Python Tutorial
Release 2.6.4c2

Guido van Rossum

Fred L. Drake, Jr., editor

October 25, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Whetting Your Appetite 3
Using the Python Interpreter 5
2.1 Invokingthe Interpreter. L e 5
2.2 TheInterpreter and Its Environment. 6
An Informal Introduction to Python 9
3.1 UsingPythonasaCalculator 9
3.2 First Steps Towards Programming o i i i i e e e e e e e 17
More Control Flow Tools 19
4.1 if Statements. L e 19
4.2 for StatementS. 19
4.3 Therange() Function. e e e e 20
4.4 break andcontinue Statements, anelse Clausesonloops 20
4.5 pass Statements L e e e e e 21
4.6 Defining Functions L 21
4.7 MoreonDefining Functions L 23
4.8 Intermezzo: Coding Style. e 26
Data Structures 29
5.1 MoreonLists e e 29
5.2 Thedel statement e 33
5.3 Tuplesand SEqQUENCES. e e 33
5.4 SetS. . .. e e 34
5.5 Dictionaries e e 35
5.6 Looping Techniques. o e 35
5.7 Moreon ConditionS. e 36
5.8 Comparing Sequencesand Other Types. 37
Modules 39
6.1 MoreonModules e 40
6.2 Standard Modules. L e 42
6.3 Thedir() Function. e e e 42
6.4 Packages. 43
Input and Output 47
7.1 FancierOutput Formatting. e e e a7
7.2 Readingand Writing Files e 50
Errors and Exceptions 53
8.1 Syntax EITOrS e 53
8.2 EXCeptionS. 53
8.3 Handling EXCeptions e e e 54

8.4 RaiSINg EXCEPLioNS e e e 56
8.5 User-defined EXCEPLiONS. 0 e e e 56
8.6 Defining Clean-up ACtIONS o o o e e 57
8.7 Predefined Clean-up ACLIONS. o 0 o 58
9 Classes 59
9.1 AWord About Terminology. o o 59
9.2 Python Scopesand Name Spaces o i i i i i i i e e e e 59
9.3 AFirstLookat Classes. e 61
9.4 RandomRemarks. e 63
9.5 Inheritance. e e e 64
9.6 Private Variables. e 65
9.7 OddsandEnds e 66
9.8 Exceptions Are Classes TOO. v v i i i i e e e e e e e e 66
9.9 Hterators e e e 67
9.10 GENEratorS. v v v i e e e e e e e e e 68
9.11 Generator EXPressions. o o v v e e e e e e e 68
10 Brief Tour of the Standard Library 71
10.1 Operating System Interface e 71
10.2 FileWildcards. e i eI
10.3 Command Line Arguments. o o e e e e e e 71
10.4 Error Output Redirection and Program Terminatian. 72
10.5 String Pattern Matching e e e 72
10.6 Mathematics. e e T2
10.7 INternet ACCESS v v i e e e e e e e e e e T3
10.8 Datesand TIMeS i i e 73
10.9 Data CompressSion o v v i e i e e e e e e e e e e e e e e 73
10.10 Performance Measurement o o e e e e e e e e 74
10.11 QualityControl e e e e e e e e T4
10.12 Batteries Included. e e 75
11 Brief Tour of the Standard Library — Part Il 77
11.1 Output Formatting. e e e e e e e e e 77
11.2 Templating. o o o e e e 78
11.3 Working with Binary Data Record Layouts. i 79
11.4 Multi-threading e e e e e T9
11.5 LOgging. o e e e e e e e e e e 80
11.6 Weak References. 80
11.7 ToolsforWorkingwith Lists 81
11.8 Decimal Floating Point Arithmetic. o 82
12 What Now? 83
13 Interactive Input Editing and History Substitution 85
13.1 LineEditing o o e e e 85
13.2 History Substitution. 85
13.3 Key Bindings. o o e e e e 85
13.4 COMMENTArY. o o e e e e e e e e 87
14 Floating Point Arithmetic: Issues and Limitations 89
14.1 Representation Errar. e 90
A Glossary 93
B About these documents 99
B.1 Contributors to the Python Documentation. 99
C History and License 101
C.1 Historyofthesoftware e 101

C.2 Terms and conditions for accessing or otherwise using Python 102
C.3 Licenses and Acknowledgements for Incorporated Software,

D Copyright 113

Index 115

Python Tutorial, Release 2.6.4c¢2

Release?2.6
Date October 25, 2009

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid application development in many
areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web sitgitp://www.python.org/and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system.
It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the
tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library Reference document. The Python
Reference Manual gives a more formal definition of the language. To write extensions in C or C++, read Extending
and Embedding the Python Interpreter and Python/C API Reference. There are also several books covering Python
in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library modules described in the Python Library
Reference.

TheGlossaryis also worth going through.

CONTENTS 1

http://www.python.org/

Python Tutorial, Release 2.6.4c2

2 CONTENTS

CHAPTER

ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you'd like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch
of photo files in a complicated way. Perhaps you'd like to write a small custom database, or a specialized GUI
application, or a simple game.

If you're a professional software developer, you may have to work with several C/C++/Java libraries but find the
usual write/compile/test/re-compile cycle is too slow. Perhaps you're writing a test suite for such a library and find
writing the testing code a tedious task. Or maybe you've written a program that could use an extension language,
and you don't want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at
moving around files and changing text data, not well-suited for GUI applications or games. You could write a
C/C++/Java program, but it can take a lot of development time to get even a first-draft program. Python is simpler
to use, available on Windows, Mac OS X, and Unix operating systems, and will help you get the job done more
quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for
large programs than shell scripts or batch files can offer. On the other hand, Python also offers much more error
checking than C, and, beingrary-high-level languagét has high-level data types built in, such as flexible arrays

and dictionaries. Because of its more general data types Python is applicable to a much larger problem domain
than Awk or even Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with
a large collection of standard modules that you can use as the basis of your programs — or as examples to start
learning to program in Python. Some of these modules provide things like file 1/0, system calls, sockets, and even
interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment
with features of the language, to write throw-away programs, or to test functions during bottom-up program
development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much
shorter than equivalent C, C++, or Java programs, for several reasons:

« the high-level data types allow you to express complex operations in a single statement;
« statement grouping is done by indentation instead of beginning and ending brackets;
* no variable or argument declarations are necessary.

Python isextensible if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that
may only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you
can link the Python interpreter into an application written in C and use it as an extension or command language
for that application.

Python Tutorial, Release 2.6.4c2

By the way, the language is named after the BBC show “Monty Python'’s Flying Circus” and has nothing to do
with reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to
learn a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed/asr/local/bin/python on those machines where it is avail-

able; putting/usr/local/bin in your Unix shell's search path makes it possible to start it by typing the
command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (Esg/local/python is a popular

alternative location.)

On Windows machines, the Python installation is usually place>iRython26 , though you can change this
when you're running the installer. To add this directory to your path, you can type the following command into
the command prompt in a DOS box:

set path=%path%:;C:\python26

Typing an end-of-file characte€pntrol-D on Unix,Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the
following commandsimport sys; sys.exit()

The interpreter’s line-editing features usually aren’t very sophisticated. On Unix, whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appenelizctive Input Editing

and History Substitutiofor an introduction to the keys. If nothing appears to happen,"#t it echoed, command

line editing isn’t available; you'll only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device,
it reads and executes commands interactively; when called with a file name argument or with a file as standard
input, it reads and executeseript from that file.

A second way of starting the interpreterpgthon -c command [arg] ... , Which executes the state-
ment(s) incommangdanalogous to the shell'® option. Since Python statements often contain spaces or other
characters that are special to the shell, it is usually advised to qaptmandn its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invokeghytsiog -m module [arg]
, Wwhich executes the source file fmoduleas if you had spelled out its full name on the command line.

Note that there is a difference betwegython file andpython <file . In the latter case, input requests

from the program, such as callsitgput() andraw_input() , are satisfied fronfile. Since this file has
already been read until the end by the parser before the program starts executing, the program will encounter
end-of-file immediately. In the former case (which is usually what you want) they are satisfied from whatever file
or device is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passidg before the script. (This does not work if the script is read from standard input, for
the same reason as explained in the previous paragraph.)

Python Tutorial, Release 2.6.4c2

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in
the variablesys.argv , which is a list of strings. Its length is at least one; when no script and no arguments

are givensys.argv[0] is an empty string. When the script name is giverras (meaning standard input),
sys.argv[0] is setto’~ . When-c commands usedsys.argv[0] is setto’-c’ . When-m module
is used,sys.argv[0] is set to the full name of the located module. Options found aftecommandor -m

moduleare not consumed by the Python interpreter’s option processing but fsiargv for the command
or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to eractive mode In this mode it prompts
for the next command with therimary prompt usually three greater-than signs>6); for continuation lines it
prompts with thesecondary prompby default three dots.(). The interpreter prints a welcome message stating
its version number and a copyright notice before printing the first prompt:

python
Python 2.6 (#1, Feb 28 2007, 00:02:06)

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a looK atstiaite-
ment:

>>> the_world_is_flat =1
>>> jf the_world_is_flat:
print " Be careful not to fall off!

Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack
trace. (Exceptions handled by arcept clause in d@ry statement are not errors in this context.) Some errors

are unconditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some
cases of running out of memory. All error messages are written to the standard error stream; normal output from
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the
input and returns to the primary prompt: Typing an interrupt while a command is executing raises the
Keyboardinterrupt exception, which may be handled byrg statement.

2.2.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly executable, like shell scripts, by putting the line
#1 lusr/bin/env python

(assuming that the interpreter is on the usBA3 H) at the beginning of the script and giving the file an executable
mode. The#! must be the first two characters of the file. On some platforms, this first line must end with a Unix-
style line ending’{n’), not a Windows{r\n’) line ending. Note that the hash, or pound, chara&tér,, is

used to start a comment in Python.

1 A problem with the GNU Readline package may prevent this.

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 2.6.4c¢2

The script can be given an executable mode, or permission, usichhed command:
$ chmod +x myscript.py

On Windows systems, there is no notion of an “executable mode”. The Python installer automatically associates
.py files withpython.exe so that a double-click on a Python file will run it as a script. The extension can also
be.pyw , in that case, the console window that normally appears is suppressed.

2.2.3 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The best way to do it is to put one more
special comment line right after tié line to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having the eneadotjng and it will
be possible to directly write Unicode string literals in the selected encoding. The list of possible encodings can be
found in the Python Library Reference, in the sectiorcodecs .

For example, to write Unicode literals including the Euro currency symbol, the ISO-8859-15 encoding can be
used, with the Euro symbol having the ordinal value 164. This script will print the value 8364 (the Unicode
codepoint corresponding to the Euro symbol) and then exit:

-*- coding: is0-8859-15 -*-

currency = u'm"
print ord (currency)

If your editor supports saving files &§TF-8 with a UTF-8byte order marlk{aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capabili@pifions/General/Default Source
Encoding/UTF-8 is set. Notice that this sighature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for script files#vitines (only used on Unix systems).

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the
world can be used simultaneously in string literals and comments. Using non-ASCIl characters in identifiers is

not supported. To display all these characters properly, your editor must recognize that the file is UTF-8, and it

must use a font that supports all the characters in the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time
the interpreter is started. You can do this by setting an environment variable iR i¢tONSTARTUP to the
name of a file containing your start-up commands. This is similar topttudile feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when
/devitty is given as the explicit source of commands (which otherwise behaves like an interactive session).

It is executed in the same namespace where interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session. You can also change the pysnpsts

andsys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up
file using code likef os.path.isfile(.pythonrc.py’): execfile(.pythonrc.py’) Cf
you want to use the startup file in a script, you must do this explicitly in the script:

import o0s

flename = os. environ . get(' PYTHONSTARTUR

if filename and os. path . isfile(flename):
execfile (filename)

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 2.6.4c2

8 Chapter 2. Using the Python Interpreter

CHAPTER

THREE

AN INFORMAL INTRODUCTION TO
PYTHON

In the following examples, input and output are distinguished by the presence or absence of promEad

): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do
not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an
example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash charactér,and extend to the end of the physical line. A comment may appear at

the start of a line or following whitespace or code, but not within a string literal. A hash character within a string
literal is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be
omitted when typing in examples.

Some examples:

this is the first comment

SPAM= 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment. "

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the primary promp{(Jt shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operaters- , * and/ work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

2+2

4

>>> 2+2 # and a comment on the same line as code

4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
7/ 3

Python Tutorial, Release 2.6.4c2

>>> 7/-3
-3

The equal sign’€’) is used to assign a value to a variable. Afterwards, no result is displayed before the next
interactive prompt:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x =y =z =0 # Zero x, y and z
>>> X

0
>>> y

0
>>> 7

0
Variables must be “defined” (assigned a value) before they can be used, or an error will occur:

>>> # try to access an undefined variable

.. n
Traceback (most recent call last):
File "<stdin>" , line 1, in <module>

NameError : name 'n’ is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 375 / 15

7.5

>>> 70 /| 2

3.5

Complex numbers are also supported; imaginary numbers are written with a syffieraf. Complex numbers
with a nonzero real component are written(esal+imagj) , or can be created with trmomplex(real,
imag) function.

>>> 1j * 1]

(-1+0j)

>>> 1j * complex (0, 1)

(-1+0j)

>>> 3+1j *3

(3+3))

>>> (3+1j) *3

(9+3))

>>> (1+2)) /(1+1))

(1.5+0.5))

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract
these parts from a complex numteusez.real andz.imag .

>>> a=15 +0.5j
>>> a. real

15

>>> a.imag

0.5

The conversion functions to floating point and intedkrat() ,int() andlong()) don’t work for complex
numbers — there is no one correct way to convert a complex number to a real numbeabd(@ge to get its
magnitude (as a float) arreal to get its real part.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.4c¢2

>>> a=3.0 +4.0 |
>>> float (a)
Traceback (most recent call last):

File "<stdin>" , line 1, in ?
TypeError : can’t convert complex to float; use abs(z)
>>> a. real
3.0
>>> a.imag
4.0
>>> ahs(a) # sgrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the varialblds means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 125 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round (, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create
an independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

>>> '’ spam eggs’
'spam eggs’

>>> ' doesn\ t’
"doesn’t"

>>> "doesn’'t"
"doesn’t"

>>> '"Yes, " he said.
"Yes," he said.’

>>> "\" Yes, \" he said. "
"Yes," he said.’

>>> ""Isn \' t, " she said. ’
"Isn\'t," she said.’

')

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing \n\
several lines of text just as you would do in C. \n\

Note that whitespace at the beginning of the line is \
significant. "
print hello

Note that newlines still need to be embedded in the string usinghe newline following the trailing backslash
is discarded. This example would print the following:

3.1. Using Python as a Calculator 11

Python Tutorial, Release 2.6.4c2

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.

Or, strings can be surrounded in a pair of matching triple-qudt®s: or ” . End of lines do not need to be
escaped when using triple-quotes, but they will be included in the string.

nn

print
Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

If we make the string literal a “raw” stringn sequences are not converted to newlines, but the backslash at the
end of the line, and the newline character in the source, are both included in the string as data. Thus, the example:

hello = r" This is a rather long string containing \ n\
several lines of text much as you would do in C. !

print hello
would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and
with quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed
in double quotes if the string contains a single quote and no double quotes, else it's enclosed in single quotes. (The
print statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with-tbperator, and repeated with

>>> word = 'Help’ + A
>>> word

'HelpA’

>>> "< 4+ word*5 + 7>
'<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been

writtenword = 'Help’ 'A’ ; this only works with two literals, not with arbitrary string expressions:
>>> 'str ' ing’ # <- This is ok

'string’

>>> " str 7. strip() + 'ing’ # <- This is ok

'string’

>>> ' str 7. strip() "ing ’ # <- This is invalid

File "<stdin>", line 1, in ?
‘str’.strip() ’ing’
N

SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with
theslice notation two indices separated by a colon.

>>> word[4]
A

>>> word[0: 2]
‘He'

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.4c¢2

>>> word[2: 4]

llp!

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the string being sliced.

>>> word[: 2] # The first two characters

‘He'

>>> word[2] # Everything except the first two characters
IIpAl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an
error:

>>> word[0] = ' x’
Traceback (most recent call last):
File "<stdin>" |, line 1, in ?
TypeError : object does not support item assignment
>>> word[: 1] = ' Splat ’
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?

TypeError : object does not support slice assignment
However, creating a new string with the combined content is easy and efficient:

>>> ' x' + word[1:]

'xelpA’

>>> ' Splat ' + word[4]

'SplatA’

Here’s a useful invariant of slice operatiors§i] + s[i:] equalss.
>>> word[: 2] + word[2:]

'HelpA’

>>> word[: 3] + word[3]

'HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper
bound smaller than the lower bound returns an empty string.

>>> word[1: 100]
‘elpA’
>>> word[10:]

>>> word[2: 1]

Indices may be negative numbers, to start counting from the right. For example:

>>> word[- 1] # The last character

A

>>> word[- 2] # The last-but-one character

Yp!

>>> word[- 2:] # The last two characters

‘DA’

>>> word[: - 2] # Everything except the last two characters
'Hel

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[- 0] # (since -0 equals 0)
Hr

Out-of-range negative slice indices are truncated, but don't try this for single-element (non-slice) indices:

3.1. Using Python as a Calculator 13

Python Tutorial, Release 2.6.4c2

>>> word[- 100:]

"'HelpA’

>>> word[- 10] # error

Traceback (most recent call last):
File "<stdin>" | line 1, in ?

IndexError : string index out of range

One way to remember how slices work is to think of the indices as poibthgeercharacters, with the left edge
of the first character numbered 0. Then the right edge of the last character of a stiinfavhcters has index
for example:

SO S N
|Hlell]p|A]
SRR S S S
0 1 2 3 4 5

5 4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice froimo j consists of all characters between the edges labbeladj, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For
example, the length aford[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ' supercalifragilisticexpialidocious
>>> len (S)
34

See Also:

Sequence Types — str, unicode, list, tuple, buffer, xrar{@e The Python Library Reference Strings, and the
Unicode strings described in the next section, are examplseaience typesnd support the common
operations supported by such types.

String Methods(in The Python Library Reference Both strings and Unicode strings support a large number of
methods for basic transformations and searching.

String Formatting (in The Python Library Reference Information about string formatting with
str.format() is described here.

String Formatting Operationgin The Python Library Reference The old formatting operations invoked when
strings and Unicode strings are the left operand oPtioperator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object.
It can be used to store and manipulate Unicode datal(&pg/www.unicode.org/and integrates well with the
existing string objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters. Texts were typically bound to a code
page which mapped the ordinals to script characters. This lead to very much confusion especially with respect to
internationalization (usually written @a8n —'i"’ + 18 characters ¥’) of software. Unicode solves these
problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u’ Hello World !
u'Hello World !

The small’'u’ in front of the quote indicates that a Unicode string is supposed to be created. If you want
to include special characters in the string, you can do so by using the Pytioade-Escape&ncoding. The
following example shows how:

14 Chapter 3. An Informal Introduction to Python

http://www.unicode.org/

Python Tutorial, Release 2.6.4c¢2

>>> u’ Hello \u0020 World !
u'Hello World !

The escape sequene®020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient
that the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote
with ‘ur’ to have Python use thRaw-Unicode-Escapencoding. It will only apply the abovweiXXXX conversion
if there is an uneven number of backslashes in front of the small ‘u’.

>>> ur' Hello \ u0020World !
u'Hello World

>>> ur' Hello \\ u0020World !
u’Hello\\Wu0020World "’

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on the
basis of a known encoding. The built-in functianicode() provides access to all registered Unicode codecs
(COders and DECoders). Some of the more well known encodings which these codecs can cohetiri-are

ASCI|, UTF-8, andUTF-16. The latter two are variable-length encodings that store each Unicode character in one
or more bytes. The default encoding is normally set to ASCII, which passes through characters in the range 0 to
127 and rejects any other characters with an error. When a Unicode string is printed, written to a file, or converted
with str() , conversion takes place using this default encoding.

>>> u" abc"
u'abc’
>>> str (u"abc")
‘abc’
>>> y" aou”
u'\xe4\xfé\xfc’
>>> str (u"aou”
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
UnicodeEncodeError: ’ascii’ codec can't encode characters in position 0-2 : ordinal not in ra

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects proeitieoale()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> y"aou". encode(' utf-8)
"\xc3\xad\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use
theunicode() function with the encoding name as the second argument.

>>> unicode (' \xc3 \xa4 \xc3 \xb6 \xc3 \xbc ', ’utf-8)
u"\xe4\xf6\xfc’

3.1.4 Lists

Python knows a humber @ompounddata types, used to group together other values. The most versatile is the
list, which can be written as a list of comma-separated values (items) between square brackets. List items need
not all have the same type.

>>> a = ['spam’, 'eggs’, 100, 1234]
>>> a
[spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

3.1. Using Python as a Calculator 15

Python Tutorial, Release 2.6.4c2

>>> g 0]

'Spam’

>>> a[3]

1234

>>> a[- 2]

100

>>> a[1:-1]

[eggs’, 100]

>>> g[: 2] + ['bacon’, 2*2]
[spam’, 'eggs’, 'bacon’, 4]

>>> 3*a[: 3] + [’ Boo!']
['spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'spam’, 'eggs’, 100, 'Boo!]

Unlike strings, which aremmutable it is possible to change individual elements of a list:

>>> a
[spam’, 'eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam’, 'eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> # Replace some items:
a[0:2] =[1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:

a[0:2] =1
>>> a
[123, 1234]
>>> # Insert some:
a[1: 1] = [’ bletch ", " xyzzy "]
>>> a

[123, 'bletch’, 'xyzzy', 1234]

>>> # Insert (a copy of) itself at the beginning

>>> g[: 0] = a

>>> a

[123, ’bletch’, 'xyzzy’, 1234, 123, ’bletch’, 'xyzzy’, 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[] =]

>>> q

I

The built-in functionlen() also applies to lists:
>>>a =["a, 'b, "¢, "d]

>>> len (a)

4

It is possible to nest lists (create lists containing other lists), for example:

>>> [2, 3]

>>> p [1, q, 4]

>>> len (p)

3

>>> p[1]

(2, 3]

>>> p[1][0]

2

>>> p[1] . append(' xtra ') # See section 5.1
>>> p

16 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 2.6.4c¢2

[1, [2, 3, 'xtra’], 4]
>>> q
[2, 3, 'xtra’]

Note that in the last example[1] andq really refer to the same object! We’ll come backadject semantics
later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of tiébonacciseries as follows:

>>> # Fibonacci series:
the sum of two elements defines the next

a, b =0, 1
>>> while b < 10:
print b

a, b =Db a+b

0 UTWN R

This example introduces several new features.

< The first line contains anultiple assignmentthe variablesa andb simultaneously get the new values 0
and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are alll
evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from
the left to the right.

« Thewhile loop executes as long as the condition (hére< 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any
sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example
is a simple comparison. The standard comparison operators are written the same ales€than)>
(greater than)== (equal to),<= (less than or equal to¥= (greater than or equal to) afrd (not equal to).

« Thebodyof the loop isndented indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank
line to indicate completion (since the parser cannot guess when you have typed the last line). Note that each
line within a basic block must be indented by the same amount.

e The print statement writes the value of the expression(s) it is given. It differs from just writing the
expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple
expressions and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> | = 256*256

>>> print ' The value of i is , i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>>a, b =0, 1

>>> while b < 1000:
print b,
a, b =b, a+b

3.2. First Steps Towards Programming 17

Python Tutorial, Release 2.6.4c2

1123581321 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

18 Chapter 3. An Informal Introduction to Python

CHAPTER

FOUR

MORE CONTROL FLOW TOOLS

Besides thevhile statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type isfthestatement. For example:

>>> x = int (raw_input (" Please enter an integer:)]
Please enter an integer: 42
>>> if x < 0:

x =0

print ' Negative changed to zero ’
elif x == 0:

print ' Zero’
elif x == 1:

print ' Single ’
else :

print ' More’

More

There can be zero or moedif parts, and thelse part is optional. The keyworaelif *is short for ‘else if’,
and is useful to avoid excessive indentation.ifAn... elif ... elif ... sequence is a substitute for theitch
or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Pythdars statement iterates over the items of any sequence (a
list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
.. a=/["cat’, "window’', °’defenestrate ']
>>> for x in a:
print %, len (X)
cat 3
window 6
defenestrate 12

19

Python Tutorial, Release 2.6.4c2

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence
types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items)
you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, X)

>>>
[defenestrate’, 'cat’, 'window’, 'defenestrate’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in furetigye() comes in handy. It generates
lists containing arithmetic progressions:

>>> range (10)
[0, 1, 2 3, 4,5, 6,7 8, 9]

The given end point is never part of the generatediisige(10) generates a list of 10 values, the legal indices
for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> range (5, 10)

[5, 6, 7, 8, 9]
>>> range (0, 10, 3)
[0, 3, 6, 9]
>>> range (-10, -100, -30)
[-10, -40, -70]
To iterate over the indices of a sequence, you can commbimge() andlen() as follows:
>>> g = ["Mary’, 'had’, "a', ’litle ", 'lamb’]
>>> for i in range (len (a)):
print i, ali]
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to usemlnerate() function, seé_ooping Techniques

4.4 break and continue Statements, and else Clauses on Loops

Thebreak statement, like in C, breaks out of the smallest enclo&ing or while loop.
Thecontinue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have alse clause; it is executed when the loop terminates through exhaustion of the list
(with for) or when the condition becomes false (withile), but not when the loop is terminated bypeeak
statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range (2, 10):
for x in range (2, n):
if n %x ==
print n, 'equals ', x, '*', n/x
break
else :
loop fell through without finding a factor

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.4c¢2

’)

print n, ’is a prime number
is a prime number

is a prime number

equals 2 * 2

is a prime number

equals 2 * 3

is a prime number

equals 2 * 4

equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program
requires no action. For example:

>>> while True :
pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:

>>> class MyEmptyClass :
pass

Another placgass can be used is as a place-holder for a function or conditional body when you are working on

new code, allowing you to keep thinking at a more abstract level.pBlss is silently ignored:

>>> def initlog (*args):
pass # Remember to implement this!

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib (n): # write Fibonacci series up to n
e Print a Fibonacci series up to n."™
a, b =0 1
while b < n:
print b,

a, b =b, a+b

>>> # Now call the function we just defined:
fib(2000)
1123581321 3455 89 144 233 377 610 987 1597

The keyworddef introduces a functiodefinition It must be followed by the function name and the parenthesized
list of formal parameters. The statements that form the body of the function start at the next line, and must be
indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s docu-
mentation string, odocstring (More about docstrings can be found in the secBacumentation Strings There

are tools which use docstrings to automatically produce online or printed documentation, or to let the user inter-
actively browse through code; it's good practice to include docstrings in code that you write, so make a habit of
it.

4.5. pass Statements 21

Python Tutorial, Release 2.6.4c2

The executionof a function introduces a new symbol table used for the local variables of the function. More
precisely, all variable assignments in a function store the value in the local symbol table; whereas variable refer-
ences first look in the local symbol table, then in the local symbol tables of enclosing functions, then in the global
symbol table, and finally in the table of built-in names. Thus, global variables cannot be directly assigned a value
within a function (unless named ingdobal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed usitigoy value(where thevalueis always an objeateference

not the value of the object}. When a function calls another function, a new local symbol table is created for that
call.

A function definition introduces the function name in the current symbol table. The value of the function name
has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another
name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> f(100)
1123581321 3455 89

Coming from other languages, you might object titat is not a function but a procedure since it doesn'’t return
a value. In fact, even functions withoutr@turn statement do return a value, albeit a rather boring one. This
value is calledNone (it's a built-in name). Writing the valudlone is normally suppressed by the interpreter if it
would be the only value written. You can see it if you really want to ugirigt

>>> fib(0)

>>> print fib(0)

None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2 (n): # return Fibonacci series up to n
""" Return a list containing the Fibonacci series up to n.

result =]
a, b =0, 1
while b < n:
result . append(b) # see below

a, b =b, a+b
return result

>>> f100 = fib2(100) # call it
>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e Thereturn statement returns with a value from a functioturn without an expression argument
returnsNone. Falling off the end of a function also returhi®ne.

» The statementesult.append(b) calls amethodof the list objectresult . A method is a function
that ‘belongs’ to an object and is namehj.methodname , whereobj is some object (this may be an
expression), anchethodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity.
(Itis possible to define your own object types and methods, uwdasgesas discussed later in this tutorial.)
The methodappend() shown in the example is defined for list objects; it adds a new element at the end
of the list. In this example it is equivalent tesult = result + [b] , but more efficient.

1 Actually, call by object referencevould be a better description, since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.4c¢2

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined to allow. For example:

def ask ok (prompt, retries =4, complaint =’ Yes or no, please! ")
while True :
ok = raw_input (prompt)

if ok in ("y', 'ye', 'yes'): return True

if ok in ('n", "no’, 'nop’, 'nope’): return False
retries = retries -1

if retries < 0: raise |IOError , ' refusenik user

print complaint

This function can be called either like thiask_ok('Do you really want to quit?’) or like this:
ask_ok('OK to overwrite the file?’, 2)

This example also introduces the keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition idéfiaingscope, so that

i =5

def f(arg =i):
print arg

i =6

fO

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is
a mutable object such as a list, dictionary, or instances of most classes. For example, the following function
accumulates the arguments passed to it on subsequent calls:

def f(a, L =[]):
L. append(a)
return L

print f(1)
print ~ f(2)
print ~ f(3)

This will print
[1]

[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L =None):
if L is None:
L =1
L. append(a)
return L

4.7. More on Defining Functions 23

Python Tutorial, Release 2.6.4c2

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the keyword = value . For instance, the
following function:
def parrot (voltage, state =" a stiff ', action =" voom', type = Norwegian Blue ’):
print "-- This parrot wouldn "t", action,
print ~ "if you put ", voltage, "volts through it.
print "-- Lovely plumage, the ", type
print " It ’s", state, e
could be called in any of the following ways:
parrot(1000)
parrot(action = " VOOOOOM voltage = 1000000)
parrot(' a thousand ', state = ' pushing up the daisies ")
parrot(' a milion ', ’ bereft of life ", jump’)
but the following calls would all be invalid:
parrot() # required argument missing
parrot(voltage =5.0, 'dead’) # non-keyword argument following keyword
parrot(110, voltage =220) # duplicate value for argument
parrot(actor =" John Cleese ') # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It's not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding
to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this
restriction:

>>> def function (a):
pass

>>> function(0, a =0)
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
TypeError : function() got multiple values for keyword argument 'a’

When a final formal parameter of the foffmame is present, it receives a dictionary (ddapping Types — dict

(in The Python Library Referengecontaining all keyword arguments except for those corresponding to a formal
parameter. This may be combined with a formal parameter of the*foame (described in the next subsection)
which receives a tuple containing the positional arguments beyond the formal parameterdiste (must occur
before**name .) For example, if we define a function like this:

def cheeseshop (kind, *arguments, **keywords):

print "-- Do you have any ", kind, "

print "-- 1 'm sorry, we ’'re all out of ", kind
for arg in arguments: print arg

print "-" * 40

keys = keywords . keys()
keys . sort()
for kw in keys: print kw, ":", keywords[kw]

It could be called like this:

cheeseshop("Limburger ", "It ' s very runny, sir.
"It ' s really very, VERY runny, sir. ,

shopkeeper =" Michael Palin ,

client ="John Cleese ",
sketch ="Cheese Shop Sketch ")

and of course it would print:

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 2.6.4c¢2

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that thesort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of
arguments. These arguments will be wrapped up in a tupleTigpkes and SequengesBefore the variable
number of arguments, zero or more normal arguments may occur.

def write_multiple_items (file , separator, *args):
file . write(separator . join(args))

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the budige() function expects separastart
andstoparguments. If they are not available separately, write the function call with-thy@erator to unpack the
arguments out of a list or tuple:

>>> range (3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range (*args) # call with arguments unpacked from a list
[3, 4, 5]
In the same fashion, dictionaries can deliver keyword arguments wittf traperator:
>>> def parrot (voltage, state =" a stiff ', action ="voom’):
print "-- This parrot wouldn "t", action,
print ~ "if you put ", voltage, "volts through it.
print "E s", state, e
>>> d = {"voltage ": "four million ", "state ": "bleedin ' demised ", "action ": "VOOM}

>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin’ demised !

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming languages like Lisp have been
added to Python. With thembda keyword, small anonymous functions can be created. Here’s a function that
returns the sum of its two argumentambda a, b: at+b . Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic
sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables
from the containing scope:

>>> def make_incrementor (n):
return lambda x: X + n

>>> f = make_incrementor(42)

4.7. More on Defining Functions 25

Python Tutorial, Release 2.6.4c2

>>> f(0)
42
>>> f(1)
43

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not
explicitly state the object’s name or type, since these are available by other means (except if the name happens to
be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the sum-
mary from the rest of the description. The following lines should be one or more paragraphs describing the object’s
calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process docu-
mentation have to strip indentation if desired. This is done using the following convention. The first non-blank
line after the first line of the string determines the amount of indentation for the entire documentation string. (We
can't use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent
in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of
the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be
stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:
>>> def my_function ():
""" Do nothing, but document it.

No, really, it doesn’'t do anything.

pass

>>> print my_function . __doc__
Do nothing, but document it.

No, really, it doesn’t do anything.

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talkcaldng

style Most languages can be written (or more condisamatted in different styles; some are more readable than
others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps
tremendously for that.

For Python,PEP 8has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

« Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large inden-
tation (easier to read). Tabs introduce confusion, and are best left out.

» Wrap lines so that they don't exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

« Use blank lines to separate functions and classes, and larger blocks of code inside functions.

26 Chapter 4. More Control Flow Tools

http://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 2.6.4c¢2

« When possible, put comments on a line of their own.
 Use docstrings.

» Use spaces around operators and after commas, but not directly inside bracketing corsstrudi@,
2) + 93, 4

« Name your classes and functions consistently; the convention is t@€CaselCase for classes and
lower_case_with_underscores for functions and methods. Always uself as the name for
the first method argument (séeFirst Look at Classefor more on classes and methods).

« Don't use fancy encodings if your code is meant to be used in international environments. Plain ASCII
works best in any case.

4.8. Intermezzo: Coding Style 27

Python Tutorial, Release 2.6.4c2

28 Chapter 4. More Control Flow Tools

CHAPTER

FIVE

DATA STRUCTURES

This chapter describes some things you've learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append (X)
Add an item to the end of the list; equivalentafien(a):] = [X]

extend (L)
Extend the list by appending all the items in the given list; equivaleaflem(a):] = L

insert (i, Xx)
Insert an item at a given position. The first argument is the index of the element before which to insert,
so a.insert(0, x) inserts at the front of the list, analinsert(len(a), x) is equivalent to
a.append(x)

remove (X)
Remove the first item from the list whose valuidt is an error if there is no such item.

pop([i])

Remove the item at the given position in the list, and return it. If no index is spedfigop() removes

and returns the last item in the list. (The square brackets aroundhttige method signature denote that the
parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

index (X)
Return the index in the list of the first item whose valug.i# is an error if there is no such item.

count (x)
Return the number of timesappears in the list.

sort ()
Sort the items of the list, in place.

reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 12345]

>>> print a.count(333), a .count(66.25), a .count(’'x’)
210

>>> a.insert(2, -1)

>>> a. append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]

>>> a.index(333)

29

Python Tutorial, Release 2.6.4c2

1

>>> a. remove(333)

>>> q

[66.25, -1, 333, 1, 1234.5, 333]
>>> a. reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]
>>> a. sort()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, append() . To retrieve an item from the top of
the stack, uspop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack . append(6)
>>> stack . append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack . pop()

7

>>> stack

[3, 4, 5, 6]

>>> gtack . pop()

6

>>> stack . pop()

5

>>> stack

(3, 4]

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in,
first-out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast,
doing inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by
one).

To implement a queue, usellections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque

>>> queue = deque(["Eric ", "John", "Michael "])

>>> queue. append(" Terry ") # Terry arrives

>>> queue . append(" Graham™) # Graham arrives

>>> queue . popleft() # The first to arrive now leaves

'Eric’

>>> queue . popleft() # The second to arrive now leaves
‘John’

>>> queue # Remaining queue in order of arrival

deque(['Michael’, 'Terry’, 'Graham’])

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used withfiilsés() , map() , andreduce()

30 Chapter 5. Data Structures

Python Tutorial, Release 2.6.4c¢2

filter(function, sequence) returns a sequence consisting of those items from the sequence for which
function(item) is true. Ifsequencés astring ortuple , the result will be of the same type; otherwise, it

is always dist . For example, to compute some primes:

>>> def f(x): return x %2 != 0 and x %3 = 0

S>> filter (f, range (2, 25))
[5, 7, 11, 13, 17, 19, 23]

map(function, sequence) callsfunction(item) for each of the sequence’s items and returns a list of
the return values. For example, to compute some cubes:

>>> def cube(x): return X*x*X

>>> map(cube, range (1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences
and is called with the corresponding item from each sequendéqe if some sequence is shorter than another).
For example:

>>> gseq = range (8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

reduce(function, sequence) returns a single value constructed by calling the binary fundtiostion
on the first two items of the sequence, then on the result and the next item, and so on. For example, to compute
the sum of the numbers 1 through 10:

>>> def add(x,y): return x+y

>>> reduce (add, range (1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an
empty sequence, and the function is first applied to the starting value and the first sequence item, then to the result
and the next item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce (add, seq, 0)

>>> sum(range (1, 11))
55

>>> sum([])

0

Don’t use this example’s definition siim() : since summing numbers is such a common need, a built-in function
sum(sequence) is already provided, and works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to o f , filter() and/or
lambda . The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed fiyr a clause, then zero or mofer orif clauses. The
result will be a list resulting from evaluating the expression in the context dbtheandif clauses which follow

it. If the expression would evaluate to a tuple, it must be parenthesized.

5.1. More on Lists 31

Python Tutorial, Release 2.6.4c2

>>> freshfruit = [" banana’, ' loganberry ', ' passion fruit "]
>>> [weapon . strip() for weapon in freshfruit]
[banana’, ’loganberry’, 'passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
I
>>> [[x,x **2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x **2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x**2 for x in vec]
AN

SyntaxError: invalid syntax
>>> [(x, x **2) for x in vec]
(2, 4), (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x *y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x +y for x in vecl for vy in vec2]
6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vecl[i] *vecZ2[i] for i in range (len (vecl))]
[8, 12, -54]

List comprehensions are much more flexible thaep() and can be applied to complex expressions and nested
functions:

>>> [str (round (355/113.0 , i) for i in range (1, 6)]
3.1, '3.14’, '3.142’, '3.1416’, '3.14159]

5.1.5 Nested List Comprehensions

If you've got the stomach for it, list comprehensions can be nested. They are a powerful tool but — like all powerful
tools — they need to be used carefully, if at all.

Consider the following example of a 3x3 matrix held as a list containing three lists, one list per row:

>>> mat = |

[1, 2, 3]
[4, 5, 6],
[7, 8, 9]

]

Now, if you wanted to swap rows and columns, you could use a list comprehension:

>>> print [[row][i] for row in mat] for i in [0, 1, 2]]
2, 4, 71, [2, 5, 8], [3, 6, 9]

Special care has to be taken for thestedist comprehension:
To avoid apprehension when nesting list comprehensions, read from right to left.
A more verbose version of this snippet shows the flow explicitly:

for i in [0, 1, 2]
for row in mat:
print row]i],

print

32 Chapter 5. Data Structures

Python Tutorial, Release 2.6.4c¢2

In real world, you should prefer built-in functions to complex flow statements.Zi@ function would do a
great job for this use case:

>>> zip (* mat)
[, 4, 7), (2, 5, 8), (3, 6, 9)]

SeeUnpacking Argument Listfer details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its valualethestatement. This differs
from thepop() method which returns a value. Thel statement can also be used to remove slices from a list
or clear the entire list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]

>>> q

[1, 66.25, 333, 333, 1234.5]

>>> del af 2: 4]

>>> a

[1, 66.25, 1234.5]

>>> del a[:]

>>> a

I

del can also be used to delete entire variables:
>>> del a

Referencing the name hereafter is an error (at least until another value is assigned to it). We’'ll find other uses
for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are
two examples ofequenceélata types (seBequence Types — str, unicode, list, tuple, buffer, xréingehe Python

Library Referencp. Since Python is an evolving language, other sequence data types may be added. There is also
another standard sequence data typetupke

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ' hello!
>>> [0]
12345
>>> t
(12345, 54321, ’'hello!)
>>> # Tuples may be nested:
u=t (1, 2, 3, 4, 5
>>> Y
((12345, 54321, ‘hello!), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly;
they may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if
the tuple is part of a larger expression).

Tuples have many uses. For example: (X, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of
the same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable
objects, such as lists.

5.2. The del statement 33

Python Tutorial, Release 2.6.4c2

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

>>> empty = ()

>>> singleton = "hello ", # <-- note trailing comma
>>> len (empty)

0

>>> |len (singleton)

1

>>> singleton

(hello’;)

The statemertt = 12345, 54321, ‘hello” is an example ofuple packingthe valuesl 2345 , 54321
and’hello” are packed together in a tuple. The reverse operation is also possible:

>>> X, Y,z =t

This is called, appropriately enougbequence unpackinand works for any sequence on the right-hand side.
Sequence unpacking requires the list of variables on the left to have the same number of elements as the length of
the sequence. Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

5.4 Sets

Python also includes a data type &mts A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations
like union, intersection, difference, and symmetric difference.

Here is a brief demonstration:

>>> hasket = [’ apple ', 'orange ', 'apple ', 'pear’, ’'orange ', ’banana’]
>>> fruit = set(basket) # create a set without duplicates

>>> fruit

set(['orange’, 'pear’, 'apple’, 'banana’)

>>> ' orange ' in fruit # fast membership testing

True

>>> ' crabgrass ' in fruit

False

>>> # Demonstrate set operations on unique letters from two words

>>> g set(' abracadabra)
>>> b = set('alacazam ")

>>> g # unique letters in a

set(['a’, 'r, 'b’, 'c’, 'd)

>>> a - b # letters in a but not in b
set(['r, 'd’, 'b7)

>>>a | b # letters in either a or b
set(['a’, 'c’, 'r, 'd, b, 'm’, 'z,)

>>> g b # letters in both a and b
set('a’, 'c)

>>> a M b # letters in a or b but not both
set([r, 'd’, 'b’, 'm’, 'z, I

34 Chapter 5. Data Structures

Python Tutorial, Release 2.6.4c¢2

5.5 Dictionaries

Another useful data type built into Python is tdietionary (seeMapping Types — dicfin The Python Library
Referencp. Dictionaries are sometimes found in other languages as “associative memories” or “associative ar-
rays”. Unlike sequences, which are indexed by a range of numbers, dictionaries are indéxrgd twhich can

be any immutable type; strings and numbers can always be keys. Tuples can be used as keys if they contain only
strings, numbers, or tuples; if a tuple contains any mutable object either directly or indirectly, it cannot be used as
a key. You can't use lists as keys, since lists can be modified in place using index assignments, slice assignments,
or methods likeappend() andextend()

It is best to think of a dictionary as an unordered sek&f: valuepairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictiogaryPlacing a comma-separated list

of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries
are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It
is also possible to delete a key:value pair witd . If you store using a key that is already in use, the old value
associated with that key is forgotten. It is an error to extract a value using a non-existent key.

Thekeys() method of a dictionary object returns a list of all the keys used in the dictionary, in arbitrary order
(if you want it sorted, just apply theort() method to the list of keys). To check whether a single key is in the
dictionary, use thén keyword.

Here is a small example using a dictionary:

>>> tel = {’jack ': 4098, ’'sape’: 4139}
>>> tel[’guido '] = 4127
>>> tel

{'sape’. 4139, ’'guido’: 4127, ’jack’: 4098}
>>> tel[' jack ']

4098

>>> del tel[' sape’]

>>> tell irv 7] = 4127

>>> tel

{'guido’: 4127, 'irv’: 4127, 'jack’: 4098}
>>> tel . keys()

['guido’, 'irv’, 'jack’]

>>> ' guido ' in tel

True

Thedict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict ([('sape’, 4139), ('guido ', 4127), (’jack ', 4098)])

{'sape’. 4139, ’jack’: 4098, ’'guido’ 4127}

>>> dict ([(x, x **2) for x in (2, 4, 6)]) # use a list comprehension

{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even better suited for the task of sup-
plying key-values pairs to théict() constructor.

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict (sape =4139, guido =4127, jack =4098)
{'sape’: 4139, ’jack’: 4098, ’'guido’: 4127}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

5.5. Dictionaries 35

Python Tutorial, Release 2.6.4c2

>>> knights = {’gallahad ': ’'the pure ', ’'robin ': ’the brave '}
>>> for k, v in knights . iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time
using theenumerate() function.

>>> for i, v in enumerate (['tic ', 'tac’', ’'toe’]):
print i, v

0 tic

1 tac

2 toe

To loop over two or more sequences at the same time, the entries can be paired wiii)thefunction.

>>> questions = ['name , 'quest ', ' favorite color "1
>>> answers = [’'lancelot ', ’the holy grall ", "blue "]
>>> for @, a in zip (questions, answers):

print '’ What is your {0}? It is {1}. " . format(q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and theneadt sl ()
function.

>>> for i in reversed(xrange (1,10, 2)):
print i

P W o~ ©:

To loop over a sequence in sorted order, usestiteed() function which returns a new sorted list while leaving
the source unaltered.

>>> pasket = [’ apple ', 'orange ', 'apple ', 'pear’, ’'orange ', 'banana’]
>>> for f in sorted(set(basket)):
print f
apple
banana
orange
pear

5.7 More on Conditions

The conditions used iwhile andif statements can contain any operators, not just comparisons.

The comparison operatons andnot in check whether a value occurs (does not occur) in a sequence. The
operatorgs andis not compare whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is lower than that of all numerical
operators.

36 Chapter 5. Data Structures

Python Tutorial, Release 2.6.4c¢2

Comparisons can be chained. For examples b == c tests whethea is less tharb and moreoveb equals
C.

Comparisons may be combined using the Boolean operamarsandor , and the outcome of a comparison (or of
any other Boolean expression) may be negated math. These have lower priorities than comparison operators;
between thermot has the highest priority amat the lowest, sothad and not B or C is equivalent tqA

and (not B)) or C . Asalways, parentheses can be used to express the desired composition.

The Boolean operatoend andor are so-calleghort-circuitoperators: their arguments are evaluated from left
to right, and evaluation stops as soon as the outcome is determined. For exakplel@ are true buB is false,

A and B and C does not evaluate the expressionwWhen used as a general value and not as a Boolean, the
return value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 = '’, ' Trondheim ', ' Hammer Danc€
>>> non_null = stringl or string2 or string3

>>> non_null

‘Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about
this, but it avoids a common class of problems encountered in C programs: tyingn expression whenr=
was intended.

5.8 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The compalésicouses
graphical ordering: first the first two items are compared, and if they differ this determines the outcome of the
comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted. If
two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering
for strings uses the ASCII ordering for individual characters. Some examples of comparisons between sequences
of the same type:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] <[1, 2, 4]

"ABC < 'C < ’'Pascal ' < 'Python’

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa’, 'ab")) < (1, 2, ('abc’, "a), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc.
Mixed numeric types are compared according to their numeric value, so 0 equals 0.0, etc.

1 The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

5.8. Comparing Sequences and Other Types 37

Python Tutorial, Release 2.6.4c2

38 Chapter 5. Data Structures

CHAPTER

SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)
are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to
prepare the input for the interpreter and running it with that file as input instead. This is known as creating a
script As your program gets longer, you may want to split it into several files for easier maintenance. You may
also want to use a handy function that you've written in several programs without copying its definition into each
program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is calledreodule definitions from a module can bimportedinto other modules or

into themain module (the collection of variables that you have access to in a script executed at the top level and
in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name___. For instance, use your favorite text editor to create a file cdiledpy in the current directory

with the following contents:

Fibonacci numbers module

def fib (n): # write Fibonacci series up to n
a, b =0, 1
while b < n:
print b,
a, b =b, a+bh

def fib2 (n): # return Fibonacci series up to n
result =]
a, b =0, 1
while b < n:
result . append(b)
a, b =b a+b
return result

Now enter the Python interpreter and import this module with the following command:
>>> import fibo

This does not enter the names of the functions defindithén directly in the current symbol table; it only enters
the module namébo there. Using the module name you can access the functions:

>>> fibo . fib(1000)

1123581321 3455 89 144 233 377 610 987
>>> fibo . fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo .__name__

fibo’

If you intend to use a function often you can assign it to a local name:

39

Python Tutorial, Release 2.6.4c2

>>> fib = fibo . fib
>>> fib(500)
11235813 21 3455 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to
initialize the module. They are executed only fist time the module is imported somewhete.

Each module has its own private symbol table, which is used as the global symbol table by all functions defined
in the module. Thus, the author of a module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can
touch a module’s global variables with the same notation used to refer to its functiodeame.itemname .

Modules can import other modules. It is customary but not required to pladmpdirt statements at the
beginning of a module (or script, for that matter). The imported module names are placed in the importing
module’s global symbol table.

There is a variant of thiemport statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
11235813 21 3455 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the
examplefibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1123581321 3455 89 144 233 377

This imports all names except those beginning with an underscire (

Note: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you
change your modules, you must restart the interpreter — or, if it's just one module you want to test interactively,
usereload() , e.g.reload(modulename)

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with tllame__ setto" _main__
That means that by adding this code at the end of your module:

if __name__ ==
import sys
fib(int (sys .argv[1])

__main__

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1123581321 34

If the module is imported, the code is not run:

1 n fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the module’s global symbol
table.

40 Chapter 6. Modules

Python Tutorial, Release 2.6.4c¢2

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the
module as a script executes a test suite).

6.1.2 The Module Search Path

When a module namespam is imported, the interpreter searches for a file narsgam.py in the current
directory, and then in the list of directories specified by the environment vaiRal&lONPATH . This has the

same syntax as the shell varial#l&TH, that is, a list of directory names. Wh&YTHONPATH is not set, or

when the file is not found there, the search continues in an installation-dependent default path; on Unix, this is
usually.:/usr/local/lib/python

Actually, modules are searched in the list of directories given by the vasgblpath which is initialized from

the directory containing the input script (or the current directd®Y)THONPATH and the installation- dependent
default. This allows Python programs that know what they're doing to modify or replace the module search path.
Note that because the directory containing the script being run is on the search path, it is important that the script
not have the same name as a standard module, or Python will attempt to load the script as a module when that
module is imported. This will generally be an error. See se@immdard Modulefor more information.

6.1.3 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file
called spam.pyc exists in the directory wherspam.py is found, this is assumed to contain an already-
“byte-compiled” version of the modulgpam. The modification time of the version gbam.py used to create
spam.pyc is recorded irspam.pyc , and thepyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create 8gam.pyc file. Wheneverspam.py is successfully
compiled, an attempt is made to write the compiled versiospem.pyc . It is not an error if this attempt fails;

if for any reason the file is not written completely, the resulspgm.pyc file will be recognized as invalid and
thus ignored later. The contents of thgam.pyc file are platform independent, so a Python module directory
can be shared by machines of different architectures.

Some tips for experts:

When the Python interpreter is invoked with t@ flag, optimized code is generated and storegyro
files. The optimizer currently doesn’t help much; it only remosesert statements. WheyO is used,
all bytecodas optimized;.pyc files are ignored angy files are compiled to optimized bytecode.

Passing tweO flags to the Python interpretexO) will cause the bytecode compiler to perform optimiza-
tions that could in some rare cases result in malfunctioning programs. Currently ombe strings
are removed from the bytecode, resulting in more comgaa@ files. Since some programs may rely on
having these available, you should only use this option if you know what you're doing.

A program doesn’t run any faster when it is read frotpyc or.pyo file than when it is read from gy
file; the only thing that's faster abouytyc or.pyo files is the speed with which they are loaded.

When a script is run by giving its name on the command line, the bytecode for the script is never written
toa.pyc or.pyo file. Thus, the startup time of a script may be reduced by moving most of its code to a
module and having a small bootstrap script that imports that module. It is also possible to mame ar

.pyo file directly on the command line.

It is possible to have a file callegpam.pyc (or spam.pyo when-O is used) without a filspam.py for
the same module. This can be used to distribute a library of Python code in a form that is moderately hard
to reverse engineer.

The modulecompileall can createpyc files (or.pyo files when-O is used) for all modules in a
directory.

6.1. More on Modules 41

Python Tutorial, Release 2.6.4c2

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitives such as system calls. The set of such modules is a configuration option which also
depends on the underlying platform For example,wlereg module is only provided on Windows systems.

One particular module deserves some attentays:, which is built into every Python interpreter. The variables
sys.psl andsys.ps2 define the strings used as primary and secondary prompts:

>>> import sys

>>> sys . psl

>>>

>>> sys . ps2

>>> sys.psl = ' C>"’
C> print "Yuck!

Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variablesys.path is alist of strings that determines the interpreter’s search path for modules. Itis initialized
to a default path taken from the environment varig®¥THONPATH , or from a built-in default ifPYTHON-
PATH is not set. You can modify it using standard list operations:

>>> import sys
>>> sys . path . append(' /ufs/guido/lib/python)

6.3 The dir() Function

The built-in functiondir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo , sys

>>> dir (fibo)

[name_’, 'fib’, 'fib2’]

>>> dir (sys)

[__displayhook ', doc__’, ' excepthook ', ' name_ ', ’
' stdin__ ', ' stdout_ ', ' getframe’, 'api_version’, 'argv’,
'builtin_module_names’, 'byteorder’, ’callstats’, 'copyright’,
'displayhook’, 'exc_clear’, 'exc_info’, 'exc_type’, 'excepthook’,
‘'exec_prefix’, ’executable’, ’exit’, 'getdefaultencoding’, 'getdlopenflags’,
‘getrecursionlimit’, 'getrefcount’, ’hexversion’, 'maxint’, ‘'maxunicode’,
'meta_path’, 'modules’, 'path’, 'path_hooks’, 'path_importer_cache’,
'platform’, 'prefix’, 'psl’, 'ps2’, 'setcheckinterval’, 'setdlopenflags’,
'setprofile’, 'setrecursionlimit’, ’'settrace’, ’'stderr’, ’'stdin’, 'stdout’,
'version’, 'version_info’, 'warnoptions’]

__stderr__’,

Without argumentsgir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> jmport fibo

>>> fib = fibo .fib

>>> dir ()

[builtins__ ', ’ doc_’, ' file_ ', ' name__’, 'a, ’'fib’, 'fibo’, 'sys’]

Note that it lists all types of names: variables, modules, functions,ditf) does not list the names of built-in
functions and variables. If you want a list of those, they are defined in the standard moHulkin__

42 Chapter 6. Modules

Python Tutorial, Release 2.6.4c¢2

>>> import _ builtin__
>>> dir (__builtin_)
[ArithmeticError’, 'AssertionError’, 'AttributeError’, 'DeprecationWarning’,
'EOFETrror’, 'Ellipsis’, 'EnvironmentError’, 'Exception’, 'False’,
'FloatingPointError’, 'FutureWarning’, 'IOError’, 'ImportError’,
‘IndentationError’, ’IndexError’, 'KeyError, 'Keyboardinterrupt’,
'‘LookupError’, 'MemoryError’, 'NameError’, 'None’, 'Notimplemented’,
'NotimplementedError’, 'OSError’, 'OverflowError’,
'PendingDeprecationWarning’, 'ReferenceError’, 'RuntimeError’,
'RuntimeWarning’, 'StandardError’, 'Stoplteration’, 'SyntaxError’,
'SyntaxWarning’, 'SystemError’, 'SystemExit’, 'TabError’, "True’,
"TypeError’, 'UnboundLocalError’, 'UnicodeDecodeError’,
'UnicodeEncodeError’, 'UnicodeError’, 'UnicodeTranslateError’,
'UserWarning’, 'ValueError’, 'Warning’, 'WindowsError’,
'ZeroDivisionError’, * ', ' _debug_’, ’_doc_’, '__import_’

))

__name__’, 'abs’, 'apply’, 'basestring’, ’'bool’, ’buffer’,
‘callable’, 'chr’; 'classmethod’, 'cmp’, 'coerce’, 'compile’,
‘complex’, 'copyright’, ’credits’, ’'delattr’, 'dict’, 'dir’, 'divmod’,
'enumerate’, 'eval’, 'execfile’, 'exit’, ‘file’, ‘filter’, 'float’,
'frozenset’, ’'getattr’, 'globals’, ’'hasattr’, 'hash’, 'help’, 'hex’,
id’, ’input’, ’int’, ’intern’, ’isinstance’, ’'issubclass’, ’iter’,
‘len’, ’license’, ’list’, ’locals’, ’long’, 'map’, 'max’, 'min’,
'object’, ’oct’, 'open’, 'ord’, 'pow’, 'property’, 'quit’, 'range’,
raw_input’, 'reduce’, 'reload’, 'repr’, 'reversed’, 'round’, 'set’,
'setattr’, ’slice’, 'sorted’, 'staticmethod’, 'str’, 'sum’, ’'super’,
‘tuple’, 'type’, 'unichr’, ’unicode’, ’'vars’, 'xrange’, 'zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,
the module namé\.B designates a submodule nam&dn a package named. Just like the use of modules

saves the authors of different modules from having to worry about each other’s global variable names, the use
of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library

from having to worry about each other's module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and
sound data. There are many different sound file formats (usually recognized by their extension, for example:
wav , .aiff ,.au), so you may need to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations you might want to perform on sound
data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition
you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for
your package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package

__init__.py Initialize the sound package

formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects

__init__.py
echo.py

6.4. Packages 43

Python Tutorial, Release 2.6.4c2

surround.py
reverse.py

filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directoriggsqrath looking for the package
subdirectory.

The__init__.py files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, sucktasg , from unintentionally hiding valid modules that occur

later on the module search path. In the simplest casijt__.py can just be an empty file, but it can also
execute initialization code for the package or setthall _ variable, described later.

Users of the package can import individual modules from the package, for example:
import sound.effects.echo

This loads the submodus®und.effects.echo . It must be referenced with its full name.
sound . effects . echo . echofilter(input , output, delay =0.7 , atten =4)
An alternative way of importing the submodule is:

from sound.effects import echo

This also loads the submoduézho , and makes it available without its package prefix, so it can be used as
follows:

echo . echofilter(input , output, delay =0.7 , atten =4)

Yet another variation is to import the desired function or variable directly:

from sound.effects.echo import echofilter

Again, this loads the submoduéeho , but this makes its functioachofilter() directly available:
echofilter(input , output, delay =0.7 , atten =4)

Note that when usinffom package import item , the item can be either a submodule (or subpackage) of
the package, or some other name defined in the package, like a function, class or varialslgdrhe statement

first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it
fails to find it, animportError ~ exception is raised.

Contrarily, when using syntax likenport item.subitem.subsubitem , each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user wrifesm sound.effects import * ? Ideally, one would hope that

this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them
all. Unfortunately, this operation does not work very well on Windows platforms, where the filesystem does not
always have accurate information about the case of a filename! On these platforms, there is ho guaranteed way to
know whether a filEECHO.PYshould be imported as a modweho , Echo or ECHO (For example, Windows

95 has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3 filename
restriction adds another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the package. The import statement uses
the following convention: if a package’s init__.py code defines a list named all__ , it is taken to be

the list of module names that should be imported whiem package import * is encountered. Itis up to

the package author to keep this list up-to-date when a new version of the package is released. Package authors

44 Chapter 6. Modules

Python Tutorial, Release 2.6.4c¢2

may also decide not to support it, if they don't see a use for importing * from their package. For example, the file
sounds/effects/__init__.py could contain the following code:

all =["echo", "surround ", "reverse "]

This would mean tharom sound.effects import * would import the three named submodules of the
sound package.

If __all__ is not defined, the statemefrom sound.effects import * doesnot import all sub-

modules from the packagsound.effects into the current namespace; it only ensures that the package
sound.effects has been imported (possibly running any initialization code imit__.py) and then

imports whatever names are defined in the package. This includes any names defined (and submodules explic-
itly loaded) by _init_.py . It also includes any submodules of the package that were explicitly loaded by
previous import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround

from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined
in the sound.effects package when th&om...import statement is executed. (This also works when
__all__ isdefined.)

Note that in general the practice of importihgrom a module or package is frowned upon, since it often causes
poorly readable code. However, it is okay to use it to save typing in interactive sessions, and certain modules are
designed to export only names that follow certain patterns.

Remember, there is nothing wrong with usiingm Package import specific_submodule !'In fact,
this is the recommended notation unless the importing module needs to use submodules with the same name from
different packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For examplsutteund module might use thecho
module. In fact, such references are so common thattpert statement first looks in the containing package
before looking in the standard module search path. Thusuiteund module can simply usenport echo

orfrom echo import echofilter . If the imported module is not found in the current package (the pack-
age of which the current module is a submodule),ithport statement looks for a top-level module with the
given name.

When packages are structured into subpackages (as wihtinel package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the mealutel filters.vocoder

needs to use thecho module in thesound.effects package, it can udeom sound.effects import

echo .

Starting with Python 2.5, in addition to the implicit relative imports described above, you can write explicit relative
imports with thefrom module import name form of import statement. These explicit relative imports use
leading dots to indicate the current and parent packages involved in the relative import. Freonrtuend

module for example, you might use:

from . import echo
from .. import formats
from _filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the current module. Since the name
of the main module is alway's main__" , modules intended for use as the main module of a Python application
should always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attributgyath__ . This is initialized to be a list containing the name of
the directory holding the package’sinit__.py before the code in that file is executed. This variable can be

6.4. Packages 45

Python Tutorial, Release 2.6.4c2

modified; doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

46 Chapter 6. Modules

CHAPTER

SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written
to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing valuegpression statemerasid theprint statement. (A third

way is using thewrite() method of file objects; the standard output file can be referencegsastdout

See the Library Reference for more information on this.) Often you’ll want more control over the formatting
of your output than simply printing space-separated values. There are two ways to format your output; the first
way is to do all the string handling yourself; using string slicing and concatenation operations you can create any
layout you can imagine. The standard modstiing contains some useful operations for padding strings to a
given column width; these will be discussed shortly. The second way is to use fieemat() method.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any
value to a string: pass itto thepr() orstr() functions.

Thestr() function is meant to return representations of values which are fairly human-readablagph(ije

is meant to generate representations which can be read by the interpreter (or will$yraeeError if there is

not equivalent syntax). For objects which don’t have a particular representation for human consustygfion,

will return the same value aspr() . Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

Some examples:

>>> s = ' Hello, world. '
>>> str (s)

'Hello, world.’

>>> repr (s)

"Hello, world.™

>>> str (0.1)

0.1

>>> repr (0.1)
’0.10000000000000001°

>>> x = 10 * 3.25

>>>y = 200 * 200

>>> s = ' The value of x is
>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:
... hello = "hello, world \n’

>>> hellos = repr (hello)

>>> print hellos

'hello, world\n’

) ’ ’

+ repr X) + ', and vy is + repr (y) +

47

Python Tutorial, Release 2.6.4c2

>>> # The argument to repr() may be any Python object:
repr ((x, y, ("spam’, "eggs')))
"(32.5, 40000, ('spam’, 'eggs’)"

Here are two ways to write a table of squares and cubes:

>>> for x in range (1, 11):
print repr (x) .rjust(2), repr (x *x).rjust(3),
Note trailing comma on previous line
print repr (X *x*x) . rjust(4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
>>> for x in range (1, 11)
print ' {0:2d} {1:3d} {2:4d} " format(x, x *X, X *X*X)
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that in the first example, one space between each column was added by théntvayworks: it always
adds spaces between its arguments.)

This example demonstrates thast() method of string objects, which right-justifies a string in a field of a
given width by padding it with spaces on the left. There are similar methuost§) andcenter() . These
methods do not write anything, they just return a new string. If the input string is too long, they don’t truncate
it, but return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative,
which would be lying about a value. (If you really want truncation you can always add a slice operation, as in
x.ljust(n)[:n])

There is another metho#fill() , which pads a numeric string on the left with zeros. It understands about plus
and minus signs:

>>> 112" Zfill(5)

'00012’

>>> ' -3.14 . Zill(7)

'-003.14"

>>> ' 3.14159265359 . Zfill(5)
'3.14159265359’

Basic usage of thstr.format() method looks like this:
>>> print ' We are the {0} who say {1y " . format(' knights ', ' Ni")
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the format
method. The number in the brackets refers to the position of the object passed into the format method.

48 Chapter 7. Input and Output

Python Tutorial, Release 2.6.4c¢2

>>> print ' {0} and {1} ' .format(' spam’, ’'eggs’)
spam and eggs
>>> print ' {1} and {0} ' .format(’'spam’, ’'eggs’)
eggs and spam

If keyword arguments are used in the format method, their values are referred to by using the name of the argument.

>>> print ' This {food} is {adjective}. " . format(
. food =" spam’, adjective =" absolutely horrible)
Thls spam is absolutely horrlble

Positional and keyword arguments can be arbitrarily combined:

>>> print ' The story of {0}, {1}, and {other}. " format(' Bill ', ' Manfred ',
other =" Georg’)
The story of Bill, Manfred, and Georg.

An optional’” and format specifier can follow the field name. This also greater control over how the value is
formatted. The following example truncates the Pi to three places after the decimal.

>>> ijmport math
>>> print ' The value of PI is approximately {0:.3f}. " . format(math . pi)
The value of Pl is approximately 3.142.

Passing an integer after the will cause that field to be a minimum number of characters wide. This is useful
for making tables pretty.:

>>> table = {’ Sjoerd ': 4127, 'Jack’': 4098, 'Dcab’: 7678}
>>> for name, phone in table .items():

print ’{0:10} ==> {1:10d} ' . format(name, phone)
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using
square bracketf]” to access the keys

>>> table = {’ Sjoerd ': 4127, 'Jack’': 4098, ’'Dcab’: 8637678}
>>> print (' Jack: {O[Jack]:d}; Sjoerd' {O[Sjoerd]:d}; '

" Dcab: {O[Dcab]:d} . format(table))
Jack 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the table as keyword arguments with the “**' notation.:

>>> table = {’ Sjoerd ': 4127, 'Jack’': 4098, ’'Dcab’: 8637678}
>>> print ' Jack: {Jack:d}; Sjoerd: {Sjoerd:d}; Dcab: {Dcab:d} . format(**table)
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new builtslars() function, which returns a dictionary
containing all local variables.

For a complete overview of string formatting wigr.format() , seeFormat String Syntaxin The Python
Library Referenck

7.1.1 Old string formatting

The%operator can also be used for string formatting. It interprets the left argument muclsjikiet() -style
format string to be applied to the right argument, and returns the string resulting from this formatting operation.
For example:

>>> jmport math
>>> print ' The value of Pl is approximately
The value of Pl is approximately 3.142.

% math . pi

7.1. Fancier Output Formatting 49

Python Tutorial, Release 2.6.4c2

Sincestr.format() is quite new, a lot of Python code still uses #mperator. However, because this old
style of formatting will eventually removed from the languageformat() should generally be used.

More information can be found in tHgtring Formatting Operationin The Python Library Referengsection.

7.2 Reading and Writing Files

open() returns afile object, and is most commonly used with two argumepen(filename, mode)

>>> f = open(’ /tmp/workfile LW
>>> print f
<open file '/tmp/workfile’, mode 'w’' at 80a0960>

The first argument is a string containing the filename. The second argument is another string containing a few
characters describing the way in which the file will be usethdecan be’r’ when the file will only be read,

'w' for only writing (an existing file with the same name will be erased), 'ahd opens the file for appending;

any data written to the file is automatically added to the énel. opens the file for both reading and writing.
Themodeargument is optionaly’ will be assumed if it's omitted.

On Windows,b’ appended to the mode opens the file in binary mode, so there are also mod®s likewb’ ,
and’r+b’ . Windows makes a distinction between text and binary files; the end-of-line characters in text files
are automatically altered slightly when data is read or written. This behind-the-scenes modification to file data is
fine for ASCII text files, but it'll corrupt binary data like that iPEGor EXEfiles. Be very careful to use binary
mode when reading and writing such files. On Unix, it doesn'’t hurt to appénid @o the mode, so you can use

it platform-independently for all binary files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object daled already been created.

To read a file's contents, cdlread(size) , Which reads some quantity of data and returns it as a stsiag.

is an optional numeric argument. Wheizeis omitted or negative, the entire contents of the file will be read and
returned; it's your problem if the file is twice as large as your machine’s memory. Otherwise, asiraisttes

are read and returned. If the end of the file has been reaf hetj() will return an empty string"().

>>> f . read()
'This is the entire file.\n’
>>> f . read()

f.readline() reads a single line from the file; a newline character)(is left at the end of the string, and

is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unam-
biguous; iff.readline() returns an empty string, the end of the file has been reached, while a blank line is
represented b{n’ , a string containing only a single newline.

>>> f . readline()

'This is the first line of the file.\n’
>>> f . readline()

'Second line of the file\n’

>>> f . readline()

f.readlines() returns a list containing all the lines of data in the file. If given an optional pararsietshing

it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory.
Only complete lines will be returned.

>>> f . readlines()
[This is the first line of the file\n’, 'Second line of the file\n’]

50 Chapter 7. Input and Output

Python Tutorial, Release 2.6.4c¢2

An alternative approach to reading lines is to loop over the file object. This is memory efficient, fast, and leads to
simpler code:

>>> for line in f
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control. Since the two approaches manage
line buffering differently, they should not be mixed.

f.write(string) writes the contents dftring to the file, returningNone.
>>> f write(' This is a test \n")

To write something other than a string, it needs to be converted to a string first:

>>> value = (’the answer ', 42)
>>> s = str (value)
>>> f . write(s)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the
beginning of the file. To change the file object’s position, Useek(offset, from_what) . The position

is computed from addingffsetto a reference point; the reference point is selected bjrdne_whatargument. A
from_whatvalue of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end
of the file as the reference poiritom_whatcan be omitted and defaults to 0, using the beginning of the file as the
reference point.

>>> f = open(’ /tmp/workfile o)

>>> f . write(' 0123456789abcdef ')

>>> f . seek(5) # Go to the 6th byte in the file
>>> f . read(1)

5

>>> f.seek(-3, 2) # Go to the 3rd byte before the end

>>> f . read(1)

ld!

When you're done with a file, callclose() to close it and free up any system resources taken up by the open
file. After callingf.close() , attempts to use the file object will automatically fail.

>>> f . close()
>>> f . read()
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
ValueError : 1/O operation on closed file

It is good practice to use thgith keyword when dealing with file objects. This has the advantage that the file
is properly closed after its suite finishes, even if an exception is raised on the way. It is also much shorter than
writing equivalentry -finally blocks:

>>> with open ('’ /tmp/workfile ", 'r’) as f
. read_data = f.read()

>>> f . closed

True

File objects have some additional methods, sucisaiy() andtruncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, simeadie method
only returns strings, which will have to be passed to a functionitikg , which takes a string lik&l23’ and

7.2. Reading and Writing Files 51

Python Tutorial, Release 2.6.4c2

returns its numeric value 123. However, when you want to save more complex data types like lists, dictionaries,
or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides
a standard module callggickle . This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process ispiakiig. Reconstructing the

object from the string representation is callegickling Between pickling and unpickling, the string representing

the object may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an objecx, and a file object that's been opened for writing, the simplest way to pickle the object
takes only one line of code:

pickle . dump(x, f)
To unpickle the object again, ff is a file object which has been opened for reading:
x = pickle . load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled
data to a file; consult the complete documentatiorpfokle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a
future invocation of the same program; the technical term for thispisraistentobject. Becauspickle is so

widely used, many authors who write Python extensions take care to ensure that new data types such as matrices
can be properly pickled and unpickled.

52 Chapter 7. Input and Output

CHAPTER

EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have
probably seen some. There are (at least) two distinguishable kinds of exyotax errorsandexceptions

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you
are still learning Python:

>>> while True print ' Hello world
File "<stdin>", line 1, in ?
while True print 'Hello world’
N

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) theptekedingthe arrow: in the example,

the error is detected at the keywgrdnt |, since a colon’() is missing before it. File name and line number

are printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute
it. Errors detected during execution are calieegteptionsand are not unconditionally fatal: you will soon learn

how to handle them in Python programs. Most exceptions are not handled by programs, however, and result in
error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>" , line 1, in ?
ZeroDivisionError . integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):

File ‘"<stdin>" , line 1, in?

NameError : name ’'spam’ is not defined
>>> T2 4+ 2
Traceback (most recent call last):

File "<stdin>" , line 1, in ?

TypeError : cannot concatenate 'str’ and 'int’ objects

The last line of the error message indicates what happened. Exceptions come in different types, and the type
is printed as part of the message: the types in the exampl@eaDivisionError , NameError and
TypeError . The string printed as the exception type is the name of the built-in exception that occurred. This is

53

Python Tutorial, Release 2.6.4c2

true for all built-in exceptions, but need not be true for user-defined exceptions (although it is a useful convention).
Standard exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

Built-in Exceptiongin The Python Library Referenghsts the built-in exceptions and their meanings.

8.3 Handling Exceptions

Itis possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the programGasingl-C

or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
Keyboardinterrupt exception.

>>> while True :

try :
X = int (raw_input ("Please enter a number: "))
break

except ValueError
print " Oops! That was no valid number. Try again...

Thetry statement works as follows.
« First, thetry clause(the statement(s) between ttng andexcept keywords) is executed.
« If no exception occurs, thexcept clausés skipped and execution of they statement is finished.

« If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named afterélreept keyword, the except clause is executed, and then execution
continues after they statement.

« If an exception occurs which does not match the exception named in the except clause, it is passed on
to outertry statements; if no handler is found, it is anhandled exceptioand execution stops with a
message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the santey statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

except (RuntimeError , TypeError , NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution,
since it is easy to mask a real programming error in this way! It can also be used to print an error message and
then re-raise the exception (allowing a caller to handle the exception as well):

import sys

try:

f = open(’'myfile.txt’)

s = f.readline()

i = int(s.strip())
except IOError as (errno, strerror):

print "I/O error({0}): {1}".format(errno, strerror)
except ValueError:

print "Could not convert data to an integer."
except:

54 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.6.4c¢2

print "Unexpected error:", sys.exc_info()[0]
raise

Thetry ... except statement has an optionalse clausewhich, when present, must follow all except clauses.
It is useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1]
try :
f = open(arg, 'r’)
except |IOError

print ' cannot open ', arg

else :
print arg, 'has’, len (f . readlines()), "lines '
f . close()

The use of theelse clause is better than adding additional code tatthe clause because it avoids accidentally
catching an exception that wasn't raised by the code being protected by the. except statement.

When an exception occurs, it may have an associated value, also known as the excagtionént The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name (or tuple). The variable is bound to an excep-
tion instance with the arguments storednstance.args . For convenience, the exception instance defines
__getitem__() and__str_ () so the arguments can be accessed or printed directly without having to
referenceargs

But use of.args is discouraged. Instead, the preferred use is to pass a single argument to an exception (which
can be a tuple if multiple arguments are needed) and have it bound togbsage attribute. One may also
instantiate an exception first before raising it and add any attributes to it as desired.

>>> fry
raise Exception (’spam’, 'eggs’)
except Exception as inst:
print type (inst) # the exception instance
print inst . args # arguments stored in .args
print inst # _str__ allows args to printed directly
X, Y = inst # _ getitem__ allows args to be unpacked directly
print 'x =", X
print 'y =",y

<type ’exceptions.Exception’>

('spam’, 'eggs’)

('spam’, 'eggs’)

X = spam

y = €eggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails 0:

x = 1/0
>>> try
this_fails()
except ZeroDivisionError as detail:
print ' Handling run-time error: ", detall

Handling run-time error: integer division or modulo by zero

8.3. Handling Exceptions 55

Python Tutorial, Release 2.6.4c2

8.4 Raising Exceptions

Theraise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError (' HiThere ')
Traceback (most recent call last):

File ‘"<stdin>" , line 1, in?
NameError : HiThere

The sole argument taaise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives frerteption).

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the
raise statement allows you to re-raise the exception:

>>> fry
raise NameError (' HiThere ')
except NameError :
print ' An exception flew by!
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>" | line 2, in ?

NameError : HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be
derived from theException class, either directly or indirectly. For example:

>>> class MyError (Exception):
def _init_ (self , value):
self .value = value
def _ str (self):
return repr (self . value)

>>> fry
raise MyError(2*2)
except MyError as e:
print ' My exception occurred, value:

, e .value

My exception occurred, value: 4
>>> raise MyError(' oops! ")
Traceback (most recent call last):
File "<stdin>" , line 1, in ?
__main__.MyError : 'oops!

In this example, the default init_ () of Exception has been overridden. The new behavior simply creates
thevalueattribute. This replaces the default behavior of creatingtiys attribute.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often
only offering a number of attributes that allow information about the error to be extracted by handlers for the
exception. When creating a module that can raise several distinct errors, a common practice is to create a base
class for exceptions defined by that module, and subclass that to create specific exception classes for different
error conditions:

class Error (Exception):
""" Base class for exceptions in this module.
pass

||||||

56 Chapter 8. Errors and Exceptions

Python Tutorial, Release 2.6.4c¢2

class InputError (Error):
""" Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

def __init__ (self , expression, message):
self . expression = expression
self . message = message

class TransitionError (Error):
""" Raised when an operation attempts a state transition that's not
allowed.
Attributes:

previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

def __init_ (self , previous, next, message):
self . previous = previous
self . next = next

self . message = message
Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chafltieisses

8.6 Defining Clean-up Actions

Thetry statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> fry
raise KeyboardInterrupt
finally
print ' Goodbye, world! ’
Goodbye, world!
Traceback (most recent call last):
File "<stdin>" |, line 2, in ?
KeyboardInterrupt

A finally clauseis always executed before leaving thg statement, whether an exception has occurred or
not. When an exception has occurred in the clause and has not been handled byeanept clause (or

it has occurred in &xcept orelse clause), it is re-raised after thimally clause has been executed. The
finally clause is also executed “on the way out” when any other clause tijthstatement is left via break ,
continue orreturn statement. A more complicated example (havemgept andfinally clauses in the
sametry statement works as of Python 2.5):

>>> def divide (X, y):
try
resut =x /vy
except ZeroDivisionError

8.6. Defining Clean-up Actions 57

Python Tutorial, Release 2.6.4c2

print " division by zero!

else :
print "result is ", result
finally
print " executing finally clause "

>>> divide(2, 1)

result is 2

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide("2", "1")
executing finally clause
Traceback (most recent call last):

File "<stdin>" | line 1, in?
File "<stdin>" , line 3, in divide
TypeError: unsupported operand type(s) for / . ‘st and ’str’

As you can see, thitnally ~ clause is executed in any event. ThgeError raised by dividing two strings is
not handled by thexcept clause and therefore re-raised afterfinally clause has been executed.

In real world applications, thignally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to
open a file and print its contents to the screen.

for line in open (" myfile.txt "):
print line

The problem with this code is that it leaves the file open for an indeterminate amount of time after the code has
finished executing. This is not an issue in simple scripts, but can be a problem for larger applicatiomghThe
statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and
correctly.

with open (" myfile.txt ") as f
for line in f:
print line

After the statement is executed, the filés always closed, even if a problem was encountered while processing
the lines. Other objects which provide predefined clean-up actions will indicate this in their documentation.

58 Chapter 8. Errors and Exceptions

CHAPTER

NINE

CLASSES

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a
mixture of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not
put an absolute barrier between definition and user, but rather rely on the politeness of the user not to “break into
the definition.” The most important features of classes are retained with full power, however: the class inheritance
mechanism allows multiple base classes, a derived class can override any methods of its base class or classes, and
a method can call the method of a base class with the same name. Objects can contain an arbitrary amount of
private data.

In C++ terminology, all class members (including the data members)ublkc, and all member functions are
virtual. There are no special constructors or destructors. As in Modula-3, there are no shorthands for referencing
the object’s members from its methods: the method function is declared with an explicit first argument representing
the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects, albeit in the
wider sense of the word: in Python, all data types are objects. Th