LMITOOL a Package
for LMI Optimization in Scilab

User’s Guide

R. Nikoukhal F. Delebecque L. El Ghaoui

Abstract

This report describes a user-friendly Scilab package, and in particular its two main furlatisobver and
Imitool for solving Linear Matrix Inequalities problems. This package uses Scilab fursgimidef , an interface to
the program Semidefinite Programmi8g (Copyright(©1994 by Lieven Vandenberghe and Stephen Boyd) distributed
with Scilab.

Contents
1 Purpose 2
2 Function Imisolver 2
2.1 SYNIAX. . . o e e e e e e e e 2
2.2 EXamples. . . . o e e e 3
2.2.1 State-feedback with control saturationconstraint 3
2.2.2 Controlof jump linear systems. e e 4
2.2.3 Descriptor Lyapunov inequalities 5
224 MixedHy/Hoo CONrOl . . o o o e 5
2.2.5 Descriptor Riccatiequations. e e e 6
2.2.6 Linear programming with equality constraints oL 7
2.2.7 Sylvester EQuation e e e e 7
3 Function LMITOOL 9
3.1 Non-interactive mode e e 9
311 SYNtaXxX . ..o e e 9
3.1.2 EXample e e 9
3.2 Interactive mode. e e e 10
321 SYNaX e e 10
3.2.2 EXample e e e 10
A How Imisolver works 13
B Other versions 13

*Ramine.Nikoukhah@inria.fr

tFrancois.Delebecque@inria.fr

fENSTA, 32, Bvd. Victor, 75739 Paris, France. Interneighaoui@ensta.fr . Research supported in part by DRET under contract 92017-
BC14.

1 Purpose

Many problems in systems and control can be formulated as followsZ{hee [

minimize f(Xq,...,Xwm)

. Gi(Xy,...,Xm) =0, i=1,2,....,p
subject to LS b T
: { H](levXM)Zov .7:17 y o d-
where
e X1,..., X, are unknown real matrices, referred to asuhknown matrices,

e fisareallinear scalar function of the entries of the unknown matfges. ., X itis referred to as thebjective
function

e (7;'s are real matrices with entries which are affine functions of the entries of the unknown ma¥rices,, X /;
they are referred to as “Linear Matrix Equality” (LME) functions,

e Hj’s are real symmetric matrices with entries which are affine functions of the entries of the unknown matrices
Xy,..., X, they are referred to as “Linear Matrix Inequality” (LMI) functions. (In this report,the: 0 stands
for V' positive semi-definite unless stated otherwise).

The purpose oEMITOOLIis to solve problenX in a user-friendly manner in Scilab, using the code §PThis code is
intended for small and medium-sized problems (say, up to a few hundred variables).

2 Function Imisolver

LMITOOLIs built around the Scilab functidmisolver . This function computes the solutioyy, ..., X, of prob-

lem X, given functionsf, G; andH;. To solveX, user must provide an evaluation function which “evaluajgs~; and

H; as afunction the unknown matrices, as well as an initial guess on the values of the unknown matrices. User can either
invoke Imisolver directly, by providing the necessary information in a special format or he can use the interactive
functionlmitool described in Sectio8.

2.1 Syntax

[XLISTF[,OPT]] = Imisolver(XLISTO,EVALFUNC[,options])
where

e XLISTO: a list structure including matrices and/or list of matrices. It contains initial guess on the values of
the unknown matrices. In general, the ith elemenKbfSTO is the initial guess on the value of the unknown
matrix X;. In some cases however it is more convenient to define one or more elemhiSa0 to be lists (of
unknown matrices) themselves. This is a useful feature when the number of unknown matrices is not fixed a priori
(see Example of Sectich2.2).

The values of the matrices KLISTO , if compatible with the LME functions, are used as intial condition for
the optimization algorithm; they are ignored otherwise. The size and structXiel®T0 are used to set up the
problem and determine the size and structure of the oXpl8TF .

e EVALFUNC:a Scilab function calle@valuation functior(supplied by the user) which evaluates the LME, LMI
and objective functions, given the values of the unknown matrices. The syntax is:

[LME,LMI,OBJ]=EVALFUNC(XLIST)

where

— XLIST: alist, identical in size and structure Xa.ISTO .

— LME: a list of matrices containing values of the LME functigdgs for X values inXLIST . LMEcan be
a matrix in case there is only one LME function to be evaluated (instead of a list containing this matrix as
unique element). It can also be a list of a mixture of matrices and lists which in turn contain values of LME'’s,
and so on.

— LMI: a list of matrices containing the values of the LMI functiaiis's for X values inXLIST . LMI can
also be a matrix (in case there is only one LMI function to be evaluated). It can also be a list of a mixture of
matrices and lists which in turn contain values of of LMI's, and so on.

— OBJ: a scalar equal to the value of the objective functidior X values inXLIST .
If the ¥ problem has no equality constraints tHeviEshould be] . Similarly for LMI andOBJ.

e options: ab x 1 vector containing optimization parametétbound, abstol , nu, maxiters , andreltol
see manual page feemidef for details (Mibound is a multiplicative coefficient fok). This argumentis optional,
if omitted, default parameters are used.

e XLISTF: alist, identical in size and structure X&.ISTO containing the solution of the problem (optimal values
of the unknown matrices).

e OPT: a scalar corresponding to the optimal value of the minimization problem

2.2 Examples
2.2.1 State-feedback with control saturation constraint

Consider the linear system
i = Ax + Bu

whereA is ann x n andB, ann x n, matrix. There exists a stabilizing state feedb&Clsuch that for every initial
conditionz(0) with ||z(0)|| < 1, the resulting control satisfidR:(¢)|| for all ¢ > 0, if and only if there exist am x n
matrix Q and ann,, x n matrixY" satisfying the equality constraint

Q-Q"=0
and the inequality constraints

Q
—AQ — QAT —BY —YTBT

u?nml Y
yT Q

in which case one sucli can be constructed d§ = YQ!.
To solve this problem usinignisolver , we first need to construct the evaluation function.

(AYARRR VAN V]

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)
[Q,Y]=XLIST()
LME=Q-Q’
LMI=list(-A*Q-Q*A’-B*Y-Y"*B’,[lumax 2*eye(Y*Y’),Y;Y’,Q],Q-eye())
OBJ=[]

Note thatOBJ=[] indicates that the problem considered is a feasibility problem, i.e., we are only interested in finding a
set of X'’s that satisfy LME and LMI functions.

AssumingA, B andumax already exist in the environment, we can dallsolver , and reconstruct the solution in
Scilab, as follows:

--> Q_init=zeros(A);

--> Y_init=zeros(B’);

--> XLISTO=list(Q _init,Y_init);

--> XLIST=Imisolver(XLISTO,sf_sat_eval);
--> [Q,Y]=XLIST(:)

These Scilab commands can of course be encapsulated in a Scilab functieh, saty. Then, To solve this problem,
all we need to do is type:

--> [Q,Y]=sf_sat(A,B,umax)

We callsf _sat thesolver functiorfor this problem.

2.2.2 Control of jump linear systems

We are given a linear system
&= A(r(t))x + B(r(t))u,
whereAd isn x n andB isn x n,. The scalar paramete(t) is a continuous-time Markov process taking values in a
finite set{1,...,N}.
The transition probabilities of the processare defined by a “transition matridI = (m;;), wherer;;'s are the

transition probability rates from thieth mode to thej-th. Such systems, referred to as “jump linear systems”, can be
used to model linear systems subject to failures.

We seek a state-feedback control law such that the resulting closed-loop system is mean-square stable. That is, for
every initial conditionz(0), the resulting trajectory of the closed-loop system satisfies . .. E||z(¢)]|*> = 0.

The control law we look for is a mode-dependent linear state-feedlback, has the formu(t) = K (r(t))z(t);
K(i)'s aren,, x n matrices (the unknowns of our control problem).

It can be shown that this problem has a solution if and only if there exist matrices (1), ..., Q(N), andn, X n
matricesY (1), ..., Y (V), such that

QW) - QMW" = 0,

TrQ(1) + ...+ TrQ(N) -1 = 0.
and
Q@) Y(@)"
{Y(i) I } > 0,
N
—{A(i)@(i)+Q(i)A(z')T+B(z')Y(z')+Y(i)TB(i)T+Zvrin(j)J > 0, i=1,...,N,

If such matrices exist, a stabilizing state-feedback is giveiy) = Y (i)Q(i)~',i =1,..., N.
In the above problem, the data matrices dr@), ..., A(N), B(1),...,B(NN) and the transition matriXI. The

unknown matrices ar@(i)’s (which are symmetrie x n matrices) and”(z)’s (which aren,, x n matrices). In this case,
both the number of the data matrices and that of the unknown matrices are a-priori unknown.

The above problem is obviouslyXaproblem. In this case, we can ELIST be a list of two lists: one representing
the’s and the other, th&'s.

The evaluation function required for invokifgisolver can be constructed as follows:

function [LME,LMI,OBJ]=jump_sf_eval(XLIST)
[Q,Y]=XLIST(:)
N=size(A); [n,nu]=size(B(1))
LME=list(); LMI1=list(); LMI2=list()
tr=0
for i=1:N
tr=tr+trace(Q(i))
LME()=Q(1)-Q(i)
LMIL@)=[Q(),Y();Y(i),eye(nu,nu)]
SUM=zeros(n,n)
for j=1:N
SUM=SUM+PI(},i)*Q(j)
end

LMI2()= A®)*Q()+Q()*A()+B()*Y(i)+Y(i)*B(i)’+SUM
end
LMI=list(LMI1,LMI2)
LME(N+1)=tr-1
OBJ=[]
Note thatLMI is also a list of lists containing the values of the LMI matrices. This is just a matter of convenience.

Now, we can solve the problem in Scilab as follows (assuming Astésd B, and matrixPl have already been
defined).

First we should initializeQandY.

--> N=size(A); [n,nu]=size(B(1)); Q_init=list(); Y_init=list();
--> for i=1:N, Q_init(i)=zeros(n,n);Y_init(i)=zeros(nu,n);end

Then, we can usknisolver as follows:

--> XLISTO=list(Q_init,Y_init)
--> XLISTF=Imisolver(XLISTO,jump_sf_eval)
--> [Q,Y]=XLISTF();

The above commands can be encapsulated in a solver functiojuyspysf , in which case we simply need to type:
--> [Q,Y]=jump_sf(A,B,PI)

to obtain the solution.

2.2.3 Descriptor Lyapunov inequalities

In the study of descriptor systems, it is sometimes necessary to find (or find out that it does not existpamatrix X
satisfying

ETX = XTE

>
ATX + XTA+T <

whereE and A aren x n matrices such thal, A is a regular pencil. In this problem, which clearly i&groblem, the
LME functions play important role. The evaluation function can be written as follows

function [LME,LMI,OBJ]=dscr_lyap_eval(XLIST)
X=XLIST(:)

LME=E"*X-X"*E

LMI=list(-A™*X-X"*A-eye(),E™*X)

OBJ=[]

and the problem can be solved by (assumihgnd A are already defined)

--> XLISTO=list(zeros(A))
--> XLISTF=Imisolver(XLISTO,dscr_lyap_eval)
--> X=XLISTF(:)

2.2.4 Mixed H»/H, Control

Consider the linear system

& = Ax+ Byw+ Bsu
z1 = Cixz+ Dyiw+ Disu
Z9 = 021‘ + Dzz’u

The mixedH-/ H, control problem consists in finding a stabilizing feedback which yiglds,, ||~ < v and minimizes
|T:,w||2 Where||T,, w0 and||T.,. || denote respectively the closed-loop transfer functions feoto z; andz,. In

[3], it is shown that the solution to this problem can be expressdd as LX ~! whereX andL are obtained from the
problem of minimizing Tracé&() subject to:

X-xT=o0, v-v'=o,

and
_(AX +B;L+ (AX + B,L)" + BBl XCT + L' D{, + B, D, > 0
01X+D12L+D11B%1 —’YZI-f-DllDﬁ
Y CoX + Doy L S 0
(CoX + DzzL)T X

To solve this problem witlmisolver , we define the evaluation function:

function [LME,LMI,OBJ]=h2hinf_eval(XLIST)
[X,Y,L]=XLIST()
LME=list(X-X",Y-Y");
LMI=list(-[A*X+B2*L+(A*X+B2*L)'+B1*B1’' X*C1'+L*D12'+B1*D11’;...
(X*C1'+L*D12'+B1*D11")’,-gamma2*eye()+D11*D117,...
[Y,C2*X+D22*L;(C2*X+D22*L)’,X])
OBJ=trace(Y);

and use it as follows:

--> X _init=zeros(A); Y_init=zeros(C2*C2"); L_init=zeros(B2")
--> XLISTO=list(X_init,Y_init,L_init);

--> XLISTF=Imisolver(XLISTO,h2hinf_eval);

--> [X,Y,L]=XLISTF()

2.2.5 Descriptor Riccati equations

In Kalman filtering for descriptor system
Ex(k+1) = Ax(k)+ u(k)
ylk+1) = Cua(k+1)+rk)

whereu andr are zero-mean, white Gaussian noise sequences with covafjartR? respectively, one needs to obtain
the positive solution to the descriptor Riccati equation (g8e [

APAT+Q o EN\ '/0
P=—(0 0 I) 0 R C 0.
ET cT o I

It can be shown that this problem can be formulated 8gpaoblem as follows: maximize Trace(P) under constraints
P-PT'=0

APAT +Q 0 EP
0 R CP | >o0.

PTET ptct p

and

The evaluation function is:

function [LME,LMI,OBJ]=ric_dscr_eval(XLIST)

LME=P-P’
LMI=[A*P*A’+Q,zeros(A*C’),E*P;zeros(C*A"),R,C*P;P*E’,P*C’",P]
OBJ=-trace(P)

which can be used as follows (asumifg A, C, @ andR are defined and have compatible sizes—notefhatd A need
not be square).

--> P_init=zeros(A’*A)
--> P=Imisolver(XLISTO,ric_dscr_eval)

2.2.6 Linear programming with equality constraints

Consider the following classical optimization problem

minimize eTx
subjectto Az +0 >0,
Cx+d=0.

whereA andC' are matrices and, b andd are vectors with appropriate dimensions. Here the sigato be understood
elementwise.

This problem can be formulated in LMITOOL as follows:

function [LME,LMI,OBJ]=linprog_eval(XLIST)
[X]=XLIST(:)
[m,n]=size(A)
LME=C*x+d
LMI=list()
tmp=A*x+b
for i=1:m
LMI(i)=tmp(i)
end
OBJ=e*x

and solved in Scilab by (assuming C, e, b andd and an initial guess x0 exist in the environment):

--> x=Imisolver(x0,linprog_eval)

2.2.7 Sylvester Equation

The problem of finding matriX’ satisfying
AX+XB=C

or
AXB=C

whereA and B are square matrices (of possibly different sizes) is a well-known problem. We refer to the first equation
as the continuous Sylvester equation and the second, the discrete Sylvester equation.

These two problems can easily be formulate@gsoblems as follows:

function [LME,LMI,OBJ]=sylvester_eval(XLIST)
[X]=XLIST(:)
if flag=='c’ then
LME=A*X+X*B-C
else
LME=A*X*B-C
end
LMI=]]
OBJ=[]

with a solver function such as:

function [X]=sylvester(A,B,C,flag)
[na,ma]=size(A);[nb,mb]=size(B);[nc,mc]=size(C);

if ma<>na|mb<>nb|nc<>nalmc<>nb then error("invalid dimensions");end

XLISTF=Imisolver(zeros(nc,mc),sylvester_eval)
X=XLISTF()

Then, to solve the problem, all we need to do is to (assuding andC' are defined)

--> X=sylvester(A,B,C,’c’)

for the continuous problem and
--> X=sylvester(A,B,C,'d")

for the discrete problem.

3 Function LMITOOL

The purpose of MITOOL is to automate most of the steps required before invokimgolver . In particular, it
generates a *.sci file including the solver function and the evaluation function or at least their skeleton. The solver
function is used to define the initial guess and to modify optimization parameters (if needed).

Imitool can be invoked with zero, one or three arguments.

3.1 Non-interactive mode

Imitool can be invoked with three input arguments as follows:

3.1.1 Syntax
txt=Imitool(probname,varlist,datalist)
where

e probname : a string containing the name of the problem,
e xlist : astring containing the names of the unknown matrices (separated by commas if there are more than one).
e dlist : astring containing the names of data matrices (separated by commas if there are more than one).

e txt : a string providing information on what the user should do next.

In this mode)mitool generates a file in the current directory. The name of this file is obtained by adding “.sci” to
the end ofprobname . This file is the skeleton of a solver function and the corresponding evaluation function.

3.1.2 Example
Suppose we want to usmitool to solve the problem presented in Sectibf.1 Invoking
-->txt=Imitool(’sf_sat’,’Q,Y’,’A,B,umax’)

yields the output

-> Xt =

! To solve your problem, you need to !
il— edit file /usr/home/DrScilab/sf_sat.sci !

i2— load (and compile) your functions: !

! getf(’/usr/home/DrScilab/sf_sat.sci’,’'c’) !

i3— Define A,B,umax and call sf_sat function: !

i [Q,Y]=sf_sat(A,B,umax) !

! !
ITo check the result, use [LME,LMI,OBJ]=sf _sat eval(list(Q,Y)) !

and results in the creation of the file 'Jusr/home/curdis@at.sci’ with the following content:

function [Q,Y]=sf_sat(A,B,umax)
/I Generated by Imitool on Tue Feb 07 10:30:35 MET 1995

Mbound = 1e3;

abstol = 1e-10;

nu = 10;

maxiters = 100;

reltol = 1le-10;
options=[Mbound,abstol,nu,maxiters,reltol];

[IIIITTTNIIDEFINE INITIAL GUESS BELOW
Q_init=...

Y_init=...

M

XLISTO=list(Q _init,Y_init)
XLIST=Imisolver(XLISTO,sf _sat_eval,options)
[Q,Y]=XLIST(:)

HIHTHHITTHTEVALUATION FUNCTION/HHTHTHTHTTTTHTTTHTHTTTHTT

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)
[Q,Y]=XLIST(:)

HITTTHNINIIDEFINE LME, LMI and OBJ BELOW
LME=...

LMI=...

OBJ=...

It is easy to see how a small amount of editing can do the rest!

3.2 Interactive mode

Imitool can be invoked with zero or one input argument as follows:

3.2.1 Syntax

txt=Imitool()
txt=Imitool(file)

where

e file :isa string giving the name of an existing “.sci” file generatedirbijyool
In this mode,Imitool is fully interactive. Using a succession of dialogue boxes, user can completely define his
problem. This mode is very easy to use and its operation completely self explanatory. Inkokow with one

argument allows the user to start off with an existing file. This mode is useful for modifying existing files or when the
new problem is not too much different from a problem already treatdchtigol

3.2.2 Example

Consider the following estimation problem
y=Hzx+Vw

10

wherex is unknown to be estimateg,is known,w is a unit-variance zero-mean Gaussian vector, and
H e Co{H(1),...,H(N)}, V eCo{V(1),..,V(N)}

whereCo denotes the convex hull arfd(:) andV (i), i = 1, ..., N, are given matrices.
The objective is to find. such that the estimate

T =Ly
is unbiased and the worst case estimation error variafige £ 2(|?) is minimized.
It can be shown that this problem can be formulated paoblem as follows: minimize subject to
I-LH(G) = 0, i=1,..,N,
X(i) - x(@)"

[
<o
~
[
J—‘
=

and

I (L(@)V ()" _
Crave P56)20 1=t
v—Trac€X(i)) >0, i=1,..,N.

To uselmitool for this problem, we invoke it as follows:

--> |mitool()

This results is an interactive session which is partly illustrated in following figures.

Scilab Mdialog Panel}

Problem definition

LHITOOL will generate for you a skeleton of the functions needed
izee Users Guide for details), For that, you need to specifuy:

1- Mame of you problem which will be given to the solver function,

2- Mames of unknown matrices or list of unknown matrices,

3- Mames of data matrices or list of data matrices.

LMI problem name; ‘fnn ‘

Mames of unknoun matricess ‘ﬁi,HE,,,,

Mames of data matrices: ‘ﬂi,DE,...

Figure 1: This window must be edited to define problem name and the name of variables used.

11

Scilab Mdialog Panel}

Problem definition

LHITOOL will generate for you a skeleton of the functions needed
izee Users Guide for details), For that, you need to specifuy:

1- Mame of you problem which will be given to the solver function,

2- Mames of unknown matrices or list of unknown matrices,

3- Mames of data matrices or list of data matrices.

LHI problem name; ‘ Mt _estim, ‘

Mames of unknown matrices: ‘L,H,gammq‘

Mames of data matrices: ‘ HAAL

Figure 2: For the example at hand the result of the editing should look something like this.

12

A How Imisolver works

The functionimisolver ~ works essentially in four steps:

B

1. Initial set-up. The sizes and structure of the initial guess are used to set up the problem, and in particular the size

of the unknown vector.

. Elimination of equality constraintsMaking repeated calls to the evaluation functibmisolver generates a

canonical representation of the form
minimize &7z
subjectto Fo+z1F 4+ +z25F7 >0, Az+b=0,

wherez contains the coefficients of all matrix variables. This step uses extensively sparse matrices to speed up the
computation and reduce memory requirement.

. Elimination of variables. Then, Imisolver eliminates the redundant variables. The equality constraints are

eliminated by computing the null spagéof A and a solution (if any) of Az +b = 0. At this stage, all solutions
of the equality constraints are parametrized by

z= Nz + 2z,

wherex is a vector containing the independent variables. The computation of is done using sparse LU
functions of Scilab.
Once the equality constraints are eliminated, the problem is reformulated as

minimize ¢’z

subjectto Fy +x1Fy + -+ xp Fpy >0,

wherec is a vector, and, . . ., F,, are symmetric matrices, anccontains théndependenglements in the matrix
variablesXy, ..., X ;. (If the F;’s are dependent, a column compression is performed.)

. Optimization.Finally, Imisolver makes a call to the functicsemidef (an interface t&&P[1]). This phase is

itself divided into a feasibility phase and a minimization phase (only if the linear objective function is not empty).
The feasibility phase is avoided if the initial guess is found to be feasible.

The functionsemidef s called with the optimization parameteabstol , nu, maxiters , reltol . The
parameteMis set above the value

Mbnd*max(sum(abs([FO ... Fm])))

For details about the optimization phase, and the meaning of the above optimization parameters see manual page
for semidef .

Other versions

LMITOOLIs also available on Matlab. The Matlab version can be obtained by anonymous ftfitjremsta.fr
under/pub/elghaoui/lmitool

13

References
[1] Vandenberghe, L., and S. Boyd, “Semidefinite Programming,” Internal Report, Stanford University, 1994 (submitted
to SIAM Review).

[2] Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnhmear Matrix Inequalities in Systems and Control Theory
SIAM books, 1994.

[3] Khargonekar, P. P., and M. A. Rotea, “Mixdth / H,, Control: a Convex Optimization ApproacHEEE Trans
Aut. Contr, 39 (1991), pp. 824-837.

[4] Nikoukhah, R., Willsky, A. S., and B. C. Levy, “Kalman Filtering and Riccati Equations for Descriptor Systems,”
IEEE Trans Aut. Contr.37 (1992), pp. 1325-1342.

14

Scilab Dialog Panel

Function definitions

Here iz a skeleton of the functions which you shoud edit

fou can do the editing in this window or click on “ok”, save
the zkeleton and edit later using your favorite editor

Junction [L.X,ganmal=MM_estimdH, W2
A Gernerated by Imitool on Tue Feb OF 13:34:28 MET 1935

Mbound = 1e3:
abztol = le-103
o= 103

maxiters = 10037
reltol = 1e-10;
optiong=[Mbound, abstol .ru maxiters,reltolls

A48 TEFTHE INITIAL GUESS BELOW
L_init=,,.

¥_init=,,,

ganma_init=,..

SEEEEEEEd Y

KLISTO=1lizst{l_init, ¥_init,gamma_init}
KLIST=1mizolver (iLISTO MM _estim_eval ,optionz}
[L.X, gammal=$LI5T (1)

SELESEAA LA ASEMALURTION FUNCTIONS S S a8 e ddddddddd dddddddd

function [LME,LMI.OBJ]1=MM_estim_sval CELIST?
[L,¥,gammal=MLIST{:}

1040044040400 /TEFINE LHE, LHT and OBJ BELOM
LHI=. .
OBJ=...

Figure 3: This is the skeleton of the solver function and the evaluation function generdtdi B®OLusing the names
defined previously.

15

Function definitions

Here iz a skeleton of the functions which you shoud edit

You can do the editing in this window or click on "ok”, save
the skeleton and edit later using your faworite editor

function [L, X, gammal=MH_sstimiH, Y}
/¢ Generated by Imitool on MWed Feb 03 09:45:01 MET 1935

Hbound = 1e3:
abstol = 1e-102
nu = 108

maxiters = 100z
reltol = 1le-102
options=[Hbound, abstol .nu,maxiters, reltol1:

A5 TEFINE INITIAL GUESS BELOW

L_init=zeros{H{1}}"

H_init=list(d

for i=l:sizel{H)
H_initiil=zerostHIL1) "*H{1)

end

gamma_init=0

S

HLISTO=1lizt{l _init,X_init,gamma_init}
HLIST=1mizolver (HLISTO, MM _estim_swval ,options}
[L ¥, qammal=¥LISTL 2

SEEESSAAS A S ENALUATION. FUNCTIONS £ 2d Fd S A A8 E A A AT

function [LHE,LMI,0BJI=MH_estim_ewal {¥LIST}
[L,¥.qammal=KLIST¢s 3

FEEESTASAS A F A FTEFINE LHE, LMI and OB BELOW
[h,ml=sizetH{1)>
LME1=list{}:LME2=1ist{d:LMI1=]ist (3L MI2=1ist0)
for i=lisizefH?
LHMELS i d=eye—L*HI i}
LME2¢i2=K{1ix-K{i)"
LHMILdid=Leyein,nd MEid 7wl LayEid H{ix]
LMI2¢ 1 y=gamma-tracet i}
end
LME=1ist{LMEL LME2}
LMI=1igt&LHI1, LHI2}
OB I=gamma

Figure 4: After editing, we obtain.

Scilab Dialog Panel’

Mame of file in which you want the solver function
and the evaluation function be saved (overwrites if a
file with the same name exists already}

‘ AuzrdhomesTr5ci Laby/MM_estin, sci

Figure 5: Afile is proposed in which the solver and evaluation functions are to be saved. You can modify it if you want.

16

	Purpose
	Function lmisolver
	Syntax
	Examples
	State-feedback with control saturation constraint
	Control of jump linear systems
	Descriptor Lyapunov inequalities
	Mixed Hoo Control
	Descriptor Riccati equations
	Linear programming with equality constraints
	Sylvester Equation

	Function LMITOOL
	Non-interactive mode
	Syntax
	Example

	Interactive mode
	Syntax
	Example

	How lmisolver works
	Other versions

