_robExt_result_str
and in \robExtResult, while \getPlaceholder directly outputs this string. You can also put
inside the argument any arbitrary string, allowing you, for instance, to concatenate multiple
placeholders, copy a placeholder etc. Note that you will get a string, but this string will
not be evaluated by LATEX (see \evalPlaceholder for that), for instance math will not be
interpreted:

The placeholder evaluates to:
Hello Alice the great, I am a template $\delta _n$.
Combining placeholders produces:
In ``Hello Alice the great, I am a template $\delta _n$.'', the name is Alice
the great.

\setPlaceholder{__MY_PLACEHOLDER__}{Hello __NAME__, I am a template $\delta_n$.}
\setPlaceholder{__NAME__}{Alice __NICKNAME__}
\setPlaceholder{__NICKNAME__}{the great}
The placeholder evaluates to:\\
\texttt{\getPlaceholder{__MY_PLACEHOLDER__}}\\
Combining placeholders produces:\\
\texttt{\getPlaceholder{In ``__MY_PLACEHOLDER__'', the name is __NAME__.}}

You can also specify the optional argument in order to additionally define a new placeholder
containing the resulting string (but you might prefer to use its alias \setPlaceholderRec
described below):

List of placeholders:
- Placeholder called __MY_PLACEHOLDER__ contains:
Hello __NAME__, I am a template $\delta _n$.
- Placeholder called __NAME__ contains:
Alice __NICKNAME__
- Placeholder called __NICKNAME__ contains:
the great
- Placeholder called __NEW_PLACEHOLDER__ contains:
In ``Hello Alice the great, I am a template $\delta _n$.'', the name is
Alice the great.

\setPlaceholder{__MY_PLACEHOLDER__}{Hello __NAME__, I am a template $\delta_n$.}
\setPlaceholder{__NAME__}{Alice __NICKNAME__}
\setPlaceholder{__NICKNAME__}{the great}
\getPlaceholderInResult[__NEW_PLACEHOLDER__]{In ``__MY_PLACEHOLDER__'', the name is __NAME__.}
\printImportedPlaceholdersExceptDefaults

The variation \getPlaceholderInResultFromList allows you to specify a set of placeholder
to replace from:
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List of placeholders:
- Placeholder called __MY_PLACEHOLDER__ contains:
Hello __NAME1__, __NAME2__ and __NAME3__, I am a template $\delta _n$.
- Placeholder called __NAME1__ contains:
Alice
- Placeholder called __NAME2__ contains:
Bob
- Placeholder called __NAME3__ contains:
Charlie
- Placeholder called __NEW_PLACEHOLDER__ contains:
Here we go: Hello Alice, Bob and __NAME3__, I am a template $\delta _n$.

\setPlaceholder{__MY_PLACEHOLDER__}{Hello __NAME1__, __NAME2__ and __NAME3__, I am a template $\delta_n$.}
\setPlaceholder{__NAME1__}{Alice}
\setPlaceholder{__NAME2__}{Bob}
\setPlaceholder{__NAME3__}{Charlie}
\getPlaceholderInResultReplaceFromList{__MY_PLACEHOLDER__,__NAME1__,__NAME2__}[__NEW_PLACEHOLDER__]{

Here we go: __MY_PLACEHOLDER__
}
\printImportedPlaceholdersExceptDefaults

\evalPlaceholder{〈name placeholder or string〉}
Evaluate the value of a placeholder after replacing (recursively) all the inner placeholders.
You can also put inside any arbitrary string.

The placeholder evaluates to:
Hello Alice the great, I am a template δn.
Combining placeholders produces:
In “Hello Alice the great, I am a template δn.”, the name is Alice the great.

\setPlaceholder{__MY_PLACEHOLDER__}{Hello __NAME__, I am a template $\delta_n$.}
\setPlaceholder{__NAME__}{Alice __NICKNAME__}
\setPlaceholder{__NICKNAME__}{the great}
% The placeholder evaluates to \texttt{\getPlaceholder{__MY_PLACEHOLDER__}}.
The placeholder evaluates to:\\
\evalPlaceholder{__MY_PLACEHOLDER__}\\
Combining placeholders produces:\\
\evalPlaceholder{In ``__MY_PLACEHOLDER__'', the name is __NAME__.}

6.2.2 List and debug placeholders

It can sometimes be handy to list all placeholders, print their contents etc (see also section 6.9).
We list here commands that are mostly useful for debugging purposes.

\printImportedPlaceholdersExceptDefaults*
/robExt/print imported placeholders except default (style, no value)

Prints the verbatim content of all defined and imported placeholders (without performing any
replacement of inner placeholders), except for the placeholders that are defined by default in
this library (that we identify as they start with __ROBEXT_). The stared version does print
the name of the placeholder defined in this library, but not their definition. This is mostly for
debugging purposes.
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List of placeholders:
- Placeholder called __LIKES__ contains:
Hello __NAME__ I am a really basic template $\delta _n$.
- Placeholder called __NAME__ contains:
Alice

\placeholderFromContent{__LIKES__}{Hello __NAME__ I am a really basic template $\delta_n$.}
\placeholderFromContent{__NAME__}{Alice}
\printImportedPlaceholdersExceptDefaults

Compare with:

List of placeholders:
- Placeholder called __ROBEXT_MAIN_CONTENT__ defined by default (we hide the definition to
save space)
- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ defined by default (we hide the
definition to save space)
- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ defined by default (we hide the
definition to save space)
- Placeholder called __LIKES__ contains:
Hello __NAME__ I am a really basic template $\delta _n$.
- Placeholder called __NAME__ contains:
Alice

\placeholderFromContent{__LIKES__}{Hello __NAME__ I am a really basic template $\delta_n$.}
\placeholderFromContent{__NAME__}{Alice}
\printImportedPlaceholdersExceptDefaults*

\printImportedPlaceholders
/robExt/print imported placeholders (style, no value)

Prints the verbatim content of all defined and imported placeholders (without performing any
replacement of inner placeholders), including the placeholders that are defined by default in
this library (those starting with __ROBEXT_). This is mostly for debugging purposes. Here is
the result of \printImportedPlaceholders:
List of placeholders:
- Placeholder called __ROBEXT_MAIN_CONTENT__ contains:
__ROBEXT_MAIN_CONTENT_ORIG__
- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ contains:

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ contains:
\robExtAddCachePathAndName {\robExtFinalHash .pdf}

\printPlaceholderNoReplacement{〈name placeholder〉}
Prints the verbatim content of a given placeholder, without evaluating it and without re-
placing inner placeholders: it is used mostly for debugging purposes and will be
used in this documentation to display the content of the placeholder for educational purposes.
The stared version prints it inline.

The (unexpanded) template contains
Hello __NAME__ I am a really basic template $\delta _n$.
.
The (unexpanded) template contains Hello __NAME__ I am a really basic template
$\delta _n$.
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\placeholderFromContent{__LIKES__}{Hello __NAME__ I am a really basic template $\delta_n$.}
\placeholderFromContent{__NAME__}{Alice}
The (unexpanded) template contains \printPlaceholderNoReplacement{__LIKES__}.\\
The (unexpanded) template contains \printPlaceholderNoReplacement*{__LIKES__}

\printPlaceholder{〈name placeholder〉}
Like \printPlaceholderNoReplacement except that it first replaces the inner placeholders.
The stared version prints it inline.

The (unexpanded) template contains
Hello Alice I am a really basic template $\delta _n$.
.
The (unexpanded) template contains Hello Alice I am a really basic template $\delta
_n$.

\placeholderFromContent{__LIKES__}{Hello __NAME__ I am a really basic template $\delta_n$.}
\placeholderFromContent{__NAME__}{Alice}
The (unexpanded) template contains \printPlaceholder{__LIKES__}.\\
The (unexpanded) template contains \printPlaceholder*{__LIKES__}

\evalPlaceholderNoReplacement{〈name placeholder〉}
Evaluates the content of a given placeholder as a LATEX code, without replacing the place-
holders contained inside (mostly used for debugging purposes).

The (unexpanded) template evaluates to “Hello I am a really basic template δn.”.

\placeholderFromContent{__LIKES__}{Hello I am a really basic template $\delta_n$.}
The (unexpanded) template evaluates to ``\evalPlaceholderNoReplacement{__LIKES__}''.

\rescanPlaceholderInVariableNoReplacement{〈name macro〉}{〈name placeholder〉}
(new v2.0) Create a new macro that executes the LATEX code in the placeholder.

\getPlaceholderNoReplacement{〈name placeholder〉}
Like \evalPlaceholderNoReplacement except that it only outputs the string without evalu-
ating the macros inside.

The (unexpanded) template contains Hello __NAME__ I am a really basic template
$\delta _n$.

\placeholderFromContent{__LIKES__}{Hello __NAME__ I am a really basic template $\delta_n$.}
\placeholderFromContent{__NAME__}{Alice}
The (unexpanded) template contains \texttt{\getPlaceholderNoReplacement{__LIKES__}}

Note that this macro is expandable, which can be helpful for instance if you use siunitx that
expects an expandable content:

4.42

\setPlaceholder{__TEST__}{4.42345}
\num[round-mode=figures,round-precision=3]{\getPlaceholderNoReplacement{__TEST__}}

This is contrary to \getPlaceholder that is not expandable, so if you do want expandable
\getPlaceholder with replacements, you should rather first evaluate the placeholder with
\getPlaceholderInResult{__TEST_VARIABLE__}:
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4.42

\setPlaceholder{__TEST_A__}{4.42345}
\setPlaceholder{__TEST__}{__TEST_A__}
\getPlaceholderInResult{__TEST_A__}
\num[round-mode=figures,round-precision=3]{\robExtResult}

6.2.3 Setting a value to a placeholder

\placeholderFromContent*{〈name placeholder〉}{〈content placeholder〉}
\setPlaceholder*{〈name placeholder〉}{〈content placeholder〉}
/robExt/set placeholder={〈name placeholder〉}{〈content placeholder〉} (style, no default)
/robExt/set placeholder no import={〈name placeholder〉}{〈content placeholder〉} (style, no

default)
/robExt/set placeholder from content={〈name placeholder〉}{〈content placeholder〉} (style,

no default)
\placeholderFromContent (and its alias \setPlaceholder and its equivalent pgf styles
/robExt/set placeholder and /robExt/set placeholder from content) is useful to set
a value to a given placeholder.

The (unexpanded) template contains
Hello I am a basic template with math $\delta _n$ and macros \hello
and after evaluation and setting the value of hello, you get “Hello I am a basic template
with math δn and macros Hello my friend!”.

\placeholderFromContent{__LIKES__}{Hello I am a basic template with math $\delta_n$ and macros \hello}
The (unexpanded) template contains \printPlaceholderNoReplacement{__LIKES__} and %
after evaluation and setting the value of hello,%
\def\hello{Hello my friend!}%
you get ``\evalPlaceholder{__LIKES__}''.

As you can see, the precise content is not exactly identical to the original string:
LATEX comments are removed, spaces are added after macros, some newlines are removed etc.
While this is usually not an issue when dealing with LATEX code, it causes some troubles when
dealing with non-LATEX code. For this reason, we define other commands (see for instance
PlaceholderFromCode below) that can accept verbatim content; the downside being that
LATEX forbids usage of these verbatim commands inside other macros, so you should always
define them at the top level (this seems to be fundamental to how LATEX works, as any input
to a macro gets interpreted first as a LATEX string, losing all comments for instance). Note
that this is not as restrictive as it may sound, as it is always possible to define the needed
placeholders before any macro, while using them inside the macro, possibly combining them
with other placeholders (defined either before or inside the macro).

\begin{PlaceholderFromCode}*{〈name placeholder〉}
〈environment contents〉

\end{PlaceholderFromCode}
\begin{SetPlaceholderCode}*{〈name placeholder〉}

〈environment contents〉
\end{SetPlaceholderCode}

These two (aliased) environments are useful to set a verbatim value to a given placeholder:
the advantage is that you can put inside any code, including LATEX comments, the downside is
that you cannot use it inside macros and some environments (so you typically define it before
the macros and call it inside).
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List of placeholders:
- Placeholder called __PYTHON_CODE__ contains:
def my_function(b): # this is a python code

c = {}
d[42] = 0
return b

\begin{PlaceholderFromCode}{__PYTHON_CODE__}
def my_function(b): # this is a python code

c = {}
d[42] = 0
return b

\end{PlaceholderFromCode}
\printImportedPlaceholdersExceptDefaults

Note that PlaceholderFromCode should not be used inside other macros or inside some envi-
ronments (notably the ones that need to evaluate the body of the environment, e.g. using +b
argument or environ) as verbatim content is parsed first by the macro, meaning that some
characters might be changed or removed. For instance, any percent character would be con-
sidered as a comment, removing the rest of the line. However, this should not be be problem
if you use it outside of any macro or environment, or if you load it from a file. For instance
this code:
\begin{PlaceholderFromCode}{__PYTHON_CODE__}
def my_function(b): # this is a python code

c = {}
d[42] = 0
return b % 2

\end{PlaceholderFromCode}
\printImportedPlaceholdersExceptDefaults
would produce:

List of placeholders:
- Placeholder called __PYTHON_CODE__ contains:
def my_function(b): # this is a python code

c = {}
d[42] = 0
return b % 2

\printImportedPlaceholdersExceptDefaults

Note that of course, you can define a placeholder before a macro and call it inside (explaining
how we can generate this documentation).
Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

\placeholderPathFromFilename*{〈name placeholder〉}{〈filename〉}
/robExt/set placeholder path from filename={〈name placeholder〉}{〈filename〉} (style, no

default)
\placeholderPathFromFilename{__MYLIB__}{mylib.py} will copy mylib.py in the cache
(setting its hash depending on its content), and set the content of the placeholder __MYLIB__
to the path of the library in the cache. Note that the path is relative to the cache folder (it is
easier to use for instance if you want to call this library from a code already in the cache).
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List of placeholders:
- Placeholder called __MYLIB__ contains:
robExt-F6666F86DB0ACE43E817A7EB3729FA56mylib.py
You can also get the path relative to the root folder:
robustExternalize/robExt-F6666F86DB0ACE43E817A7EB3729FA56mylib.py

\placeholderPathFromFilename{__MYLIB__}{mylib.py}
\printImportedPlaceholdersExceptDefaults
You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}

Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

\placeholderFromFileContent*{〈name placeholder〉}{〈filename〉}
/robExt/set placeholder from file content={〈name placeholder〉}{〈filename〉} (style, no

default)
/robExt/set placeholder from file content no import={〈name placeholder〉}{〈filename〉}

(style, no default)
\placeholderFromFileContent{__MYLIB__}{mylib.py} will set the content of the place-
holder __MYLIB__ to the content of mylib.py.

List of placeholders:
- Placeholder called __MYLIB__ contains:
def mylib():

# Some comments
a = b % 2
return "Hello world"

\placeholderFromFileContent{__MYLIB__}{mylib.py}
\printImportedPlaceholdersExceptDefaults

Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

\placeholderPathFromContent*{〈name placeholder〉}[〈suffix〉]{〈content〉}
/robExt/set placeholder path from content={〈name placeholder〉}{〈suffix〉}{〈content〉}

(style, no default)
/robExt/set placeholder path from content no import={〈name

placeholder〉}{〈suffix〉}{〈content〉} (style, no default)
\placeholderPathFromContent{__MYLIB__}{some content} will copy some content in a
file in the cache (setting its hash depending on its content, the filename will end with suffix
that defaults to .tex), and set the content of the placeholder __MYLIB__ to the path of the
file in the cache. Note that the path is relative to the cache folder (it is easier to use for
instance if you want to call this library from a code already in the cache).

List of placeholders:
- Placeholder called __MYLIB__ contains:
robExt-AC364A656060BFF5643DD21EAF3B64E6.py
You can also get the path relative to the root folder:
robustExternalize/robExt-AC364A656060BFF5643DD21EAF3B64E6.py
As a sanity check, this file contains

some contents b
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\placeholderPathFromContent{__MYLIB__}[.py]{some contents b}
\printImportedPlaceholdersExceptDefaults
You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}\\
As a sanity check, this file contains
\verbatiminput{\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}}

Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

\begin{PlaceholderPathFromCode}*[〈suffix〉]{〈name placeholder〉}
〈environment contents〉

\end{PlaceholderPathFromCode}
This environment is similar to \placeholderPathFromContent except that it accepts verbatim
code (therefore LATEX comments, newlines etc. will not be removed). However, due to LATEX
limitations, this environment cannot be used inside macros or some environments, or this
property will not be preserved. For instance, if you create your placeholder using:
\begin{PlaceholderPathFromCode}[.py]{__MYLIB__}
def my_function(b): # this is a python code

c = {}
d[42] = 0
return b % 2

\end{PlaceholderPathFromCode}
You can then use it like:

List of placeholders:
- Placeholder called __MYLIB__ contains:
robExt-CDAE704490400F29B9C0C8DAE2CC48B7.py
You can also get the path relative to the root folder:
robustExternalize/robExt-CDAE704490400F29B9C0C8DAE2CC48B7.py
As a sanity check, this file contains

def my_function(b): # this is a python code
c = {}
d[42] = 0
return b % 2

\printImportedPlaceholdersExceptDefaults
You can also get the path relative to the root folder:\\
\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}\\
As a sanity check, this file contains
\verbatiminput{\robExtAddCachePath{\getPlaceholderNoReplacement{__MYLIB__}}}

Note that the star version does NOT import the placeholder it the main group (unless you
try to optimize the compilation time you should not need it, but see section 6.2.4 for details).

\copyPlaceholder*{〈new placeholder〉}{〈old placeholder〉}
/robExt/copy placeholder={〈new placeholder〉}{〈old placeholder〉} (style, no default)
/robExt/copy placeholder no import={〈new placeholder〉}{〈old placeholder〉} (style, no

default)
This creates a new placeholder with the content of old placeholder. Note that this is
different from:
\setPlaceholder{new placeholder}{old placeholder}
because if we modify old placeholder, this will not affect new placeholder.
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List of placeholders:
- Placeholder called __MY_OLD_CONTENT__ contains:
Some content
- Placeholder called __MY_CONTENT__ contains:
The content used to be __MY_OLD_CONTENT__

\setPlaceholder{__MY_CONTENT__}{Some content}
\copyPlaceholder{__MY_OLD_CONTENT__}{__MY_CONTENT__}
\setPlaceholder{__MY_CONTENT__}{The content used to be __MY_OLD_CONTENT__}
\printImportedPlaceholdersExceptDefaults

Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

Now, we see how we can define a placeholder recursively, by giving it a value based on its
previous value (useful for instance in order to add stuff to it).

\setPlaceholderRec{〈new placeholder〉}{〈content with placeholder〉}
\setPlaceholderRecReplaceFromList{〈list,of,placeholder,to,replace〉}{〈new

placeholder〉}{〈content with placeholder〉}
/robExt/set placeholder rec={〈name placeholder〉}{〈content placeholder〉} (style, no default)
/robExt/set placeholder rec replace from list={〈list,of,placeholder,to,replace〉}{〈name

placeholder〉}{〈content placeholder〉} (style, no default)
\setPlaceholderRec{foo}{bar} is actually an alias for \getPlaceholderInResult[foo]{bar}.
Note that contrary to \setPlaceholder, it recursively replaces all inner placeholders. This is
particularly useful to add stuff to an existing (or not) placeholder:

List of placeholders:
- Placeholder called __MY_COMMAND__ contains:
pdflatex myfile

\setPlaceholderRec{__MY_COMMAND__}{pdflatex}
\setPlaceholderRec{__MY_COMMAND__}{__MY_COMMAND__ myfile}
\printImportedPlaceholdersExceptDefaults

Note that the if the placeholder content contains at the end the placeholder name, we will
automatically remove it to avoid infinite recursion at evaluation time. This has the benefit
that you can add something to a placeholder even if this placeholder does not exists yet (in
which case it will be understood as the empty string):

List of placeholders:
- Placeholder called __COMMAND_ARGS__ contains:
-l -s

\setPlaceholderRec{__COMMAND_ARGS__}{__COMMAND_ARGS__ -l}
\setPlaceholderRec{__COMMAND_ARGS__}{__COMMAND_ARGS__ -s}
\printImportedPlaceholdersExceptDefaults

The variation \setPlaceholderRecReplaceFromList allows us to specify a subset of place-
holder that will be allowed to be expanded, and is an alias for \getPlaceholderInResultReplaceFromList
(except that the optional argument is mandatory):
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List of placeholders:
- Placeholder called __MY_PLACEHOLDER__ contains:
Hello __NAME1__, __NAME2__ and __NAME3__, I am a template $\delta _n$.
- Placeholder called __NAME1__ contains:
Alice
- Placeholder called __NAME2__ contains:
Bob
- Placeholder called __NAME3__ contains:
Charlie
- Placeholder called __OTHER_PLACEHOLDER__ contains:
Here we go: Hello __NAME1__, Bob and Charlie, I am a template $\delta _n$.

\placeholderFromContent{__MY_PLACEHOLDER__}{Hello __NAME1__, __NAME2__ and __NAME3__,
I am a template $\delta_n$.

}
\placeholderFromContent{__NAME1__}{Alice}
\placeholderFromContent{__NAME2__}{Bob}
\placeholderFromContent{__NAME3__}{Charlie}
\setPlaceholderRecReplaceFromList{__MY_PLACEHOLDER__,__NAME2__,__NAME3__}{__OTHER_PLACEHOLDER__}{

Here we go: __MY_PLACEHOLDER__
}
\printImportedPlaceholdersExceptDefaults

Note that the star and no import version does NOT import the placeholder it the main group
(unless you try to optimize the compilation time you should not need it, but see section 6.2.4
for details).

Note that sometimes, you might not want to use \setPlaceholderRec to simply append some
data to the placeholder as it will also evaluate the inner placeholders (meaning that you will not
be able to redefine them later). For this reason, we also provide functions to add something to the
placeholder without evaluating it first:

\addToPlaceholder*{〈placeholder〉}{〈content to add〉}
\addToPlaceholderNoImport*{〈placeholder〉}{〈content to add〉}
\addBeforePlaceholder*{〈placeholder〉}{〈content to add〉}
\addBeforePlaceholderNoImport*{〈placeholder〉}{〈content to add〉}
/robExt/add to placeholder={〈name placeholder〉}{〈content to add〉} (style, no default)
/robExt/add to placeholder no space={〈name placeholder〉}{〈content to add〉} (style, no

default)
/robExt/add before placeholder={〈name placeholder〉}{〈content to add〉} (style, no default)
/robExt/add before placeholder no space={〈name placeholder〉}{〈content to add〉} (style,

no default)
/robExt/add before main content={〈name placeholder〉}{〈content to add〉} (style, no default)
/robExt/add to placeholder no import={〈name placeholder〉}{〈content to add〉} (style, no

default)
/robExt/add to placeholder no space no import={〈name placeholder〉}{〈content to add〉}

(style, no default)
/robExt/add before placeholder no import={〈name placeholder〉}{〈content to add〉} (style,

no default)
/robExt/add before placeholder no space no import={〈name placeholder〉}{〈content to

add〉} (style, no default)
/robExt/add before main content no import={〈name placeholder〉}{〈content to add〉}(style,

no default)
\addToPlaceholder{foo}{bar} adds bar at the end of the placeholder foo (by default it
also adds a space, unless you use the star version), creating it if it does not exist (the before
variants add the content… before).
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List of placeholders:
- Placeholder called __ENGINE__ contains:
pdflatex
- Placeholder called __COMMAND__ contains:
time __ENGINE__ --option --other-option

\setPlaceholder{__ENGINE__}{pdflatex}
\setPlaceholder{__COMMAND__}{__ENGINE__ --option}
\addToPlaceholder{__COMMAND__}{--other}
\addToPlaceholder*{__COMMAND__}{-option}
\addBeforePlaceholder{__COMMAND__}{time}
\printImportedPlaceholdersExceptDefaults

add before main content is a particular case where the placeholder is __ROBEXT_MAIN_CONTENT__.
It is practical if you want to define for instance a macro, but in a way that even if you disable
externalization, the command should still compile (if you define the macro in the preamble, it
will not be added when disabling externalization). For instance:

Here I am cached (Hello Alice.) and Here I am not (Hello Bob.).

\robExtConfigure{
new preset={my preset}{latex, add before main content={\def\hello#1{Hello #1.}}},

}
\cacheMe[my preset]{Here I am cached (\hello{Alice})} and \cacheMe[my
preset, disable externalization]{Here I am not (\hello{Bob}).}

The no import versions do not import the placeholder in the current group (only needed if
you want to optimize the compilation time, see section 6.2.4 for details).

\placeholderFromString*{〈latex3 string〉}
\setPlaceholderFromString*{〈latex3 string〉}

(new in v2.0) This allows you to assign an existing LATEX3 string to a placeholder (the star
version does not import the placeholder, see section 6.2.4).

List of placeholders:
- Placeholder called __my_percent_string__ contains:
%

\ExplSyntaxOn
\setPlaceholderFromString{__my_percent_string__}{\c_percent_str}
\printImportedPlaceholdersExceptDefaults
\ExplSyntaxOff

We provide a list of placeholders that are useful to escape parts of the strings (but you should
not really need them, if you need weird characters like percent, most of the time you want to
use placeholderFromCode):

String containing __ROBEXT_LEFT_BRACE__, __ROBEXT_RIGHT_BRACE__,
__ROBEXT_BACKSLASH__, __ROBEXT_HASH__, __ROBEXT_UNDERSCORE__,
__ROBEXT_PERCENT__.

45



\printPlaceholder{
String containing
__ROBEXT_LEFT_BRACE__,
__ROBEXT_RIGHT_BRACE__,
__ROBEXT_BACKSLASH__,
__ROBEXT_HASH__,
__ROBEXT_UNDERSCORE__,
__ROBEXT_PERCENT__.

}

\placeholderReplaceInplace{〈placeholder〉}{〈from〉}{〈to〉}
\placeholderReplaceInplaceEval{〈placeholder〉}{〈from〉}{〈to〉}
/robExt/placeholder replace in place={〈placeholder〉}{〈from〉}{〈to〉} (style, no default)
/robExt/placeholder replace in place eval={〈placeholder〉}{〈from〉}{〈to〉} (style, no

default)
(new in v2.0) This allows you to replace a value in a placeholder. The eval variation first
evaluates the string.

List of placeholders:
- Placeholder called __NAMES__ contains:
Hello Charlie and Dylan.

\def\nameFrom{Bob}
\def\nameTo{Dylan}
\robExtConfigure{

set placeholder={__NAMES__}{Hello Alice and Bob.},
placeholder replace in place={__NAMES__}{Alice}{Charlie},
placeholder replace in place eval={__NAMES__}{\nameFrom}{\nameTo},

}
\printImportedPlaceholdersExceptDefaults

\placeholderRemoveSpacesUntil{〈placeholder〉}[〈nb of additional letters to
remove〉]{〈separator〉}

/robExt/placeholder remove spaces until={〈placeholder〉}{〈separator〉} (style, no default)
/robExt/remove spaces until={〈separator〉} (style, no default)
/robExt/placeholder strictly remove spaces until={〈placeholder〉}{〈separator〉} (style,

no default)
/robExt/strictly remove spaces until={〈separator〉} (style, no default)

(new in v2.6) Removes all the spaces before separator, together with the separator itself and
the next character (unless you use the strictly version, in that case the next character is not
dropped, or if you change the default value of additional letters to remove that defaults
to 1). Note that prepend all lines automatically apply it to the __ROBEXT_MAIN_CONTENT_ORIG__
placeholder, i.e. the text typed by the user.
This is useful, for instance, if your editor tends to automatically remove the indentation of
your python code while indenting automatically the document.

Python code

1 for i in range(2):
2 print(f"Hello {i}")

Output:
Hello 0
Hello 1

46



%% See that the python code can be freely indented now:
\begin{CacheMeCode}{python print code and result, remove spaces until={>>>}}

>>> for i in range(2):
>>> print(f"Hello {i}")

\end{CacheMeCode}

\placeholderPrependAllLines{〈placeholder〉}{〈text〉}
/robExt/placeholder prepend all lines={〈placeholder〉}{〈text〉} (style, no default)
/robExt/prepend all lines={〈text〉} (style, no default)

(new in v2.6) Prepend all lines with text. This can be useful, for instance, if you want to
indent a whole block of python code automatically. Note that the text is evaluated, so in case
you want to insert multiple spaces, use \space like in:
prepend all lines={\space\space\space\space}

My text def f(x): % hye # 42
My text return 42
My text
My text def g(z):
My text return 48
My text
My text

\begin{PlaceholderFromCode}{__TMP__}
>>> def f(x): % hye # 42
>>> return 42
>>>
>>> def g(z):
>>> return 48

\end{PlaceholderFromCode}
\placeholderRemoveSpacesUntil{__TMP__}{>>>}
\placeholderPrependAllLines{__TMP__}{My text\space\space\space\space}
\printPlaceholderNoReplacement{__TMP__}

Note that prepend all lines automatically adds the text to the __ROBEXT_MAIN_CONTENT_ORIG__
placeholder, i.e. the text typed by the user.

\placeholderRemoveLeadingSpaces{〈placeholder〉}
/robExt/placeholder remove leading spaces={〈placeholder〉} (style, no default)
/robExt/remove leading spaces (style, no value)
/robExt/remove leading spaces if not disabled (style, no value)
/robExt/do not remove leading spaces (style, no value)

(new in v2.6) Remove the indentation of a placeholder (the __ROBEXT_MAIN_CONTENT_ORIG__
placeholder, containing the content typed by the user, is used when not specified), by removing
on each line the highest possible number of leading spaces (the same number of spaces is
removed on all lines).

def f(x): % hye # 42
return 42

def g(z):
return 48
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\begin{PlaceholderFromCode}{__TMP__}
def f(x): % hye # 42

return 42

def g(z):
return 48

\end{PlaceholderFromCode}
\placeholderRemoveLeadingSpaces{__TMP__}
\printPlaceholderNoReplacement{__TMP__}

Note that remove leading spaces if not disabled is like remove leading spaces, ex-
cept that it is not run if the do not remove leading spaces style is applied before. This is
used inside some styles like python that cares about indentation to remove the leading spaces
(before v2.6, it was forbidden to add any indentation to the python code), while allowing the
user to disable it temporarily (who knows why?) by using the style:
do not remove leading spaces, python
Since remove leading spaces if not disabled is enabled by default on python, it is there-
fore fine to indent your python code like in:

Python code

1 for i in range(3):
2 print(f"Hello {i}")

Output:
Hello 0
Hello 1
Hello 2

\begin{CacheMeCode}{python print code and result}
for i in range(3):

print(f"Hello {i}")
\end{CacheMeCode}

\placeholderHalveNumberHashesInplace{〈placeholder〉}
\placeholderDoubleNumberHashesInplace{〈placeholder〉}
/robExt/placeholder halve number hashes in place={〈placeholder〉} (style, no default)
/robExt/placeholder double number hashes in place={〈placeholder〉} (style, no default)

(new in v2.0) This allows you to either turn any ## into # or the other way around (may be
practical when dealing with arguments to functions).

List of placeholders:
- Placeholder called __DEMO__ contains:
\def \hey #1{Hey #1.}

\robExtConfigure{
set placeholder={__DEMO__}{\def\hey##1{Hey ##1.}},
placeholder halve number hashes in place={__DEMO__},

}
\printImportedPlaceholdersExceptDefaults

\removePlaceholder{〈placeholder〉}
/robExt/remove placeholder={〈placeholder〉} (style, no default)
/robExt/remove placeholders={〈list,of,placeholder〉} (style, no default)

(new in v2.0) Remove placeholders.
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List of placeholders:
- Placeholder called __DEMOB__ contains:
Bob

\robExtConfigure{
set placeholder={__DEMOA__}{Alice},
set placeholder={__DEMOB__}{Bob},
set placeholder={__DEMOC__}{Charlie},
remove placeholders={__DEMOA__,__DEMOC__},

}
\printImportedPlaceholdersExceptDefaults

\evalPlaceholderInplace{〈name placeholder〉}
/robExt/eval placeholder inplace={〈name placeholder〉} (style, no default)

This command will update (inplace) the content of a macro by first replacing recursively the
placeholders, and finally by expanding the LATEX macros.

List of placeholders:
- Placeholder called __MACRO_NOT_EVALUATED__ contains:
\mymacro
- Placeholder called __MACRO_EVALUATED__ contains:
Initial value
Compare Initial value and Final value.

\def\mymacro{Initial value}
\placeholderFromContent{__MACRO_NOT_EVALUATED__}{\mymacro}
\placeholderFromContent{__MACRO_EVALUATED__}{\mymacro}
\evalPlaceholderInplace{__MACRO_EVALUATED__}
\printImportedPlaceholdersExceptDefaults
\def\mymacro{Final value}
Compare \evalPlaceholder{__MACRO_EVALUATED__} and \evalPlaceholder{__MACRO_NOT_EVALUATED__}.

/robExt/set placeholder eval={〈name placeholder〉}{〈content placeholder〉} (style, no
default)
Alias for \setPlaceholderRec{#1}{#2}\evalPlaceholderInplace{#1}: set and evaluate
recursively the placeholders and macros. This can be practical to pass the value of a coun-
ter/macro to the template (of course, if this value is fixed, you can also directly load it from
the preambule):

The current page is 49.

\begin{CacheMe}{tikzpicture, set placeholder eval={__thepage__}{\thepage}}
\node[rounded corners, fill=red]{The current page is __thepage__.};

\end{CacheMe}

Note that this works well for commands that expand completely, but some more complex
commands might not expand properly (like cref). I need to investigate how to solve this
issue, meanwhile you can still disable externalization for these pictures.

\lenToCm[〈unit〉]{〈expression〉}
\lenToCmNoUnit[〈unit〉]{〈expression〉}

\lenToCm{.75\linewidth} will output the length of .75\linewidth in cm by default, like
10cm. If you want to change the unit, you can use the optional argument to specify a different
unit (like in for inches, see \dim_to_decimal_in_unit for details). You can remove the unit
at the end using \lenToCmNoUnit{.75\linewidth} (needs v2.6) to obtain something like 10
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instead of 10cm. These commands are helpful with set placeholder eval to send length
from LATEX to your environment:
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Simple plot

\begin{CacheMeCode}{python, set placeholder eval={__LINEWIDTH__}{\lenToCmNoUnit[in]{.75\linewidth}}}
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.pyplot import figure
figure(figsize=(__LINEWIDTH__, __LINEWIDTH__))
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=2)
plt.title("Simple plot")
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
print(get_filename_from_extension(".pgf"))
# https://stackoverflow.com/a/52587591/4987648
plt.savefig("__ROBEXT_OUTPUT_PDF__", bbox_inches="tight")
\end{CacheMeCode}

6.2.4 Groups: the import system

(This whole system was added v2.0.)
In order to replace placeholders, we need to know their list, but to get the best possible perfor-

mance we do not maintain a single list of all placeholders since LATEX is quite slow when doing list
manipulations. Therefore, we group them inside smaller groups (e.g. one group for latex, one group
for python etc), and the user is free to import groups. By default, new placeholders are imported
inside the main group, and this group will be used when doing placeholder replacements. Note that
for most of the case, we define a star variant of functions like \setPlaceholder*{__FOO__}{bar}
(or set placeholder no import for styles) in order to create a placeholder without importing it
(but this is certainly not used a lot by end users unless they want to make them even faster).

Note that basically all commands to create a placeholder have a command/environment
where you add a star like \setPlaceholder*{} or a style where you add no import like
set placeholder no import in order to create a placeholder that is not imported at all.
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\importPlaceholder{〈name placeholder〉}
\importPlaceholdersFromGroup{〈name placeholder〉}
\importAllPlaceholders
\importPlaceholderFirst
/robExt/import placeholder={〈name placeholder〉} (style, no default)
/robExt/import placeholders from group={〈name group〉} (style, no default)
/robExt/import all placeholders (style, no value)
/robExt/import placeholder first={〈name placeholders〉} (style, no default)

Import placeholders, either individually, from a group of placeholders (exists either in style
form or command), or from all registered groups (warning: you should avoid importing all
placeholders if care too much about efficiency, as this can significantly slow down the replace-
ment procedure). The first variant inserts the placeholder at the beginning of the import
list, which can speed up compilation when this placeholder must be replaced first (but not so
useful for basic usage).

51



List of placeholders:
List of placeholders:
- Placeholder called __name__ contains:
Alice
List of placeholders:
- Placeholder called __ROBEXT_MAIN_CONTENT__ contains:
__ROBEXT_MAIN_CONTENT_ORIG__
- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ contains:

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ contains:
\robExtAddCachePathAndName {\robExtFinalHash .pdf}
- Placeholder called __name__ contains:
Alice
List of placeholders:
- Placeholder called __ROBEXT_MAIN_CONTENT__ contains:
__ROBEXT_MAIN_CONTENT_ORIG__
- Placeholder called __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ contains:

- Placeholder called __ROBEXT_INCLUDEGRAPHICS_FILE__ contains:
\robExtAddCachePathAndName {\robExtFinalHash .pdf}
- Placeholder called __name__ contains:
Alice
- Placeholder called __ROBEXT_LATEX__ contains:
\documentclass[__ROBEXT_LATEX_OPTIONS__]{__ROBEXT_LATEX_DOCUMENT_CLASS__}
__ROBEXT_LATEX_PREAMBLE__
% most packages must be loaded before hyperref
% so we typically want to load hyperref here
__ROBEXT_LATEX_PREAMBLE_HYPERREF__
% some packages must be loaded after hyperref
__ROBEXT_LATEX_PREAMBLE_AFTER_HYPERREF__
\begin{document}%
__ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__
\end{document}
- Placeholder called __ROBEXT_LATEX_OPTIONS__ contains:

- Placeholder called __ROBEXT_LATEX_DOCUMENT_CLASS__ contains:
standalone
- Placeholder called __ROBEXT_LATEX_PREAMBLE__ contains:

- Placeholder called __ROBEXT_LATEX_PREAMBLE_HYPERREF__ contains:

- Placeholder called __ROBEXT_LATEX_PREAMBLE_AFTER_HYPERREF__ contains:

- Placeholder called __ROBEXT_LATEX_TRIM_LENGTH__ contains:
30cm
- Placeholder called __ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__ contains:
__ROBEXT_LATEX_CREATE_OUT_FILE__%
\newsavebox\boxRobExt%
\begin{lrbox}{\boxRobExt}%
__ROBEXT_MAIN_CONTENT__%

\end{lrbox}%
\usebox{\boxRobExt}%
__ROBEXT_LATEX_WRITE_DEPTH_TO_OUT_FILE__%
- Placeholder called __ROBEXT_LATEX_CREATE_OUT_FILE__ contains:
%% We save the height/depth of the content by using a savebox:
\newwrite\writeRobExt%
\immediate\openout\writeRobExt=\jobname-out.tex%
- Placeholder called __ROBEXT_LATEX_WRITE_DEPTH_TO_OUT_FILE__ contains:
\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}%
\string\def\string\robExtHeight{\the\ht\boxRobExt}%
\string\def\string\robExtDepth{\the\dp\boxRobExt}%

}%
- Placeholder called __ROBEXT_LATEX_COMPILATION_COMMAND__ contains:
__ROBEXT_LATEX_ENGINE__ __ROBEXT_LATEX_COMPILATION_COMMAND_OPTIONS__
"__ROBEXT_SOURCE_FILE__"
- Placeholder called __ROBEXT_LATEX_COMPILATION_COMMAND_OPTIONS__ contains:
-halt-on-error
- Placeholder called __ROBEXT_LATEX_ENGINE__ contains:
pdflatex
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\robExtConfigure{
set placeholder no import={__name__}{Alice},
set placeholder no import={__name2__}{Bob},
print imported placeholders except default,
import placeholder={__name__},
print imported placeholders except default,
print imported placeholders,
import placeholders from group={latex},
print imported placeholders,

}

First try: __ROBEXT_LATEX_TRIM_LENGTH__

Second try: 30cm

\printPlaceholder{First try: __ROBEXT_LATEX_TRIM_LENGTH__}
\importAllPlaceholders
\printPlaceholder{Second try: __ROBEXT_LATEX_TRIM_LENGTH__}

\clearImportedPlaceholders{〈name placeholder〉}
/robExt/clear imported placeholders (style, no value)

Clear all imported placeholders (comma separated list of placeholders)

List of placeholders:
- Placeholder called __name__ contains:
Alice
List of placeholders:

\robExtConfigure{
set placeholder={__name__}{Alice},
print imported placeholders except default,
clear imported placeholders,
print imported placeholders except default,

}

\removeImportedPlaceholder{〈name placeholder〉}
/robExt/remove imported placeholders (style, no value)

Comma separated list of placeholders to remove from the list of imported placeholders.

List of placeholders:
- Placeholder called __name__ contains:
Alice
- Placeholder called __name2__ contains:
Alice
List of placeholders:

\robExtConfigure{
set placeholder={__name__}{Alice},
set placeholder={__name2__}{Alice},
print imported placeholders except default,
remove imported placeholders={__name__,__name2__},
print imported placeholders except default,

}

\printAllRegisteredGroups
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\printAllRegisteredGroupsAndPlaceholders*
/robExt/print all registered groups (style, no value)
/robExt/print all registered groups and placeholders (style, no value)
/robExt/show all registered groups (style, no value)
/robExt/show all registered groups and placeholders (style, no value)

Print (or shows in the console for the alternative versions) all registered groups of placeholders
(possibly with the placeholders they contain), mostly for debugging purpose, with the star
prints also the content of the inner placeholders.

special characters
latex
python
python print code result
verbatim
gnuplot
bash
web image
default

\printAllRegisteredGroups

\printGroupPlaceholders*
/robExt/print group placeholders={〈name group〉} (style, no default)

Print all placeholders (star = with content) of a given group.

Content of group bash:
- Placeholder __ROBEXT_BASH_TEMPLATE__
# Quit if there is an error
set -e
outputTxt="__ROBEXT_OUTPUT_PREFIX__-out.txt"
outputTex="__ROBEXT_OUTPUT_PREFIX__-out.tex"
outputPdf="__ROBEXT_OUTPUT_PDF__"
__ROBEXT_MAIN_CONTENT__
# Create the pdf file to certify that no compilation error occured
echo "ok" > "${outputPdf}"

- Placeholder __ROBEXT_BASH_SHELL__
bash

\printGroupPlaceholders*{bash}

\printAllRegisteredGroupsAndPlaceholders*
Print all registered groups of placeholders with their inner content, mostly for debugging
purpose, with the star prints only the content of the inner placeholders.
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- Groupspecial characters:
Placeholder__ROBEXT_LEFT_BRACE__
Placeholder__ROBEXT_RIGHT_BRACE__
Placeholder__ROBEXT_BACKSLASH__
Placeholder__ROBEXT_HASH__
Placeholder__ROBEXT_PERCENT__
Placeholder__ROBEXT_UNDERSCORE__
- Grouplatex:
Placeholder__ROBEXT_LATEX__
Placeholder__ROBEXT_LATEX_OPTIONS__
Placeholder__ROBEXT_LATEX_DOCUMENT_CLASS__
Placeholder__ROBEXT_LATEX_PREAMBLE__
Placeholder__ROBEXT_LATEX_PREAMBLE_HYPERREF__
Placeholder__ROBEXT_LATEX_PREAMBLE_AFTER_HYPERREF__
Placeholder__ROBEXT_LATEX_TRIM_LENGTH__
Placeholder__ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__
Placeholder__ROBEXT_LATEX_CREATE_OUT_FILE__
Placeholder__ROBEXT_LATEX_WRITE_DEPTH_TO_OUT_FILE__
Placeholder__ROBEXT_LATEX_COMPILATION_COMMAND__
Placeholder__ROBEXT_LATEX_COMPILATION_COMMAND_OPTIONS__
Placeholder__ROBEXT_LATEX_ENGINE__
- Grouppython:
Placeholder__ROBEXT_PYTHON__
Placeholder__ROBEXT_PYTHON_IMPORT__
Placeholder__ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__
Placeholder__ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__
Placeholder__ROBEXT_PYTHON_EXEC__
- Grouppython print code result:
Placeholder__ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_BEFORE__
Placeholder__ROBEXT_PYTHON_PRINT_CODE_RESULT_TEMPLATE_AFTER__
Placeholder__ROBEXT_PYTHON_TCOLORBOX_PROPS__
Placeholder__ROBEXT_PYTHON_CODE_MESSAGE__
Placeholder__ROBEXT_PYTHON_RESULT_MESSAGE__
Placeholder__ROBEXT_PYTHON_LSTINPUT_STYLE__
- Groupverbatim:
- Groupgnuplot:
Placeholder__ROBEXT_GNUPLOT_PRELUDE__
- Groupbash:
Placeholder__ROBEXT_BASH_TEMPLATE__
Placeholder__ROBEXT_BASH_SHELL__
- Groupweb image:
- Groupdefault:
Placeholder__ROBEXT_MAIN_CONTENT__
Placeholder__ROBEXT_INCLUDEGRAPHICS_OPTIONS__
Placeholder__ROBEXT_INCLUDEGRAPHICS_FILE__
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\printAllRegisteredGroupsAndPlaceholders

\newGroupPlaceholders{〈name group〉}
\addPlaceholderToGroup{〈name group〉}{〈list,of,placeholders〉}
\addPlaceholdersToGroup{〈name group〉}{〈list,of,placeholders〉}
\removePlaceholderFromGroup{〈name group〉}{〈list,of,placeholders〉}
\removePlaceholdersFromGroup{〈name group〉}{〈list,of,placeholders〉}
/robExt/new group placeholders={〈name group〉} (style, no default)
/robExt/add placeholder to group={〈name group〉}{〈name placeholder〉} (style, no default)
/robExt/add placeholders to group={〈name group〉}{〈list,of,placeholders〉}(style, no default)
/robExt/add placeholders to group={〈name group〉}{〈list,of,placeholders〉}(style, no default)
/robExt/remove placeholders from group={〈name group〉}{〈list,of,placeholders〉} (style, no

default)
/robExt/remove placeholder from group={〈name group〉}{〈list,of,placeholders〉} (style, no

default)
Create a new group and add placeholders to it (you can put multiple placeholders separated
by commas).

Content of group my dummy group:
- Placeholder __name__
Content of group my dummy group:

\robExtConfigure{
new group placeholders={my dummy group},
set placeholder no import={__name__}{Alice},
add placeholders to group={my dummy group}{__name__},

}
\printGroupPlaceholders{my dummy group}
\removePlaceholdersFromGroup{my dummy group}{__name__}
\printGroupPlaceholders{my dummy group}

\clearGroupPlaceholders{〈name group〉}
Remove all elements in a group.

Content of group my dummy group:

\robExtConfigure{
new group placeholders={my dummy group},
set placeholder no import={__name__}{Alice},
add placeholders to group={my dummy group}{__name__},

}
\clearGroupPlaceholders{my dummy group}
\printGroupPlaceholders{my dummy group}

\copyGroupPlaceholders{〈name group〉}{〈name group to copy〉}
/robExt/copy group placeholders={〈name group〉}{〈name group to copy〉} (style, no default)

Remove all elements in a group.

Content of group my copy:
- Placeholder __name__

\robExtConfigure{
new group placeholders={my dummy group},
set placeholder no import={__name__}{Alice},
add placeholders to group={my dummy group}{__name__},

}
\copyGroupPlaceholders{my copy}{my dummy group}
\printGroupPlaceholders{my copy}
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\appendGroupPlaceholders{〈name group〉}{〈name group to append〉}
\appendBeforeGroupPlaceholders{〈name group〉}{〈name group to append〉}
/robExt/append group placeholders={〈name group〉}{〈name group to copy〉} (style, no

default)
/robExt/append before group placeholders={〈name group〉}{〈name group to copy〉} (style,

no default)
Append a group to another group (after or before).

Content of group my dummy group:
- Placeholder __name__
- Placeholder __name2__

\robExtConfigure{
new group placeholders={my dummy group},
set placeholder no import={__name__}{Alice},
add placeholders to group={my dummy group}{__name__},
new group placeholders={my dummy group2},
set placeholder no import={__name2__}{Bob},
add placeholders to group={my dummy group2}{__name2__},
append group placeholders={my dummy group}{my dummy group2},

}
\printGroupPlaceholders{my dummy group}

\importPlaceholdersFromGroup{〈name group〉}
\importAllPlaceholders
/robExt/import placeholders from group={〈name group〉} (style, no default)
/robExt/import all placeholders (style, no value)

Import a group/all registered groups (note that this is equivalent to appending to the group
called main). Note that for the later, you should be sure that the group is “registered”, which
is the case if you created it via new group placeholders.

List of placeholders:
- Placeholder called __name__ contains:
Alice

\robExtConfigure{
new group placeholders={my dummy group},
set placeholder no import={__name__}{Alice},
add placeholder to group={my dummy group}{__name__},
import all placeholders,

}
\printImportedPlaceholdersExceptDefaults

6.3 Caching a content
6.3.1 Basics

\cacheMe[〈preset style〉]{〈content to cache〉}
\begin{CacheMe}{〈preset style〉}

〈environment contents〉
\end{CacheMe}

This command (and its environment alias) is the main entry point if you want to cache
the result of a file. The preset style is a pgfkeys-based style that is used to config-
ure the template that is used, the compilation command, and more. You can either in-
line the style, or use some presets that configure the style automatically. After eval-
uating the style, the placeholders __ROBEXT_TEMPLATE__ (containing the content of the
file) and __ROBEXT_COMPILATION_COMMAND__ (containing the compilation command run in
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the cache folder, that can use other placeholders internally like __ROBEXT_SOURCE_FILE__
to get the path to the source file) should be set. Note that we provide some basic
styles that allow settings these placeholders easily. See section 6.5 for a list of existing
placeholders and presets. The placeholder __ROBEXT_MAIN_CONTENT_ORIG__ will automat-
ically be set by this command (or environment) so that it equals the content of the sec-
ond argument (or the body of the environment). By default, __ROBEXT_MAIN_CONTENT__
will point to __ROBEXT_MAIN_CONTENT_ORIG__, possibly wrapping it inside an environ-
ment like \begin{tikzpicture} (most of the time, you want to modify and display
__ROBEXT_MAIN_CONTENT__ rather than the _ORIG_ to easily recover the input of the user).
This style can also configure the command to use to include the file and more. By default it
will insert the compiled PDF, making sure that the depth is respected (internally, we read the
depth from an aux file created by our LATEX preset), but you can easily change it to anything
you like.
For an educational purpose, we write here an example that does not exploit any preset. In
practice, we recommend however to use our presets, or to define new presets based on our
presets (see below for examples).
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\begin{CacheMe}{set template={
\documentclass{standalone}
\begin{document}
__ROBEXT_MAIN_CONTENT__
\end{document}

},
set compilation command={pdflatex -shell-escape -halt-on-error "__ROBEXT_SOURCE_FILE__"},
custom include command={%
\includegraphics[width=4cm,angle=45]{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}%

},
}

This content is cached $\delta$.
\end{CacheMe}

\robExtConfigure{〈preset style〉}
/robExt/new preset={〈name preset〉}{〈preset options〉} (style, no default)
/robExt/add to preset={〈name preset〉}{〈preset options〉} (style, no default)
/robExt/add before preset={〈name preset〉}{〈preset options〉} (style, no default)

You can then create your own style (or preset) in \robExtConfigure (that is basically an
alias for \pgfkeys{/robExt/.cd,#1}) containing your template, add your own placeholders
and commands to configure them etc. We provide two helper functions since v2.0:
new preset={your preset}{your configuration}
and
add to preset={your preset}{your configuration}
in order to create/modify the presets. You can also use my preset/.style or
my preset/.append style
to configure them instead, but in that case make sure to double the number of hashes like in
\def\mymacro##1{hello ##1}, as the #1 in \def\mymacro#1{hello #1}. would be under-
stood as the (non-existent) argument of my preset.
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%% Define your presets once:
\robExtConfigure{%

new preset={my latex preset}{
%% Create a default value for my new placeholders:
set placeholder={__MY_COLOR__}{red},
set placeholder={__MY_ANGLE__}{45},
% We can also create custom commands to "hide" the notion of placeholder
set my angle/.style={
set placeholder={__MY_ANGLE__}{#1}

},
set template={
\documentclass{standalone}
\usepackage{xcolor}
\begin{document}
\color{__MY_COLOR__}__ROBEXT_MAIN_CONTENT__
\end{document}

},
set compilation command={pdflatex -shell-escape -halt-on-error "__ROBEXT_SOURCE_FILE__"},
custom include command={%

% The include command is a regular LaTeX command, but using
% \evalPlaceholder avoids the need to play with expandafter, getPlaceholder etc...
\evalPlaceholder{%

\includegraphics[width=4cm,angle=__MY_ANGLE__,origin=c]{%
\robExtAddCachePathAndName{\robExtFinalHash.pdf}%

}%
}%

},
},

}

% Reuse them later...
\begin{CacheMe}{my latex preset}
This content is cached $\delta$.
\end{CacheMe}
% And configure them at will
\begin{CacheMe}{my latex preset, set placeholder={__MY_COLOR__}{green}, set my angle=-45}
This content is cached $\delta$.
\end{CacheMe}

The before variation (from 2.6) simply adds the style before the existing style. May be useful
to disable default options of a style.

\begin{CacheMeCode}{〈preset style〉}
〈environment contents〉

\end{CacheMeCode}
Like CacheMe, except that the code is read verbatim by LATEX. This way, you can put
non-LATEX code inside safely, but you will not be able to use it inside a macro or some
environments that read their body. Here is an example where we define an environ-
ment that automatically import matplotlib, save the figure, and insert it into a figure.
Note that we define in this example new commands to type set caption=foo instead of
set placeholder={__FIG_CAPTION__}{foo}.
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%% Define the python code to use as a template
%% (impossible to define it in \robExtConfigure directly since
%% it is a verbatim environment)
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE__}
import matplotlib.pyplot as plt
import sys
__ROBEXT_MAIN_CONTENT__
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

% Create a new preset called matplotlib
\robExtConfigure{

new preset={matplotlib figure}{
set template={__MY_MATPLOTLIB_TEMPLATE__},
set compilation command={python "__ROBEXT_SOURCE_FILE__"},
set caption/.style={
set placeholder={__FIG_CAPTION__}{#1}

},
set label/.style={
set placeholder={__FIG_LABEL__}{#1}

},
set includegraphics options/.style={
set placeholder={__INCLUDEGRAPHICS_OPTIONS__}{#1}

},
set caption={},
set label={},
set includegraphics options={width=1cm},
custom include command={%
\evalPlaceholder{%

\begin{figure}
\centering
\includegraphics[__INCLUDEGRAPHICS_OPTIONS__]{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}%
\caption{__FIG_CAPTION__a}
\label{__FIG_LABEL__}

\end{figure}%
}%

},
},

}

%% Use it
\begin{CacheMeCode}{matplotlib figure, set includegraphics options={width=.8\linewidth}, set caption={Hello}}
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
\end{CacheMeCode}

Note that as we explained it before, due to LATEX limitations, it is impossible to call
CacheMeCode inside macros and inside some environments that evaluate their body. To avoid
that issue, it is always possible to define the macro before and call it inside. We will exem-
plify this on the previous example, but note that this example is only for educational
purposes since the environment figure does not evaluate its body, and CacheMeCode can
therefore safely be used inside without using this trickery:
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Figure 2: An example to show how matplotlib pictures can be inserted

%% Define the python code to use as a template
%% (impossible to define it in \robExtConfigure directly since
%% it is a verbatim environment)
\begin{PlaceholderFromCode}{__MY_MATPLOTLIB_TEMPLATE__}
import matplotlib.pyplot as plt
import sys
__ROBEXT_MAIN_CONTENT__
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{PlaceholderFromCode}

% Create a new preset called matplotlib
\robExtConfigure{

new preset={matplotlib}{
set template={__MY_MATPLOTLIB_TEMPLATE__},
set compilation command={python "__ROBEXT_SOURCE_FILE__"},
set includegraphics options/.style={
set placeholder={__INCLUDEGRAPHICS_OPTIONS__}{#1}

},
set includegraphics options={width=1cm},
custom include command={%
\evalPlaceholder{%

\includegraphics[__INCLUDEGRAPHICS_OPTIONS__]{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}%
}%

},
},

}

%% You cannot use CacheMeCode inside some macros or environments due to fundamental LaTeX limitations.
%% But you can always define them before, and call them inside:
\begin{SetPlaceholderCode}{__TMP__}
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
\end{SetPlaceholderCode}

\begin{figure}
\centering
\cacheMe[matplotlib, set includegraphics options={width=.8\linewidth}, set

caption={Hello}]{__TMP__}
\caption{An example to show how code can be inserted into macros or environments that evaluate their contents (this trick is actually not needed for figures)}

\end{figure}
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6.3.2 Options to configure the template

/robExt/set template={〈content template〉} (style, no default)
Style that alias to set placeholder={__ROBEXT_TEMPLATE__}{#1}, in order to define the
placeholder that will hold the template of the final file.

/robExt/set template={〈content template〉} (style, no default)
Style that alias to set placeholder={__ROBEXT_TEMPLATE__}{#1}, in order to define the
placeholder that will hold the template of the final file.

6.3.3 Options to configure the compilation command

/robExt/set compilation command={〈compilation command〉} (style, no default)
/robExt/set compilation command create if no error={〈compilation command〉}(style, no

default)
/robExt/set compilation command move if no error={〈compilation command〉} (style, no

default)
set compilation command is equivalent to set placeholder={__ROBEXT_COMPILATION_COMMAND__}{#1},
in order to define the placeholder that will hold the compilation command.
Then, set compilation command move if no error (new in v2.4) is like set compilation command
except that it will copy the file located in __ROBEXT_OUTPUT_PDF__-tmp into __ROBEXT_OUTPUT_PDF__
if the command succeeds (returns a status code of 0), and otherwise it will not create the
__ROBEXT_OUTPUT_PDF__ at all, creating an error message. This is needed by some programs
that will create an output file even if an error occurs, for instance wget will still create an
empty file if there is no internet connection, producing no error during the compilation, which
can be confusing.
set compilation command create if no error (new in v2.4) will, on the other hand, cre-
ate an empty __ROBEXT_OUTPUT_PDF__ file if the command succeeds (only useful if you use a
custom include command).

/robExt/add argument to compilation command={〈argument〉} (style, no default)
/robExt/add arguments to compilation command={〈argument〉} (style, no default)

add argument to compilation command is a style that alias to:
set placeholder={__ROBEXT_COMPILATION_COMMAND__}{__ROBEXT_COMPILATION_COMMAND__ "#1"}
in order to add an argument to the compilation command. add arguments to compilation command
(note the s) accepts multiple arguments separated by a comma.

/robExt/add key value argument to compilation command={〈key=value〉}(style, no default)
Adds to the command line two arguments key and value. This is a way to quickly pass
arguments to a script: the script just needs to loop over the arguments and consider the
odd elements as keys and the next elements as the value. Another option is to insert some
placeholders directly in the script.

/robExt/add key and file argument to compilation command={〈key=filename〉} (style, no
default)
filename is the path to a file in the root folder. This adds, as:
add key value argument to compilation command
two arguments, where the first argument is the key, but this time the second argument is
the path of filename relative to the cache folder (useful since scripts run from this folder).
Moreover, it automatically ensures that when filename changes, the file gets recompiled.
Note that contrary to some other commands, this does not copy the file in the cache, which
is practical notably for large files like videos.

/robExt/force compilation (style, no value)
/robExt/do not force compilation (style, no value)
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By default, we compile cached documents only if -shell-escape is enabled. However, if
the user allowed pdflatex (needed to compile latex documents), cd (not needed when using
no cache folder), and mkdir (not needed when using no cache folder or if the cache
folder that defaults to robustExternalize is already created) to run in restricted mode (so
without enabling -shell-escape), then there is no need for -shell-escape. In that case, set
force compilation and this library will compile even if -shell-escape is disabled.

/robExt/recompile (style, no value)
/robExt/do not recompile (style, no value)

(new to v2.1) recompile will force a compilation even if the image is already cached (mostly
useful if you made a change to a non-tracked dependency). Note that since this library does
not want to remove any file on the hard drive (we do not want to risk to remove important
files in case of a bug), this command will NOT clear the auxiliary files already present, so
for maximum purity, ensure that your compiling command is idempotent (so that compiling
twice gives the same outcome as compiling once).

A B

\cacheEnvironment{tikzcd}{tikz, add to preamble={\usepackage{tikz-cd}}}
\begin{tikzcd}<recompile>

A \rar & B
\end{tikzcd}

If you want to actually remove the aux files, you can either change the compilation command,
or add something like this to remove the file (note that it will prompt a message before
running the actual command), using the hook robust-externalize/just-before-writing-
files that we introduced in v2.1:

\cacheTikz

\robExtConfigure{
clean and recompile/.code={%

\AddToHook{robust-externalize/just-before-writing-files}{%
\edef\command{rm -f "\robExtAddCachePathAndName{\robExtFinalHash.pdf}" && %

rm -f "\robExtAddCachePathAndName{\robExtFinalHash.aux}"}%
\message{You will run the command ``\command''}%
\message{Press X if you do NOT want to run it, otherwise press ENTER.}%
\show\def% this is just used to wait a user input
\immediate\write18{\command}%

}%
},%

}

\begin{tikzpicture}<clean and recompile>
\node[fill=red] {B};

\end{tikzpicture}

Note that if you do not want to run a command from LATEX, or if you are on a version smaller
than 2.1, you can also simply print the name of the file in the pdf and remove it manually:

Hello World!
You want to delete the file robustExternalize/robExt-8D3C716FE8F65C28FBFB9C4C845D659D.pdf.

\begin{CacheMe}{tikzpicture, name output=filetodelete}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{CacheMe}\\

You want to delete the file \texttt{\filetodeleteInCache.pdf}. %

\robExtMv
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\robExtCp
(new in v2.4) Respectively expands to mv and cp in linux/unix and to move and copy in
Windows (needed to create a compilation command that works in both linux and windows).
Note that set compilation command does NOT expand its argument by default and spaces
after macros are removed by latex, so you need to use /.expanded and \space like in:

set compilation command/.expanded={\robExtCp\space"__ROBEXT_SOURCE_FILE__" "__ROBEXT_OUTPUT_PDF__"}

6.3.4 Options to configure the inclusion command

The inclusion command is the command that is run to include the cached file back in the pdf (e.g.
based on \includegraphics). We describe now how to configure this command.

/robExt/custom include command advanced={〈include command〉} (style, no default)
Sets the command to run to include the compiled file. You can use:
\robExtAddCachePathAndName{\robExtFinalHash.pdf}
in order to get the path of the compiled pdf file. Note that we recommend rather to use
custom include command that automatically checks if the file compiled correctly and that
load the *-out.tex file if it exists (useful to pass information back to the pdf).

/robExt/custom include command={〈include command〉} (style, no default)
/robExt/include command is input=[〈additional code to run〉] (style, no default)

Sets the command to run to include the compiled file, after checking if the file has been
correctly compiled and loading *-out.tex (useful to pass information back to the pdf).
include command is input={SOME CODE} is a shortcut for:
custom include command={SOME CODE\input{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}},

/robExt/do not include pdf (style, no value)
/robExt/include command is input=additional command (style, no default)

do not include pdf do not include the pdf. Useful if you only want to compile the file but
use it later (note that you should still generate a .pdf file, possibly empty, to indicate that
the compilation runs smootly). Equivalent to:
custom include command={} Use include command is input (v2.3 and after) in order to
specify that you should \input the .pdf file (note that despite the extension, it should still con-
tain a LaTeX code). You can also specify an optional command to run before. Equivalent to:
custom include command={#1\input{\robExtAddCachePathAndName{\robExtFinalHash.pdf}}}

/robExt/enable manual mode (style, no value)
/robExt/disable manual mode (style, no value)
/robExt/enable fallback to manual mode (style, no value)
/robExt/disable fallback to manual mode (style, no value)

If you do or do not want to ask latex to run the compilation commands itself (for instance for
security reasons), you can use these commands and run the command manually later:

The next picture must be manually compiled (see JOBNAME-robExt-compile-missing-
figures.sh):
Manual mode: either compile with -shell-escape or compile:
robustExternalize/robExt-9A58BBFD5C2B6C079891CF68E406829D.tex
via
cd robustExternalize/ && pdflatex -halt-on-error "robExt-
9A58BBFD5C2B6C079891CF68E406829D.tex"
or call
bash robust-externalize-robExt-compile-missing-figures.sh
to compile all missing figures.
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\robExtConfigure{
enable manual mode

}

The next picture must be manually compiled %
(see JOBNAME-robExt-compile-missing-figures.sh):\\ %
\begin{tikzpictureC}[baseline=(A.base)]
\node[fill=red, rounded corners](A){I must be manually compiled.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};

\end{tikzpictureC}

The main difference between manual mode and fallback to manual mode is that fallback to manual mode
will try to compile the file if -shell-escape is enabled, while manual mode will never run any
command, even if -shell-escape is enabled. Note that enable fallback to manual mode
is available starting from v2.0.
See section 6.8 for more details.

/robExt/include graphics args (style, no value)
By default, the include commands runs \includegraphics on the pdf, and possibly raises it
if needed. You can customize the arguments passed to \includegraphics here.

/robExt/add cache to graphicspath (style, no value)
This will add the folder containing the cache in the \graphicspath{}. Mostly useful if you
need to input a file from the cache that does \includegraphics{foo} where foo is an image
from the cache itself (looking at you gnuplot).

6.3.5 Configuration of the cache

If needed, you can configure the cache:

/robExt/set filename prefix={〈prefix〉} (style, no default)
By default, the files in the cache starts with robExt-. If needed you can change this here, or
by manually defining \def\robExtPrefixFilename{yourPrefix-}.

/robExt/set subfolder and way back={〈cache folder〉}{〈path to project from cache〉} (style,
no default)

/robExt/set cache folder and way back={〈cache folder〉}{〈path to project from cache〉}
(style, no default)
By default, the cache is located in robustExternalize/, using:
set cache folder and way back={robustExternalize/}{../},
You can customize it the way you want, just be make sure that going to the second arguments
after going to the first argument leads you back to the original position, and make sure to termi-
nate the path with a / so that __ROBEXT_WAY_BACK__common_inputs.tex gives the path of the
file common_inputs.tex in the root folder (do not write __ROBEXT_WAY_BACK__/common_inputs.tex
as this would expand to the absolute path /common_inputs.tex if you disable the cache
folder). Note that both:
set cache folder and way back
and
set subfolder and way back
are alias, but the first one was introduced in v2.0 as it is clearer, the second one being kept
for backward compatibility.

/robExt/set output directory={〈output directory〉} (style, no default)
If you compile with --output-directory build, you also need to tell this library that you
are compiling with --output-directory build. As I can’t find a reliable way to get this
value, even using TEXMF_OUTPUT_DIRECTORY, you need to specify manually the compilation
directory. To do that, you can either compile with:
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pdflatex -shell-escape -output-directory=build "\def\robExtOutputDirectory{build}\input{test.tex}"

or add in your file:

\robExtConfigure{
set output directory=build,

}

/robExt/no cache folder (style, no value)
Do not put the cache in a separate subfolder.
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6.3.6 Customize or disable externalization

You might want (sometimes or always) to disable externalization, for instance to use remember picture
Point to me if you can , even if you used \cacheTikz:

/robExt/disable externalization (style, no value)
/robExt/de (style, no value)
/robExt/disable externalization now (style, no value)
/robExt/enable externalization (style, no value)

Enable or disable externalization.

This figure is not externalized. This way, it can use remember picture.
This figure is not externalized. This way, it can use remember picture.
This figure is not externalized. This way, it can use remember picture.

% In theory all pictures should be externalized (so remember picture should fail)
\cacheTikz
% But we can disable it temporarily
\begin{tikzpicture}<disable externalization>[remember picture]
\node[rounded corners, fill=red](A){This figure is not externalized.

This way, it can use remember picture.};
\draw[->,overlay] (A) to[bend right] (pointtome);

\end{tikzpicture}\\

% You can also disable it globally/in a group:
{
\robExtConfigure{disable externalization}

\begin{tikzpicture}[remember picture]
\node[rounded corners, fill=red](A){This figure is not externalized.

This way, it can use remember picture.};
\draw[->,overlay] (A.west) to[bend left] (pointtome);

\end{tikzpicture}\\

\begin{tikzpicture}[remember picture]
\node[rounded corners, fill=red](A){This figure is not externalized.

This way, it can use remember picture.};
\draw[->,overlay] (A.east) to[bend right] (pointtome);

\end{tikzpicture}
}

disable externalization now additionally redefines all automatically cached commands
and environments to their default value right now (disable externalization would only do
so when running the command if no externalization is run, which should be preferred if
possible). This is mostly useful when an automatically cached command cannot be parsed
(e.g. you specified the signature O{}m but in fact the command expects a more complicated
parsing algorithm. For instance, in tikz we can omit the brackets, and it might confuse the
system if we defined it as:

The short version of tikz can be confusing.

%% Not the recommended way to proceed, but this is for the example
\cacheCommand{tikz}[O{}m]{tikz}
{

% Needed, or the parser would be confused by the next command
\robExtConfigure{disable externalization now}
\tikz\node[fill=green]{The short version of tikz can be confusing.};

}
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Since v2.1 you can also automatically disable externalization if the input contains a given
string, for instance remember picture (that is not cachable with this library):

Point to me Some text

\cacheTikz
\robExtConfigure{

add to preset={tikzpicture}{
% \b means "word boundary", and spaces must be escaped
if matches={remember picture}{disable externalization},

},
}
\begin{tikzpicture}[remember picture]

\node[fill=green](my original node){Point to me};
\end{tikzpicture} %
Some text %
\begin{tikzpicture}[overlay, remember picture]

\draw[->] (0,0) to[bend left] (my original node);
\end{tikzpicture}

/robExt/command if no externalization (style, no value)
/robExt/command if externalization (style, no value)
/robExt/run command if externalization={〈code〉} (style, no default)

You can easily change the command to run if externalization is disabled using by setting the
.code of this key. By default, it is configured as:

command if no externalization/.code={%
\robExtDisableTikzpictureOverwrite\evalPlaceholder{__ROBEXT_MAIN_CONTENT__}%

}
Unless you know what you are doing, you should include \robExtDisableTikzpictureOverwrite
as it is often necessary to avoid infinite recursion when externalization is disabled and the orig-
inal command has been replaced with a cached version (for instance done by \cacheTikz).
Note that if you write your own style, try to modify __ROBEXT_MAIN_CONTENT__ so that it
can be included as-it in a document: this way you do not need to change this command. You
can also use command if externalization/.append code={...} if you want to run a code
only if externalization is enabled (this is used for instance by the forward functionality), but
we advise you rather to use run command if externalization={...} as this will also work
if the style is executed while command if externalization is already running (this might
occur when calling the style inside if matches word, for instance when forwarding colors).

/robExt/print verbatim if no externalization (style, no value)
Sets command if no externalization to print the verbatim content of __ROBEXT_MAIN_CONTENT__
if externalization is disabled. Internally, it just sets it to:
\printPlaceholder{__ROBEXT_MAIN_CONTENT__}
This is mostly useful when typesetting __ROBEXT_MAIN_CONTENT__ directly does not make
sense (e.g. in python code). This style is used for instance in the python preset, allowing us
to get:

with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:
for i in range(5):

f.write(f"Hello {i}, we are on page 68\n")
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\begin{CacheMeCode}{python,
verbatim output,
set placeholder eval={__thepage__}{\thepage},
%% We disable externalization
disable externalization}

with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:
for i in range(5):

f.write(f"Hello {i}, we are on page __thepage__\n")
\end{CacheMeCode}

You can also disable the externalization on all elements that use a common preset, for in-
stance you can disable externalization on all bash instances (useful if you are on Windows for
instance):

# $outputTxt contains the path of the file that will be printed via
\verbatiminput
uname -srv > "${outputTxt}"

\robExtConfigure{
% bash code will not be compiled (useful on windows for instance)
add to preset={bash}{

disable externalization
},

}
\begin{CacheMeCode}{bash, verbatim output}
# $outputTxt contains the path of the file that will be printed via \verbatiminput
uname -srv > "${outputTxt}"
\end{CacheMeCode}

/robExt/execute after each externalization (style, no value)
/robExt/execute before each externalization (style, no value)

By doing execute after each externalization={some code}, you will run some code after
the externalization. This might be practical for instance to update a counter (e.g. the number
of pages…) based on the result of the compiled file.

6.3.7 Dependencies

In order to enforce reproducibility, you should tell what are the files that your code depends on,
by adding this file as a dependency. This has the advantage that if this file is changed, your code
is automatically recompiled. On the other hand, you might not want this behavior (e.g. if this
file often changes in a non-important way): in that case, just don’t add the file as a dependency
(but keep that in mind as you might not be able to recompile your file if you clear the cache if you
introduced breaking changes).

/robExt/dependencies={〈list,of,dependencies〉} (style, no default)
/robExt/add dependencies={〈list,of,dependencies〉} (style, no default)
/robExt/reset dependencies (style, no value)

Set/add/reset the dependencies (you can put multiple files separated by commas). These files
should be relative to the main compiled file. For instance, if you have a file common_inputs.tex
that you want to input in both the main file and in the cached files, that contains, say:
\def\myValueDefinedInCommonInputs{42}
then you can add it as a dependency using:

The answer is 42.

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__common_inputs.tex}}}

The answer is \myValueDefinedInCommonInputs.
\end{CacheMe}
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Note that the placeholder __ROBEXT_WAY_BACK__ contains the path from the cache folder
(containing the .tex that will be cached) to the root folder.
This way, you can easily input files contained in the root folder.

\copyFileToCache
\forceCopyFileToCache
/robExt/copy file to cache={〈file〉} (style, no default)

It can sometimes be handy to copy a file to the cache folder to avoid using __ROBEXT_WAY_BACK__
for instance to refer to another file. This can be done with copy file to cache, either in a
preset or in \robExtConfigure like:

\robExtConfigure{
copy file to cache={zx-calculus.sty},

}

Note that copy file to cache will always compare the md5 sum to check if a copy must be
done or not.

6.3.8 Forward macros

(since v2.1)
You can also see the tutorial (section 5.7) for some examples. So far, we have seen multiple

approaches to use a macro in both the main document and in cached pictures, having different
advantages:

• if we define the macro in a file say common_inputs.tex, if we include that file in both files
and if we add it to the list of dependencies (section 6.3.7), then you will have great purity
(if common_inputs.tex changes, all files are recompiled), but this might be a problem if you
often change the file common_inputs.tex since you will need to recompile all pictures every
time you add a new macro

• If you follow the same procedure, but without adding the file in the list of dependencies,
then you will save compilation time (no need to recompile everything if you add a macro in
common_inputs.tex), but you will lose purity (if you change the definition of a macro in that
file, you will need to manually specify the list of figures to recompile, e.g. using recompile).

• You can also create multiple files like

common_inputs_functionality_A.tex

and

common_inputs_functionality_B.tex

and use the first solution (maybe by creating a preset that automatically calls add to preamble
and add dependencies), and only input the appropriate file depending on the set of macro
that you need. This gives a tradeoff of above approaches (good purity, with less recompila-
tion), but you will still compile often if you put many macros in a single file (and nobody
wants to create one macro per file!).

In this section, we provide a third solution that tries to solve the above issue (purity without
frequent recompilations), by allowing the user to forward only a specific macro, with something
like forward=\myMacro. In order to avoid to manually forward all macros used for each picture,
we also provide some functions to automatically detect the macros to forward.

/robExt/forward=macro to forward (style, no default)
/robExt/fw=macro to forward (style, no default)
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/robExt/forward at letter=macro to forward (style, no default)
forward (alias fw) will forward the definition of a macro to the picture if externalization is
enabled:

Alice

\cacheTikz
\def\myName{Alice}
\begin{tikzpicture}<forward=\myName>

\node[fill=red]{\myName};
\end{tikzpicture}

Note that it works for macro defined with \def, \newcommand (or alike) and \NewDocumentCommand
(or other xparse commands). For instance with xparse:

Alice Bob

\cacheTikz
\NewDocumentCommand{\MyNode}{O{}m}{\node[rounded corners,fill=red,#1]{#2};}
\begin{tikzpicture}<forward=\MyNode>

\MyNode{Alice}
\MyNode[xshift=2cm]{Bob}

\end{tikzpicture}

and with \newcommand:

Alice Bob

\cacheTikz
\newcommand{\MyNodeWithNewCommand}[2][draw,thick]{\node[rounded corners,fill=red,#1]{#2};}
\begin{tikzpicture}<forward=\MyNodeWithNewCommand>

\MyNodeWithNewCommand{Alice}
\MyNodeWithNewCommand[xshift=2cm]{Bob}

\end{tikzpicture}

Note that this might not work with quite involved macros. Notably, if the macro is defined
by calling other macros, you need to also forward these macros.

Alice: she is tall

\cacheTikz
\def\myName{Alice}
\NewDocumentCommand{\MyNodeWithInnerMacros}{O{}m}{\node[rounded corners,fill=red,#1]{\myName: #2};}
\begin{tikzpicture}<forward=\MyNodeWithInnerMacros,forward=\myName>

\MyNodeWithInnerMacros{she is tall}
\end{tikzpicture}

Really involved macros (e.g. defined inside libraries) might call many other macros, possibly
using the @ letter (used only in module code). If you REALLY want, you can forward such
macros if you forward all macros that are used internally, using forward at letter that
will automatically wrap the macro inside \makeatletter...\makeatother, but you should
certainly use add to preamble={\usepackage{yourlib}} if you need to do something like
that:

Alice
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\cacheTikz
\makeatletter
\def\module@name{Alice}
\newcommand{\MyNodeWithAtCommands}[2][draw,thick]{\node[rounded corners,fill=red,#1]{\module@name};}
\begin{tikzpicture}<forward at letter=\MyNodeWithAtCommands,forward at letter=\module@name>

\MyNodeWithAtCommands{Alice}
\end{tikzpicture}
\makeatother

/robExt/forward eval=macro to eval and forward (style, no default)
Evaluate a macro, and defines it using this new value when compiling the function. This
might be useful for instance if your macro depends on other macros that you do not want to
export:

Alice.

\def\name{Alice}
\def\fullName{\name}
\begin{tikzpictureC}<forward eval=\fullName>

\node[rounded corners, fill=red]{\fullName.};
\end{tikzpictureC}

/robExt/forward counter=counter to forward (style, no default)
/robExt/forward counter force value={〈counter to forward〉}{〈value of counter〉} (style, no

default)
Forward a counter:

The current page is 72.

\begin{tikzpictureC}<forward counter=page>
\node[rounded corners, fill=red]{The current page is \thepage.};

\end{tikzpictureC}

The force value also assigns a value to the counter irrespective of the current value (might be
useful for instance to generate a cached value for the arXiv).

The current page is 65.

\begin{tikzpictureC}<forward counter force value={page}{65}>
\node[rounded corners, fill=red]{The current page is \thepage.};

\end{tikzpictureC}

/robExt/forward color=color to forward (style, no default)
/robExt/auto forward color={〈preset〉}{〈color to forward〉} (style, no default)

forward color forwards a color (defined with xcolor). It works with colors defined with
\definecolor:

A

\definecolor{myred}{HTML}{F01122}
\begin{tikzpictureC}<forward color=myred>

\node[fill=myred]{A};
\end{tikzpictureC}

but also with colors defined with \colorlet:
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B

\definecolor{myred}{HTML}{F01122}
\colorlet{myviolet}{blue!50!myred}
\begin{tikzpictureC}<forward color=myviolet>

\node[fill=myviolet,yshift=-1cm]{B};
\end{tikzpictureC}

Note that using if matches word, you can also automatically forward colors. This command
also scales better than if matches: if if matches is used to register N words, the compilation
time will increase for each new if matches (since we need to check each time if the string
contains the expression). if matches word, on the other hand, is more clever, and extracts
in a single loop all the words of the string: the running time is therefore independent of the
number of times if matches word was called. You can call if matches word outside of any
preset like in:

B

\definecolor{myred}{HTML}{F01122}
\colorlet{myviolet}{blue!50!myred}
\colorlet{mypink}{pink!90!orange}
\robExtConfigure{

if matches word={mypink}{forward color=mypink},
}
\begin{tikzpictureC}

\node[fill=mypink,yshift=-1cm]{B};
\end{tikzpictureC}

And this will automatically allow all presets based on latex to forward this color (see also
\definecolorAutoForward to do that even quicker). You can also simply call it on any preset
of your choice like:

B

\definecolor{myred}{HTML}{F01122}
\colorlet{myviolet}{blue!50!myred}
\colorlet{mypink}{pink!90!orange}
\robExtConfigure{

add to preset={latex}{
if matches word={mypink}{forward color=mypink},

},
}
\begin{tikzpictureC}

\node[fill=mypink,yshift=-1cm]{B};
\end{tikzpictureC}

or, equivalently:

B

\definecolor{myred}{HTML}{F01122}
\colorlet{myviolet}{blue!50!myred}
\colorlet{mypink}{pink!90!orange}
\robExtConfigure{

auto forward color={tikz}{mypink},
}
\begin{tikzpictureC}

\node[fill=mypink,yshift=-1cm]{B};
\end{tikzpictureC}
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/robExt/auto forward (style, no value)
/robExt/auto forward only macros (style, no value)
/robExt/auto forward words (style, no value)

auto forward enables automatic forwarding of macros marked with *AutoForward com-
mands or \configIfMacroPresent or if matches word. This command naively extracts
all used macros via a simple regex match and forwards them/execute the style configured
in \configIfMacroPresent if it exists. It does a similar thing for words registered via
if matches word or register word with namespace. If you want to only forward macros
or words, you can use auto forward only macros or auto forward words.

Recompiled only if MyNode is changed but not if the (unused) MyGreenNode is changed.

Recompiled only if MyGreenNode is changed but not if the (unused) MyNode is changed.

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyNode}[2][draw,thick]{\node[rounded corners,fill=red,#1]{#2};}
\newcommandAutoForward{\MyGreenNode}[2][draw,thick]{\node[rounded corners,fill=green,#1]{#2};}

\begin{tikzpicture}
\MyNode{Recompiled only if MyNode is changed}
\MyNode[xshift=8cm]{but not if the (unused) MyGreenNode is changed.}

\end{tikzpicture}\\

\begin{tikzpicture}
\MyGreenNode{Recompiled only if MyGreenNode is changed}
\MyGreenNode[xshift=8cm]{but not if the (unused) MyNode is changed.}

\end{tikzpicture}

\configIfMacroPresent{〈macro〉}{〈style to run if macro is present〉}
Runs the corresponding style if the macro macro is present (make sure to enable auto forward).

❤

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\configIfMacroPresent{\ding}{add to preamble={\usepackage{pifont}}}

\begin{tikzpicture}
\node[fill=green, circle]{\ding{164}};

\end{tikzpicture}

\newcommandAutoForward{〈macro〉}[〈nb args〉][〈optional default
value〉]{〈definition〉}[〈additional style〉]

\renewcommandAutoForward{〈macro〉}[〈nb args〉][〈optional default
value〉]{〈definition〉}[〈additional style〉]

\providecommandAutoForward{〈macro〉}[〈nb args〉][〈optional default
value〉]{〈definition〉}[〈additional style〉]

\NewDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional style〉]{〈definition〉}
\RenewDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional style〉]{〈definition〉}
\ProvideDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional style〉]{〈definition〉}
\DeclareDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional style〉]{〈definition〉}
\NewExpandableDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional

style〉]{〈definition〉}
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\RenewExpandableDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional
style〉]{〈definition〉}

\ProvideExpandableDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional
style〉]{〈definition〉}

\DeclareExpandableDocumentCommandAutoForward{〈macro〉}{〈arg spec〉}[〈additional
style〉]{〈definition〉}

\defAutoForward{〈macro〉}[〈def-style arg spec〉]{〈macro〉}[〈additional style〉]
\genericAutoForward*[〈preset〉][〈namespace〉]{〈word〉}[〈additional style〉]{〈code to run〉}
\genericAutoForwardStringMatch*[〈preset〉]{〈string〉}[〈additional style〉]{〈code to run〉}

\newcommandAutoForward{\macro}[nb args][default value]{def}[STYLE]

is like
\newcommand{\macro}[nb args][default value]{def}
but it additionally runs
\configIfMacroPresent{\macro}{forward=\macro,STYLE}
to automatically forward the macro if it is used. It is really practical to automatically define
a macro and forward it:

❤ Alice: Recompiled only if MyNode is changed

❤ Alice: or if MyName is changed

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyName}{\ding{164} Alice}[add to preamble={\usepackage{pifont}}]
\newcommandAutoForward{\MyNode}[2][draw,thick]{\node[rounded corners,fill=green,#1]{\MyName: #2};}[

load auto forward macro config=\MyName
]

\begin{tikzpicture}
\MyNode{Recompiled only if MyNode is changed}
\MyNode[yshift=-1cm]{or if MyName is changed}

\end{tikzpicture}

This works similarly for other commands (note that for \defAutoForward, you need to put
the arguments in a bracket, like \defAutoForward\myMacro[#1 and #2]{Hey #1, #2} for
\def\myMacro#1 and #2{Hey #1, #2}). \genericAutoForward and \genericAutoForwardStringMatch
are a bit special, as it can be used to run any code assuming that word/string to match
is present (\genericAutoForward is more efficient as it does not scale with the number of
words, but do not allow spaces etc in the name). For instance, you can use it to automatically
forward the code that defines a new tikz style assuming mystyle is preset:

A

\cacheTikz
\genericAutoForward{mystyle}{

\tikzset{mystyle/.style={fill=#1!10!white,text=#1!50!black}}
}

\begin{tikzpicture}
\node[mystyle=green]{A};

\end{tikzpicture}

This will also run the code to define it in the current document (practical for instance if
some pictures are not externalized), use the stared version of \genericAutoForward if you
do not want to run the code in the current document. By default, the code is added to the
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latex preset, but you can choose another preset if you want using the optional option. The
additional style might be specified to run other style if the matches is true. Note that you
should be able to use definitions inside the code (a bug in v2.1 was making this code fail):

Hey Coucou Alice :)
(
A B
C D

)

\genericAutoForward{mystyle}{
\tikzset{mystyle/.style={fill=#1!10!white,text=#1!50!black}}

}
\newcommandAutoForward{\myName}{Alice}
\robExtConfigure{

add to preset={tikz}{
auto forward, % not needed for genericAutoForward, but for newcommandAutoForward
if matches word={pmatrix}{add to preamble={\usepackage{amsmath}}}

}
}

\begin{tikzpicture}
\node[mystyle=green]{%

\def\hey#1{Hey #1 :)}% You can define macros inside the cached elements
\hey{Coucou \myName} %
$\begin{pmatrix}% Fixing a bug introduced in v2.1, we can also use macros
A & B\\
C & D\\

\end{pmatrix}$
};

\end{tikzpicture}

My style automatically forwarded

% space is not allowed in the name with this more efficient version:
\robExtGenericAutoForward{mystyle}{%
\tikzset{%

mystyle/.style={fill=#1!30!white,text=#1!40!black},
}%

}
\begin{tikzpictureC}
\node[mystyle=green]{My style automatically forwarded};

\end{tikzpictureC}

My style with a space in the name automatically forwarded

% space is allowed in the name with this slightly less efficient version:
\robExtGenericAutoForwardStringMatch{my style}{%
\tikzset{%

my style/.style={fill=#1!30!white,text=#1!40!black},
}%

}
\begin{tikzpictureC}
\node[my style=green]{My style with a space in the name automatically forwarded};

\end{tikzpictureC}

Note that by default, this forwards elements in the latex preset, but you can change it via
preset. You can also configure additional style to run, and choose another namespace for the
word version (practical only if you want to forward different codes to different presets: note
that a single namespace is allowed per preset).

\runHereAndInPreambleOfCachedFiles[〈preset〉]{〈code〉}
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(from v2.3) This will run code right now and it will add it in the preamble of the files that
use the preset preset (defaults to latex). This is practical to avoid duplicating the code into
add to preamble. For instance, if want the configure the font of the current document and
of all latex documents at the same time, use:

\runHereAndInPreambleOfCachedFiles{
\usepackage{fontspec}
\setmainfont{Times New Roman}

}

\robExtConfigure{
add to preset={latex}{

use lualatex, % Make sure to compile with lualatex the cached images.
},

}

\definecolorAutoForward{〈color〉}{〈model〉}{〈value〉}[〈additional style〉]
\colorletAutoForward{〈color〉}{〈value〉}[〈additional style〉]

Define colors like \definecolor and \colorlet, but also runs
if matches word={COLOR}{forward color=COLOR}
to automatically forward the color (this will forward it only in latex-based presets). You can
provide additional style to run as well in option.

Uses myred Myviolet

\definecolorAutoForward{myred}{HTML}{F01122}
\colorletAutoForward{myviolet}{blue!50!myred}
\begin{tikzpictureC}
\node[fill=myred,yshift=-1cm]{Uses myred};

\end{tikzpictureC}
\begin{tikzpictureC}
\node[fill=myviolet,yshift=-1cm]{Myviolet};

\end{tikzpictureC}

/robExt/load auto forward macro config={〈macro〉} (style, no default)
Like forward except that it loads the configuration that would have been loaded if the macro
was present in the file. This is mostly useful to say that a macro depends on the style of
another macro without copy/pasting the style of the second macro inside the first one.

❤ Alice: Recompiled only if MyNode is changed

❤ Alice: or if MyName is changed

\cacheTikz
\robExtConfigure{add to preset={tikz}{auto forward}}

\newcommandAutoForward{\MyName}{\ding{164} Alice}[add to preamble={\usepackage{pifont}}]
\newcommandAutoForward{\MyNode}[2][draw,thick]{\node[rounded corners,fill=green,#1]{\MyName: #2};}[

load auto forward macro config=\MyName
]

\begin{tikzpicture}
\MyNode{Recompiled only if MyNode is changed}
\MyNode[yshift=-1cm]{or if MyName is changed}

\end{tikzpicture}

/robExt/if matches={〈string〉}{〈style to apply〉} (style, no default)
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/robExt/if matches word={〈string〉}{〈style to apply〉} (style, no default)
/robExt/if matches regex={〈latex3 regex〉}{〈style to apply〉} (style, no default)
/robExt/register word with namespace={〈namespace〉}{〈word〉}{〈style〉} (style, no default)
/robExt/auto forward words (style, no value)
/robExt/auto forward words namespace={〈namespace〉} (style, no default)

if matches * applies the corresponding style if the string (resp. word or regex in LATEX3
format) matches is matched in the content. if matches word is more efficient that
if matches string since the running time is independent of the number of times if matches word
is called12. if matches word make it only match words that are mostly made of consecutive
letters and numbers [A-Za-z0-9] (more precisely separated by elements in \robExtWordSeparators).
The regex version can be more expressive, but is significantly slower (it can easily multiply by
2 the compilation time).

Python code

1 print(cos(1)+sin(2))

Output:
1.4495997326938215

\robExtConfigure{
add to preset={my python}{

python print code and result,
% \b is for word border, and ( needs to be escaped in regex
if matches={cos(}{add import={from math import cos}},
if matches={sin(}{add import={from math import sin}},

},
}
\begin{CacheMeCode}{my python}
print(cos(1)+sin(2))
\end{CacheMeCode}

With regex:

Python code

1 print(cos(1)+sin(2))

Output:
1.4495997326938215

\robExtConfigure{
add to preset={my python}{

python print code and result,
% \b is for word border, and ( needs to be escaped in regex
if matches regex={\b cos\(}{add import={from math import cos}},
if matches regex={\b sin\(}{add import={from math import sin}},

},
}
\begin{CacheMeCode}{my python}
print(cos(1)+sin(2))
\end{CacheMeCode}

This can also be practical to disable caching if some pictures uses remember picture (which
is not supported by this library):

12Scaling with O(s) instead of O(sn), where s is the size of the string typed in cacheMe and n is the number of
times if matches is used, for instance when replacing multiple strings.
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Point to me Some text

\cacheTikz
\robExtConfigure{

add to preset={tikzpicture}{
% \b means "word boundary", and spaces must be escaped
if matches={remember picture}{disable externalization},

},
}
\begin{tikzpicture}[remember picture]

\node[fill=green](my original node){Point to me};
\end{tikzpicture} %
Some text %
\begin{tikzpicture}[overlay, remember picture]

\draw[->] (0,0) to[bend left] (my original node);
\end{tikzpicture}

Note that to make if matches word even more efficient, you can call it before the pre-
set. It will ”register” the corresponding word with register word (itself a shortcut for
register word with namespace with an empty namespace), and call auto forward words
(shortcut for auto forward words namespace={}) in the latex preset (or in the current pre-
set if we are already in a preset) to forward all words registered in the corresponding namespace
(empty by default). Unless you want to forward different words to different presets, these more
advanced functions involving namespaces should not be really useful for the end user.

6.3.9 Pass compiled file to another template

It can sometimes be handy to use the result of a previous cached file to cache another file, or to
do anything else (e.g. it can also be practical to debug an issue). name output can be used to do
that

/robExt/name output={〈macro name〉} (style, no default)
name output=foo will create two global macros \foo and \fooInCache: \foo expands to
the prefix of the files created in the template like robExt-somehash, and \fooInCache
also adds the cache folder like robustExternalize/robExt-somehash. You can then use
set placeholder eval to send it to another cached file. It is then your role to add the
extension, usually .tex to get the source (even if the source is a python file), .pdf to get
the pdf, -out.tex to get the file that is loaded before the import, -out.txt if you wanted
to make it compatible with verbatim output (this list is not exhaustive as each script might
decide to create a different output file). Here is a demo:
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Hello World!

The prefix is robExt-533423D6079B5BC1502646EBDF055F42 and with the cache folder it is
in:
robustExternalize/robExt-533423D6079B5BC1502646EBDF055F42.
It this can be helpful for instance to debug, as you can inspect the source:

\documentclass[,margin=0cm]{standalone}
\usepackage {tikz}
% most packages must be loaded before hyperref
% so we typically want to load hyperref here

% some packages must be loaded after hyperref

\begin{document}%
%% We save the height/depth of the content by using a savebox:
\newwrite\writeRobExt%
\immediate\openout\writeRobExt=\jobname-out.tex%
%
\newsavebox\boxRobExt%
\begin{lrbox}{\boxRobExt}%
\begin {tikzpicture}[baseline=(A.base)] \node [draw,rounded corners,fill=pink!60](A){Hello World!};\end {tikzpicture}%

\end{lrbox}%
\usebox{\boxRobExt}%
\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}%
\string\def\string\robExtHeight{\the\ht\boxRobExt}%
\string\def\string\robExtDepth{\the\dp\boxRobExt}%

}%
%

\end{document}

but it is also practical to define a template based on the previously cached files:

A cached file can use result from another cached file: Hello World! Hello World!

\begin{CacheMe}{tikzpicture, do not add margins, name output=mycode}[baseline=(A.base)]
\node[draw,rounded corners,fill=pink!60](A){Hello World!};

\end{CacheMe}\\[3mm]

The prefix is \texttt{\mycode} and with the cache folder it is in:\\
\texttt{\mycodeInCache}.\\
It this can be helpful for instance to debug, as you can inspect the source:
\verbatiminput{\mycodeInCache.tex}
but it is also practical to define a template based on the previously cached files:\\

\begin{CacheMe}{tikzpicture, set placeholder eval={__previous__}{\mycode.pdf}}
\node[rounded corners, fill=green!50]{A cached file can use result from another cached file:

\includegraphics[width=2cm]{__previous__}\includegraphics[width=2cm]{__previous__}};
\end{CacheMe}

Note that if you do not want to display the first cached file, you can use do not include pdf
to hide it.

6.3.10 Compile in parallel

(introduced in v2.1, read below on how to do it manually on v2.0)

/robExt/compile in parallel=nb of pictures to compile normally (style, default 0)
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/robExt/compile in parallel after=nb pictures to compile normally (style, default 0)
These two commands are alias. Typing in the preamble:

\robExtConfigure{
compile in parallel

}

will cause the cached elements to be compiled in parallel (this requires two compilations of the
main project). For this to work out of the box, you need to have xargs installed (on windows,
install the lightweight GNU On Windows (Gow) https://github.com/bmatzelle/gow to get
xargs). Typing compile in parallel after=3 will start the compilation in parallel only if
you have more than 3 new elements to compile, and compile the first 3 elements normally
(useful when you work on one picture at a time since you do not need to compile twice the
document).

/robExt/compile in parallel command={〈command to run〉} (style, no default)
/robExt/compile in parallel with xargs=number threads (style, default 16%)
/robExt/compile in parallel with gnu parallel=–jobs option (style, default 200%)

You can customize the compilation command to run via something like:

\robExtConfigure{
compile in parallel command={

parallel --jobs 200\% :::: '\jobname-\robExtAddPrefixName{compile-missing-figures.sh}
},

}

The other styles are predefined commands to compile with xargs (by default, already installed
in linux, on Windows you can get it by installing the lightweight GNU On Windows (Gow)
https://github.com/bmatzelle/gow) or gnu parallel. You can use these commands directly
like:

\robExtConfigure{
compile in parallel with gnu parallel

}

or use the optional parameter to configure the number of threads (xargs starts with 16 threads
by default, and gnu parallel takes twice the number of CPU threads available), like in:

\robExtConfigure{
compile in parallel with xargs=64,% Compiles with 64 processes at a time

}

/robExt/if unix={〈style to run if running linux or unix〉} (style, no default)
/robExt/if windows={〈style to run if windows〉} (style, no default)

Since windows does not pack xparse by default, you might want to enable parallel compilation
only in Linux/MacOs. This can be done using the above flags, like:

\robExtConfigure{
if unix={

compile in parallel
},

}

(note that unix is understood as “non windows”, i.e. would run in Unix/Linux/MacOs)

NB: in version smaller than v2.1 (or if you prefer the manual method), you can instead run it in
manual mode and use for instance GNU parallel (or any tool of you choice) to run all commands
in the file \jobname-robExt-compile-missing-figures.sh in parallel. To do that:

• First add \robExtConfigure{enable manual mode} in your file

• Create the cache folder, e.g. using mkdir robustExternalize
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• Compile your file, with, e.g. pdflatex yourfile.tex (in my benchmark: 4.2s)

• This should create a file yourfile-robExt-compile-missing-figures.sh, with each line
containing a compilation command like this (the command should be compatible with Win-
dows, Mac and Linux, if not, let me know on github):

cd robustExternalize/ && pdflatex -halt-on-error "robExt-4A806941E86C6B657A0CB3D160CFFF3E.tex

IMPORTANT: LATEX might render multiple times the same picture if it is inside some
particular environments (align, tables…), so this file can contain duplicates if you inserted
cached data inside. In version 2.1 this is solved, but on older versions, to avoid running the
same command twice, be sure to remove duplicates! On Linux, this can be done by
piping the file into sort and uniq (if your files can depend on previously compiled elements
as explained in section 6.3.9, you should additionally preserve the order of the lines13). Since
this is anyway a rather advanced use case, we will not consider that case for simplicity.

• Run all these command in parallel, for instance on Linux you can install parallel, and run
the following command (--bar displays a progress bar):

cat yourfile-robExt-compile-missing-figures.sh | sort | uniq | parallel --bar --
jobs 200%

(note that since v2.1, it is not necessary to remove duplicates using sort and uniq since the
file contains no more duplicates) In my benchmark, it ran during 52s, so 1.6x faster than the
original compilation without caching)

• Recompile the original document with pdflatex yourfile.tex

In my benchmark, the total time is 2x4.2s + 52s = 60s, so 1.5 times faster than a normal command
(of course, this depends a lot on the preamble of the file that you compile, since the loading time
of the file is the main bottleneck for the first compilation; the advantage here is that it is easy to
include only the necessary things in the preamble of cached pictures, possibly creating different
presets if it is easier to manage it this way).

6.3.11 Compile a template to compile even faster

Long story short: you can compile even faster (at least 1.5x in our tests, but we expect this to be
more visible on larger tests due to the loading time of the preamble of the main document that
takes most of the time of the compilation) by compiling presets, but beware that you will not be
able to modify the placeholders except add to preamble with the default compiler we provide.
The gain comes from the fact that instead of trying to find all placeholders to replace in the string,
we can directly replace a few hard-coded placeholders to save time (yes, LATEX is not really efficient
so it can make a difference…).

/robExt/new compiled preset={〈preset options to compile〉}{〈runtime options〉} (style, no
default)

/robExt/compile latex template (style, no value)
Compile a preset by creating a new placeholders that removes all placeholders except
__ROBEXT_MAIN_CONTENT__, __ROBEXT_MAIN_CONTENT_ORIG__ and __ROBEXT_LATEX_PREAMBLE__.
preset options to compile should be sure that the template, compilation command and in-
clude command placeholders contain the final version: this can be easily done for latex presets
by adding compile latex template at the end of preset options to compile:.

HeyBob!

13https://unix.stackexchange.com/questions/194780/remove-duplicate-lines-while-keeping-the-order-of-the-lines
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% We create a latex-based preset and compile it
\robExtConfigure{

new preset={templateZX}{
latex,
add to preamble={
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{zx-calculus}

},
%% possibly add some dependencies

},
% We compile it into a new preset
new compiled preset={compiled ZX}{templateZX, compile latex template}{},

}

% we use that preset automatically for ZX environments
\cacheEnvironment{ZX}{compiled ZX}
\cacheCommand{zx}{compiled ZX}

% Usage: (you can't use placeholders except for the preamble, trade-off of the compiled template)
\begin{ZX}<add to preamble={\def\sayHey#1{Hey #1!}}>

\zxX{\sayHey{Bob}}
\end{ZX}

Explanations: in v2.0, we made substantial improvements in order to improve significantly the
compilation time (our benchmark went from 20s (v1.0) to only 5.77s (v2.0)), but you might want to
make this even faster: with a compiled preset, you can improve it further, experimentation showed
an additional improvement factor of 1.4x (final compilation time was 4s in our tests, reminder:
without the library it would take 1mn25s). The main bottleneck in term of time is the expansion
of the placeholders (that allows great flexibility, but can add a significant time). At a high level,
we keep track in a list of all declared placeholders, and loop over them to replace each of them
until the string is left unmodified by a full turn. This is simple to implement, does not need to
assume any shape for the placeholder… but not extremely efficient in LATEX where string and list
manipulations are costly.

We can play on multiple parameters to speed up the process:

• Disable completely the placeholders and only replace a small amount of fixed placeholders in
a fixed order and stop expanding the placeholder. This is what we do by default when we
compile a preset: it is the quickest solution, but you cannot use arbitrary placeholders.

• Start the expansion using a fixed (preset-dependent) list of placeholders, check if some tem-
plates are still present (assuming that templates must contain at least two consecutive un-
derscores __), if not stop, otherwise go to the normal (less efficient) placeholder replacement.
It is what we do for instance in the latex preset, and gives a great balance between efficiency
and flexibility. Details can be found in section 6.10.

• Stop iterating over all placeholders, only choose the one meaningful (why would I care about
python placeholders in latex?). For this, we introduce an import system, where you can
create placeholders that are not added to the “global” list of placeholders, and import them
where you want. In practice, you should not really need to use it unless you do more advanced
stuff as we already take care of setting it properly, but details are in section 6.2.4.

Another option could be to rewrite the code to search directly the list of placeholders in the string,
but it is certainly not trivial to do in latex, would require even more constraints on the shape of
placeholders, and would certainly still no more efficient than the compiled stuff. But anyway the
already implemented solutions already give fairly good performances.

6.4 Default presets
We provide by default some presets for famous languages (for now LATEX and python).
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6.4.1 All languages

First, here are a few options that are available irrespective of the used language.

/robExt/set includegraphics options={〈options〉} (style, no default)
/robExt/add to includegraphics options={〈options〉} (style, no default)

Set/add options to the \includegraphics run when inserting the pdf (by the default include
command). By default it is empty, but the latex preset sets it to:
trim=__ROBEXT_LATEX_TRIM_LENGTH__ __ROBEXT_LATEX_TRIM_LENGTH__
__ROBEXT_LATEX_TRIM_LENGTH__ __ROBEXT_LATEX_TRIM_LENGTH__
in order to remove the margin added in the standalone package options, which is needed to
display overlay texts.

/robExt/verbatim output (style, no value)
Shortcut for:
custom include command={%
\evalPlaceholder{%
__ROBEXT_VERBATIM_COMMAND__{%
__ROBEXT_CACHE_FOLDER____ROBEXT_OUTPUT_PREFIX__-out.txt}%

}%
},
i.e. instead of printing the pdf we print the content of the file __ROBEXT_OUTPUT_PREFIX__-
out.txt using the command in __ROBEXT_VERBATIM_COMMAND__, that defaults to \verbatiminput:

Hello 0
Hello 1
Hello 2
Hello 3
Hello 4

\begin{CacheMeCode}{python, verbatim output}
with open("__ROBEXT_OUTPUT_PREFIX__-out.txt", "w") as f:

for i in range(5):
f.write(f"Hello {i}\n")

\end{CacheMeCode}

/robExt/debug (style, no value)
/robExt/print command and source (style, no value)

(new in v2.0) These two (alias) commands allow you to print the compilation command, the
dependency file (useful to be sure you tracked all dependencies), and the source file:
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Command: (run in folder robustExternalize/)
pdflatex -halt-on-error "robExt-583C5935D363C10E50E66F4A3387957A.tex"
Dependencies:

command,pdflatex -halt-on-error "__ROBEXT_SOURCE_FILE__"
68C1A3F4A0563203D18D71B08F24393B,
648E35E8624D2EFA2983FE62024FB1FD,common_inputs.tex

Source (in robustExternalize/robExt-583C5935D363C10E50E66F4A3387957A.tex):
\documentclass[,margin=30cm]{standalone}
\input {../common_inputs.tex}
% most packages must be loaded before hyperref
% so we typically want to load hyperref here

% some packages must be loaded after hyperref

\begin{document}%
%% We save the height/depth of the content by using a savebox:
\newwrite\writeRobExt%
\immediate\openout\writeRobExt=\jobname-out.tex%
%
\newsavebox\boxRobExt%
\begin{lrbox}{\boxRobExt}%
The answer is \myValueDefinedInCommonInputs .%

\end{lrbox}%
\usebox{\boxRobExt}%
\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}%
\string\def\string\robExtHeight{\the\ht\boxRobExt}%
\string\def\string\robExtDepth{\the\dp\boxRobExt}%

}%
%

\end{document}

\begin{CacheMe}{latex,
add dependencies={common_inputs.tex},
add to preamble={\input{__ROBEXT_WAY_BACK__common_inputs.tex}},
debug

}
The answer is \myValueDefinedInCommonInputs.

\end{CacheMe}

6.4.2 LATEX and TikZ

The latex preset is used to cache any LATEX content, like tikz pictures. Note that as of today, it
supports overlay content out of the box (if the overlay is more than 30cm long, you might want to
customize a placeholder), but not images that need to use remember picture.

/robExt/latex (style, no value)
This style sets the template __ROBEXT_LATEX__ and the compilation command:
__ROBEXT_LATEX_COMPILATION_COMMAND__
(cf section 6.5 for details), and adds a number of styles described below, to easily configure
the most common options. You can use it as follows:
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The next picture is cached My node that respects baseline.
I am an overlay text

and you can see that overlay
and depth works.

The next picture is cached %
\begin{CacheMe}{latex, add to preamble={\usepackage{tikz}}}
\begin{tikzpicture}[baseline=(A.base)]

\node[fill=red, rounded corners](A){My node that respects baseline.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};

\end{tikzpicture}
\end{CacheMe} and you can see that overlay and depth works.

To see how to create your own preset or automatically load a library, see section 6.6.
The next options can be used after calling the latex style:

/robExt/latex/use latexmk (style, no value)
/robExt/latex/use lualatex (style, no value)
/robExt/latex/use xelatex (style, no value)

Use latexmk/lualatex/xelatex to compile. It is a shortcut for:
set placeholder={__ROBEXT_LATEX_ENGINE__}{yourfavoriteengine}

/robExt/latex/set latex options={〈latex options〉} (style, no default)
/robExt/latex/add to latex options={〈latex options〉} (style, no default)

Set/add elements to the set of latex options of the \documentclass (it will automatically add
a comma before if you add an element). Internally it sets __ROBEXT_LATEX_OPTIONS__. By
default, it sets:
margin=__ROBEXT_LATEX_TRIM_LENGTH__ (where __ROBEXT_LATEX_TRIM_LENGTH__ is de-
fined as 30cm by default) in order to add a margin that will be trimmed later in the
\includegraphics. This is useful not to cut stuff displayed outside of the bounding box
(overlays).

/robExt/latex/set documentclass={〈documentclass〉} (style, no default)
Set the documentclass of the document (defaults to standalone). Internally, it sets the
placeholder __ROBEXT_LATEX_DOCUMENT_CLASS__.

/robExt/latex/set preamble={〈code of preamble〉} (style, no default)
/robExt/latex/add to preamble={〈code of preamble〉} (style, no default)
/robExt/latex/set preamble hyperref={〈code of preamble〉} (style, no default)
/robExt/latex/add to preamble hyperref={〈code of preamble〉} (style, no default)
/robExt/latex/set preamble after hyperref={〈code of preamble〉} (style, no default)
/robExt/latex/add to preamble after hyperref={〈code of preamble〉} (style, no default)

Set/add element to the preamble (defaults to standalone). Internally, it sets the place-
holder __ROBEXT_LATEX_PREAMBLE__. The variations hyperref and after hyperref are
used to put stuff after the preambule, as hyperref typically needs to be loaded last
(or nearly): packages that must be loaded after hyperref like cref can be added via
add to preamble after hyperref.

/robExt/latex/do not wrap code (style, no value)
By default, the main content is wrapped into a box in order to measure its depth to properly
set the baseline. If you do not want to do this wrapping, you can set this option. Internally,
it is a shortcut for:
set placeholder={__ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__}{__ROBEXT_MAIN_CONTENT__}
IMPORTANT: note that it means that you might need to adapt your code to take into ac-
count the fact that they are inside a box (I don’t know of any other solution to compute the
depth, but it does not mean that there is none).
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/robExt/latex/in command (style, no value)
Sets __ROBEXT_MAIN_CONTENT to point to __ROBEXT_MAIN_CONTENT_ORIG__ to remove any
wrapping of the user input, for instance made by tikzpicture.

/robExt/tikz (style, no value)
/robExt/tikzpicture (style, no value)

tikz loads latex and then adds tikz to the preamble. tikzpicture first load tikz and
wraps the main content within \begin{tikzpicture} and \end{tikzpicture} using:

set placeholder={__ROBEXT_MAIN_CONTENT__}{%
\begin{tikzpicture}__ROBEXT_MAIN_CONTENT_ORIG__\end{tikzpicture}%

}
so that the user does not need to type it. See for instance the introduction for examples of
use.

6.4.3 Python

We provide support for python:

/robExt/python (style, no value)
Load the python preset (inspect __ROBEXT_PYTHON__) for details on the exact template, but
note that this template might be subject to changes. We also provide a few helper functions:

• write_to_out(text) writes text to the *-out.tex file that will be loaded automatically
before running the include function

• parse_args() is a function that returns a dictionary mapping some keys to val-
ues depending on the called arguments: for instance, if you call the python file
with python script key1 value1 key2 value2, then the dictionary will map key1 to
value1 and key2 to value2. You might like this in conjunction with commands pre-
sented in section 6.3.3. Note that if you place placeholders in your code, you might not
need this, but this is used if you plan to use your script outside of this library.

• get_cache_folder() outputs the cache folder.
• get_file_base() outputs the prefix of all files that should be created by this script, that

looks like robExt-somehash.
• get_current_script() returns the current script.
• get_filename_from_extension(extension) outputs the prefix robExt-somehash con-

catenated with the extension. You often need this function to get the path of a file that
your script is creating, for instance, get_filename_from_extension("-out.txt") is the
path *-out.txt of the file that is read by verbatim output.

• get_verbatim_output() returns get_filename_from_extension("-out.txt")
• finished_with_no_error() creates the pdf file if it does not exists (to certify that the

compilation ran without issues). The template automatically runs this function at the
end.

We demonstrate its usage on a few examples:

Hello 0
Hello 1
Hello 2
Hello 3
Hello 4

\begin{CacheMeCode}{python, verbatim output}
with open(get_verbatim_output(), "w") as f:

for i in range(5):
f.write(f"Hello {i}\n")

\end{CacheMeCode}
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Figure 3: Image generated with python.

Note that if you use a version before 2.6, you cannot indent further the python code (i.e.
the first line must not start with any space). This is fixed in 2.6 with the addition of
remove leading spaces if not disabled in the python preset by default, that will re-
move automatically any unnecessary indentation. If you use automatic indentation in your
text editor, you might also like to use remove spaces until so that automatically indenting
your whole document does not ruin the indentation of the python code.
You can also generate some images. This code will produce the image in fig. 3:

\begin{CacheMeCode}{python, set includegraphics options={width=.8\linewidth}}
import matplotlib.pyplot as plt
year = [2014, 2015, 2016, 2017, 2018, 2019]
tutorial_count = [39, 117, 111, 110, 67, 29]
plt.plot(year, tutorial_count, color="#6c3376", linewidth=3)
plt.xlabel('Year')
plt.ylabel('Number of futurestud.io Tutorials')
plt.savefig("__ROBEXT_OUTPUT_PDF__")
\end{CacheMeCode}

Note that by default, the executable called python is run. It seems like on windows python3 is
not created and only python exists, while on linux the user can choose whether python should
point to python3 or python2 (on NixOs, I directly have python pointing to python3, and
in ubuntu, you might need to install python-is-python3 or create a symlink, as explained
here). In any case, you can customize the name of the executable by setting something like:
\setPlaceholder{__ROBEXT_PYTHON_EXEC__}{python3}
or using the style force python3 that forces python3.

/robExt/python print code and result (style, no value)
This is a demo style that can print a python code and its result.
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The for loop

1 for name in ["Alice", "Bob"]:
2 print(f"Hello {name}")

Output:
Hello Alice
Hello Bob

\begin{CacheMeCode}{python print code and result, set title={The for loop}}
for name in ["Alice", "Bob"]:

print(f"Hello {name}")
\end{CacheMeCode}

You can set __ROBEXT_PYTHON_TCOLORBOX_PROPS__ the options of the tcolorbox,
__ROBEXT_PYTHON_CODE_MESSAGE__ and __ROBEXT_PYTHON_RESULT_MESSAGE__ which are
displayed before the corresponding block, __ROBEXT_PYTHON_LSTINPUT_STYLE__ which con-
tains the default lstinput style and __MY_TITLE__ (cf set title) that contains the title of
the box. Make sure to have the following packages to use the default styling:
\usepackage{pythonhighlight}
\usepackage{tcolorbox}

/robExt/python/add import (style, no value)
(since v2.1) Add an import statement in the first part of the file.

Python code

1 print(cos(1)+sin(2))

Output:
1.4495997326938215

\robExtConfigure{
add to preset={my python}{

python print code and result,
add import={from math import cos},
add import={from math import sin},

},
}
\begin{CacheMeCode}{my python}
print(cos(1)+sin(2))
\end{CacheMeCode}

6.4.4 Bash

We provide a basic bash template, that sets:

set -e
outputTxt="__ROBEXT_OUTPUT_PREFIX__-out.txt"
outputTex="__ROBEXT_OUTPUT_PREFIX__-out.tex"
outputPdf="__ROBEXT_OUTPUT_PDF__"

in order to quit when an error occurs, and to define two variables containing the path to the pdf
file and to the file that is read by the verbatim output setting (that just apply a \verbatiminput
on that file). Finally, it also creates the file outputPdf with echo "ok" in order to notify that the
compilation succeeded.
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In practice:

Linux 5.15.90 #1-NixOS SMP Tue Jan 24 06:22:49 UTC 2023

\begin{CacheMeCode}{bash, verbatim output}
# $outputTxt contains the path of the file that will be printed via \verbatiminput
uname -srv > "${outputTxt}"
\end{CacheMeCode}

6.4.5 Verbatim text

Sometimes, it might be handy to write the text to a file and use it somehow. This is possible using
verbatim text, that defaults to calling \verbatiminput on that file:

def some_verbatim_fct(a):
# See this is a verbatim code where I can use the % symbol
return a % b

\begin{CacheMeCode}{verbatim text}
def some_verbatim_fct(a):

# See this is a verbatim code where I can use the % symbol
return a % b

\end{CacheMeCode}

You can also call verbatim text no include: it will not include the text, but it sets a macro
\robExtPathToInput containing the path to the input file. Use it the way you like! For instance,
we define here a macro codeAndResult that prints the code and runs it (we use a pretty printer
from pgf, so you need to load \usepackage{tikz}\input{pgfmanual-en-macros.tex} to use it).
It is what we use right now in this documentation for verbatim blocks like here. You can obtain a
simpler version using:

We will input the file robustExternalize/robExt-2C0EBEBFB9F98329939C5701C7754F3E.tex:

Demo % with percent

This file contains:

\NewDocumentCommand{\testVerbatim}{+v}{
\begin{flushleft}\ttfamily%
#1
\end{flushleft}}
\testVerbatim{Demo % with percent}

\begin{CacheMeCode}{verbatim text no include}
\NewDocumentCommand{\testVerbatim}{+v}{
\begin{flushleft}\ttfamily%
#1
\end{flushleft}}
\testVerbatim{Demo % with percent}
\end{CacheMeCode}
We will input the file \robExtPathToInput{}:
\input{\robExtPathToInput}
This file contains:
\verbatiminput{\robExtPathToInput}

You might also like to use name output=yourfile that will create two macros \yourfile and
\yourfileInCache, equal respectively to the prefix robExt-somehash and pathOfCache/robExt-
somehash.
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6.4.6 Online images

We also provide support for online images since v2.3.

\includegraphicsWeb<robExt options>[〈includegraphics options〉]{〈url image〉}
/robExt/web image (style, no value)
/robExt/web image/wget (style, no value)
/robExt/web image/curl (style, no value)

\includegraphicsWeb is used in place of \includegraphics to download online images:

Here is a cat downloaded online: .

Here is a cat downloaded online: \includegraphicsWeb[width=3cm]{http://placekitten.com/400/300}.

By default, the engine uses wget in linux (since it is installed by default) and curl on windows
(should also be installed by default on recent windows). But you can change it by modifying the
web image preset (or using the optional robExt options that are loaded after web image):

Here is a cat downloaded online: .

\robExtConfigure{
add to preset={web image}{

curl
},

}

Here is a cat downloaded online: \includegraphicsWeb[width=3cm]{http://placekitten.com/400/303}.

By default, the wget and curl presets are defined as:
wget/.style={
set compilation command={wget "__ROBEXT_MAIN_CONTENT__" -O "__ROBEXT_OUTPUT_PDF__"},

},
curl/.style={
set compilation command={curl "__ROBEXT_MAIN_CONTENT__" -L -o "__ROBEXT_OUTPUT_PDF__"},

},

6.4.7 Gnuplot

We also provide support for gnuplot since v2.3.

/robExt/gnuplot (style, no value)
/robExt/gnuplot/set terminal={〈terminal and options〉} (style, no default)
/robExt/gnuplot/pdf terminal=pdf terminal options (style, no default)
/robExt/gnuplot/tikz terminal=tikz terminal options (style, no default)

Loads the gnuplot preset. By default, it uses the pdf terminal:
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\begin{CacheMeCode}{gnuplot}
plot sin(x)
\end{CacheMeCode}

You can also specify the gnuplot options to the pdf terminal, like the size, using:
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\begin{CacheMeCode}{gnuplot,pdf terminal={size 5cm,4cm}}
plot sin(x)
\end{CacheMeCode}

You can also change the options of the includegraphics command used to include the image,
using as usual:
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\begin{CacheMeCode}{gnuplot,set includegraphics options={width=5cm,height=4cm}}
plot sin(x)
\end{CacheMeCode}
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You can also use other terminals using the set terminal option. For instance, you can use
the png terminal and configure its size using:

\begin{CacheMeCode}{gnuplot,set terminal={png size 400,300}}
plot sin(x)
\end{CacheMeCode}

The tikz terminal is a bit special since we do not want to use \includegraphics but \input
to include the file. You can use it like this, just make sure:

• to have gnuplot installed with lua support. With nix you can get it with:
nix-shell -p '(gnuplot.override { withLua = true; })'

• Add \usepackage{gnuplot-lua-tikz} after making sure to run
gnuplot -e "set terminal tikz createstyle" once to create the .sty file.
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% \usepackage{gnuplot-lua-tikz} %% Generate with gnuplot -e "set terminal tikz createstyle"
\begin{CacheMeCode}{gnuplot,tikz terminal={size 5cm,4cm}}
plot sin(x)
\end{CacheMeCode}

(Note that if you do not provide any option to tikz terminal, it will just use the default
value in gnuplot, you can also add any other option to the terminal here.) By default, we only
cache the gnuplot compilation, but the \input is not cached (so gnuplot will not be run again
the next time, but tikz will run every time). But it can also be cached, just add cache tikz
for that:

93



−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

−10 −5 0 5 10

cos(x)

\robExtConfigure{
add to preset={tikz}{

% Run gnuplot -e "set terminal tikz createstyle" in the robustExternalize folder first
% to create this file, or, better, run this command in your local folder and use
% "copy file to cache" to copy the 3 generated files.:
add to preamble={\usepackage{gnuplot-lua-tikz}},

},
add to preset={gnuplot}{

tikz terminal/.append style={
cache tikz,

},
},

}
\begin{CacheMeCode}{gnuplot, tikz terminal={size 8cm,5cm}}
plot cos(x)
\end{CacheMeCode}

We also automatically add __ROBEXT_WAY_BACK__ to the loadpath, this way you do NOT
need to type plot "__ROBEXT_WAY_BACK__yourfile.dat"` if the data is in the main folder.
Note however that you need to add this file to the list of dependencies, otherwise it will not
be recompiled if the file changes:
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"gnuplot_data.dat"

\begin{CacheMeCode}{gnuplot, dependencies={gnuplot_data.dat}}
plot "gnuplot_data.dat"
\end{CacheMeCode}

You can also use the current text width when using the tikz terminal using something like:

94



tikz terminal/.expanded={size \lenToCm{\textwidth},\lenToCm{.3\textwidth}}
Full example:
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cos(x)

% Just to check size:
\noindent\rule{\textwidth}{1mm}\\%
\begin{CacheMeCode}{gnuplot, tikz terminal/.expanded={size \lenToCm{\textwidth},\lenToCm{.3\textwidth}}}
plot cos(x)
\end{CacheMeCode}

Similar to the tikz terminal, you can also use the cairolatex terminal like this:

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−10 −5 0 5 10

sin(x)

\begin{CacheMeCode}{gnuplot,cairolatex terminal}
plot sin(x)
\end{CacheMeCode}

As before, you can also specify the size, for instance it term of the current textwidth:
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cos(x)

\begin{CacheMeCode}{gnuplot, cairolatex terminal/.expanded={size \lenToCm{\textwidth},\lenToCm{.3\textwidth}}}
plot cos(x)
\end{CacheMeCode}

\robExtGpgetvar{〈variable name〉}
\robExtGpgetvarNb*[〈text, default 404〉]{〈variable name〉}

Like \gpgetvar{} from gnuplot-lua-tikz but does not produce an error if the variable does
not exist yet (mostly useful if you compile in parallel as shown here14). The first time, you
will get a message like:
Please recompile to load variable: test_variable
and later this will compile fine:
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−10 −5 0 5 10

Test2

Variable
is 5.

\begin{CacheMeCode}{gnuplot, tikz terminal={providevars test_variable}}
test_variable = 5
plot cos(test_variable * x) title "Test2"
\end{CacheMeCode}
Variable is \robExtGpgetvar{test_variable}.

\robExtGpgetvarNb is similar, except that it prints a number 404 by default (useful if you
14https://github.com/leo-colisson/robust-externalize/issues/17
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use it in siunit) and is expandable (also needed for siunit15). You can choose another text
using the optional argument. The star version prints a warning in the log if the variable does
not exist, but can only be used in LuaLaTeX:

Variable is 404.

Variable is \num[round-mode=figures,round-precision=3]{\robExtGpgetvarNb{non_existing_variable}}.

Note that you will get a warning if the variable does not exist (yet?) only in LuaLaTeX as in
other engines there is no way to write in the log with an expandable function16.

6.4.8 TikZit

TikZit17 is a software to produce TikZ images via a graphical interface.

\cacheTikzit[〈preset〉]
\cacheTikzitWithStyle[〈preset〉]{〈name of style file〉}

(since v2.5) These command will automatically cache the \tikzfig command (and therefore
also \ctikzfig). While \cacheTikzit will let you create the preset (named tikzit preset by
default), \cacheTikzitWithStyle will automatically create the preset style for you, loading
your style given as parameter:

%%%%%%% In your preamble:
\cacheTikzitWithStyle{new_zxstyle.tikzstyles}

%%%%%%% In your document:
\tikzfig{demo} % figures/ is optional

If you prefer to do it manually, you can do instead:

%%%%%%% In your preamble:
\robExtConfigure{

% First, we copy the tikzit-related files to the cache:
copy file to cache={tikzit.sty},
copy file to cache={new_zxstyle.tikzstyles},
% We create the tikzit preset loaded by default:
new preset={tikzit}{

latex,
add to preamble={

\usepackage{tikzit}
\input{new_zxstyle.tikzstyles}

},
},

}
% Cache all tikzit figures:
\cacheTikzit

%%%%%%% In your document:
\tikzfig{figures/demo}

WARNING: since the tikz picture uses baseline that relies on the current font size to
vertically align the figure, and since we do not yet propagate the current font size to the

15https://github.com/leo-colisson/robust-externalize/issues/17
16https://tex.stackexchange.com/questions/705299/print-message-in-expandable-macro/705304
17https://tikzit.github.io/
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cached picture (there are so many ways to configure the font in LATEX…), you should make
sure that the tikzit preset sets the font size like in your main document, for instance via:

%%%%%%% In your preamble:
\cacheTikzitWithStyle{new_zxstyle.tikzstyles}
\robExtConfigure{
add to preset={tikzit}{

add to latex options={12pt},
},

}
%%%%%%% In your document:
\tikzfig{demo} % figures/ is optional

Note that \tikzfig accepts an additional optional argument for further options, for instance
to forward locally a macro or to disable externalization:

%%%%%%% In your preamble, make sure to load:
%% \usepackage{tikzit}
%% \input{new_zxstyle.tikzstyles}
%% if you want "disable externalization" to work.
\cacheTikzitWithStyle{new_zxstyle.tikzstyles}
%%%%%%% In your document:
\tikzfig<disable externalization>{demo} % figures/ is optional

6.4.9 Custom languages

To add support to new languages, see section 5.13.2 for an example.

6.5 List of special placeholders and presets
This library defines a number of pre-existing placeholders, or placeholders playing a special
role. We list some of them in this section. All placeholders created by this library start with
__ROBEXT_. Note that you can list all predefined placeholders (at least those globally defined)
using \printImportedPlaceholdersExceptDefaults (note that some other placeholders might
be created directly in the style set right before the command, and may not appear in this list if
you call it before setting the style).

6.5.1 Generic placeholders

We define two special placeholders that should be defined by the user (possibly indirectly, using
presets offered by this library):

• __ROBEXT_TEMPLATE__ is a placeholder that should contain the code of the file to compile.

• __ROBEXT_MAIN_CONTENT_ORIG__ is a placeholder containing the text typed by the user,
automatically set by CacheMe, CacheMeCode etc. You rarely need to deal with this placeholder
directly since __ROBEXT_MAIN_CONTENT__ will typically point to it and add some necessary
wrapping.

• __ROBEXT_MAIN_CONTENT__ is a placeholder that might be used inside __ROBEXT_TEMPLATE__,
that points by default to __ROBEXT_MAIN_CONTENT_ORIG__ and that contains the content
that should be typed inside the document. For instance, this might be a tikz picture, a
python function without the import etc. Note that it is often used to wrap the text of
the user __ROBEXT_MAIN_CONTENT_ORIG__: for instance, the tikzpicture preset adds the
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\begin{tikzpicture} around the user code automatically: this way we do not need to edit
the command to disable externalization.

• __ROBEXT_COMPILATION_COMMAND__ contains the compilation command to run to compile
the file (assuming we are in the cache folder).

We also provide a number of predefined placeholders in order to get the name of the source file
etc... Note that most of these placeholders are defined (and/or expanded inplace) late during the
compilation stage as one needs first to obtain the hash of the file, and therefore all dependencies,
the content of the template etc.

• __ROBEXT_SOURCE_FILE__ contains the path of the file to compile (containing the content
of __ROBEXT_TEMPLATE__) like robExt-somehash.tex, relative to the cache folder (since we
always go to this folder before doing any action, you most likely want to use this directly in
the compilation command).

• __ROBEXT_OUTPUT_PDF__ contains the path of the pdf file produced after the compilation
command relative to the cache folder (like robExt-somehash.pdf). Even if you do not plan
to output a pdf file, you should still create that file at the end of the compilation so that this
library can know whether the compilation succeeded.

• __ROBEXT_OUTPUT_PREFIX__ contains the prefix that all newly created file should follow, like
robExt-somehash. If you want to create additional files (e.g. a picture, a video, a console
output etc...) make sure to make it start with this string. It will not only help to ensure
purity, but it also allows us to garbage collect useless files easily.

• __ROBEXT_WAY_BACK__ contains the path to go back to the main project from the cache folder,
like ../ (internally it is equals to the expanded value of \robExtPrefixPathWayBack).

• __ROBEXT_CACHE_FOLDER__ contains the path to the cache folder. Since most commands are
run from the cache folder, this should not be really useful to the user.

You can also use these placeholders to customize the default include function:

• __ROBEXT_INCLUDEGRAPHICS_OPTIONS__ contains the options given to \includegraphics
when loading the pdf

• __ROBEXT_INCLUDEGRAPHICS_FILE__ contains the file loaded by \includegraphics, de-
faults to \robExtAddCachePathAndName{\robExtFinalHash.pdf}, that is itself equivalent
to __ROBEXT_CACHE_FOLDER____ROBEXT_OUTPUT_PDF__ or
__ROBEXT_CACHE_FOLDER____ROBEXT_OUTPUT_PREFIX__.pdf.

6.5.2 Placeholders related to LATEX

Some placeholders are reserved only when dealing with LATEX code:

• __ROBEXT_LATEX__ is the main entrypoint, containing all the latex template. It internally
calls other placeholders listed below.

• __ROBEXT_LATEX_OPTIONS__: contains the options to compile the document, like a4paper.
Empty by default.

• __ROBEXT_LATEX_DOCUMENT_CLASS__: contains the class of the document. Defaults to
standalone.

• __ROBEXT_LATEX_PREAMBLE__: contains the preamble. Is empty by default.

• __ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__: content inside the document environment. It
will wrap the actual content typed by the user __ROBEXT_MAIN_CONTENT__ around a box to
compute its depth. If you do not want this behavior, you can set __ROBEXT_LATEX_MAIN_CONTENT_WRAPPED__
to be equal to __ROBEXT_MAIN_CONTENT__. It calls internally __ROBEXT_LATEX_CREATE_OUT_FILE__
and __ROBEXT_LATEX_WRITE_DEPTH_TO_OUT_FILE__ to do this computation.

99



• __ROBEXT_LATEX_CREATE_OUT_FILE__ creates a new file called \jobname-out.tex and open
it in the handle called \writeRobExt

• __ROBEXT_LATEX_WRITE_DEPTH_TO_OUT_FILE__ writes the height, depth and width of the
box \boxRobExt into the filed opened in \writeRobExt.

• __ROBEXT_LATEX_COMPILATION_COMMAND__ is the command used to compile a LATEX docu-
ment. It uses internally other placeholders:

• __ROBEXT_LATEX_ENGINE__ is the engine used to compile the document (defaults to
pdflatex)

• __ROBEXT_LATEX_COMPILATION_COMMAND_OPTIONS__ contains the options used to compile
the document (defaults to -shell-escape -halt-on-error)

6.5.3 Placeholders related to python

• __ROBEXT_PYTHON_EXEC__ contains the python executable (defaults to python) used to com-
pile

• __ROBEXT_PYTHON__ contains the python template

• __ROBEXT_PYTHON_IMPORT__ can contain import statements

• __ROBEXT_PYTHON_MAIN_CONTENT_WRAPPED__ is used to add all the above functions. You
can set it to __ROBEXT_MAIN_CONTENT__ if you do not want them

• __ROBEXT_PYTHON_FINISHED_WITH_NO_ERROR__ is called at the end to create the pdf file
even if it is not created, you can set it to the empty string if you do not want to do that.

6.5.4 Placeholders related to bash

• __ROBEXT_BASH_TEMPLATE__ contains the bash template. By default, it sets set -e, creates
outputTxt, outputTex and outputPdf pointing to the corresponding files, and it created the
pdf file at the end.

• __ROBEXT_SHELL__ contains the shell (defaults to bash).

6.6 Customize presets and create your own style
Note that you can define your own presets simply by creating a new pgf style (please refer to
tikz-pgf’s documentation for more details). For instance, we defined the tikz and tikzpicture
presets using:

\robExtConfigure{
new preset={tikz}{

latex,
add to preamble={\usepackage{tikz}},

},
new preset={tikzpicture}{

tikz,
set placeholder={__ROBEXT_MAIN_CONTENT__}{\begin{tikzpicture}__ROBEXT_MAIN_CONTENT_ORIG__\end{tikzpicture}},

},
}

in order to automatically load tikz and add the surrounding tikzpicture when needed (note
that the style is always loaded after the definition of __ROBEXT_MAIN_CONTENT_ORIG__, so in
theory you could also modify it directly even if it is not recommended). You can also customize
an existing style by adding stuff to it using add to preset (or .append style but make sure
to double the hashes). For instance, here, we add the shadows library to the tikz preset by
default:
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See, tikz’s style now packs the shadows library by default:

\robExtConfigure{
add to preset={tikz}{
add to preamble={\usetikzlibrary{shadows}},

},
}
See, tikz's style now packs the |shadows| library by default: %
\begin{CacheMe}{tikzpicture}[even odd rule]

\filldraw [drop shadow,fill=white] (0,0) circle (.5) (0.5,0) circle (.5);
\end{CacheMe}

6.7 Cache automatically a given environment
It might be handy to cache automatically a given environment: we already provide:
\cacheTikz
to cache all tikz pictures (unless externalization is disabled), but we also provide tools to handle
arbitrary environments.

\robExtExternalizeAllTikzpictures[〈preset for tikz〉][〈preset for tikzpicture〉][〈delimiters〉]
\cacheTikz[〈preset for tikz〉][〈preset for tikzpicture〉][〈delimiters〉]
\robExtDoNotExternalizeAllTikzpictures
\doNotCacheTikz
/robExt/cache tikz (style, no value)
/robExt/cache tikz (style, no value)
/robExt/cache tikz 2 args={〈tikz preset〉}{〈tikzpicture preset〉} (style, no default)
/robExt/cache tikz 3 args={〈tikz preset〉}{〈tikzpicture preset〉}{〈delimiters cacheMe

options〉} (style, no default)
(cache tikz* from 2.3, simply style alias) This will automatically cache all tikz pictures
(the *ExternalizeAllTikzpicturers are alias of the *cacheTikz which is available from
v2.0). Since v2.0, we added the delimiters options and we allow to specify custom presets for
tikz and tikzpicture, and we parse \tikz as well (the tikz preset is now used by \tikz by
default while the tikzpicture preset is used by tikzpicture). Note that we add an additional
optional argument to the tikz picture via its first argument delimited by delimiters (defaults
to <>) to specify preset options, which can for instance be practical to disable externalization
on individual pictures. Cf. section 6.3.6 to see an example of use.

See that this syntax can be safely used. (cached) Hello Alice! (cached) Foo (not cached)

\cacheTikz

\def\whereIAm{(not cached)}
\robExtConfigure{

add to preset={tikz}{
add to preamble={
\def\whereIAm{(cached)}

},
},

}

\tikz \node[fill=pink, rounded corners]{See that this syntax can be safely used. \whereIAm};

\tikz<add to preamble={\def\sayHello#1{Hello #1!}}> \node[fill=green, rounded
corners]{\sayHello{Alice} \whereIAm};

\tikz<disable externalization> \node[fill=green, rounded corners]{Foo \whereIAm};

Here is an example to specify arguments via parenthesis:

101



See that this syntax can be safely used. (cached) Hello Alice! (cached) Foo (not cached)

% the first two arguments are the default presets used by \tikz and \tikzpicture
\cacheTikz[tikz][tikzpicture][()]

\def\whereIAm{(not cached)}
\robExtConfigure{

add to preset={tikz}{
add to preamble={
\def\whereIAm{(cached)}

},
},

}

\tikz \node[fill=pink, rounded corners]{See that this syntax can be safely used. \whereIAm};

\tikz(add to preamble={\def\sayHello#1{Hello #1!}}) \node[fill=green, rounded
corners]{\sayHello{Alice} \whereIAm};

\tikz(disable externalization) \node[fill=green, rounded corners]{Foo \whereIAm};

You can also change the default style loaded for tikz and tikzpicture (note that you might
prefer to modify tikz directly using add to preset), but you need v2.1 (buggy in v2.0):

In tikz H In tikzpicture HH

% You might prefer to modify tikz directly using "add to preset"
\cacheTikz[tikz, add to preamble={\def\hello{H}},][tikzpicture,

add to preamble={\def\hello{HH}},
]

\tikz[baseline=(A.base)] \node(A){In tikz \hello}; %
\begin{tikzpicture}[baseline=(A.base)]

\node(A){In tikzpicture \hello};
\end{tikzpicture}

Note that the cache tikz styles (the variation just provide default values) is useful for instance
if you only want to locally enable cache tikz for the \input of a style (this way you can
cache the output of a cached thing…). For instance, gnuplot with a tikz terminal will compile
into a tex file that will be inputted. But unless \cacheTikz is enabled, the inputted picture
will not be cached (i.e. tikz will need to run). If you still want to cache it without enabling
\cacheTikz globally, you can load this style in the gnuplot style, or do something like:
\doNotCacheTikz just undo \cacheTikz:

(not cached) (not cached)

\def\whereIAm{(not cached)}
\robExtConfigure{

add to preset={tikz}{
add to preamble={
\def\whereIAm{(cached)}

},
},

}

\cacheTikz
\doNotCacheTikz

\tikz \node[fill=pink, rounded corners]{\whereIAm};
\begin{tikzpicture}

\node[fill=pink, rounded corners]{\whereIAm};
\end{tikzpicture}
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\robExtDisableTikzpictureOverwrite
This is useful to temporarily reset the current environment to their original value (since v2.0
it also resets other environments, not just tikzpicture). This must typically be called at the
beginning of command if no externalization to avoid infinite recursion if you redefine it,
but expect for this case the user is not expected to use this option.

Let us say that you want to cache all elements of a given environment, like minipage or zx-
calculus pictures (another package of mine):

\cacheEnvironment{〈delimiters〉}{〈name environment〉}{〈default preset options〉}
This will automatically cache the corresponding environment (but note that you still need to
define it in the preamble of the cached files, for instance by loading the appropriate pack-
age):

A ZX figure
α aπ

β bπ
and the same but aligned on the second line

α aπ

β bπ .

\cacheEnvironment{ZX}{latex, add to preamble={\usepackage{zx-calculus}}}
A ZX figure %
\begin{ZX}
\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

\end{ZX} and the same but aligned on the second line %
\begin{ZX}[mbr=2]
\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

\end{ZX}.

You can of course configure them using globally defined configuration, but you can also provide
arguments to a single picture using the delimiters delimiters that default to <...> as the
optional argument, like:

α yes

β bπ

\cacheEnvironment{ZX}{latex, add to preamble={\usepackage{zx-calculus}}}
\begin{ZX}<add to preamble={\usepackage{amsmath}}> % amsmath provides \text
\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{yes}} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

\end{ZX}

If you do not like <> or if your command already have this parameter, you can change it, for
instance to get parens as delimiters, use:

α yes

β bπ

\cacheEnvironment[()]{ZX}{latex, add to preamble={\usepackage{zx-calculus}}}
\begin{ZX}(add to preamble={\usepackage{amsmath}}) % amsmath provides \text
\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{yes}} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

\end{ZX}

otherwise you must provide some presets arguments, possibly empty:
\begin{someweirdenv}<><args to someweirdenv>
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You can also use this argument to disable externalisation on a per-picture basis:

α aπ

β bπ

\cacheEnvironment{ZX}{latex, add to preamble={\usepackage{zx-calculus}}}
\begin{ZX}<disable externalization> % amsmath provides \text
\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

\end{ZX}

\cacheCommand[〈delimiter〉]{〈name command〉}[〈xparse signature〉]{〈default preset options〉}
This will automatically cache the corresponding command, in a similar way to environment.
It work exactly the same, except that we (usually) need to specify the signature of the com-
mand or it is impossible to know where the command stops. If the command is defined
using xparse-compatible commands like \NewDocumentCommand, this detection is automati-
cally done. Otherwise, you need to specify it in the xparse format: long story short, O{foo}
is an optional argument with default value foo, m is a mandatory argument.
First, let us see an example with a command defined using xparse:

A ZX figure
α aπ

β bπ
and the same but aligned on the second line

α aπ

β bπ .

% We cache the command \zx that is defined with NewDocumentCommand: no need to specify the signature
\cacheCommand{zx}{latex, add to preamble={\usepackage{zx-calculus}}}
A ZX figure %
\zx{
\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

} and the same but aligned on the second line %
\zx[mbr=2]{
\zxX{\alpha} \rar \ar[d,C] & \zxZ*{a\pi} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

}.

You can of course configure them using globally defined configuration, but you can also provide
arguments to a single picture using the delimiters that default to <> as the optional argument,
like:

α Hello Alice.

β Bye Bob.

\cacheCommand{zx}{latex, add to preamble={\usepackage{zx-calculus}\def\hello#1{Hello #1.}}}
\zx<add to preamble={\usepackage{amsmath}\def\bye#1{Bye #1.}}>[mbr=1]{ % amsmath provides \text
\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{\hello{Alice}}} \\
\zxZ{\beta} \rar & \zxZ{\text{\bye{Bob}}}

}

or with parens as delimiters:

α yes

β bπ
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\cacheCommand[()]{zx}{latex, add to preamble={\usepackage{zx-calculus}}}
\zx(add to preamble={\usepackage{amsmath}})[mbr=1]{ % amsmath provides \text
\zxX{\alpha} \rar \ar[d,C] & \zxZ{\text{yes}} \\
\zxZ{\beta} \rar & \zxX*{b\pi}

}

Here is an example with a command not defined with \NewDocumentCommand (we also show
how you can use the optional argument to disable externalisation on a per-picture basis):

Optional argument 1: default value, Argument 2: second arg, Argument 3: last arg (I am cached).
Optional argument 1: default value, Argument 2: second arg, Argument 3: last arg (I am
not cached).

\def\fromWhere{I am not cached}
\newcommand{\myMacroNotDefinedWithNewDocumentCommand}[3][default value]{

Optional argument 1: #1,
Argument 2: #2,
Argument 3: #3 (\fromWhere).

}
\cacheCommand{myMacroNotDefinedWithNewDocumentCommand}[O{default value}mm]{

latex,
add to preamble={%

\def\fromWhere{I am cached}
\newcommand{\myMacroNotDefinedWithNewDocumentCommand}[3][default value]{
Optional argument 1: #1,
Argument 2: #2,
Argument 3: #3 (\fromWhere).

}
}

}

\myMacroNotDefinedWithNewDocumentCommand{second arg}{last arg}\\
\myMacroNotDefinedWithNewDocumentCommand<disable externalization>{second arg}{last arg}

Defining its own macro without repeating its definition. Note that when you define
yourself a macro function, the above structure might not be optimal as you need to define the
macro in the main document (in case you disable the externalization) and in the template. One
option to avoid repeated code is to write the definition in a common input file (see section 5.4),
use \runHereAndInPreambleOfCachedFiles or forward=\macroToExport. But sometimes, you
might need to do more involved operations, for instance to add a file as a dependency etc. So
another solution it to wrap yourself your function into cacheMe yourself. Say you want your
function to draw a circle like, \tikz \draw[fill=#2] (0,0) circle [radius=#1];, then wrap
in inside CacheMe:

You can externalize it or disable externalization .

% D<>{} is an optional argument enclosed in <>, we use this to pass arguments to CacheMe
\NewDocumentCommand{\drawMyCircle}{D<>{}O{2mm}m}{
\begin{CacheMe}{tikz, #1}

\tikz \draw[fill=#3] (0,0) circle [radius=#2];
\end{CacheMe}

}

You can externalize it \drawMyCircle{pink} %
or disable externalization \drawMyCircle<disable externalization>[4mm]{red}.

Manually wrap a command. In some more advanced cases, if you do not know the defi-
nition of the command and if \cacheCommand does not work (e.g. the number of mandatory
argument depends on the first argument), you can wrap it manually. To do so, first copy first your
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command using \DeclareCommandCopy{\robExtCommandOrigNAMEOFCOMMAND}{\NAMEOFCOMMAND}
and run \robExtAddToCommandResetList{NAMEOFCOMMAND} (this is needed to disable exter-
nalization), and override the command by wrapping it into a cache. Make sure to add
\def\robExtCommandOrigName{NAMEOFCOMMAND} at the beginning of the function or disable externalization
will not work:

Original command: α β . This is cached α β , you can add options like α Hey and we can
disable the externalization: α Hey .

Original command: \zx{\zxZ{\alpha} \rar & \zxX{\beta}}. %
\DeclareCommandCopy{\robExtCommandOrigzx}{\zx}% used to recover the original function
\robExtAddToCommandResetList{zx}% let us know that this function should be reset when externalization is disabled
\DeclareDocumentCommand{\zx}{D<>{}O{}m}{%
\def\robExtCommandOrigName{zx}%
\begin{CacheMe}{latex, add to preamble={\usepackage{zx-calculus}}, #1}%

\zx[#2]{#3}%
\end{CacheMe}%

}
This is cached \zx<>{\zxZ{\alpha} \rar & \zxX{\beta}}, you can add options like %
\zx<add to preamble={\usepackage{amsmath}}>{\zxZ{\alpha} \rar & \zxX{\text{Hey}}} %
and we can disable the externalization: %
\zx<disable externalization>{\zxZ{\alpha} \rar & \zxX{\text{Hey}}}.

You can do a similar trick for environment, by using instead

\NewEnvironmentCopy{robExtEnvironmentOrigNAMEENV}{NAMEENV}
\robExtAddToEnvironmentResetList{NAMEENV}
\def\robExtEnvironmentOrigName{NAMEENV}

6.8 Operations on the cache
Every time we compile a document, we create automatically a bunch of files:

• the cache is located by default in the robustExternalize folder. Feel free to remove this
folder if you want to completely clear the cache (but then you need to recompile everything).
See below if you want to clean it in a better way.

• \jobname-robExt-all-figures.txt contains the list of all figures contained in the docu-
ment. Mostly useful to help the script that remove other figures.

• robExt-remove-old-figures.py is a python script that will remove all cached files that are
not used anymore. Just run python robExt-remove-old-figures.py to clean it. You will
then see the list of files that the script wants to remove: make sure it does not remove any
important data, and press “y”. Note that it will search for all files that look like *robExt-
all-figures.txt to see the list of pictures that are still in use, and by default it will only
remove the images in the robustExternalize folder that start with robExt-. If you change
the path of the cache or the prefix, edit the script (should not be hard to do).

• \jobname-robExt-compile-missing-figures.sh contains a list of commands that you need
to run to compile the images not yet compiled in the cache (this list will only be created if
you enable the manual compilation mode).

• \jobname-robExt-tmp-file-you-can-remove.tmp is a temporary file. Feel free to remove
it.

We go over some of these scripts.

6.8.1 Cleaning the cache

You might want to clean the cache. Of course you can remove all generated files, but if you want
to keep the picture in use in the latest version of the document, we provide a python script (auto-
matically generated in the root folder) to do this. Just install python3 and run:
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python3 robExt-remove-old-figures.py

(on windows, the executable might be called python) You will then be prompted for a confir-
mation after providing the list of files that will be removed.

6.8.2 Listing all figures in use

After the compilation of the document, a file robExt-all-figures.txt is created with the list of
the .tex file of all figures used in the current document.

6.8.3 Manually compiling the figures

When enabling the manual mode (useful if we don’t want to enable -shell-escape):

\robExtConfigure{
enable manual mode

}

or the fallback to manual mode (it will only enable the manual mode if -shell-escape is
disabled):

\robExtConfigure{
enable fallback to manual mode,

}

the library creates a file JOBNAME-robExt-compile-missing-figures.sh that contains the
instructions to build the figures that are not yet in the cache (each line contains the compilation
command to run). On Linux (or on Windows with bash/cygwin/… installed, it possibly even work
out of the box without) you can easily execute them using:

bash JOBNAME-robExt-compile-missing-figures.sh

6.9 How to debug
If for some reasons you are unable to understand why a build fails, first check if you compiled your
document with -shell-escape (not that this must appear before the filename).

Since v2.3, we provide a more advanced error handling system in order to provide more mean-
ingful errors to the user, and to write the full compilation output in the log in case of an error.
We do so by wrapping commands around something like (my command) > somelog.tex 2>&1;
therefore nothing is printed on screen during the compilation of the cached picture, you only get
a message if there is an error.

/robExt/do not redirect compilation output (style, no value)
If you want to come back to the old behavior, that just runs the command is it either set this op-
tion, or set \def\robExtDoNotRedirectOutput{} and \def\robExtDoNotRedirectOutputInManuallyCompileMissingFigures{}
(the last one will only concern commands written to the robExt-compile-missing-figures.sh,
which is used in manual mode and in parallel mode).

Starting from 2.3, we also automatically print an actual error message like:

! Package robExt Error: On line 20: the pdf file
(robExt)
robustExternalize/robExt-F27CD43D192AA2668A16DEAA616591FF.pdf
(robExt) is not present. The compilation command "cd
(robExt) robustExternalize/ && xelatex -halt-on-error
(robExt) "robExt-F27CD43D192AA2668A16DEAA616591FF.tex"" used
(robExt) to compile the environment on line 20 certainly
(robExt) failed with errors:
(robExt) vvvvvv
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(robExt) ! Package tikz Error: Giving up on this path. Did
(robExt) you forget a semicolon?.
(robExt)
(robExt) ^^^^^^
(robExt) See full logs below (you might need to press ENTER
(robExt) to go to the next error) or in
(robExt)
robustExternalize/robExt-F27CD43D192AA2668A16DEAA616591FF-compilation.log.

You can see inside the location in the main tex file of the block containing the error, we provide
also the compilation command that lead to this error, and the lines of the log containing the
word “error” (case insensitive), as well as the path to the full log of the compilation of the inner
command, that you can also see if you continue the compilation by pressing Enter or by looking at
the full log file, for instance in TeXstudio. This smaller message is often good enough in LaTeX,
but usually not very good for languages that do not print the word “error”. In that case, add to
your preset:

/robExt/print whole file in error message (style, no value)
/robExt/do not print whole file in error message (style, no value)

(Add this only in preset, do NOT set it globally) If you want to print the whole file in the
small error message because you do not want to inspect the full log file, you can use the style
print whole file in error message. This is enabled by default on the gnuplot, python
and bash presets for instance, but disabled in LATEX has it makes little sense to print thousands
of log lines in the error.

/robExt/texstudio (style, no value)
/robExt/logs should show as errors (style, no value)
/robExt/prefix log message with={〈string to prepend to log message〉} (style, no default)
/robExt/spacing between lines in log={〈content to separate lines in log〉}(style, no default)

Some IDE like TeXstudio will only print lines starting with an exclamation mark, assuming
that they are spaced enough, so to make the compilation errors more visible in the log, we can
start every line in the log with a ! (you can set it globally via logs should show as errors
that internally calls prefix log message with) and separate all lines with enough empty
lines using spacing between lines in log. For simplicity, we create texstudio to auto-
matically configure these values so that errors print nicely in texstudio via:
\robExtConfigure{texstudio}
This way you will get errors like:
-------- We print now the full log --------
! sh: ligne 1: gnuplot : commande introuvable
-------- End of the full log --------
and the line sh: ligne 1: gnuplot : commande introuvable will appear in your IDE
without going in the log file. Note that this will only be printed for items that enable
print whole file in error message not to pollute the errors space when the log contains
many lines (e.g. LATEX), but this is automatically enabled on most default presets.

Then, you can look at the log files18 to get more advices, and run yourself the compi-
lation command printed in the above error message. This way, you can easily check the
content of the file and see why it fails to compile. In version before 2.3, or if you use
do not redirect compilation output, the compilation errors are also displayed directly in the
output, and you can read the log file for details.

You might often get an error:

! Missing $ inserted.

18Either the latex one or the -compilation.log file, and sometimes try in a terminal if you really can’t see any
useful error as it might be the case that the error is not printed in the log file, which occurs for instance if xparse
is not installed on Windows and you use the compilation command in parallel.
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This is typically when a placeholder was left unreplaced (e.g. you forgot to define it, import it,
or you forgot to wrap a command in \evalPlaceholder{}): since LATEX is asked to typeset
__something__, it thinks that you are trying to write a subscript, and asks you to start first the
math mode.

To get more advanced info during the compilation command, set the style more logs (that does
\def\robExtDebugMessage#1{\message{^^J[robExt] #1}}) in order to print some messages on
the replacement process (there is also \robExtDebugWarning for more important messages, but it
prints the logs by default.

Then, it is often handy to check the content of the generated template. You can either get the
name in the log, via name output, or print it directly in the file:

/robExt/debug (style, no value)
/robExt/print command and source (style, no value)

You can also use debug (or its alias print command and source) in order to disable the
compilation and print instead the compilation command and the source file:

Command: (run in folder robustExternalize/)
pdflatex -halt-on-error "robExt-C258047503967D680D684293CEAD8CE4.tex"
Dependencies:

command,pdflatex -halt-on-error "__ROBEXT_SOURCE_FILE__"
50E2E35E8F3DC9D3A97DC41F843CF721,

Source (in robustExternalize/robExt-C258047503967D680D684293CEAD8CE4.tex):
\documentclass[,margin=30cm]{standalone}
\usepackage {tikz}
% most packages must be loaded before hyperref
% so we typically want to load hyperref here

% some packages must be loaded after hyperref

\begin{document}%
%% We save the height/depth of the content by using a savebox:
\newwrite\writeRobExt%
\immediate\openout\writeRobExt=\jobname-out.tex%
%
\newsavebox\boxRobExt%
\begin{lrbox}{\boxRobExt}%
\begin {tikzpicture}[baseline=(A.base)] \node [fill=red, rounded corners](A){My node that respects baseline \ding {164}.}; \node [fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};\end {tikzpicture}%

\end{lrbox}%
\usebox{\boxRobExt}%
\immediate\write\writeRobExt{%
\string\def\string\robExtWidth{\the\wd\boxRobExt}%
\string\def\string\robExtHeight{\the\ht\boxRobExt}%
\string\def\string\robExtDepth{\the\dp\boxRobExt}%

}%
%

\end{document}

\begin{tikzpictureC}<debug>[baseline=(A.base)]
\node[fill=red, rounded corners](A){My node that respects baseline \ding{164}.};
\node[fill=red, rounded corners, opacity=.3,overlay] at (A.north east){I am an overlay text};

\end{tikzpictureC}
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\robExtShowPlaceholder*{〈placeholder name〉}
/robExt/show placeholder={〈placeholder name〉} (style, no default)

\robExtShowPlaceholder{__ROBEXT_MAIN_CONTENT__} will show in the terminal the content
of the placeholder. Use the start not to pause.

\robExtShowPlaceholders*
\robExtShowPlaceholdersContents*
/robExt/show placeholders (style, no value)
/robExt/show placeholders contents (style, no value)

Show all imported placeholders and their content. Use the start not to pause.

/robExt/nb lines after error to show={〈nb lines to keep〉} (style, no default)
/robExt/remove line number (style, no value)
/robExt/do not remove line number (style, no value)

In order to make the small error message more meaningful (to avoid getting to the full
log), we try to extract some errors automatically, reading lines staring with !, or con-
taining error or invalid. But this line alone is often not enough, so you can use
nb lines after error to show to determine the number of lines to show after (defaults
to 3). remove line number will remove in the short error message any l. at the beginning
of the line, otherwise some editors (at least emacs), will interpret it as a line number in the
current file and will jump to a bad position (this is enabled by default). These options would
work best if set globally when you use compile in parallel.

6.10 Advanced optimizations
We made a number of optimizations to get near instant feedback on documents having hundreds
of pictures, basically by saying which placeholder should be replaced, in which order, when to stop
replacing placeholders, and possibly by compiling templates (see section 5.12). Most of them are
invisible to the end user and pre-configured for presets like latex or when compiling a preset, but
you might want to also use them on your own.

First note that the order used to import placeholders is important, as it will first replace the
first imported placeholders: so if you imported the placeholders in the right order, a single loop
should be enough to replace them all, otherwise you might need n loops if you need to replace n
placeholders (the basic evaluation procedure just loops over placeholders and replace all occurrences
in the string until there is either no remaining placeholders (see below), or if you obtain the same
result after two loops).

\onlyPlaceholdersInCompilationCommand{〈list,of,placeholders〉}
\firstPlaceholdersInCompilationCommand{〈list,of,placeholders〉}
\onlyPlaceholdersInTemplate{〈list,of,placeholders〉}
\firstPlaceholdersInTemplate{〈list,of,placeholders〉}

Using these commands (possibly inside /utils/exec={\yourcommand{foo}} in a style), you
will tell to the system to evaluate the compilation/template placeholders (depending on the
name of the command) only using the placeholders in the argument, or (for the commands
starting with first), by starting with the placeholders in argument before continuing with
others placeholders.

/robExt/all placeholders have underscores (style, no value)
/robExt/not all placeholders have underscores (style, no value)

In order to know when to stop replacing placeholders earlier (i.e. without running until it
converges), it is practical to know how placeholders look like in order to stop before. This
(enabled by default) says to the library that all placeholders should start with two underscores
__, allowing us to easily check if a string contains a placeholder. If you want to use placeholders
with fancy names and no underscores, disable this feature (but it might be a bit slower).

110



/robExt/do not load special placeholders (style, no value)
/robExt/load special placeholders (style, no value)

Similarly, to save some time, we do not import some special placeholders and only replace them
manually at the end, the list being: __ROBEXT_OUTPUT_PREFIX__, __ROBEXT_SOURCE_FILE__,
__ROBEXT_OUTPUT_PDF__, __ROBEXT_WAY_BACK__, __ROBEXT_CACHE_FOLDER__. If for some
reasons you do want to import them earlier, you can do it this way.

/robExt/disable placeholders (style, no value)
/robExt/enable placeholders (style, no value)

To save even more time, you can disable the placeholder system completely, and only replace
the following placeholders: __ROBEXT_MAIN_CONTENT__, __ROBEXT_LATEX_PREAMBLE__ and
__ROBEXT_MAIN_CONTENT_ORIG__. This is done notably inside new compiled preset in order
to speed up the compilation by maybe a factor of 1.5 or 2, but then you cannot use any other
placeholders. Note that the default presets like latex enable placeholders, so you should be
able to call latex inside a compiled template to come back to the uncompiled version.

/robExt/disable import mechanism (style, no value)
/robExt/enable optimizations (style, no value)

If you disable the import mechanism (enabled by default), it will do an \importAllPlaceholders
while evaluating the template. This is not recommended as it is quite inefficient, it is better
to selectively import the group you need.

7 Frequent errors
7.1 Xelatex and tabs
It seems that xelatex (I never had issues with pdflatex and lualatex, but if you get this error on
other engines you can try the same fix) has a hard time dealing with tabs19 if you do not compile
with:

xelatex -8bit yourfile.tex

If you see that tabs in your input file are turned into ^^I in the source code, you should either add
the -8bit option… or simply follow egreg’s advice:

The strategy is very simple: never use TAB when dealing with TeX. Reserve the TAB key to
trigger autocompletion and your life will be happier.

If you use TeXstudio that uses Tabs by default, you can disable this feature by setting these two
options:

Options > Configure TeXstudio > Editor > Replace indentation tabs with spaces
Options > Configure TeXstudio > Editor > Replace tabs in text with spaces

8 TODO and known bugs:
• See how to deal with label, links and cite inside pictures (without disabling externalization).

For label and links, I have a proof of concept, I “just” need to write it down. https://tex.
stackexchange.com/questions/695277/clickable-includegraphics-for-cross-reference-data

• Deal with remember picture

• Since externalizing is all about speed, it would be nice to do more benchmarks. But overall, it
seems fairly optimized, at least when using the compiled presets. One option to gain in term
of efficiency and simplicity might be to directly use the fact that the placeholders start and
end with two dashes: a more efficient implementation might be doable using something like
\def\findPlaceholders#1__#2__{} instead of string replacement. I will try to investigate
in future releases.

19https://tex.stackexchange.com/a/14776/116348
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9 Changelog
• v2.6:

– Added \lenToCmNoUnit

– Added \placeholderPrependAllLines and alike
– Added remove spaces until and alike
– Added placeholderRemoveLeadingSpaces and alike

• v2.5:

– Add tikzit support
– Add support for --output-directory

• v2.4:

– Better error message in wget if file not found
– Add support for arXiv with rename backup files for arxiv, print source when saving,

backup source for arxiv, forward counter force value

– Add \robExtMv, \robExtCp, set compilation command create if no error and
set compilation command move if no error.

– Add copy file to cache

• v2.3:

– Fix bug in more logs and less logs

– Make if matches word more efficient, independent on the number of runs, allowing
registration, namespaces, etc.

– Added \definecolorAutoForward and \colorletAutoForward

– Add support for gnuplot
– Added \runHereAndInPreambleOfCachedFiles

– Clearer and more advanced error handling
– Add support for online images with \includegraphicsWeb

• v2.2

– v2.1 introduced two important bugs where hashes could not be used in a \cacheMe
environment, and auto forward was not working if the string was containing an envi-
ronment. This is fixed now.

– Fix issue with compile in parallel on MacOs (xargs there is not GNU xargs and is
missing -a option)

– Added *ExpandableDocumentCommandAutoForward.
– Added \genericAutoForward to forward arbitrary code.
– Added if windows and if unix tests.
– Added details on the future difference between if matches and if matches word.

• v2.1:

– Fix a bug when compiling the main document with lualatex or xelatex
– Fix a bug when compiling a template that was not exporting dependencies
– Add recompile to recompile a file even if no dependencies changed.
– Add a hook robust-externalize/just-before-writing-files.
– Fixed a bug in \cacheTikz that was not working with a custom argument for tikzpicture
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– Added options forward* to forward macros and counters
– Added auto forward and co
– Added compile in parallel and co

• v2.0:

– not backward compatible: the preset tikzpicture should be used instead of tikz:
tikz does not wrap anymore its content into \begin{tikzpicture} in order to be usable
inside the command version \tikz (but tikzpicture does load tikz first). Moreover,
all arguments to tikzpictureC or tikzpicture (if you loaded cacheTikz) should be
specified in the first argument, using <your options>. This is used to provide a more
uniform interface with the new \cacheEnvironment command. Hopefully this should
not cause too much trouble since the first version of the library has been published
on CTAN only a few days ago.

– not really compatible: Renamed some latex placeholders to prefix all of them with
__ROBEXT_LATEX_. Should not be a problem if you used the style made to change them.

– Added an alias to \robExtExternalizeAllTikzpictures called \cacheTikz. Now,
this also configures \tikz.

– You can now use ampersands etc freely thanks to lrbox.
– You can now automatically cache environments using \cacheEnvironment and com-

mands using \cacheCommand.
– We provide new preset and add to preset to avoid doubling the number of hashes.
– We provide new functions like \setPlaceholderRecReplaceFromList to only expand

a subset of placeholders.
– An error message is given if you forget to set a template.
– Add enable fallback to manual mode to fallback to manual mode only if shell escape

is missing.
– Allow restricted mode
– debug mode available
– Rename set subfolder and way back to set cache folder and way back (in a

backward compatible way)
– Waaaaaaay more efficient. Also added a method to compile presets.
– I added the import system for efficiency reasons (not present in v1.0 at all). Note that

I also added some other functions that I forgot to notify as new in the doc...
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Index
This index only contains automatically generated entries. A good index should also contain care-
fully selected keywords. This index is not a good index.

add argument to compilation command key, 62
add arguments to compilation command key,

62
add before main content key, 44
add before main content no import key, 44
add before placeholder key, 44
add before placeholder no import key, 44
add before placeholder no space key, 44
add before placeholder no space no import

key, 44
add before preset key, 58
add cache to graphicspath key, 65
add dependencies key, 69
add import key, 89
add key and file argument to compilation

command key, 62
add key value argument to compilation

command key, 62
add placeholder to group key, 56
add placeholders to group key, 56
add to includegraphics options key, 84
add to latex options key, 86
add to placeholder key, 44
add to placeholder no import key, 44
add to placeholder no space key, 44
add to placeholder no space no import key,

44
add to preamble key, 86
add to preamble after hyperref key, 86
add to preamble hyperref key, 86
add to preset key, 58
\addBeforePlaceholder, 44
\addBeforePlaceholderNoImport, 44
\addPlaceholdersToGroup, 56
\addPlaceholderToGroup, 56
\addToPlaceholder, 44
\addToPlaceholderNoImport, 44
all placeholders have underscores key, 110
append before group placeholders key, 57
append group placeholders key, 57
\appendBeforeGroupPlaceholders, 57
\appendGroupPlaceholders, 57
auto forward key, 74
auto forward color key, 72
auto forward only macros key, 74
auto forward words key, 74, 78
auto forward words namespace key, 78

cache tikz key, 101
cache tikz 2 args key, 101
cache tikz 3 args key, 101
\cacheCommand, 104
\cacheEnvironment, 103
CacheMe environment, 57

\cacheMe, 57
CacheMeCode environment, 59
\cacheTikz, 101
\cacheTikzit, 97
\cacheTikzitWithStyle, 97
clear imported placeholders key, 53
\clearGroupPlaceholders, 56
\clearImportedPlaceholders, 53
\colorletAutoForward, 77
command if externalization key, 68
command if no externalization key, 68
compile in parallel key, 80
compile in parallel after key, 81
compile in parallel command key, 81
compile in parallel with gnu parallel key,

81
compile in parallel with xargs key, 81
compile latex template key, 82
\configIfMacroPresent, 74
copy file to cache key, 70
copy group placeholders key, 56
copy placeholder key, 42
copy placeholder no import key, 42
\copyFileToCache, 70
\copyGroupPlaceholders, 56
\copyPlaceholder, 42
curl key, 91
custom include command key, 64
custom include command advanced key, 64

de key, 67
debug key, 84, 109
\DeclareDocumentCommandAutoForward, 74
\DeclareExpandableDocumentCommandAutoForward,

75
\defAutoForward, 75
\definecolorAutoForward, 77
dependencies key, 69
disable externalization key, 67
disable externalization now key, 67
disable fallback to manual mode key, 64
disable import mechanism key, 111
disable manual mode key, 64
disable placeholders key, 111
do not force compilation key, 62
do not include pdf key, 64
do not load special placeholders key, 111
do not print whole file in error message

key, 108
do not recompile key, 63
do not redirect compilation output key, 107
do not remove leading spaces key, 47
do not remove line number key, 110
do not wrap code key, 86
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\doNotCacheTikz, 101

enable externalization key, 67
enable fallback to manual mode key, 64
enable manual mode key, 64
enable optimizations key, 111
enable placeholders key, 111
Environments

CacheMe, 57
CacheMeCode, 59
PlaceholderFromCode, 39
PlaceholderPathFromCode, 42
SetPlaceholderCode, 39

eval placeholder inplace key, 49
\evalPlaceholder, 36
\evalPlaceholderInplace, 49
\evalPlaceholderNoReplacement, 38
execute after each externalization key, 69
execute before each externalization key, 69

\firstPlaceholdersInCompilationCommand, 110
\firstPlaceholdersInTemplate, 110
force compilation key, 62
\forceCopyFileToCache, 70
forward key, 70
forward at letter key, 71
forward color key, 72
forward counter key, 72
forward counter force value key, 72
forward eval key, 72
fw key, 70

\genericAutoForward, 75
\genericAutoForwardStringMatch, 75
\getPlaceholder, 35
\getPlaceholderInResult, 35
\getPlaceholderInResultFromList, 35
\getPlaceholderNoReplacement, 38
gnuplot key, 91

if matches key, 77
if matches regex key, 78
if matches word key, 78
if unix key, 81
if windows key, 81
import all placeholders key, 51, 57
import placeholder key, 51
import placeholder first key, 51
import placeholders from group key, 51, 57
\importAllPlaceholders, 51, 57
\importPlaceholder, 51
\importPlaceholderFirst, 51
\importPlaceholdersFromGroup, 51, 57
in command key, 87
include command is input key, 64
include graphics args key, 65
\includegraphicsWeb, 91

latex key, 85
\lenToCm, 49
\lenToCmNoUnit, 49
load auto forward macro config key, 77

load special placeholders key, 111
logs should show as errors key, 108

name output key, 79
nb lines after error to show key, 110
new compiled preset key, 82
new group placeholders key, 56
new preset key, 58
\newcommandAutoForward, 74
\NewDocumentCommandAutoForward, 74
\NewExpandableDocumentCommandAutoForward,

74
\newGroupPlaceholders, 56
no cache folder key, 66
not all placeholders have underscores key,

110

\onlyPlaceholdersInCompilationCommand, 110
\onlyPlaceholdersInTemplate, 110

pdf terminal key, 91
placeholder double number hashes in place

key, 48
placeholder halve number hashes in place

key, 48
placeholder prepend all lines key, 47
placeholder remove leading spaces key, 47
placeholder remove spaces until key, 46
placeholder replace in place key, 46
placeholder replace in place eval key, 46
placeholder strictly remove spaces until

key, 46
\placeholderDoubleNumberHashesInplace, 48
PlaceholderFromCode environment, 39
\placeholderFromContent, 39
\placeholderFromFileContent, 41
\placeholderFromString, 45
\placeholderHalveNumberHashesInplace, 48
PlaceholderPathFromCode environment, 42
\placeholderPathFromContent, 41
\placeholderPathFromFilename, 40
\placeholderPrependAllLines, 47
\placeholderRemoveLeadingSpaces, 47
\placeholderRemoveSpacesUntil, 46
\placeholderReplaceInplace, 46
\placeholderReplaceInplaceEval, 46
prefix log message with key, 108
prepend all lines key, 47
print all registered groups key, 54
print all registered groups and

placeholders key, 54
print command and source key, 84, 109
print group placeholders key, 54
print imported placeholders key, 37
print imported placeholders except default

key, 36
print verbatim if no externalization key,

68
print whole file in error message key, 108
\printAllRegisteredGroups, 53
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\printAllRegisteredGroupsAndPlaceholders,
54

\printGroupPlaceholders, 54
\printImportedPlaceholders, 37
\printImportedPlaceholdersExceptDefaults,

36
\printPlaceholder, 38
\printPlaceholderNoReplacement, 37
\providecommandAutoForward, 74
\ProvideDocumentCommandAutoForward, 74
\ProvideExpandableDocumentCommandAutoForward,

75
python key, 87
python print code and result key, 88

recompile key, 63
register word with namespace key, 78
remove imported placeholders key, 53
remove leading spaces key, 47
remove leading spaces if not disabled key,

47
remove line number key, 110
remove placeholder key, 48
remove placeholder from group key, 56
remove placeholders key, 48
remove placeholders from group key, 56
remove spaces until key, 46
\removeImportedPlaceholder, 53
\removePlaceholder, 48
\removePlaceholderFromGroup, 56
\removePlaceholdersFromGroup, 56
\renewcommandAutoForward, 74
\RenewDocumentCommandAutoForward, 74
\RenewExpandableDocumentCommandAutoForward,

75
\rescanPlaceholderInVariableNoReplacement,

38
reset dependencies key, 69
/robExt/

add argument to compilation command,
62

add arguments to compilation command,
62

add before main content, 44
add before main content no import, 44
add before placeholder, 44
add before placeholder no import, 44
add before placeholder no space, 44
add before placeholder no space no

import, 44
add before preset, 58
add cache to graphicspath, 65
add dependencies, 69
add key and file argument to

compilation command, 62
add key value argument to compilation

command, 62
add placeholder to group, 56
add placeholders to group, 56
add to includegraphics options, 84
add to placeholder, 44

add to placeholder no import, 44
add to placeholder no space, 44
add to placeholder no space no import,

44
add to preset, 58
all placeholders have underscores, 110
append before group placeholders, 57
append group placeholders, 57
auto forward, 74
auto forward color, 72
auto forward only macros, 74
auto forward words, 74, 78
auto forward words namespace, 78
cache tikz, 101
cache tikz 2 args, 101
cache tikz 3 args, 101
clear imported placeholders, 53
command if externalization, 68
command if no externalization, 68
compile in parallel, 80
compile in parallel after, 81
compile in parallel command, 81
compile in parallel with gnu parallel,

81
compile in parallel with xargs, 81
compile latex template, 82
copy file to cache, 70
copy group placeholders, 56
copy placeholder, 42
copy placeholder no import, 42
custom include command, 64
custom include command advanced, 64
de, 67
debug, 84, 109
dependencies, 69
disable externalization, 67
disable externalization now, 67
disable fallback to manual mode, 64
disable import mechanism, 111
disable manual mode, 64
disable placeholders, 111
do not force compilation, 62
do not include pdf, 64
do not load special placeholders, 111
do not print whole file in error

message, 108
do not recompile, 63
do not redirect compilation output,

107
do not remove leading spaces, 47
do not remove line number, 110
enable externalization, 67
enable fallback to manual mode, 64
enable manual mode, 64
enable optimizations, 111
enable placeholders, 111
eval placeholder inplace, 49
execute after each externalization, 69
execute before each externalization,

69
force compilation, 62
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forward, 70
forward at letter, 71
forward color, 72
forward counter, 72
forward counter force value, 72
forward eval, 72
fw, 70
gnuplot/

pdf terminal, 91
set terminal, 91
tikz terminal, 91

gnuplot, 91
if matches, 77
if matches regex, 78
if matches word, 78
if unix, 81
if windows, 81
import all placeholders, 51, 57
import placeholder, 51
import placeholder first, 51
import placeholders from group, 51, 57
include command is input, 64
include graphics args, 65
latex/

add to latex options, 86
add to preamble, 86
add to preamble after hyperref, 86
add to preamble hyperref, 86
do not wrap code, 86
in command, 87
set documentclass, 86
set latex options, 86
set preamble, 86
set preamble after hyperref, 86
set preamble hyperref, 86
use latexmk, 86
use lualatex, 86
use xelatex, 86

latex, 85
load auto forward macro config, 77
load special placeholders, 111
logs should show as errors, 108
name output, 79
nb lines after error to show, 110
new compiled preset, 82
new group placeholders, 56
new preset, 58
no cache folder, 66
not all placeholders have underscores,

110
placeholder double number hashes in

place, 48
placeholder halve number hashes in

place, 48
placeholder prepend all lines, 47
placeholder remove leading spaces, 47
placeholder remove spaces until, 46
placeholder replace in place, 46
placeholder replace in place eval, 46
placeholder strictly remove spaces

until, 46

prefix log message with, 108
prepend all lines, 47
print all registered groups, 54
print all registered groups and

placeholders, 54
print command and source, 84, 109
print group placeholders, 54
print imported placeholders, 37
print imported placeholders except

default, 36
print verbatim if no externalization,

68
print whole file in error message, 108
python/

add import, 89
python, 87
python print code and result, 88
recompile, 63
register word with namespace, 78
remove imported placeholders, 53
remove leading spaces, 47
remove leading spaces if not disabled,

47
remove line number, 110
remove placeholder, 48
remove placeholder from group, 56
remove placeholders, 48
remove placeholders from group, 56
remove spaces until, 46
reset dependencies, 69
run command if externalization, 68
set cache folder and way back, 65
set compilation command, 62
set compilation command create if no

error, 62
set compilation command move if no

error, 62
set filename prefix, 65
set includegraphics options, 84
set output directory, 65
set placeholder, 39
set placeholder eval, 49
set placeholder from content, 39
set placeholder from file content, 41
set placeholder from file content no

import, 41
set placeholder no import, 39
set placeholder path from content, 41
set placeholder path from content no

import, 41
set placeholder path from filename, 40
set placeholder rec, 43
set placeholder rec replace from list,

43
set subfolder and way back, 65
set template, 62
show all registered groups, 54
show all registered groups and

placeholders, 54
show placeholder, 110
show placeholders, 110
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show placeholders contents, 110
spacing between lines in log, 108
strictly remove spaces until, 46
texstudio, 108
tikz, 87
tikzpicture, 87
verbatim output, 84
web image/

curl, 91
wget, 91

web image, 91
\robExtConfigure, 58
\robExtCp, 64
\robExtDisableTikzpictureOverwrite, 103
\robExtDoNotExternalizeAllTikzpictures, 101
\robExtExternalizeAllTikzpictures, 101
\robExtGpgetvar, 96
\robExtGpgetvarNb, 96
\robExtMv, 63
\robExtShowPlaceholder, 110
\robExtShowPlaceholders, 110
\robExtShowPlaceholdersContents, 110
run command if externalization key, 68
\runHereAndInPreambleOfCachedFiles, 76

set cache folder and way back key, 65
set compilation command key, 62
set compilation command create if no error

key, 62
set compilation command move if no error

key, 62
set documentclass key, 86
set filename prefix key, 65
set includegraphics options key, 84
set latex options key, 86
set output directory key, 65
set placeholder key, 39
set placeholder eval key, 49
set placeholder from content key, 39
set placeholder from file content key, 41
set placeholder from file content no

import key, 41
set placeholder no import key, 39
set placeholder path from content key, 41
set placeholder path from content no

import key, 41
set placeholder path from filename key, 40
set placeholder rec key, 43
set placeholder rec replace from list key,

43
set preamble key, 86
set preamble after hyperref key, 86
set preamble hyperref key, 86
set subfolder and way back key, 65
set template key, 62
set terminal key, 91
\setPlaceholder, 39
SetPlaceholderCode environment, 39
\setPlaceholderFromString, 45
\setPlaceholderRec, 43
\setPlaceholderRecReplaceFromList, 43

show all registered groups key, 54
show all registered groups and

placeholders key, 54
show placeholder key, 110
show placeholders key, 110
show placeholders contents key, 110
spacing between lines in log key, 108
strictly remove spaces until key, 46

texstudio key, 108
tikz key, 87
tikz terminal key, 91
tikzpicture key, 87

use latexmk key, 86
use lualatex key, 86
use xelatex key, 86

verbatim output key, 84

web image key, 91
wget key, 91
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