
Metanet User’s Guide and Tutorial

Claude Gomez Maurice Goursat

Manual version 1.1 for Scilab 2.4

Metanet is a toolbox of Scilab for graphs and networks computations. It comes as new Scilab func-
tions together with a graphical window for displaying and modifying graphs.

You can use the Metanet toolbox in Scilab without using the graphical window window at all,i.e.
without seeing the graphs or the networks you are working with.

1 Representation of graphs

The graphs handled by Metanet are directed or undirected multigraphs (loops are allowed). Agraph is a
set of arcs and nodes.

A graph must have at least one arc. We callarc a directed link between two nodes. For instance
the arc(i; j) goes fromtail nodei to headnodej. We calledgethe corresponding undirected link. A
minimal way to represent a graph is to give the number of nodes, the list of the tail nodes and the list
of the head nodes. Each node has a number and each arc has a number. The numbers of nodes are
consecutive and the number of arcs are consecutive. In Scilab, these lists are represented by row vectors.
So, if we calltail andhead these row vectors, the arc numberi goes from node numbertail(i) to
node numberhead(i) . Moreover, it is necessary to give the number of nodes, because isolated nodes
(without any arc) can exist. The size of the vectorstail andhead is the number of edges of the graph.
This is the standard representation of graphs in Metanet as it is described in the graph list (see1.1). There
are functions to compute other representations better suited for some algorithms (see1.2).

The distinction between edges and arcs is meaningful when we deal with undirected graphs. This
distinction is not needed when we only use the standard functions of Metanet. There is no distinction
between anarc and adirected edge. We will often use indistinctly these two terms.

A new object, the graph list data structure, is defined in Scilab to handle graph. It is described below.

1.1 The graph list data structure

Metanet uses the graph list data structure to represent graphs. With this type of description (see1.2), we
can have directed or undirected multigraphs and multiple loops are allowed. The graph list data structure
is a typed list. As usual, the first element of this object is itself a list which defines its type,’graph’ ,
and all the access functions to the other elements. The graph list has 33 elements (not counting the first
one defining the type). Only the first five elements must have a value in the list, all the others can be
given the empty vector[] as a value, and then a default is used. These five required elements are:

name name of the graph (a string)

directed flag equal to 1 if the graph is directed or equal to 0 if the graph is undirected

node number number of nodes

1

tail row vector of the tail node numbers

head row vector of the head node numbers

A graph must at least have one arc, sotail andhead cannot be empty.
For instance, you can define a graph list (see2.1) by

g=make_graph(’min’,1,1,[1],[1]);

which is the simplest graph you can create (it is directed, has one node and one loop arc on this node).
Each element of the list can be accessed by using its name. For instance, ifg is a graph list and you

want to get thenode number element, you only have to type:
g(’node number’)
and if you want to change this value to 10, you only have to type:
g(’node number’)=10

The check graph function checks a graph list to see if there are inconsistencies in its elements.
Checking is not only syntactic (number of elements of the list, compatible sizes of the vectors), but also
semantic in the sense thatcheck graph checks thatnode number , tail andhead elements of
the list can really represent a graph. This checking is automatically made when calling functions with a
graph list as an argument.

You will find below the description of all the elements of a graph list. Each element is described by
one or more lines. The first lines give the name of the element and its definition, with its Scilab type if
needed. The last line gives the default for elements that can have one. The name of the element is used
to access the elements of the list.

name Name of the graph; a string with a maximum of 80 characters (REQUIRED).

directed Flag giving the type of the graph; it is equal to 1 if the graph is directed or equal to 0 is the
graph is undirected (REQUIRED).

node number Number of nodes (REQUIRED).

tail Row vector of the tail node numbers (REQUIRED).

head Row vector of the head node numbers (REQUIRED).

node name Row vector of the node names; theyMUSTbe different.

Default is the node numbers as node names.

node type Row vector of the node types; the type is an integer from 0 to 2:

0: plain node

1: sink node

2: source node

This element is mainly used to draw the nodes in the Metanet window. A plain node is drawn as a
circle. A sink or source node is a node where extraneous flow goes out the node or goes into the
node; it is drawn differently (a circle with an outgoing or ingoing arrow).

Default is 0 (plain node).

node x Row vector of the x coordinates of the nodes.

Default is computed when showing the graph in the Metanet window (see3).

2

node y Row vector of the y coordinates of the nodes.

Default is computed when showing the graph in the Metanet window (see3).

node color Row vector of the node colors; the color is an integer from 0 to 16:

0: black

1: navyblue

2: blue

3: skyblue

4: aquamarine

5: forestgreen

6: green

7: lightcyan

8: cyan

9: orange

10: red

11: magenta

12: violet

13: yellow

14: gold

15: beige

16: white

Default is 0 (black).

node diam Row vector of the sizes of the node diameters in pixels (a node is drawn as a circle).

Default is the value of elementdefault node diam .

node border Row vector of the sizes of the node borders in pixels.

Default is the value of elementdefault node border .

node font size Row vector of the sizes of the font used to draw the name or the label of the node; you
can choose 8, 10, 12, 14, 18 or 24.

Default is the value of elementdefault font size .

node demand Row vector of the node demands.

The demands of the nodes are used in functionsmin lcost cflow , min lcost flow1 , min lcost flow2 ,
min qcost flow andsupernode .

Default is 0.

edgename Row vector of the edge names; edge names need not be different.

Default is the edge numbers as edge names.

edgecolor Row vector of the edge colors; the color is an integer from 0 to 16 (seenode color).

Default is 0 (black).

3

edgewidth Row vector of the sizes of the edge widths in pixels.

Default is the value of elementdefault edge width .

edgehi width Row vector of the sizes of the highlighted edge widths in pixels.

Default is the value of elementdefault edge hi width .

edgefont size Row vector of the sizes of the font used to draw the name or the label of the edge; you
can choose 8, 10, 12, 14, 18 or 24.

Default is the value of elementdefault font size .

edgelength Row vector of the edge lengths.

The lengths of the edges are used in functionsgraph center , graph diameter , salesman
andshortest path .

Default is 0.

edgecost Row vector of the edge costs.

The costs of the edges are used in functionsmin lcost cflow , min lcost flow1 andmin lcost flow2 .

Default is 0.

edgemin cap Row vector of the edge minimum capacities.

The minimum capacities of the edges are used in functionsmax flow , min lcost cflow ,
min lcost flow1 , min lcost flow2 andmin qcost flow .

Default is 0.

edgemax cap Row vector of the edge maximum capacities.

The maximum capacities of the edges are used in functionsmax cap path , max flow , min lcost cflow ,
min lcost flow1 , min lcost flow2 andmin qcost flow .

Default is 0.

edgeq weight Row vector of the edge quadratic weights. It corresponds tow(u) in the value of the
cost on edgeu with flow '(u): 1

2
w(u)('(u) � w0(u))

2.

The quadratic weights of the edges are used in functionmin qcost flow .

Default is 0.

edgeq orig Row vector of the edge quadratic origins. It corresponds tow0(u) in the value of the cost
on edgeu with flow '(u): 1

2
w(u)('(u) � w0(u))

2.

The quadratic origins of the edges are used in functionmin qcost flow .

Default is 0.

edgeweight Row vector of the edge weights.

The weights of the edges are used in functionmin weight tree .

Default is 0.

default node diam Default size in pixels of the node diameters of the graph.

Default is 20.

4

default node border Default size in pixels of the node borders of the graph.

Default is 2.

default edgewidth Default size in pixels of the edge widths of the graph.

Default is 1.

default edgehi width Default size in pixels of the highlighted edge widths of the graph.

Default is 3.

default font size Default size of the font used to draw the names or the labels of nodes and edges.

Default is 12.

node label Row vector of the node labels.

Node labels are used to draw a string in a node. It can be any string. An empty label can be given
as a blank string’ ’ .

edgelabel Row vector of the edge labels.

Edge labels are used to draw a string on an edge. It can be any string. An empty label can be given
as a blank string’ ’ .

1.2 Various representations of graphs

1.2.1 Names and numbers

First of all, we need to distinguish between the name of a node or the name of an edge and their internal
numbers. The name can be any string. Its is saved in the graph file (see2.2). The internal number
is generated automatically when loading a graph. The nodes and the edges have consecutive internal
numbers starting from 1. When using the Scilab functions working on graphs,all the computations are
made with internal numbers.

It is very important to give different names to the nodes because the nodes are distinguished by their
names when they are loaded. This distinction is not important for edges.

Often, the names are taken as the internal numbers. This is the default when no names are given. In
this case, the distinction between a name and a number is not meaningful. Only the type of the variable
is not the same: the name is a string and the number is an integer.

In the following when we talk about the number of a node or the number of an edge, we mean the
internal number.

1.2.2 Tail head

We have seen that the standard representation of a graph used by Metanet is by the means of two row
vectorstail andhead : arc numberi goes from node numbertail(i) to node numberhead(i) .
The size of these vectors is the same and is the number of arcs of the graph.

Moreover the number of nodes must be given. It is greater than or equal to the maximum integer
number intail andhead . If node numbers do not belong totail andhead then there are isolated
nodes.

If the graph is undirected, it is the same, buttail(i) andhead(i) can be exchanged.
This representation is very general and gives directed or undirected multigraphs with possible loops

and isolated nodes.

5

1

4

3

2

4

3

1

2

Figure 1: Small directed graph

The standard function to create graphs ismake graph (see2.1). For instance, we can create a small
directed graph with a loop and an isolated node (see figure1) by using:
node number = 4, tail = [1,1,2,3], head = [2,3,1,3],
or in Scilab:
g=make graph(’foo’,1,4,[1 1 2 3],[2 3 1 3]);

1.2.3 Adjacency lists

Another interesting representation often used by algorithms is theadjacency listsrepresentation. It uses
three row vectors,lp , ls andla . If n is the number of nodes andm is the number of arcs of the graph:
lp is the pointer array (size =n+ 1)
ls is the node array (size =m)
la is the arc array (size =m).
If the graph is undirected, each edge corresponds to two arcs.

With this type of representation, it is easy to know the successors of a node. Node numberi has
lp(i+1)-lp(i) successors nodes with numbers fromls(lp(i)) to ls(lp(i+1)-1) , the cor-
responding arcs are have numbers fromla(lp(i)) to la(lp(i+1)-1) .

The adjacency lists representation of the graph of figure1 is given below:

1

5

3 4 5 5

1

32 1 3

2 43

1 2 3 4

la

ls

lp

The function used to compute the adjacency list representation of a graph isadj lists .

1.2.4 Node-arc matrix

For a directed graph, ifn is the number of nodes andm is the number of arcs of the graph, the node-arc
matrixA is an�m matrix:
if A(i; j) = +1, then nodei is the tail of arcj
if A(i; j) = �1, then nodei is the head of arci.
If the graph is undirected andm is the number of edges, the node-arc matrixA is also an �m matrix
and:
if A(i; j) = 1, then nodei is an end of edgej.

6

With this type of representation, it is impossible to have loops.
This matrix is represented in Scilab as a sparse matrix.
For instance, the node-arc matrix corresponding to figure1, with loop arc number 4 deleted is :

0
BBB@

1 1 �1

�1 0 1

0 �1 0

0 0 0

1
CCCA

If the same graph is undirected, the matrix is:
0
BBB@

1 1 1

1 0 1

0 1 0

0 0 0

1
CCCA

The functions used to compute the node-arc matrix of a graph, and to come back to a graph from the
node-arc matrix aregraph 2 mat andmat 2 graph .

1.2.5 Node-node matrix

Then�n node-node matrix of the graph is the matrixA whereA(i; j) = 1 if there is one arc from node
i to nodej. Only 1 to 1 graphs (no more than one arc from one node to another) can be represented, but
loops are allowed. This matrix is also known as the “adjacency matrix”.

The same functions used to compute the node-arc matrix (see above) of a graph are used to compute
the node-node matrix:graph 2 mat and mat 2 graph . To specify that we are working with the
node-node matrix, the flag’nodenode’ must be given as the last argument of these functions.

For instance, you can find below the node-node matrix of the graph corresponding to Figure1:
0
BBB@

0 1 1 0

1 0 0 0

0 0 1 0
0 0 0 0

1
CCCA

and the node-node matrix for the same undirected graph:
0
BBB@

0 1 1 0

1 0 0 0
1 0 1 0

0 0 0 0

1
CCCA

1.2.6 Chained lists

Another representation used by some algorithms is given by thechained lists. This representation uses
four vectors,fe , che , fn andchn which are described below:
e1=fe(i)) is the number of the first edge starting from nodei
e2=che(e1) is the number of the second edge starting from nodei
e3=che(e2) is the number of the third edge starting from nodei
and so on until the value is 0
fn(i) is the number of the first node reached from node i
chn(i) is the number of the node reached by edgeche(i) .

7

�
�
�
�
��
��
��
��

�
�
�
������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������

�
�
�
�

�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

fn(i) chn(e1) chn(e2)

i

e1=fe(i)

e2=che(e1) e3=che(e2)

Figure 2: Chained lists representation of graphs

1

1

Figure 3: Smallest directed graph

All this can be more clearly seen on figure2.
You can use thechain struct function to obtain the chained lists representation of a graph from

the adjacency lists representation (see1.2.3).

2 Managing graphs

We have seen (see1.1) that a graph in Scilab is represented by a graph list. This list contains everything
needed to define the graph, arcs, nodes, coordinates, colors, attributes, width of the arcs, etc.

To create, load and save graphs in Scilab, you can use only Scilab functions, handling graph lists, or
you can use the Metanet window. We describe here the first way. For the second way, see3.

2.1 Creating graphs

The standard function for making a graph list ismake graph . The first argument is the name of the
graph, the second argument is a flag which can be 1 (directed graph) or 0 (undirected graph), the third
argument is the number of nodes of the graph, and the last two arguments are the tail and head vectors of
the graph.

We have already seen that the graph named “foo” in figure1 can be created by the command:

g=make_graph(’foo’,1,4,[1 1 2 3],[2 3 1 3]);

The simplest graph we can create in Metanet is:

g=make_graph(’min’,1,1,[1],[1]);

It is directed, has one node and one loop arc on this node and can be seen in figure3.
The following graph shown in figure4 is the same as the first graph we have created, but it is undir-

ected:

g=make_graph(’ufoo’,0,4,[1 1 2 3],[2 3 1 3]);

8

1

1

3

2

4

4
2

3

Figure 4: Small undirected graph

1

4

1

3

3

4

2

Figure 5: Directed graph

You can also give 0 as the third argument ofmake graph (number of nodes). This means that
make graph will compute itself from its last arguments, the tail and head vectors, the number of nodes
of the graph. So, this graph has no isolated node and the nodes names are taken from the numbers in tail
and head vectors. For instance, if you enter

g=make_graph(’foo1’,1,0,[1 1 4 3],[4 3 1 3]);

the graph (shown in figure5) has three nodes with names 1, 3 and 4, no isolated node and four edges.
Note the difference with the graph of figure1.

The other elements of the graph list (see1.1) can be entered by using the names of the elements. For
instance, to give graph “foo” coordinates for the nodes, you can enter:

g=make_graph(’foo’,1,4,[1 1 2 3],[2 3 1 3]);
g(’node_x’)=[42 108 176 162];
g(’node_y’)=[36 134 36 93];

Another simple example: if you want to transform the directed graphg into an undirected graph, you
only have to do:

g(’directed’)=0;

There is a wizard way to create a graph list “by hands” without using themake graph function.
This can be useful when writing your own Scilab functions. You can use the Scilab functionglist
which must have as many arguments as the elements of the graph list (see1.1). This way can lead to
errors, because the list is somehow long. You can use thecheck graph function to check if the graph
list is correct.

2.2 Loading and saving graphs

Graphs are saved in ASCII files, calledgraph files. A graph file has the extension.graph . The structure
of a graph file is given below:

9

GRAPH TYPE (0 = UNDIRECTED, 1 = DIRECTED), DEFAULTS (NODE DIAMETER, NODE BORDER,
first line continuingARC WIDTH, HILITED ARC WIDTH, FONTSIZE):

<one line with above values>
NUMBER OF ARCS:
<one line with the number of arcs>
NUMBER OF NODES:
<one line with the number of nodes>
**
DESCRIPTION OF ARCS:
ARC NAME, TAIL NODE NAME, HEAD NODE NAME, COLOR, WIDTH, HIWIDTH, FONTSIZE
COST, MIN CAP, CAP, MAX CAP, LENGTH, Q WEIGHT, Q ORIGIN, WEIGHT
<one blank line>
<two lines for each arc>
**
DESCRIPTION OF NODES:
NODE NAME, POSSIBLE TYPE (1 = SINK, 2 = SOURCE)
X, Y, COLOR, DIAMETER, BORDER, FONTSIZE
DEMAND
<one blank line>
<three lines for each node>

For an undirected graph,ARC is replaced byEDGE. Moreover, the values ofNODE DIAMETER, NODE

BORDER, ARC WIDTH, HILITED ARC WIDTHandFONTSIZE for the graph,COLOR, WIDTH, HIWIDTH

andFONTSIZE for the arcs, andPOSSIBLE TYPE, COLOR, DIAMETER, BORDERandFONTSIZE for the
nodes can be omitted or equal to 0, then the default is used (see1.1).

It is possible to create by hands a graph file and to load it into Scilab, but it is a very cumbersome
job. Programs are given to generate graphs (see4).

To load a graph into Scilab, use theload graph function. Its argument is the absolute or relative
pathname of the graph file; if the.graph extension is missing, it is assumed.load graph returns the
corresponding graph list.

For instance, to load the graphfoo , which is in the current directory, and put the corresponding
graph list in the Scilab variableg, do:
g=load graph(’foo’); or g=load graph(’foo.graph’); .
To load the graphmesh100 given in the Scilab distribution, do:
g=load graph(SCI+’/demos/metanet/mesh100.graph’);

To save a graph, use thesave graph function. Its first argument is the graph list, and its second
argument is the name or the pathname of the graph file; if the.graph extension is missing, it is assumed.
If the path is the name of a directory, the name of the graph is used as the name of the file.

For instance, the following command saves the graphg into the graph filefoo.graph :
save graph(g,’foo.graph’);

2.3 Plotting graphs

The fastest way to see a graph is to plot it in a Scilab graphical window. We can use theplot graph
function to do this. Note that no interaction is possible with the displayed graph. If you want to graphic-
ally modify the graph, use Metanet windows (see3).

10

3 Metanet windows

Metanet windows can be used to see the graphs and the networks. It is a powerful tool to create and
modify graphs. You can have as many Metanet windows as you want at the same time. Each Metanet
window is an Unix process: the communications between Scilab and the Metanet windows is made by
using the communication toolbox called GeCI.NOTE that at the present time, Metanet windows only
work under Unix environment with X Window.

By default, the size of Metanet windows is 1000 pixels by 1000 pixels. If you want to see big
graphs, you have to change this values by using X Window ressources. Put the new values in the res-
sourcesMetanet.drawWidth and Metanet.drawHeight in a standard ressource file (for in-
stance.Xdefaults in your home directory). For instance, if you want Metanet windows with a size
of 2000 by 3000 pixels, puts the following lines in the ressource file:

Metanet.drawWidth: 2000
Metanet.drawHeight: 3000

An important point is that there is no link between the graph displayed in the Metanet window and
the graphs loaded into Scilab. So, when you have created or modified a graph in the Metanet window, you
have to save it as a graph file (see2.2) and load it again in Scilab. Conversely, when you have modified a
graph in Scilab, you have to display it again in the Metanet window by using thesave graph function
(see3.2). The philosophy is that computations are only made in Scilab and the Metanet window is
only used to display, create or modify graphs. So, you can use Metanet toolbox without using Metanet
windows.

Another way to see a graph is to plot it in a Scilab graphical window (see2.3), but there is no
possibility to modify the displayed graph.

3.1 Using the Metanet window

To open a Metanet window, use themetanet or show graph Scilab functions (see3.2).
The Metanet window comes with three modes. When no graph is loaded, you are in theBegin mode.

When a graph is loaded, you are in theStudy mode. When you are creating a new graph or modifying a
graph, you are in theModify mode.

3.1.1 Begin mode

In this mode, you can load a graph or create a new one. You will find below the description of the items
of the menus.

11

Files

New Create a new graph. Prompt for the name of the graph and for its type (directed or not
directed). Then you enter Modify Mode.

Load Load a graph. Show the list of graphs in the default directory. You have to choose one.

Directory Change the default directory.

Quit Quit Metanet.

3.1.2 Study mode

In this mode, you can load a graph, create a new one or work with an already loaded graph.
With the left button of the mouse, you can highlight an arc or a node.
You will find below the description of the items of the menus.

Files

New Create a new graph. Prompt for the name of the graph and for its type (directed or not
directed). Then you enter Modify Mode.

Load Load a graph. Show the list of graphs in the default directory. You have to choose one.

Directory Change the default directory.

Save As Save the loaded graph with a new name in the default directory.

Quit Quit Metanet.

Graph

Characteristics If there is an highlighted arc or node, print its characteristics, otherwise print the
characteristics of the graph.

Find Arc Prompt for an arc name and highlight it. The viewport of the window is moved to
display the arc if needed.

Find Node Prompt for a node name and highlight it. The viewport of the window is moved to
display the arc if needed.

Graphics Change the scale. The default is 1.

Modify Graph Enter Modify mode.

Use internal numbers as namesUse the consecutive internal numbers of arcs and nodes as names.
This is useful when doing computations with Scilab.

Display arc names Display arc names on the arcs.

Display node namesDisplay node names on the nodes.

Redraw Refresh the screen and redraw the graph.

3.1.3 Modify mode

In this mode, you can modify and save the graph.
With the left button of the mouse, you can highlight an arc or a node.
With the right button of the mouse, you can modify the graph:

� if you click where there is no arc or node, a new node is created;

12

� if you click on a node and another node is highlighted, a new arc is created between the two nodes;

� if you click on a node and drag the mouse, the node is moved.

You will find below the description of the items of the menus.

Files

Directory Change the default directory.

Save Save the modified graph in the default directory. All the arcs and nodes must have names.

Save As Save the modified graph with a new name in the default directory. All the arcs and nodes
must have names.

Quit Exit Modify Mode. If the graph has been modified, it must be saved first.

Graph

Characteristics If there is an highlighted arc or node, print its characteristics, otherwise print the
characteristics of the graph.

Find Arc Prompt for an arc name and highlight it. The viewport of the window is moved to
display the arc if needed.

Find Node Prompt for a node name and highlight it. The viewport of the window is moved to
display the arc if needed.

Graphics Change the scale. The default is 1.

Use internal numbers as namesUse the consecutive internal numbers of arcs and nodes as names.
This is useful when doing computations with Scilab.

Display arc names Display arc names on the arcs.

Display node namesDisplay node names on the nodes.

Modify

Attributes Display the attributes of the highlighted arc or node. Then, they can be changed.

Delete Delete the highlighted arc or node.NOTE:there is no undelete.

Name Name the highlighted arc or node.

Color Give a color to the highlighted arc or node.

Create Loop Create a loop arc on the highlighted node.

Create Sink Transform the highlighted node into a sink.

Create Source Transform the highlighted node into a source.

Remove Sink/SourceTransform the highlighted source or sink node into a plain node. It has no
effect if the highlighted node is neither a source nor a sink.

Automatic Name Give the consecutive internal arc and node numbers as the names of arcs and
nodes. This can be useful for a new graph.NOTEthat if some arcs and nodes already have
names, they are replaced by the corresponding internal numbers.

Default Values Change some default values:

� the default size of the font

� the default diameter of the nodes

13

� the default width of the border of the nodes

� the default width of the arcs

� the default width of the highlighted arcs

Redraw Refresh the screen and redraw the graph.

3.2 Using the Metanet window from Scilab

The standard way of using the Metanet window is from Scilab. Indeed, the Metanet window is opened
only when needed as a new process.

Many Metanet windows can be opened at the same time. Each Metanet window has a number (integer
starting from 1). One of these windows is thecurrent Metanet window.

Themetanet function opens a new Metanet window and returns its number. A path can be given
as an optional argument: it is the directory where graph files are searched; by default, graph files are
searched in the working directory. Themetanet function is mainly used when we want to create a new
graph.

We describe below the Scilab functions used in conjunction with the Metanet window.

3.2.1 Showing a graph

The first thing we would like to do is to see the graph we are working with: use theshow graph
function.

show graph(g) displays the graphg in the current Metanet window. If there is no current Metanet
window, a new Metanet window is created and it becomes the current Metanet window. If there is already
a graph displayed in the current Metanet window, the new graph is displayed instead. The number of the
current Metanet window, where the graph is displayed, is returned byshow graph .

Two optional arguments can be given toshow graph(g) after the graph list. If an optional ar-
gument is equal to the string’new’ , a new Metanet window is created. If an optional argument is a
positive number, it is the value of the scale factor when drawing the graph (see3.1).

For instanceshow graph(g,’new’,2) displays the graphg in a new Metanet window with the
scale factor equal to 2.

3.2.2 Showing arcs and nodes

Another very useful thing to do is to distinguish a set of nodes and/or a set of arcs in the displayed graph.
This is done by highlighting nodes and/or arcs: use theshow arcs andshow nodes functions.

The arguments of theshow arcs andshow nodes functions are respectively a row vector of arc
numbers (or edge numbers if the graph is undirected) or a row vector of node numbers. These sets of
arcs and nodes are highlighted in the current Metanet window. Note that the corresponding graph must
be displayed in this window, otherwise the numbers might not correspond to arcs or nodes numbers
(see3.2.3for changing the current Metanet window).

By default, using one of these functions switch off any preceeding highlighting. If you want to keep
preceeding highlighting, use the optional argument’sup’ .

For instance, the following commands displays the graphg and highlights 3 arcs and 2 nodes:

show_graph(g)
show_arcs([1 10 3]); show_nodes([2 7],’sup’)

14

Note that another way to distinguish arcs and nodes in a displayed graph is to give them colors. For
that you have to use the elementsedge color andnode color of the graph list (see1.1). But you
have to modify the graph list of the graph and useshow graph again to display the graph with the new
colors.

3.2.3 Managing Metanet windows

Thenetwindow function is used to change the current Metanet window. For instancenetwindow(2)
chooses Metanet window number 2 as the current Metanet window.

The netwindows function returns a list. Its first element is the row vector of all the Metanet
windows numbers and the second element is the number of the current Metanet window. This number is
equal to 0 if no current Metanet window exists.

In the following example, there are two Metanet windows with numbers 1 and 3 and the Metanet
window number 3 is the current Metanet window.

-->netwindows()
ans =

ans(1)
! 1. 3. !

ans(2)
3.

3.2.4 Synchronism

By default Metanet windows work with Scilab in asynchronous mode,i.e.Scilab proceeds without wait-
ing for graphics commands sent to Metanet windows to terminate. This mode is the most efficient. But
when running a lots of graphics commands, problems can arise. For instance, you might highlight a
set of nodes in a bad Metanet window because the good one has not yet appeared! So it is possible to
use a synchronous mode. Then Scilab waits until the functions dealing with the Metanet windows have
terminated.

Themetanet sync function is used to change the mode:metanet sync(0) changes to asyn-
chronous mode (default),metanet sync(1) changes to synchronous mode, andmetanet sync()
returns the current mode (0 = asynchronous, 1 = synchronous).

4 Generating graphs and networks

When working with graphs and particularly with networks, it is very useful to generate them automatic-
ally.

The functiongen net can be used in Metanet to generate networks. It uses a triangulation method
for generating a planar connected graph and then uses the information of the user to give arcs and nodes
good values of costs and capacities.

5 Computations on graphs and networks

Most functions of the Metanet toolbox are used to make computations on graphs and networks. We can
distinguish four classes of such functions and we will describe them briefly. For more information, see
the on line help.

15

5.1 Graph manipulations and transformations

You can use these functions to get information about graphs or to modify existing graphs.

add edge adds an edge or an arc between two nodes

add node adds a disconnected node to a graph

arc graph graph with nodes corresponding to arcs

arc number number of arcs of a graph

contract edge contracts edges between two nodes

delete arcs deletes all the arcs or edges between a set of nodes

delete nodes deletes nodes

edgenumber number of edges of a graph

graph 2 mat node-arc or node-node matrix of a graph

graph simp converts a graph to a simple undirected graph

graph sum sum of two graphs

graph union union of two graphs

line graph graph with nodes corresponding to edges

mat 2 graph graph from node-arc or node-node matrix

node number number of nodes of a graph

nodes2 path path from a set of nodes

path 2 nodes set of nodes from a path

split edge splits an edge by inserting a node

subgraph subgraph of a graph

supernode replaces a group of nodes with a single node

5.2 Graph computations

These functions are used to make standard computations on graphs.

articul finds one or more articulation points

best match best matching of a graph

circuit finds a circuit or the rank function in a directed graph

con nodes set of nodes of a connected component

connex connected components

16

cycle basis basis of cycle of a simple undirected graph

find path finds a path between two nodes

girth girth of a directed graph

graph center center of a graph

graph complement complement of a graph

graph diameter diameter of a graph

graph power kth power of a directed 1-graph

hamilton hamiltonian circuit of a graph

is connex connectivity test

max clique maximum clique of a graph

min weight tree minimum weight spanning tree

neighbors nodes connected to a node

nodesdegreesdegrees of the nodes of a graph

perfect match min-cost perfect matching

predecessorstail nodes of incoming arcs of a node

shortest path shortest path

strong con nodes set of nodes of a strong connected component

strong connex strong connected components

successorshead nodes of outgoing arcs of a node

trans closure transitive closure

5.3 Network computations

These functions make computations on networks. This means that the graph has capacities and/or costs
values on the edges.

max cap path maximum capacity path

max flow maximum flow between two nodes

min lcost cflow minimum linear cost constrained flow

min lcost flow1 minimum linear cost flow

min lcost flow2 minimum linear cost flow

min qcost flow minimum quadratic cost flow

pipe network pipe network problem

17

5.4 Other computations

These functions do not make computations directly on graphs and networks, but they have strong links
with them.

bandwr bandwidth reduction for a sparse matrix

convex hull convex hull of a set of points in the plane

knapsack solves a 0-1 multiple knapsack problem

mesh2d triangulation of n points in the plane

qassign solves a quadratic assignment problem

salesmansolves the travelling salesman problem

18

Contents

1 Representation of graphs 1
1.1 The graph list data structure. 1
1.2 Various representations of graphs. 5

1.2.1 Names and numbers. 5
1.2.2 Tail head . 5
1.2.3 Adjacency lists. 6
1.2.4 Node-arc matrix . 6
1.2.5 Node-node matrix . 7
1.2.6 Chained lists. 7

2 Managing graphs 8
2.1 Creating graphs. 8
2.2 Loading and saving graphs. 9
2.3 Plotting graphs . 10

3 Metanet windows 11
3.1 Using the Metanet window. 11

3.1.1 Begin mode. 11
3.1.2 Study mode. 12
3.1.3 Modify mode. 12

3.2 Using the Metanet window from Scilab. 14
3.2.1 Showing a graph. 14
3.2.2 Showing arcs and nodes. 14
3.2.3 Managing Metanet windows. 15
3.2.4 Synchronism. 15

4 Generating graphs and networks 15

5 Computations on graphs and networks 15
5.1 Graph manipulations and transformations. 16
5.2 Graph computations. 16
5.3 Network computations. 17
5.4 Other computations. 18

List of Figures

1 Small directed graph. 6
2 Chained lists representation of graphs. 8
3 Smallest directed graph. 8
4 Small undirected graph. 9
5 Directed graph . 9

19

	Representation of graphs
	The graph list data structure
	Various representations of graphs
	Names and numbers
	Tail head
	Adjacency lists
	Node-arc matrix
	Node-node matrix
	Chained lists

	Managing graphs
	Creating graphs
	Loading and saving graphs
	Plotting graphs

	Metanet windows
	Using the Metanet window
	Begin mode
	Study mode
	Modify mode

	Using the Metanet window from Scilab
	Showing a graph
	Showing arcs and nodes
	Managing Metanet windows
	Synchronism

	Generating graphs and networks
	Computations on graphs and networks
	Graph manipulations and transformations
	Graph computations
	Network computations
	Other computations

