Python Library Reference
Release 2.4.4

Guido van Rossum

Fred L. Drake, Jr., editor

18 October 2006

Python Software Foundation
Email: docs@python.org

Copyright (©) 2001-2006 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file I/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which
may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manual remains the highest authority on syntactic and semantic questions.
Finally, the manual entitled Extending and Embedding the Python Interpreter describes how to add new extensions to
Python and how to embed it in other applications.

../ref/ref.html
../tut/tut.html
../ref/ref.html
../ext/ext.html

1 Introduction

2 Built-In Objects

3

2.1
22
23
24
2.5

Built-in Functions

Non-essential Built-in Functions

Python Runtime Services

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29

sys — System-specific parameters and functions

gc — Garbage Collector interface

weakref — Weak references
fpectl — Floating point exception control
atexit —Exithandlers

types — Names for built-in types

UserDict — Class wrapper for dictionary objects
UserList — Class wrapper for list objects
UserString — Class wrapper for string objects
operator — Standard operators as functions

inspect — Inspect live objects

traceback — Print or retrieve a stack traceback
linecache — Random access to text lines
pickle — Python object serialization
cPickle — Afasterpickle
copy_reg — Register pickle support functions
shelve — Python object persistence
copy — Shallow and deep copy operations
marshal — Internal Python object serialization
warnings — Warning control
imp — Access the import internals
zipimport — Import modules from Zip archives
pkgutil — Package extension utility
modulefinder — Find modules used by a script

code — Interpreter base classes
codeop — Compile Python code

pprint — Data pretty printer
repr — Alternate repr () implementation
new — Creation of runtime internal objects

Built-in Types
Built-in Exceptions
Built-in Constants

CONTENTS

......................... 51

3.30
3.31
3.32
3.33
3.34

site — Site-specific configurationhook oo oo
user — User-specific configurationhook L L
__builtin__ —Built-inobjects L e
__main__ — Top-level script environment
__future__ — Future statement definitions

String Services

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

string — Common String Operationso e
re — Regular expression operationso oL e e e e
struct — Interpret strings as packed binarydata L 0oL
difflib — Helpers for computingdeltas
fpformat — Floating point conversionsttt e e e
StringIO—Read and write stringsasfiles Lo oL
cStringIO — Faster version of StringTO o v v i it i e e
textwrap — Text wrapping and filling L
codecs — Codec registry and base classes e
unicodedata — Unicode Database
stringprep — Internet String Preparation L oL oo

Miscellaneous Services

5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

pydoc — Documentation generator and online help system
doctest — Testinteractive Pythonexamples L.
unittest — Unit testing framework oL
test — Regression tests package for Python oL oo
test.test_support — Utility functions fortests
decimal — Decimal floating point arithmetic
math — Mathematical functions L
cmath — Mathematical functions for complex numbers
random — Generate pseudo-random numbers Lo oo
whrandom — Pseudo-random number generatorol
bisect — Array bisection algorithm L L
collections — High-performance container datatypes
heapg— Heap queue algorithm L
array — Efficient arrays of numeric values oL Lo
sets — Unordered collections of unique elements
itertools — Functions creating iterators for efficient looping
ConfigParser — Configuration fileparser,
fileinput — Iterate over lines from multiple input streams
calendar — General calendar-related functions
cmd — Support for line-oriented command interpreters o .
shlex — Simple lexical analysis e

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

os — Miscellaneous operating system interfaces oL
os.path — Common pathname manipulations,
dircache — Cached directory listings i v v i i e
stat — Interpreting stat () results L.
statcache — Anoptimizationof os.stat ()
statvifs — Constants used with os.statvEs () o v v v v i i e
filecmp — File and Directory Comparisonso v v v it i
subprocess — Subprocess managemento u . e e e e e e e e e e e e
popen2 — Subprocesses with accessible I/O streams L.
datetime — Basicdate and time types o
time — Time access and CONVETSIONS v v v v v v ot e e e e e e e e e e e e

111
111
116
126
129
137
138
138
139
141
150
151

153
153
154
178
190
192
193
210
212
214
216
217
218
222
224
227
230
240
243
244
245
248

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30

sched—Eventscheduler
mutex — Mutual exclusion Support e e e e e e
getpass — Portable passwordinput
curses — Terminal handling for character-cell displays
curses.textpad — Text input widget for curses programs
curses.wrapper — Terminal handler for curses programs
curses.ascii — Utilities for ASCII characters
curses.panel — A panel stack extension forcurses. oL L.
getopt — Parser for command line options L o
optparse — More powerful command line option parser
tempfile — Generate temporary files and directories
errno — Standard errno system symbols Lo oL
glob — UNIX style pathname pattern eXpansion v v v v v v v v v v v e e e
fnmatch — UNIX filename pattern matching,
shutil — High-level file operations L
locale — Internationalization SEIVICES v v v v v v i v e e e e e e
gettext — Multilingual internationalization Services oot
logging — Logging facility for Python L oo
platform— Access to underlying platform’s identifyingdata.

Optional Operating System Services

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

signal — Set handlers for asynchronous events
socket — Low-level networking interface L o oo
select — Waiting for /O completion L o
thread — Multiple threads of control L
threading — Higher-level threading interface,
dummy_thread — Drop-in replacement for the threadmodule
dummy_threading — Drop-in replacement for the threadingmodule
Queue — A synchronized queue class e
mmap — Memory-mapped file support Lo
anydbm — Generic access to DBM-style databases
dbhash — DBM-style interface to the BSD database library
whichdb — Guess which DBM module created adatabase
bsddb — Interface to Berkeley DB library
dumbdbm — Portable DBM implementation L 0oL
z1ib — Compression compatible withgzip Lo,
gzip—Supportfor gzip files
bz2 — Compression compatible withbzip2
zipfile — Work with ZIP archives
tarfile — Read and write tar archive files L o oo
readline — GNU readline interface
rlcompleter — Completion function for GNU readline

Unix Specific Services

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

posix — The most common POSIX systemcalls
pwd — The password database e
grp—The group database e e
crypt — Function to check UNIX passwords o it
dl — Call C functions in shared objects L oL
dbm — Simple “database” interface
gdbm — GNU’s reinterpretationof dbm oL
termios —POSIX styletty control e e e
tty — Terminal control functions e e
pty — Pseudo-terminal utilities e e e

413
413
415
425
426
428
435
436
436
437
438
439
440
440
443
444
446
447
449
452
457
460

463
463
464
465
466
466
467
468
469
470
471

10

11

8.11 fcntl—The fentl () and ioctl () systemcalls L
8.12 pipes — Interface to shell pipelines
8.13 posixfile — File-like objects with locking support
8.14 resource — Resource usage information
8.15 nis — Interface to Sun’s NIS (Yellow Pages)
8.16 syslog— UNIX sysloglibrary routines o
8.17 commands — Utilities for running commandso

The Python Debugger
9.1 Debugger Commands e e
9.2 HowlItWorks e

The Python Profiler

10.1 Introductiontothe profiler
10.2 How Is This Profiler Different From The Old Profiler?
10.3 Instant Users Manual
10.4 What Is Deterministic Profiling? L o
10.5 Reference Manual
10.6 Limitations e e e e e e e e
10.7 Calibration L
10.8 Extensions — Deriving Better Profilers o o oo
10.9 hotshot — High performance logging profiler
10.10 timeit — Measure execution time of small code snippets

Internet Protocols and Support

11.1 webbrowser — Convenient Web-browser controller
11.2 cgi — Common Gateway Interface support.
11.3 cgitb — Traceback manager for CGIscripts o i o
11.4 urllib — Open arbitrary resourcesby URL
11.5 urllib2 — extensible library for opening URLs
11.6 httplib—HTTPprotocolclient
11.7 ftplib—FTPprotocolclient
11.8 gopherlib — Gopher protocolclient
119 poplib—POP3 protocolclient e
11.10 imaplib —IMAP4 protocolclient e
11.11 nntplib — NNTP protocolclient
11.12 smtplib — SMTP protocol client
11.13 smtpd — SMTP Server e e e e e e
11.14 telnetlib —Telnetclient i
11.15 urlparse — Parse URLs into components v v v v v v v i i it e e
11.16 SocketServer — A framework for network servers L.
11.17 BaseHTTPServer — BasicHTTPserver
11.18 SimpleHTTPServer — Simple HTTP request handler
11.19 CGIHTTPServer — CGl-capable HTTP request handler
11.20 cookielib — Cookie handling for HTTP clients
11.21 Cookie — HTTP state management v v v v v v v it e et e et e e
11.22 xmlrpclib — XML-RPCclientaccess o v vt it i e e e e e
11.23 SimpleXMLRPCServer — Basic XML-RPCserver
11.24 DocXMLRPCServer — Self-documenting XML-RPCserver
11.25 asyncore — Asynchronous sockethandler
11.26 asynchat — Asynchronous socket command/response handler

12 Internet Data Handling

12.1 formatter — Generic output formatting e
12.2 email — Anemail and MIME handling package

481
482
485

487
487
487
488
490
490
493
493
494
495
496

501
501
503
510
511
516
526
530
534
534
536
541
545
549
549
552
553
557
559
560
561
568
573
5717
579
580
582

123 mailcap —Mailcap filehandling. L
12.4 mailbox — Read various mailbox formats
12.5 mhlib— Accessto MHmailboxes e
12.6 mimetools — Tools for parsing MIME messages
12.7 mimetypes — Map filenames to MIME types
12.8 MimeWriter — Generic MIME file writer
12.9 mimify — MIME processing of mail messages v it i
12.10 multifile — Support for files containing distinct parts
12.11 r£c822 — Parse RFC 2822 mail headers
12.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
12.13 binascii — Convert between binary and ASCIT i
12.14 binhex — Encode and decode binhex4 files L oL
12.15 quopri — Encode and decode MIME quoted-printabledata
12.16 uu — Encode and decode uuencode files L L o
12.17 xdr1lib — Encode and decode XDR data
12.18 netrc —netrc file processing L. Lo
12.19 robotparser — Parser forrobots.txt
12.20 csv — CSV File Reading and Writing o i i it i

13 Structured Markup Processing Tools
13.1 HTMLParser — Simple HTML and XHTML parser oo
13.2 sgmllib— Simple SGML parser v v v i i et e e e e e e e
13.3 htmllib — A parser for HTML documents
13.4 htmlentitydefs — Definitions of HTML general entities
13.5 xml.parsers.expat — Fast XML parsingusing Expat
13.6 xml.dom — The Document Object Model API
13.7 xml.dom.minidom— Lightweight DOM implementation
13.8 xml.dom.pulldom— Support for building partial DOM trees
13.9 xml.sax — Support for SAX2 parsers
13.10 xml.sax.handler — Baseclasses for SAX handlers
13.11 xml.sax.saxutils — SAXUtilities o i i it e e e
13.12 xml.sax.xmlreader — Interface for XML parsers
13.13 xm11lib — A parser for XML documents e

14 Multimedia Services
14.1 audioop — Manipulateraw audiodata L.
142 imageop — Manipulate raw image data e
143 aifc—Readand write AIFF and AIFC files,
144 sunau—Readand write Sun AUfiles
145 wave —Readand write WAV files L
14.6 chunk —Read IFFchunkeddata
147 colorsys — Conversions between color SyStems v vttt
14.8 rgbimg—Read and write “SGIRGB” files
149 imghdr — Determine the type of animage
14.10 sndhdr — Determine type of sound file oL
14.11 ossaudiodev — Access to OSS-compatible audio devices

15 Cryptographic Services
15.1 hmac — Keyed-Hashing for Message Authentication
15.2 md5 — MD5 message digest algorithm oo
15.3 sha — SHA-1 message digestalgorithm

16 Graphical User Interfaces with Tk
16.1 Tkinter — Pythoninterfaceto Tcl/Tk
16.2 Tix — Extension widgets for Tk e

651
651
653
656
657
657
666
676
681
681
683
687
688
692

697
697
700
701
703
706
707
709
709
710
711
711

717
717
717
719

721
721
733

16.3 ScrolledText — Scrolled Text Widget
164 turtle — Turtle graphicsfor Tk e
165 Idle
16.6 Other Graphical User Interface Packages

17 Restricted Execution

17.1 rexec — Restricted execution framework 0oL oL
17.2 Bastion — Restricting accesstoobjects Lo

18 Python Language Services

19

20

21

22

18.1 parser — Access Pythonparsetrees
18.2 symbol — Constants used with Python parse trees
18.3 token — Constants used with Python parse trees
18.4 keyword — Testing for Python keywords L oo
18.5 tokenize — Tokenizer for Pythonsource
18.6 tabnanny — Detection of ambiguous indentation oL
18.7 pyclbr — Python class browser support oL
18.8 py_compile — Compile Python source files
18.9 compileall — Byte-compile Python libraries
18.10 dis — Disassembler for Pythonbytecode
18.11 pickletools — Tools for pickle developers.,
18.12 distutils — Building and installing Python modules

Python compiler package

19.1 Thebasicinterface e e
19.2 LImItations« v v v v e i e
19.3 Python Abstract Syntax o vttt e e e e e e e e e
19.4 Using Visitors to Walk ASTs o oo e
19.5 Bytecode Generation v v it e e e e e e e e e e e e e e e e e

SGI IRIX Specific Services

20.1 al —Audiofunctionsonthe SGI
20.2 AL — Constantsused withtheal module
20.3 cd—CD-ROM access on SGIsystems o v v vt it e e e e e
20.4 £1 — FORMS library for graphical user interfaces
20.5 FL —Constantsused withthe f1 module
20.6 flp — Functions for loading stored FORMS designs
20.7 fm— Font Managerinterface L. e e e e e e e e e
20.8 gl — Graphics Library interface e e e e
20.9 DEVICE — Constants used withthe gl module
20.10 GL — Constants used withthe gl module L oL
20.11 imgfile — Support for SGlimglib files
20.12 jpeg—Read and write JPEG files

SunOS Specific Services
21.1 sunaudiodev — Access to Sun audio hardware o
21.2 SUNAUDIODEV — Constants used with sunaudiodev

MS Windows Specific Services

22.1 msvcrt — Useful routines from the MS VC++ runtime
22.2 _winreg— WIndows regiStry aCCESS . . .+ v v v v v v v i e e e e e e e e e e e e e e e
22.3 winsound — Sound-playing interface for Windows L L.

Undocumented Modules
A1 Frameworks e e e e

745
746
749

751
751
760
761
761
761
762
763
764
764
765
772
773

775
775
776
776
781
782

783
783
785
785
789
793
794
794
795
797
797
797
798

801
801
802

803
803
804
809

811

Vi

A2 Miscellaneous useful utilities
A.3 Platform specific modules e e e
A4 Multimedia
AS Obsolete e e e
A.6 SGlI-specific Extension modules L
B Reporting Bugs
C History and License
C.1 Historyof the software e e e e e
C.2 Terms and conditions for accessing or otherwise using Python
C.3 Licenses and Acknowledgements for Incorporated Software
Module Index
Index

815

817
817
818
821

829

833

Vii

viii

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless of
the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.'

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manual for the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import__ (name [globals [locals [fromlist]]])
This function is invoked by the import statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semantics of the import statement. For examples
of why and how you would do this, see the standard library modules ihooks and rexec. See also the built-in
module imp, which defines some useful operations out of which you can build your own __import__ ()
function.

For example, the statement ‘import spam’ results in the following call: __import__ (' spam’,
globals (), 1locals(), []); the statement ‘from spam.ham import eggs’ results in
‘__import__ ('’ spam.ham’, globals (), locals(), [’"eggs’])’. Note that even though
locals () and [’ eggs’] are passed in as arguments, the __import__ () function does not set the local
variable named eggs; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not use its locals argument at all, and uses its globals only to determine the

package context of the import statement.)

When the name variable is of the form package . module, normally, the top-level package (the name up till the
first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is given, the
module named by name is returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when using ‘import spam.ham.eggs’, the top-level package spam must be
placed in the importing namespace, but when using ‘from spam.ham import eggs’, the spam.ham
subpackage must be used to find the eggs variable. As a workaround for this behavior, use getattr () to
extract the desired components. For example, you could define the following helper:

"Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

../ref/ref.html

def my_import (name) :
mod = __import__ (name)
components = name.split(’.’)
for comp in components([l:]:
mod = getattr (mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass for str and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of str or unicode. isinstance (obj, basestring) is
equivalentto isinstance (obj, (str, unicode)). New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function returns False.

callable (object)
Return true if the object argument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havea __call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord () . The argument must be in the range [0..255], inclusive; ValueError will
be raised if i is outside that range.

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manual for details.

It can be called either on the class (such as C.f ()) or on an instance (such as C () . f ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in this
section.

For more information on class methods, consult the documentation on the standard type hierarchy in chapter
3 of the Python Reference Manual (at the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

cmp (X, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative if
x < y,zeroif x == yand strictly positive if x > y.

4 Chapter 2. Built-In Objects

../ref/ref.html
../ref/types.html

compile (string, filename, kind [, ﬂags[, dontfinherit]])

Compile the string into a code object. Code objects can be executed by an exec statement or evaluated by a call
to eval (). The filename argument should give the file from which the code was read; pass some recognizable
value if it wasn’t read from a file (<string>’ is commonly used). The kind argument specifies what kind of
code must be compiled; it can be ’ exec’ if string consists of a sequence of statements, ' eval’ if it consists
of a single expression, or * single’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else than None will be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character (\n’), and the input must be terminated by at least one newline character. If line endings are
represented by ’ \r\n’, use the string replace () method to change them into ’ \n’.

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilation of string. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. If the flags argument is given and
dont_inherit is not (or is zero) then the future statements specified by the flags argument are used in addition to
those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_flag attribute on the _Feature
instance in the __future__ module.

complex ([real[, imag]])

Create a complex number with the value real + imag™*j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the function serves as a numeric conversion
function like int (), long () and £loat (). If both arguments are omitted, returns 0 j.

delattr (object, name)

This is a relative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, ’foobar’) isequivalentto del x.foobar.

dict ([mapping-or-sequence])

Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments.
If no arguments are given, return a new empty dictionary. If the positional argument is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary equal to { "one" :
2, "two": 3}:

edict ({"one’: 2, ’"two’: 3})

edict ({"one’: 2, ’"two’: 3}.items())
edict ({"one’: 2, "two': 3}.iteritems ())
edict (zip(("one’, "two’), (2, 3)))

edict ([['two’, 3], ['one’, 211])

edict (one=2, two=3)

edict ([(["one’, 'two’][1i-2], 1) for i in (2, 3)])

2.1.

Built-in Functions 5

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments added.

dir ([object])

Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the object’s __dict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir ()

["__builtins_ ', ’'__doc_ ', '__name_ ', ’struct’]

>>> dir (struct)

[_doc__ ', '_name__', ’'calcsize’, ’'error’, ’'pack’, ’'unpack’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod (q, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the same as (¢ / b, a % b). For floating point numbers the result
is (g, a % b),whereqgisusuallymath.floor (a / b) butmay be I less than that. Inanycaseq * b +
a % bisveryclosetoa,ifa % bisnon-zeroithasthe samesignasb,and0 <= abs(a % b) < abs (b).

Changed in version 2.3: Using divmod () with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate object. iterable must be a sequence, an iterator, or some other object which supports
iteration. The next () method of the iterator returned by enumerate () returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating over iterable. enumerate () is useful for
obtaining an indexed series: (0, seq[O0]), (1, seqgql[l]), (2, seql[2]),.... New in version 2.3.

eval (expression [globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If provided,
locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local name space. If the globals dictionary is present
and lacks *__builtins__’, the current globals are copied into globals before expression is parsed. This means
that expression normally has full access to the standard __builtin__ module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed in the environment where eval is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval ('x+17)
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In this
case pass a code object instead of a string. The code object must have been compiled passing ' eval’ as the
kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the

6 Chapter 2. Built-In Objects

current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile ().

execfile (ﬁlename[, globals[, locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.’

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using the globals and locals dictionaries as global and local names-
pace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required
to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries
are omitted, the expression is executed in the environment where execfile () is called. The return value is
None.

Warning: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function execfile () returns. execfile () cannot be used reliably to modify a function’s
locals.

file (ﬁlename[, mode [, bufsize]])
Return a new file object (described in section 2.3.9, “File Objects”). The first two arguments are the same as for
stdio’s fopen () : filename is the file name to be opened, mode indicates how the file is to be opened: ’ r’
for reading, ' w’ for writing (truncating an existing file), and ’ a’ opens it for appending (which on some UNIX
systems means that all writes append to the end of the file, regardless of the current seek position).

Modes " r+’, "w+’ and " a+’ open the file for updating (note that ’ w+’ truncates the file). Append ‘b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opened, TOError is raised.

In addition to the standard fopen () values mode may be ' U’ or ’ rU’. If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by any of / \n’, the
Unix end-of-line convention, ’ \r’, the Macintosh convention or ’ \r\n’, the Windows convention. All of
these external representations are seen as ’ \n’ by the Python program. If Python is built without universal
newline support mode ' U’ is the same as normal text mode. Note that file objects so opened also have an
attribute called newlines which has a value of None (if no newlines have yet been seen), ' \n’, " \r’,
"\r\n’, or a tuple containing all the newline types seen.

If mode is omitted, it defaults to / r’. When opening a binary file, you should append ’ b’ to the mode value
for improved portability. (It’s useful even on systems which don’t treat binary and text files differently, where
it serves as documentation.) The optional bufsize argument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negative bufsize means to use the system default, which is usually line buffered for tty devices and fully buffered
for other files. If omitted, the system default is used.

The £ile () constructor is new in Python 2.2 and is an alias for open () . Both spellings are equivalent. The
intent is for open () to continue to be preferred for use as a factory function which returns a new f£ile object.
The spelling, £i1e is more suited to type testing (for example, writing ‘isinstance (f, file)’).

filter (function, list)
Construct a list from those elements of list for which function returns true. list may be either a sequence, a
container which supports iteration, or an iterator, If list is a string or a tuple, the result also has that type;
otherwise it is always a list. If function is None, the identity function is assumed, that is, all elements of /ist that
are false are removed.

Note that filter (function, list) is equivalent to [item for item in list if

’It is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the buffer size is not done
using a method that calls setvbuf (), because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

bltin-file-objects.html

function (item)] if function is not None and [item for item in list if item] if function is
None.

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a plain
or long integer or a floating point number, and a floating point number with the same value (within Python’s
floating point precision) is returned. If no argument is given, returns O . 0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

frozenset ([iterable])
Return a frozenset object whose elements are taken from iterable. Frozensets are sets that have no update
methods but can be hashed and used as members of other sets or as dictionary keys. The elements of a frozenset
must be immutable themselves. To represent sets of sets, the inner sets should also be frozenset objects. If
iterable is not specified, returns a new empty set, frozenset ([]). New in version 2.4.

getattr (object, name [default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether it
raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent to eval (raw_input (prompt)) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically valid, a SyntaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly

8 Chapter 2. Built-In Objects

what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Consider using the raw_input () function for general input from users.

int ([x[, radix]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The radix parameter gives
the base for the conversion and may be any integer in the range [2, 36], or zero. If radix is zero, the proper
radix is guessed based on the contents of string; the interpretation is the same as for integer literals. If radix is
specified and x is not a string, TypeError is raised. Otherwise, the argument may be a plain or long integer
or a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given, returns
0.

isinstance (object, classinfo)
Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect) subclass
thereof. Also return true if classinfo is a type object and object is an object of that type. If object is not a class
instance or an object of the given type, the function always returns false. If classinfo is neither a class object
nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter (0[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, o must be a collection object which supports the iteration protocol
(the __iter__ () method), or it must support the sequence protocol (the __getitem__ () method with
integer arguments starting at 0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object. The iterator created in this case
will call o with no arguments for each call to its next () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned. New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequence])
Return a list whose items are the same and in the same order as sequence’s items. sequence may be either a
sequence, a container that supports iteration, or an iterator object. If sequence is already a list, a copy is made
and returned, similar to sequence [:]. For instance, 1ist (" abc’) returns ["a’, 'b’, ’c’] and list (
(1, 2, 3))returns [1, 2, 3].Ifnoargumentis given, returns a new empty list, [].

locals ()
Update and return a dictionary representing the current local symbol table. Warning: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. The radix argument is interpreted in the same way as for
int (), and may only be given when x is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, returns 0L.

2.1. Built-in Functions 9

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional /ist arguments are passed,
function must take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended with None items. If function is None, the identity function is assumed; if
there are multiple list arguments, map () returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). The list arguments may be any kind of sequence; the result is
always a list.

max (s[, args...])
With a single argument s, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

object ()
Return a new featureless object. object () is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open (ﬁlename[, mode [bufsize]])
An alias for the £ile () function above.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (’a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for 8-bit
strings and of unichr () for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and a TypeError will be raised.

pow (x, [, z])

Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently than
pow (x, y) % z). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For example, 10+2 returns 100, but 10+ %-2 returns 0.01. (This last feature
was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. If z is present, x and y must be of integer types, and y must be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results
depending on floating-point rounding accidents.)

property ([fget[, fset[, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that derive from ob ject).

fget is a function for getting an attribute value, likewise fser is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

10 Chapter 2. Built-In Objects

class C(object):
def _ _init_ (self): self._ _x = None
def getx(self): return self.
def setx(self, wvalue): self.
def delx(self): del self._ x
x = property(getx, setx, delx, "I'm the ’"x’ property.")

_ X
x = value

New in version 2.2.

range ([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used in for loops.
The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start argument
is omitted, it defaults to 0. The full form returns a list of plain integers [start, start + step, start + 2
x step, ...]. If step is positive, the last element is the largest start + i = step less than stop; if step is
negative, the last element is the smallest start + i » step greater than stop. step must not be zero (or else
ValueError is raised). Example:

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range (1, 11)

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

(o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

>>> range (1, 0)

raw_input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then

reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input (' --> ")
—--> Monty Python’s Flying Circus
>>> 5

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, sequence [initializer])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as to reduce
the sequence to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, x, is the accumulated value and the right argument, y,
is the update value from the sequence. If the optional initializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty. If initializer is not given and
sequence contains only one item, the first item is returned.

reload (module)

Reload a previously imported module. The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try

2.1. Built-in Functions 11

out the new version without leaving the Python interpreter. The return value is the module object (the same as
the module argument).

When reload (module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. The init function of extension modules is not
called a second time.

e As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
Zero.

eThe names in the module namespace are updated to point to any new or changed objects.

¢Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the module
you must first import it again (this will bind the name to the partially initialized module object) before you
can reload () it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with a t ry statement it can test
for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for sys,
__main__and __builtin__. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the from
statement, another is to use import and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)

Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed to eval ().

reversed (seq)

Return a reverse iterator. seq must be an object which supports the sequence protocol (the __len__() method
and the __getitem__ () method with integer arguments starting at 0). New in version 2.4.

round (x[, n])

Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minus 7;
if two multiples are equally close, rounding is done away from O (so. for example, round (0.5) is 1.0 and
round (-0.5) is —1.0).

12

Chapter 2. Built-In Objects

set ([iterable])

Return a set whose elements are taken from iterable. The elements must be immutable. To represent sets of sets,
the inner sets should be frozenset objects. If iterable is not specified, returns a new empty set, set ([]).
New in version 2.4.

setattr (object, name, value)

This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar = 123.

slice ([start,] stop[, step])

Return a slice object representing the set of indices specified by range (start, stop, step). The start and
step arguments default to None. Slice objects have read-only data attributes start, stop and step which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For example: ‘a[start:stop:step]’ or ‘a[start:stop, 1i]’.

sorted (itemble[, cmp [key[, reverse]]])

Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort () method
(described in section 2.3.6).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument: ‘cmp=lambda x,y: cmp(x.lower (), y.lower())’

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower’

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once.

New in version 2.4.

staticmethod (function)

Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manual for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in chapter
3 of the Python Reference Manual (at the bottom). New in version 2.2. Changed in version 2.4: Function
decorator syntax added.

str([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference with repr (object) is that st r (object) does not always attempt to return a string that is

2.1.

Built-in Functions 13

../ref/function.html
../ref/types.html

acceptable to eval () ; its goal is to return a printable string. If no argument is given, returns the empty string,

rrs .

sum (sequence [smrt])
Sums start and the items of a sequence, from left to right, and returns the total. szart defaults to 0. The
sequence’s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate

sequence of strings is by calling ’ ’ . join (sequence). Note that sum (range (n), m) is equivalent to
reduce (operator.add, range (n), m) New in version 2.3.

super (fype [object-or—type])
Return the superclass of rype. If the second argument is omitted the super object returned is unbound. If the
second argument is an object, isinstance (obj, type) must be true. If the second argument is a type,
issubclass (type2, type) mustbe true. super () only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super (C, self) .meth(arg)

Note that super is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super (C, self).__getitem__ (name)’. Accordingly, super is undefined for implicit lookups using
statements or operators such as ‘super (C, self) [name]’. New in version 2.2.

tuple ([sequence])
Return a tuple whose items are the same and in the same order as sequence’s items. sequence may be a sequence,
a container that supports iteration, or an iterator object. If sequence is already a tuple, it is returned unchanged.
For instance, tuple (" abc’) returns (‘a’, ’'b’, ’'c’) and tuple([1l, 2, 3]) returns (1, 2,
3) . If no argument is given, returns a new empty tuple, ().

type (object)
Return the type of an object. The return value is a type object. The isinstance () built-in function is
recommended for testing the type of an object.

With three arguments, t ype functions as a constructor as detailed below.

type (name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the __name__ attribute; the bases tuple itemizes the base classes and becomes
the __bases__ attribute; and the dict dictionary is the namespace containing definitions for class body and
becomes the __dict__ attribute. For example, the following two statements create identical t ype objects:

>>> class X (object):
a=1

>>> X = type('X’, (object,), dict(a=1))
New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u’ a’ . This is the inverse of ord () for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF]. ValueError
is raised otherwise. New in version 2.0.

unicode ([object[, encoding [errors]]])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of an

14 Chapter 2. Built-In Objects

encoding; if the encoding is not known, LookupError is raised. Error handling is done according to errors;
this specifies the treatment of characters which are invalid in the input encoding. If errorsis ' strict’ (the
default), a ValueError is raised on errors, while a value of ignore’ causes errors to be silently ignored,
and a value of ' replace’ causes the official Unicode replacement character, U+FFFD, to be used to replace
input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encoding in / strict’ mode.

New in version 2.0. Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has a __dict__ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefined.*

xrange ([start,] stop[, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage of xrange () over range () is minimal (since xrange () still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminated with break).

Note: xrange () is intended to be simple and fast. Implementations may impose restrictions to achieve this.
The C implementation of Python restricts all arguments to native C longs ("’short” Python integers), and also
requires that the number of elements fit in a native C long.

zip ([iterable,])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same length, zip () is similar to map () with an initial
argument of None. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list. New in version 2.0.

Changed in version 2.4: Formerly, zip () required at least one argument and zip () raised a TypeError
instead of returning an empty list.

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without concerns
about missing something important.

apply (function, args [, keywords])
The function argument must be a callable object (a user-defined or built-in function or method, or a class object)
and the args argument must be a sequence. The function is called with args as the argument list; the number
of arguments is the length of the tuple. If the optional keywords argument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling

“In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

2.2. Non-essential Built-in Functions 15

apply () is different from just calling function (args) , since in that case there is always exactly one argument.
The use of apply () is equivalent to function («args, *=keywords). Use of apply () is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.3. Use the extended call syntax instead, as described above.

buffer (object[, oﬁset[, size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend to the end of object (or will have a
length given by the size argument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value of intern () around to benefit from it.

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-in
types have differed from user-defined types because it was not possible to use the built-in types as the basis for object-
oriented inheritance. With the 2.2 release this situation has started to change, although the intended unification of
user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the ‘... notation, the equivalent repr () function, or the slightly
different str () function). The latter function is implicitly used when an object is written by the print statement.
(Information on print statement and other language statements can be found in the Python Reference Manual and
the Python Tutorial.)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for example, 0, 0L, 0.0, 07.

e any empty sequence, for example, "/, (), [].

e any empty mapping, for example, { }.

16 Chapter 2. Built-In Objects

../ref/print.html
../ref/ref.html
../tut/tut.html

e instances of user-defined classes, if the class defines a __nonzero__ () or __len__ () method, when that
method returns the integer zero or bool value False.’

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one of their
operands.)

2.3.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X or y if x is false, then y, else x €))]

x and y | if xis false, then x, else y €))]
not x if x is false, then True, else False 2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b), and
a == not bisasyntax error.

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y and
y <= gz, except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be
false).

This table summarizes the comparison operations:

Operation | Meaning Notes

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

I= not equal (1)

<> not equal ()

is object identity

is not | negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. ! = is the preferred spelling; <> is obsolescent.

5 Additional information on these special methods may be found in the Python Reference Manual.

2.3. Built-in Types 17

../ref/ref.html

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines the __cmp__ () method. Refer to the
Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence types
(below).

2.3.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called integers) are implemented using
long in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating point
numbers are implemented using double in C. All bets on their precision are off unless you happen to know the
machine you are working with.

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract these
parts from a complex number z, use z. real and z. imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals with an ‘L’ or ‘1’ suffix yield long integers (‘L’ is
preferred because ‘11’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending ‘j’ or ‘J’ to a numeric literal yields a complex number with a zero real part.
A complex numeric literal is the sum of a real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same
rule.® The constructors int (), long (), float (), and complex () can be used to produce numbers of a specific

type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

%Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

18 Chapter 2. Built-In Objects

../ref/customization.html

Operation Result Notes
x +y sum of x and y

x -y difference of x and y
X * y product of x and y
x /'y quotient of x and y (1)
x //y (floored) quotient of x and y 5)
X %y remainder of x / y 4
X x negated
+x x unchanged
abs (x) absolute value or magnitude of x
int (x) x converted to integer 2)
long (x) x converted to long integer 2)
float (x) x converted to floating point

complex (re,im) | acomplex number with real part re, imaginary part im. im defaults to zero.
c.conjugate () | conjugate of the complex number ¢

divmod (x, y) the pair (x // y, x % y) 3)4)
pow (x, y) x to the power y
X *xxy X to the power y
Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/21is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions f1loor ()
and ceil () in the math module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, and divmod ().

Deprecated since release 2.3. Instead convert to float using abs () if appropriate.

(5) Alsoreferred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily
int.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ‘~’ has the same priority as the other unary numeric operations (‘+’ and ‘-’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
x|y bitwise or of x and y
x "y bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n | x shifted left by n bits D, 2
x >> n | x shifted right by n bits (1), (3)
X the bits of x inverted

2.3. Built-in Types 19

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by = bits is equivalent to multiplication by pow (2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow (2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL

next ()
Return the next item from the container. If there are no further items, raise the StopIteration exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
APIL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s __iter__ ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the __iter__ () and next () methods.

2.3.6 Sequence Types — str, unicode, list, tuple, buffer, xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotes: ' xyzzy’, "frobozz". See chapter 2 of the Python Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceding ‘u’ character: u’abc’, u"def". Lists are constructed with square brackets, separating items with
commas: [a, b, c]. Tuples are constructed by the comma operator (not within square brackets), with or without

20 Chapter 2. Built-In Objects

../ref/strings.html
../ref/strings.html

enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as a, b,
item tuple must have a trailing comma, such as (d,).

cor (). A single

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer (). They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the
xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in, min () or
max () on them is inefficient.

Most sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘x’ operations have the same priority as the corresponding numeric
operations.’

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
X in s True if an item of s is equal to x, else False @))]
x not in s | False if anitem of s is equal to x, else True @))]
s+t the concatenation of s and ¢ 6)
s = n, n = s | nshallow copies of s concatenated 2)
sli] i’th item of s, origin 0 3)
si:j] slice of s from i to j 3), @
sli:j:k] slice of s from i to j with step k 3), (5
len (s) length of s
min (s) smallest item of s
max (s) largest item of s

Notes:

(1) When s is a string or Unicode string object the in and not in operations act like a substring test. In Python
versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of any length.

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists =
>>> lists
(e, 1, (11

>>> 1lists[0].append(3)
>>> lists
[[31, [31,

(1] = 3

[31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
x 3 are (pointers to) this single empty list. Modifying any of the elements of 1ists modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> 1lists[0].append(3)

>>> lists[1l].append(5)

>>> lists([2].append(7)

>>> lists

[031, (51, [711

7They must have since the parser can’t tell the type of the operands.

2.3. Built-in Types 21

(3) If i orj is negative, the index is relative to the end of the string: 1en (s) + ior len (s) + jis substituted. But
note that —0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such thati <= k < j. If i orjis greater
than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s) . If i is greater
than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items with index x = i + nxk such that
0<n<]k;l In other words, the indices are i, i+k, i+2+k, 1+3xk and so on, stopping when j is reached
(but never including j). If i or j is greater than 1en (s), use len (s) . If i or j are omitted or None, they become
“end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated like 1.

(6) If s and r are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the form s=s+t or s+=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For performance
sensitive code, it is preferable to use the str. join () method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4: Formerly, string concatenation
never occurred in-place.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width|, filichar |)
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count (sub[, start[, end]])
Return the number of occurrences of substring sub in string S [start : end]. Optional arguments start and end
are interpreted as in slice notation.

decode ([encoding [errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The defaultis * strict’, meaning that encoding
errors raise UnicodeError. Other possible values are ’ ignore’, ' replace’ and any other name regis-
tered via codecs.register_error, see section 4.9.1. New in version 2.2. Changed in version 2.3:
Support for other error handling schemes added.

encode ([encoding [,errors]])

Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
"strict’, meaning that encoding errors raise a UnicodeError. Other possible values are ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered via
codecs.register_error, see section 4.9.1. For a list of possible encodings, see section 4.9.2. New in
version 2.0. Changed in version 2.3: Support for ’ xmlcharrefreplace’ and ' backslashreplace’
and other error handling schemes added.

endswith (sujﬁx[, start[, end]])
Return True if the string ends with the specified suffix, otherwise return False. With optional start, test
beginning at that position. With optional end, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not given, a tab size
of 8 characters is assumed.

22 Chapter 2. Built-In Objects

find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the range [start,
end]. Optional arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

index (sub[, smrt[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum
Retuil)l true if all characters in the string are alphanumeric and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()

Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator between elements is
the string providing this method.

1just (width], fillchar |)
Return the string left justified in a string of length width. Padding is done using the specified fillchar (default is
a space). The original string is returned if width is less than 1en (s). Changed in version 2.4: Support for the
fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

1strip([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

2.3. Built-in Types 23

>>> spacious " .lstrip()
" spacious !
>>> "www.example.com’ .lstrip (' cmowz.’)

"example.com’

Changed in version 2.2.2: Support for the chars argument.

replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count
is given, only the first count occurrences are replaced.

rfind (sub [,start [,end]])

Return the highest index in the string where substring sub is found, such that sub is contained within s[start,end].
Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

rindex (sub[, start[, end]])

Like rfind () but raises ValueError when the substring sub is not found.

rjust (width [ﬁllchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than 1en (s). Changed in version 2.4: Support for
the fillchar argument.

rsplit ([sep [,maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below. New in
version 2.4.

rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set of
characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> 7 spacious ' .rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

split ([sep [,maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done. (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then there is no
limit on the number of splits (all possible splits are made). Consecutive delimiters are not grouped together and
are deemed to delimit empty strings (for example, ** 1, ,2’ .split (’,”) returns ‘["17, "', '2"1’°).
The sep argument may consist of multiple characters (for example, 1, 2, 3’ .split(’, ')’ returns

>

‘{r1r, 2, "3771°). Splitting an empty string with a specified separator returns ‘[’ 7]’.
If sep is not specified or is None, a different splitting algorithm is applied. First, whitespace characters (spaces,
tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by arbitrary
length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single delimiter
(‘1 2 3" .split ()’ returns ‘["1’, "2’, ’37]1°). Splitting an empty string or a string consisting of
just whitespace returns an empty list.

splitlines ([keepends])

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

startswith (preﬁx[, start[, end]])

24

Chapter 2. Built-In Objects

Return True if string starts with the prefix, otherwise return False. With optional start, test string beginning
at that position. With optional end, stop comparing string at that position.

strip ([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious ’.strip()
"spacious’

>>> 'www.example.com’ .strip (’/ cmowz.’)
"example’

Changed in version 2.2.2: Support for the chars argument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table [deletechars])
Return a copy of the string where all characters occurring in the optional argument deletechars are removed,

and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

For Unicode objects, the translate () method does not accept the optional deletechars argument. Instead,
it returns a copy of the s where all characters have been mapped through the given translation table which must
be a mapping of Unicode ordinals to Unicode ordinals, Unicode strings or None. Unmapped characters are
left untouched. Characters mapped to None are deleted. Note, a more flexible approach is to create a custom
character mapping codec using the codecs module (see encodings.cpl1251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

z£i11 (width)
Return the numeric string left filled with zeros in a string of length width. The original string is returned if width
is less than 1en (s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as the
string formatting or interpolation operator. Given format %values (Where format is a string or Unicode object), %
conversion specifications in format are replaced with zero or more elements of values. The effect is similar to the
using sprintf () inthe C language. If format is a Unicode object, or if any of the objects being converted using the
%s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object.® Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

2.3. Built-in Types 25

1. The ‘%’ character, which marks the start of the specifier.
Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

Conversion flags (optional), which affect the result of some conversion types.

Sl

Minimum field width (optional). If specified as an ‘+’ (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ‘.’ (dot) followed by the precision. If specified as ‘x’ (an asterisk), the actual
width is read from the next element of the tuple in values, and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.
When the right argument is a dictionary (or other mapping type), then the formats in the string must include a paren-

thesised mapping key into that dictionary inserted immediately after the ‘%’ character. The mapping key selects the
value to be formatted from the mapping. For example:

o o

>>> print ’%(language)s has % (#)03d quote types.’ % \
{’language’: "Python", "#": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘4> | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

- The converted value is left adjusted (overrides the ‘0’ conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+> | A sign character (‘+° or ‘=) will precede the conversion (overrides a ”space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python.

The conversion types are:

Conversion | Meaning Notes
‘ Signed integer decimal.
‘1’ Signed integer decimal.
‘o’ Unsigned octal. (D)
‘u’ Unsigned decimal.
‘x’ Unsigned hexadecimal (lowercase). 2)
‘X’ Unsigned hexadecimal (uppercase). 2)
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
‘£ Floating point decimal format.
‘B’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘£’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘e’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr ()). 3)
‘s’ String (converts any python object using str ()). “)
‘%’ No argument is converted, results in a ‘%’ character in the result.

26 Chapter 2. Built-In Objects

Notes:

(1) The alternate form causes a leading zero (‘0’) to be inserted between left-hand padding and the formatting of the
number if the leading character of the result is not already a zero.

(2) The alternate form causes a leading ’ 0x’ or / 0X’ (depending on whether the ‘x’ or ‘X’ format was used) to be
inserted between left-hand padding and the formatting of the number if the leading character of the result is not
already a zero.

(3) The %r conversion was added in Python 2.0.

(4) If the object or format provided is a unicode string, the resulting string will also be unicode.

Since Python strings have an explicit length, $s conversions do not assume that \ 0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50; % £ conversions for numbers whose absolute value is
over 1e25 are replaced by $g conversions.” All other errors raise exceptions.

Additional string operations are defined in standard modules st ring and re.

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type
is that an xrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
slizj] =t slice of s from i to j is replaced by ¢
del s[i:j] same as s[i:j] = []
slizj:k] =t the elements of s [i:j: k] are replaced by those of ¢ (D
del sl[i:j:k] removes the elements of s [i:j:k] from the list
s.append (x) sameas s[len(s) :len(s)] = [x] 2)
s.extend (x) sameass[len(s):len(s)] = x 3)
s.count (x) return number of i’s for which s [i] == x
s.index(x[, i[, j]]) return smallest k such that s [k] == xandi <= k < j @)
s.insert (i, x) sameas s[i:i] = [x] 5)
s.pop([i]) sameasx = s[i]; del s[i]; return x (6)
s.remove (x) same as del s[s.index (x)] 4)
s.reverse () reverses the items of s in place 7
s.sort ([cmp[, key[, reverse]]]) sort the items of s in place 1), (8), (9), (10)

Notes:

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.3. Built-in Types 27

(1) ¢ must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) x can be any iterable object.

(4) Raises ValueError when x is not found in s. When a negative index is passed as the second or third parameter
to the index () method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments for specifying start
and stop positions.

(5) When a negative index is passed as the first parameter to the insert () method, the list length is added, as for
slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

(6) The pop () method is only supported by the list and array types. The optional argument i defaults to —1, so that
by default the last item is removed and returned.

(7) The sort () and reverse () methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed list.

(8) The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative, zero
or positive number depending on whether the first argument is considered smaller than, equal to, or larger than
the second argument: ‘cmp=lambda x,y: cmp(x.lower (), y.lower())’

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower’

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp function.
This is because cmp is called multiple times for each list element while key and reverse touch each element only
once.

Changed in version 2.3: Support for None as an equivalent to omitting cmp was added.

Changed in version 2.4: Support for key and reverse was added.

(9) Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not to
change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty for the duration, and raises ValueError
if it can detect that the list has been mutated during a sort.

2.3.7 Set Types — set, frozenset

A set object is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and sym-
metric difference. New in version 2.4.

Like other collections, sets support x in set, len (set), and for x in set. Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two builtin set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used

28 Chapter 2. Built-In Objects

as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another set.

Instances of set and frozenset provide the following operations:

Operation Equivalent | Result
len (s) cardinality of set s
x in s test x for membership in s
X not in s test x for non-membership in s
s.lissubset () s <=t test whether every element in s is in ¢
s.issuperset (1) s >=t test whether every element in 7 is in s
s.union (t) s—t new set with elements from both s and ¢
s.intersection (f) s&t new set with elements common to s and ¢
s.difference (1) s-t new set with elements in s but not in ¢
s.symmetric_difference (1) s°t new set with elements in either s or ¢ but not both
s.copy () new set with a shallow copy of s
Note, the non-operator versions of union(), intersection(), difference (), and

symmetric_difference (), issubset (), and issuperset () methods will accept any iterable as an argu-
ment. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone con-
structions like set (" abc’) & ’cbs’ in favor of the more readable set (' abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element of each
set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a
proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For example, ‘set (' abc’)
frozenset (' abc’)’ returns True.

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each other, so all of the following return False: a<b, a==b, or a>b.
Accordingly, sets do not implement the __cmp__ method.

Since sets only define partial ordering (subset relationships), the output of the 1ist .sort () method is undefined
for lists of sets.

Set elements are like dictionary keys; they need to define both __hash__ and __eq__ methods.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
‘frozenset ("ab’) | set (’bc’)’ returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

Operation Equivalent | Result
s.update (1) s—=t update set s, adding elements from ¢
s.intersection_update (f) s &=t update set s, keeping only elements found in both s and ¢
s.difference_update (t) s-=t update set s, removing elements found in ¢
s.symmetric_difference_update (t) s'=t update set s, keeping only elements found in either s or ¢ but not in bo

s.add (x)
s.remove (x)
s.discard (x)
s.pop ()
s.clear ()

add element x to set s
remove x from set s; raises KeyError if not present
removes x from set s if present

remove and return an arbitrary element from s; raises KeyError if e

remove all elements from set s

Note, the non-operator versions of the update (), intersection_update (),difference_update (), and
symmetric_difference_update () methods will accept any iterable as an argument.

2.3. Built-in Types

29

The design of the set types was based on lessons learned from the set s module.
See Also:

Comparison to the built-in set types
Differences between the set s module and the built-in set types.

2.3.8 Mapping Types — classdict

A mapping object maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. A dictionary’s keys are almost arbitrary values. Only values containing
lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used
as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: value pairs within braces, for example:
{’ jack’ : 4098, ’sjoerd’: 4127} or {4098: "jack’, 4127: "sjoerd’ }.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and x are arbitrary
objects):

Operation Result Notes
len (a) the number of items in a
alk] the item of a with key k @))
alk] =v setalk] tov
del alk] remove a [k] from a (1)
a.clear () remove all items from a
a.copy () a (shallow) copy of a
a.has_key (k) True if a has a key k, else False
k in a Equivalent to a.has_key(k) 2)
k not in a Equivalent to not a.has_key(k) 2)
a.items () a copy of a’s list of (key, value) pairs 3)
a.keys () a copy of a’s list of keys 3)
a.update ([b]) updates (and overwrites) key/value pairs from b)
a.fromkeys (seq[, value]) | Creates a new dictionary with keys from seq and values set to value @)
a.values () a copy of a’s list of values 3)
a.get(k[, x]) alk] ifk in a,elsex 4
a.setdefault (k[, x]) alk] ifk in a,else x (also setting it) 5)
a.pop(k[, x]) alk] ifk in a, else x (and remove k) ®)
a.popitem/() remove and return an arbitrary (key, value) pair (6)
a.iteritems () return an iterator over (key, value) pairs 2),(3)
a.iterkeys () return an iterator over the mapping’s keys 2), (3)
a.itervalues () return an iterator over the mapping’s values), 3)

Notes:

(1) Raises a KeyError exception if k is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletions. If items (), keys (), values (),
iteritems (), iterkeys (), and itervalues () are called with no intervening modifications to
the dictionary, the lists will directly correspond. This allows the creation of (value, key) pairs using
zip(): ‘pairs = zip(a.values (), a.keys())’. Thesame relationship holds for the iterkeys ()

30 Chapter 2. Built-In Objects

comparison-to-builtin-set.html

and itervalues () methods: ‘pairs = zip(a.itervalues(), a.iterkeys())’ provides the
same value for pairs. Another way to create the same list is ‘pairs = [(v, k) for (k, v) in

s

a.iteritems ()]’

(4) Never raises an exception if & is not in the map, instead it returns x. x is optional; when x is not provided and & is
not in the map, None is returned.

(5) setdefault () islike get (), except that if k is missing, x is both returned and inserted into the dictionary as
the value of k. x defaults to None.

(6) popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the dictionary
is empty, calling popitem () raises a KeyError.

(7) fromkeys () is a class method that returns a new dictionary. value defaults to None. New in version 2.3.
(8) pop () raises a KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update () accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable of
length two). If keyword arguments are specified, the mapping is then is updated with those key/value pairs:
‘d.update (red=1, blue=2)’. Changed in version 2.4: Allowed the argument to be an iterable of
key/value pairs and allowed keyword arguments.

2.3.9 File Objects

File objects are implemented using C’s stdio package and can be created with the built-in constructor file ()
described in section 2.1, “Built-in Functions.”!? File objects are also returned by some other built-in functions and
methods, such as os . popen () and os . fdopen () and the makefile () method of socket objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes situations where
the operation is not defined for some reason, like seek () on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a ValueError after the file has been closed. Calling c1ose () more than once is allowed.

flush ()
Flush the internal buffer, like stdio’s ££f1ush (). This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fentl module or os.read () and friends. Note: File-like objects which do not have a real file descriptor
should not provide this method!

isatty ()
Return True if the file is connected to a tty(-like) device, else False. Note: If a file-like object is not associated
with a real file, this method should not be implemented.

next ()

A file object is its own iterator, for example iter (f) returns f (unless f is closed). When a file is used as an
iterator, typically in a for loop (for example, for line in f: print line), the next () method is
called repeatedly. This method returns the next input line, or raises StopIteration when EOF is hit. In
order to make a for loop the most efficient way of looping over the lines of a file (a very common operation),
the next () method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, com-
bining next () with other file methods (like readline ()) does not work right. However, using seek () to
reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

10fi1e () isnew in Python 2.2. The older built-in open () is an alias for file ().

2.3. Built-in Types 31

read ([size])
Read at most size bytes from the file (less if the read hits EOF before obtaining size bytes). If the size argument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C function fread () more than once
in an effort to acquire as close to size bytes as possible. Also note that when in non-blocking mode, less data
than what was requested may be returned, even if no size parameter was given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when a
file ends with an incomplete line).!! If the size argument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned only when
EOF is encountered immediately. Note: Unlike stdio’s fgets (), the returned string contains null characters
(" \0") if they occurred in the input.

readlines ([sizehint])
Read until EOF using readline () and return a list containing the lines thus read. If the optional sizehint
argument is present, instead of reading up to EOF, whole lines totalling approximately sizehint bytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignore sizehint if it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thing as iter (£f). New in version 2.1. Deprecated since release 2.3. Use
‘for line in file’ instead.

seek (oﬁ‘set[, whence])

Set the file’s current position, like stdio’s £seek (). The whence argument is optional and defaults to 0
(absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the
file’s end). There is no return value. Note that if the file is opened for appending (mode " a’ or ’ a+’), any
seek () operations will be undone at the next write. If the file is only opened for writing in append mode (mode
"a’), this method is essentially a no-op, but it remains useful for files opened in append mode with reading
enabled (mode ’ a+"). If the file is opened in text mode (without ’ b’), only offsets returned by tell () are
legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, like stdio’s ftell ().

Note: On Windows, tell () can return illegal values (after an fgets ()) when reading files with UNIX-style
line-endings. Use binary mode (’ rb’) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optional size argument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file’s current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many UNIX variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until the £1ush () or close () method is called.

writelines (sequence)
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to match readlines (); writelines () does
not add line separators.)

"I'The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

32 Chapter 2. Built-In Objects

Files support the iterator protocol. Each iteration returns the same result as file. readline (), and iteration ends
when the readline () method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attribute; the close () method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may also be None, in which case the file
uses the system default encoding for converting Unicode strings.

New in version 2.3.

mode
The I/0 mode for the file. If the file was created using the open () built-in function, this will be the value of
the mode parameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created using open (), the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<...>’. This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the --with-universal-newlines option to configure (the default) this read-only attribute
exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The values it can take are \r’, ’ \n’, ’ \r\n’, None (unknown, no newlines read yet)
or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered.
For files not opened in universal newline read mode the value of this attribute will be None.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using the print
statement. Classes that are trying to simulate a file object should also have a writable softspace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control the print statement, but to allow the
implementation of print to keep track of its internal state.

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m . name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist, rather
it requires an (external) definition for a module named foo somewhere.)

A special member of every module is __dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict__
attribute is not possible (you can write m.__dict__[’a’] = 1, which defines m.a to be 1, but you can’t write

2.3. Built-in Types 33

m.__dict__ = {}). Modifying __dict__ directly is not recommended.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a file,
they are written as <module ’os’ from ’/usr/local/lib/python2.4/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See the Python Reference Manual for more information.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im_self is the object on
which the method operates, and m.im_func is the function implementing the method. Calling m (arg-1, arg-2,
.., arg-n) is completely equivalent to calling m.im_func (m.im_self, arg-1, arg-2, ..., arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed through an instance
or a class, respectively. When a method is unbound, its im_self attribute will be None and if called, an explicit
self object must be passed as the first argument. In this case, self must be an instance of the unbound method’s
class (or a subclass of that class), otherwise a TypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in a TypeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self) :
pass

c =Cq()

c.method.im_func.whoami = 'my name is c’

See the Python Reference Manual for more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-in compile () function and can be extracted from function objects
through their func_code attribute.

34 Chapter 2. Built-In Objects

../ref/ref.html
../ref/ref.html
../ref/ref.html

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement or the
built-in eval () function.

See the Python Reference Manual for more information.

Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in function type (). There
are no special operations on types. The standard module t ypes defines names for all standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special operations.
There is exactly one ellipsis object, named E11ipsis (a built-in name).

Itis written as E11ipsis.

Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function boo1l () can be used to
cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written as False and True, respectively.

Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects, and slice
objects.

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since release 2.2. Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

2.3. Built-in Types 35

../ref/ref.html
../ref/ref.html
../ref/ref.html

__members_ _
Deprecated since release 2.2. Use the built-in function dir () to get a list of an object’s attributes. This
attribute is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the module exceptions. This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as well as the exceptions
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will raise
aPendingDeprecationWarning. In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, in a try statement with an except clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from which it is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to the raise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument of the except clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard root class Exception, the associated value is present as
the exception instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from the Exception base class. More information on defining exceptions is available in the
Python Tutorial under the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exception Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforced. The str () function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’s args attribute, as a tuple.

exception StandardError

36 Chapter 2. Built-In Objects

../tut/tut.html

The base class for all built-in exceptions except StopIteration and SystemExit. StandardError
itself is derived from the root class Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError,FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by sys.setdefaultencoding ().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’s errno attribute (it is assumed
to be an error number), and the second item is available on the st rerror attribute (it is usually the associated
error message). The tuple itself is also available on the args attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on the filename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

The £ilename attribute is None when this exception is created with other than 3 arguments. The errno and
strerror attributes are also None when the instance was created with other than 2 or 3 arguments. In this
last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (input () or raw_input ()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: the read () and readline () methods of file objects return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the --with-fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined in the
‘pyconfig.h’ file.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open () function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on exception
instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from ... import fails to
find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt

2.4. Built-in Exceptions 37

Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in function input () or raw_input () is waiting
for input also raise this exception.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’s malloc () function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception Not ImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exception OSError
This class is derived from EnvironmentError and is used primarily as the os module’s os . error excep-
tion. See EnvironmentError above for a description of the possible associated values. New in version
1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raise MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref .proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module. New in version 2.2: Previously known as the weakref.ReferenceError
exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator’s next () method to signal that there are no further values. This is derived from
Exception rather than StandardError, since this is not considered an error in its normal application.
New in version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an exec
statement, in a call to the built-in function eval () or input (), or when reading the initial script or standard
input (also interactively).

Instances of this class have attributes filename, 1ineno, of fset and text for easier access to the details.
str () of the exception instance returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of
the Python interpreter (sys . version; itis also printed at the start of an interactive Python session), the exact

38 Chapter 2. Built-In Objects

error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit () function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting to None).
Also, this exception derives directly from Exception and not StandardError, since it is not technically
an error.

A call to sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a call to fork ()).

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError. New in
version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError. New in
version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError. New in
version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such as IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to an errno
value. The errno and strerror values are created from the return values of the GetLastError () and
FormatMessage () functions from the Windows Platform API. This is a subclass of OSError. New in
version 2.0.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

exception UserWarning

2.4. Built-in Exceptions 39

Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception Runt imeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

40 Chapter 2. Built-In Objects

Exception
+-— SystemExit
+-— Stoplteration

+——

StandardError

+—— KeyboardInterrupt
+—— ImportError

+-— EnvironmentError

| +—— IOError

| +-——- OSError

| +-— WindowsError
+—— EOFError

+-— RuntimeError

| +-— NotImplementedError
+—-— NameError

| +—-— UnboundLocalError
+-— AttributeError

+-— SyntaxError

| +-— IndentationError
| +-— TabError

+—-— TypeError

+-— AssertionError
+-— LookupError
| +-— IndexError

| +—-— KeyError
+-— ArithmeticError

| +-— OverflowError

| +—-— ZeroDivisionError
| +-— FloatingPointError
+-— ValueError

| +—— UnicodeError

\ +—— UnicodeEncodeError

\ +-— UnicodeDecodeError

\ +-— UnicodeTranslateError
+-— ReferenceError

+—-— SystemError

+-— MemoryError

+-——Warning

UserWarning

DeprecationWarning

PendingDeprecationWarning

SyntaxWarning

OverflowWarning (not generated in 2.4; won’t exist
RuntimeWarning

FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False

The false value of the bool type. New in version 2.3.

True

The true value of the bool type. New in version 2.3.

in 2.5)

2.5. Built-in Constants

41

None
The sole value of t ypes.NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (), —_1t__ (), and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

42 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc

weakref
fpectl
atexit
types
UserDict
Userlist
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy-_reg
shelve

copy
marshal
warnings
imp
zipimport
pkgutil

modulefinder

code

codeop
pprint

repr

new

site

user
__builtin__
__main__
__future__

3.1

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.
Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version of pick1e, but not subclassable.

Register pickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of the import statement.
support for importing Python modules from ZIP archives.
Utilities to support extension of packages.

Find modules used by a script.

Base classes for interactive Python interpreters.

Compile (possibly incomplete) Python code.

Data pretty printer.

Alternate repr () implementation with size limits.
Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The module that provides the built-in namespace.

The environment where the top-level script is run.

Future statement definitions

sys — System-specific parameters and functions

43

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv [0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the -¢ command
line option to the interpreter, argv [0] is set to the string ' —c’. If no script name was passed to the Python
interpreter, argv has zero length.

byteorder
An indicator of the native byte order. This will have the value ' big’ on big-endian (most-signigicant byte first)
platforms, and * 1itt1le’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way — modules.keys () only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)
If value is not None, this function prints it to sys . stdout, and savesitin __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook.

excepthook (type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook.

__displayhook__

__excepthook__
These objects contain the original values of displayhook and excepthook at the start of the program.
They are saved so that displayhook and excepthook can be restored in case they happen to get replaced
with broken objects.

exc_info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is returned.
Otherwise, the values returned are (type, value, traceback). Their meaning is: type gets the exception type
of the exception being handled (a class object); value gets the exception parameter (its associated value or the
second argument to raise, which is always a class instance if the exception type is a class object); traceback
gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point where the
exception originally occurred.

If exc_clear () is called, this function will return three None values until either another exception is raised
in the current thread or the execution stack returns to a frame where another exception is being handled.

44 Chapter 3. Python Runtime Services

Warning: Assigning the traceback return value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the
best solution is to use something like exctype, value = sys.exc_info () [:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best done with a try
... finally statement) or to call exc_info () in a function that does not itself handle an exception. Note:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc_clear ()
This function clears all information relating to the current or last exception that occurred in the current thread.
After calling this function, exc_info () will return three None values until another exception is raised in the
current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling systems
that report information on the last or current exception. This function can also be used to try to free resources
and trigger object finalization, though no guarantee is made as to what objects will be freed, if any. New in
version 2.3.

exc_type
exc_value
exc_traceback
Deprecated since release 1.5. Use exc_info () instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled, exc_type is set to None and the other two are
undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also * /usr/local’. This can be set at build time with the --exec-prefix argument to the
configure script. Specifically, all configuration files (e.g. the ‘pyconfig.h’ header file) are installed in the di-
rectory exec_prefix + ' /lib/pythonversion/config’, and shared library modules are installed in
exec_prefix + ' /lib/pythonversion/1lib-dynload’, where version is equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])

Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions specified by
finally clauses of t ry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argument arg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; UNIX programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is passed, None is equivalent to passing zero, and any other
object is printed to sys . stderr and results in an exit code of 1. In particular, sys.exit ("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use the at exit module. Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or when os._exit () is called. Deprecated since
release 2.4. Use atexit instead.

getcheckinterval ()

3.1. sys — System-specific parameters and functions 45

Return the interpreter’s “check interval”’; see setcheckinterval (). New in version 2.3.

getdefaultencoding ()
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags ()
Return the current value of the flags that are used for d1open () calls. The flag constants are defined in the d1
and DLFCN modules. Availability: UNIX. New in version 2.2.

getfilesystemencoding ()
Return the name of the encoding used to convert Unicode filenames into system file names, or None if the
system default encoding is used. The result value depends on the operating system:

¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8”.

¢On Unix, the encoding is the user’s preference according to the result of nl_langinfo(CODESET), or None
if the nl_langinfo(CODESET) failed.

eOn Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding still returns “mbces”, as this is the encoding that applications should
use when they explicitly want to convert Unicode strings to byte strings that are equivalent when used as
file names.

New in version 2.3.

getrefcount (object)
Return the reference count of the object. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument to get refcount ().

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit ().

_getframe ([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stack, ValueError is raised. The default for
depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
are major, minor, build, platform, and text. text contains a string while all other values are integers.

platform may be one of the following values:

Constant | Platform

0 (VER_PLATFORM_WIN32s) ‘Win32s on Windows 3.1
1 (VER_PLATFORM_WIN32_WINDOWS) Windows 95/98/ME

2 (VER_PLATFORM_WIN32_NT) Windows NT/2000/XP
3 (VER_PLATFORM_WIN32_CE) Windows CE

This function wraps the Win32 GetVersionEx () function; see the Microsoft documentation for more infor-
mation about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

46 Chapter 3. Python Runtime Services

if sys.hexversion >= 0x010502FO0:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called ‘hexversion’ since it only really looks meaningful when viewed as the result of passing it to
the built-in hex () function. The version_info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last_type

last_value

last_traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical useis ‘import pdb; pdb.pm()’ to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return values from exc_info () above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unlike for exc_type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2*¥*31-1. The largest
negative integer is -maxint -1 — the asymmetry results from the use of 2’s complement binary arithmetic.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionary is not
the same as calling reload () on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list, path [0], is the directory containing the script
that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is
invoked interactively or if the script is read from standard input), path [0] is the empty string, which directs
Python to search modules in the current directory first. Notice that the script directory is inserted before the
entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, e.g. * sunos5”’ or / 1inux1’. This can be used to append platform-
specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string * /usr/local’. This can be set at build time with the --prefix argument to
the configure script. The main collection of Python library modules is installed in the directory prefix +
" /1lib/pythonversion’ while the platform independent header files (all except ‘pyconfig.h’) are stored in
prefix + ’/include/pythonversion’, where version is equal to version|[:3].

3.1. sys — System-specific parameters and functions 47

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case are >>> ’ and /... ‘. If a non-string object is
assigned to either variable, its st r () is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The default is 100, meaning the check is performed every
100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value <= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (name)
Set the current default string encoding used by the Unicode implementation. If name does not match any
available encoding, LookupError is raised. This function is only intended to be used by the site module
implementation and, where needed, by sitecustomize. Once used by the site module, it is removed from
the sys module’s namespace. New in version 2.0.

setdlopenflags (n)
Set the flags used by the interpreter for dlopen () calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called as sys.setdlopenflags(0). To share symbols across extension modules, call as
sys.setdlopenflags (dl.RTLD_NOW | dl1.RTLD_GLOBAL). Symbolic names for the flag modules
can be either found in the d1 module, or in the DLFCN module. If DLFCN is not available, it can be generated
from ‘/usr/include/difcn.h’ using the h2py script. Availability: UNIX. New in version 2.2.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (see settrace ()), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simply return None.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered using settrace () for each thread being debugged.
Note: The settrace () function is intended only for implementing debuggers, profilers, coverage tools and
the like. Its behavior is part of the implementation platform, rather than part of the language definition, and thus
may not be available in all Python implementations.

settscdump (on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, if on_flag is true. Deactivate
these dumps if on_flag is off. The function is available only if Python was compiled with --with-tsc. To
understand the output of this dump, read ‘Python/ceval.c’ in the Python sources. New in version 2.4.

stdin
stdout
stderr

48 Chapter 3. Python Runtime Services

File objects corresponding to the interpreter’s standard input, output and error streams. stdin is used for
all interpreter input except for scripts but including calls to input () and raw_input (). stdout is used
for the output of print and expression statements and for the prompts of input () and raw_input ().
The interpreter’s own prompts and (almost all of) its error messages go to stderr. stdout and stderr
needn’t be built-in file objects: any object is acceptable as long as it has a write () method that takes a
string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen (), os.system () or the execx () family of functions in the os module.)

——stdin__

__stdout__

__stderr__
These objects contain the original values of stdin, stderr and stdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defaultis 1000. When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the form ’ version (#build_number, build_date, build_time)
[compiler]’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys
>>> sys.version
71.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

api_version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version_info
A tuple containing the five components of the version number: major, minor, micro, releaselevel, and serial. All
values except releaselevel are integers; the release level is alpha’, "beta’,’ candidate’,or’ final’.
The version_info value corresponding to the Python version 2.0is (2, 0, 0, ’final’, 0). New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the warnings
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three characters of version. It is provided in the sys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

See Also:

Module site (section 3.30):
This describes how to use .pth files to extend sys .path.

3.2 gc — Garbage Collector interface

3.2. gc — Garbage Collector interface 49

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable (). To debug a leaking program call gc . set _debug (gc.DEBUG_LEAK) . Notice that this
includes gc . DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for inspection.

The gc module provides the following functions:

enable ()

Enable automatic garbage collection.

disable ()

Disable automatic garbage collection.

isenabled ()

Returns true if automatic collection is enabled.

collect ()

Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set_debug (flags)

Set the garbage collection debugging flags. Debugging information will be written to sy s . stderr. See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get_debug ()

Return the debugging flags currently set.

get_objects ()

Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set_threshold (threshold0|, thresholdl|, threshold2 |])

Set the garbage collection thresholds (the collection frequency). Setting thresholdO to zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (generation 0). If an object survives a collection it is moved
into the next older generation. Since generation 2 is the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceeds threshold0, collection starts. Initially only generation 0O is examined. If generation 0 has been examined
more than thresholdl times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation 2.

get_threshold()

Return the current collection thresholds as a tuple of (threshold0, thresholdl, threshold2) .

get_referrers (*objs)

Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call
collect () before calling get _referrers().

Care must be taken when using objects returned by get _referrers () because some of them could still be
under construction and hence in a temporarily invalid state. Avoid using get _referrers () for any purpose
other than debugging.

New in version 2.2.

get_referents (*objs)

Return a list of objects directly referred to by any of the arguments. The referents returned are those objects

50

Chapter 3. Python Runtime Services

visited by the arguments’ C-level tp_t raverse methods (if any), and may not be all objects actually directly
reachable. tp_traverse methods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable from
an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage

A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with __del__ () methods.! Objects that have __del__ () methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, it isn’t possible for Python to guess a safe order in which to runthe __del__ () methods. If you know
a safe order, you can force the issue by examining the garbage list, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of being in the garbage list, so
they should be removed from garbage too. For example, after breaking cycles, do del gc.garbage[:] to
empty the list. It’s generally better to avoid the issue by not creating cycles containing objects with __del__ ()
methods, and garbage can be examined in that case to verify that no such cycles are being created.

If DEBUG_SAVEALL is set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use with set _debug () :

DEBUG_STATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUG_COLLECTABLE
Print information on collectable objects found.

DEBUG_UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to the garbage list.

DEBUG_INSTANCES
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTABLE is set, print information about instance objects
found.

DEBUG_OBJECTS
When DEBUG_COLLECTABLE or DEBUG_UNCOLLECTARBLE is set, print information about objects other than
instance objects found.

DEBUG_SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This can be useful
for debugging a leaking program.

DEBUG_LEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUG_COLLECTABLE | DEBUG_UNCOLLECTABLE | DEBUG_INSTANCES | DEBUG_OBJECTS
| DEBUG_SAVEALL).

3.3 weakref — Weak references

New in version 2.1.
The weakref module allows the Python programmer to create weak references to objects.

In the following, the term referent means the object which is referred to by a weak reference.

IPrior to Python 2.2, the list contained all instance objects in unreachable cycles, not only those with __del__ () methods.

3.3. weakref — Weak references 51

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that a
large object not be kept alive solely because it appears in a cache or mapping. For example, if you have a number of
large binary image objects, you may wish to associate a name with each. If you used a Python dictionary to map names
to images, or images to names, the image objects would remain alive just because they appeared as values or keys in
the dictionaries. The WeakKeyDictionary and WeakValueDictionary classes supplied by the weakref
module are an alternative, using weak references to construct mappings that don’t keep objects alive solely because
they appear in the mapping objects. If, for example, an image object is a value in a WeakValueDictionary,
then when the last remaining references to that image object are the weak references held by weak mappings, garbage
collection can reclaim the object, and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it’s not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by the weakre f module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects, DBcursor
objects from the bsddb module, sockets, arrays, deques, and regular expression pattern objects. Changed in version
2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict) :
pass

obj = Dict (red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see section 3.3.3, “Weak References in Extension
Types,” for more information.

class ref (object[, callback])
Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be
returned. If callback is provided and not None, it will be called when the object is about to be finalized;
the weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the object
was deleted. If hash () is called the first time only after the object was deleted, the call will raise TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derives from ob ject.
proxy (object[, callback])

Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type

52 Chapter 3. Python Runtime Services

of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same name to the
ref () function.

getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class WeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: Because aWeakKeyDictionary is built on top of a Python dictionary, it must not change size
when iterating over it. This can be difficult to ensure for a WeakKeyDictionary because actions performed
by the program during iteration may cause items in the dictionary to vanish ’by magic” (as a side effect of
garbage collection).

class WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because a WeakValueDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure for a WeakValueDictionary because actions
performed by the program during iteration may cause items in the dictionary to vanish ’by magic” (as a side
effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standard ReferenceError exception.

See Also:

PEP 0205, “Weak References”
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

3.3. weakref — Weak references 53

>>> import weakref
>>> class Object:
pass

>>> o = Object ()

>>> r weakref.ref (0)
>>> 02 = r()

>>> o 1s 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expression ref () is not None. Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o= 1x()
if o is None:
referent has been garbage collected
print "Object has been deallocated; can’t frobnicate."
else:
print "Object is still live!"
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclass of ref can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

54 Chapter 3. Python Runtime Services

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, =**annotations):
super (ExtendedRef, self).__init__ (ob, callback)
self._ counter = 0

for k, v in annotations.iteritems{() :
setattr(self, k, v)

def _ call__ (self):
"""Return a pair containing the referent and the number of

times the reference has been called.
nmn

ob = super (ExtendedRef, self).__call__ ()
if ob is not None:

self._ counter += 1

ob = (ob, self.__ counter)

return ob

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obij(oid) :
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must include a PyOb ject » field in the instance structure for
the use of the weak reference mechanism; it must be initialized to NULL by the object’s constructor. It must also set
the tp_weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs to add
Py_TPFLAGS_HAVE_WEAKREFS to the tp_flags slot. For example, the instance type is defined with the following
structure:

3.3. weakref — Weak references 55

typedef struct {
PyObject_HEAD

PyClassObject *in_class; /* The class object =/
PyObject *in_dict; /+ A dictionary =x/
PyObject *in_weakreflist; /% List of weak references x/

} PyInstanceObiject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT (&PyType_Type)
OI
"module.instance",

/* Lots of stuff omitted for brevity... =*/

Py_TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags x/

0, /* tp_doc */

0, /% tp_traverse x/

0, /* tp_clear =/

0, /* tp_richcompare =/

offsetof (PyInstanceObject, in_weakreflist), /* tp_weaklistoffset x/
}i

The type constructor is responsible for initializing the weak reference list to NULL:

static PyObject =
instance_new () {
/+ Other initialization stuff omitted for brevity =*/

self->in_weakreflist = NULL;

return (PyObject x) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
list is non-NULL:

static void
instance_dealloc (PyInstanceObject xinst)
{
/+ Allocate temporaries if needed, but do not begin
destruction Jjust yet.

*/

if (inst->in_weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) inst);

/+ Proceed with object destruction normally. x/

56 Chapter 3. Python Runtime Services

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> import math

>>> math.exp (1000)

inf

>>> math.exp (1000) / math.exp (1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special, non-numeric
value in IEEE-754 that stands for “infinity”, and “nan” means “not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. The fpectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generation of SIGFPE whenever any of
the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python system, SIGFPE is trapped and converted into the
Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon_sigfpe ()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff_sigfpe ()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon_sigfpe () has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of the fpect 1 module.

3.4. fpectl — Floating point exception control 57

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe ()
>>> fpetest.test ()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero
[more output from test elided]

>>> import math

>>> math.exp (1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modify fpect1 to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECT and PyFPE_END_PROTECT be inserted into your code in an appropriate fash-
ion. Python itself has been modified to support the fpectl module, but many other codes of interest to numerical
analysts have not.

The fpect 1 module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some length. ‘Modules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be found in ‘Objects/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or when os . _exit () is called.

This is an alternate interface to the functionality provided by the sys.exit func variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc. In partic-
ular, other core Python modules are free to use atexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to use atexit instead. The simplest way to convert code that sets
sys.exitfunc is toimport atexit and register the function that had been bound to sys.exit func.

register (func[, *args [, **kargs]])
Register func as a function to be executed at termination. Any optional arguments that are to be passed to func
must be passed as arguments to register ().

At normal program termination (for instance, if sys.exit () is called or the main module’s execution com-

58 Chapter 3. Python Runtime Services

pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed (unless SystemExit is
raised) and the exception information is saved. After all exit handlers have had a chance to run the last exception
to be raised is re-raised.

See Also:

Module readline (section 7.20):
Useful example of atexit to read and write readline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int (open ("/tmp/counter") .read())
except IOError:

_count = 0

def incrcounter (n):
global _count
count = _count + n

def savecounter () :
open ("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register (savecounter)

Positional and keyword arguments may also be passed to register () to be passed along to the registered function
when it is called:

def goodbye (name, adjective):
print ’Goodbye, %s, it was %s to meet you.’ % (name, adjective)

import atexit
atexit.register (goodbye, ’'Donny’, ’'nice’)

or:
atexit.register (goodbye, adjective=’'nice’, name=’Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such as
the listiterator type. Itis safe touse ‘from types import =’ — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will all end in ‘Type’.

Typical use is for functions that do different things depending on their argument types, like the following:

3.6. types — Names for built-in types 59

from types import =
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove (item)

Starting in Python 2.2, built-in factory functions such as int () and str () are also names for the corresponding
types. This is now the preferred way to access the type instead of using the t ypes module. Accordingly, the example
above should be written as follows:

def delete(mylist, item):
if isinstance (item, int):
del mylist[item]
else:
mylist.remove (item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type ()).

BooleanType
The type of the bool values True and False; this is an alias of the built-in bool () function. New in
version 2.3.

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1. 0).

ComplexType
The type of complex numbers (e.g. 1.07). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e.g. ’ Spam’).
UnicodeType

The type of Unicode character strings (e.g. u’ Spam’). This is not defined if Python was built without Unicode
support.

TupleType
The type of tuples (e.g. (1, 2, 3, ’'Spam’)).
ListType
The type of lists (e.g. [0, 1, 2, 31).
DictType
The type of dictionaries (e.g. {’ Bacon’: 1, ‘Ham’: O0}).

60 Chapter 3. Python Runtime Services

DictionaryType
An alternate name for DictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

GeneratorType
The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returned by compile ().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

BuiltinFunctionType
The type of built-in functions like 1len () or sys.exit ().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout

XRangeType
The type of range objects returned by xrange ().

SliceType
The type of objects returned by slice ().

EllipsisType
The type of E11ipsis.

TracebackType
The type of traceback objects such as found in sys.exc_traceback.

FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buf fer () function.

StringTypes
A sequence containing St ringType and UnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
contains UnicodeType if it has been built in the running version of Python. For example: isinstance (s,
types.StringTypes). New in version 2.2.

3.6. types — Names for built-in types 61

3.7 UserDict — Class wrapper for dictionary objects

The module defines a mixin, DictMixin, defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the
shelve module).

This also module defines a class, UserDict, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly from dict (a feature that became available starting
with Python version 2.2). Prior to the introduction of dict, the UserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

The UserDict module defines the UserDict class and DictMixin:

class UserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDict instances. If initialdata is provided, data is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it be used for other purposes. Note: For backward
compatibility, instances of UserDict are not iterable.

class IterableUserDict ([initialdata])
Subclass of UserDict that supports direct iteration (e.g. for key in myDict).

In addition to supporting the methods and operations of mappings (see section 2.3.8), UserDict and
IterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

class DictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__ (), __setitem__(), __delitem__(),and keys ().

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-
tionality. For instance, defining all but __delitem__ will preclude only pop and popitem from the full
interface.

In addition to the four base methods, progressively more efficiency comes with defining __contains__ (),
__iter__(),and iteritems ().

Since the mixin has no knowledge of the subclass constructor, it does not define __init__ () or copy ().

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the built-in 1ist type.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

The UserList module defines the UserList class:

class UserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of list, defaulting to the
empty list []. list can be either a regular Python list, or an instance of UserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.3.6), UserList instances
provide the following attribute:

62 Chapter 3. Python Runtime Services

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutable data attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 Userstring — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-in st r type instead of using UserString (there is no built-in equivalent to MutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case for MutableString.

The UserString module defines the following classes:

class UserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via the data attribute of UserString instances. The instance’s
contents are initially set to a copy of sequence. sequence can be either a regular Python string or Unicode string,
an instance of UserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-in st r () function.

class MutableString ([sequence])
This class is derived from the UserString above and redefines strings to be mutable. Mutable strings can’t
be used as dictionary keys, because dictionaries require immutable objects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (override) the __hash__ ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String Meth-
ods”), UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

3.10 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example, operator.add (x, y) is equivalent to the expression x+y. The function names are those used for
special class methods; variants without leading and trailing ‘__’ are also provided for convenience.

3.9. Userstring— Class wrapper for string objects 63

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
quence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

1t (a, b)

le (a, b)

eq(a, b)

ne (a, b)

ge (a, b)

gt (a, b)

__1lt__(a, b)

__le__(a, b)

__eq__(a, b)

__ne__(a, b)

__ge__(a,b)

__gt__(a, b)
Perform “rich comparisons” between a and b. Specifically, 1t (a, b) isequivalenttoa < b, le(a, b) is
equivalenttoa <= b, eq(a, b) isequivalenttoa == b, ne(a, b) isequivalenttoa !'= b, gt (a, D)

is equivalent to a > b and ge (a, b) is equivalent to @ >= b. Note that unlike the built-in cmp (), these
functions can return any value, which may or may not be interpretable as a Boolean value. See the Python
Reference Manual for more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

not_ (o)

__not__ (o)
Return the outcome of not o. (Note that there is no —_not__ () method for object instances; only the inter-
preter core defines this operation. The result is affected by the __nonzero__ () and __len__ () methods.)

truth (0)
Return True if o is true, and False otherwise. This is equivalent to using the bool constructor.

is_(a, b)
Returna is b. Tests object identity. New in version 2.3.

is_not (a, b)
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of o.

add (q, b)
__add__(a, b)
Return a + b, for a and b numbers.

and_ (a, b)
__and__(a, b)
Return the bitwise and of a and b.

div (a, b)
__div__(a, b)
Return a / b when __future__.division is notin effect. This is also known as “classic” division.

floordiv (a, b)
__floordiv__(a, b)

64 Chapter 3. Python Runtime Services

../ref/ref.html
../ref/ref.html

Returna // b. New in version 2.2.

inv (o)
invert (0)

__inv__(0)

__invert__ (o)
Return the bitwise inverse of the number o. This is equivalent to “o. The names invert () and
__invert__ () were added in Python 2.0.

1shift (a, b)

__1shift__(a, b)
Return a shifted left by b.

mod (a, b)
__mod__(a, b)
Return a % b.

mul (a, b)
__mul__ (a, b)
Return a * b, for a and b numbers.

negqg (o)
__neg__(0)
Return o negated.

or_(a, b)
__or__(a, b)
Return the bitwise or of a and b.

pos (0)
__pos__(0)
Return o positive.

pow (a, b)
__pow__(a, b)
Return a * * b, for a and b numbers. New in version 2.3.

rshift (a, b)
__rshift__(a, b)
Return a shifted right by b.

sub (a, b)
__sub__(a, b)
Return a - b.

truediv (q, b)
__truediv__(a, b)
Return a / b when __future__.divisionis in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor__(a, b)
Return the bitwise exclusive or of a and b.

Operations which work with sequences include:

concat (a, b)
__concat__ (a, b)
Return a + b for a and b sequences.

contains (a, b)
__contains__ (a, b)
Return the outcome of the test b in a. Note the reversed operands. The name __contains__ () was added

3.10. operator — Standard operators as functions. 65

in Python 2.0.

countOf (q, b)
Return the number of occurrences of b in a.

delitem (q, b)
__delitem__ (a, b)
Remove the value of a at index b.

delslice(a, b, ¢)
__delslice__(a, b, c)
Delete the slice of a from index b to index ¢—1.

getitem(aq, b)
__getitem__ (a, b)
Return the value of a at index b.

getslice(a, b, c)
__getslice__(a b, c)
Return the slice of a from index b to index ¢—1.

indexOf (q, b)
Return the index of the first of occurrence of b in a.

repeat (q, b)
__repeat__(a, b)
Return a = b where a is a sequence and b is an integer.

sequenceIncludes(...)
Deprecated since release 2.0. Use contains () instead.

Alias for contains ().
setitem(q b, ¢)

__setitem__(a, b, c)
Set the value of a at index b to c.

setslice(a b, ¢, v)
__setslice__(a, b c V)

Set the slice of a from index b to index c—1 to the sequence v.

The operator module also defines a few predicates to test the type of objects. Note: Be careful not to misinterpret
the results of these functions; only isCallable () hasany measure of reliability with instance objects. For example:

>>> class C:
pass

>>> import operator

>>> o = C()

>>> operator.isMappingType (0)
True

isCallable (0)

Deprecated since release 2.0. Use the callable () built-in function instead.

Returns true if the object o can be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which support the __call__ () method.

isMappingType (0)

Returns true if the object o supports the mapping interface. This is true for dictionaries and all instance objects
defining __getitem__. Warning: There is no reliable way to test if an instance supports the complete

66

Chapter 3. Python Runtime Services

mapping protocol since the interface itself is ill-defined. This makes this test less useful than it otherwise might

be.
isNumberType (0)

Returns true if the object o represents a number. This is true for all numeric types implemented in C. Warning:
There is no reliable way to test if an instance supports the complete numeric interface since the interface itself
is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)

Returns true if the object o supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objects defining __getitem__. Warning: There is no reliable way
to test if an instance supports the complete sequence interface since the interface itself is ill-defined. This makes

this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 255 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range (256)

>>> vals = map(chr, keys)

>>> map (operator.setitem, [d]=xlen (keys),

keys,

vals)

The operator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments for map (), sorted (), itertools.groupby (), or other functions that expect

a function argument.

attrgetter (atir)

Return a callable object that fetches attr from its operand. After, ‘f=attrgetter (' name’)’, the call

‘f (b)’ returns ‘b.name’. New in version 2.4.

itemgetter (item)

Return a callable object that fetches item from its operand. After, ‘f=itemgetter (2)’, the call ‘f (b)

>

returns ‘b [2]°. New in version 2.4.

Examples:
>>> from operator import =x
>>> inventory = [(’apple’, 3), ('’banana’,
>>> getcount = itemgetter (1)
>>> map (getcount, inventory)
(3, 2, 5, 1]
>>> sorted(inventory, key=getcount)

[("orange’, 1), ('’banana’, 2), ('apple’,

3.10.1 Mapping Operators to Functions

2),

3),

("pear’,

("pear’,

S)y

5) 1]

b}

("orange’, 1)1

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the

operator module.

3.10. operator — Standard operators as functions.

67

Operation Syntax Function

Addition a+ b add (a, b)
Concatenation seql + seq2 concat (seql, seq2)
Containment Test 0 in seq contains (seq, o)
Division a/ b div (a, b) # without __future__.division
Division a/ b truediv (a, b) # with __future__.division
Division a// b floordiv (a, b)
Bitwise And a &b and_(a, b)

Bitwise Exclusive Or a b xor (a, b)

Bitwise Inversion T a invert (a)

Bitwise Or a | b or_(a, b)
Exponentiation a xx b pow (a, b)

Identity a is b is_(a, b)

Identity a is not b is_not (a, b)
Indexed Assignment olk]l] =v setitem (o, k, V)
Indexed Deletion del olk] delitem(o, k)
Indexing olk] getitem (o, k)

Left Shift a << b lshift (a, b)
Modulo asb mod (a, b)
Multiplication a * b mul (a, b)

Negation (Arithmetic) - a neg (a)

Negation (Logical) not a not_(a)

Right Shift a >> b rshift (a, b)
Sequence Repitition seq x 1 repeat (seq, i)
Slice Assignment seqi:j] =values | setslice (seq, i, j, values)
Slice Deletion del seqli:jl delslice (seq, i, J)
Slicing seqi:]] getslice (seq, i, j)
String Formatting s % o0 mod (s, 0)
Subtraction a - b sub (a, b)

Truth Test 0 truth (o)

Ordering a < b 1t (a, b)

Ordering a <= b le(a, b)

Equality a == b eq(a, b)

Difference a !'=b>b ne (a, b)

Ordering a >= b ge (a, b)

Ordering a > b gt (a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

68 Chapter 3. Python Runtime Services

3.11.1

Types and members

The getmembers () function retrieves the members of an object such as a class or module. The eleven functions
whose names begin with “is” are mainly provided as convenient choices for the second argument to getmembers ().
They also help you determine when you can expect to find the following special attributes:

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method (D)
im_func function object containing implementation of method
im_self instance to which this method is bound, or None
function | __doc__ documentation string
__name__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as __doc__)
func_globals global namespace in which this function was defined
func_name (same as __name__)
traceback | tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback | traceback if raised in this frame, or None
f_exc_type exception type if raised in this frame, or None
f_exc_value exception value if raised in this frame, or None
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, or None
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co_lInotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound, or None

3.11. inspect — Inspect live objects

69

Note:

(1) Changed in version 2.2: im_class used to refer to the class that defined the method.

getmembers (object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional predicate
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path)

Return a tuple of values that describe how Python will interpret the file identified by path if it is a module, or
None if it would not be identified as a module. The return tuple is (rame, suffix, mode, mtype), where
name is the name of the module without the name of any enclosing package, suffix is the trailing part of the file
name (which may not be a dot-delimited extension), mode is the open () mode that would be used (’ r’ or
" rb’), and mtype is an integer giving the type of the module. mtype will have a value which can be compared
to the constants defined in the imp module; see the documentation for that module for more information on
module types.

getmodulename (path)
Return the name of the module named by the file path, without including the names of enclosing packages. This
uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s rules, None is returned.

ismodule (object)
Return true if the object is a module.

isclass (object)
Return true if the object is a class.

ismethod (object)
Return true if the object is a method.

isfunction (object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (object)
Return true if the object is a traceback.

isframe (object)
Return true if the object is a frame.

iscode (object)
Return true if the object is a code.

isbuiltin (object)
Return true if the object is a built-in function.

isroutine (object)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (object)
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of int.__add__. An object passing this testhasa __get__
attribute but not a __set__ attribute, but beyond that the set of attributes varies. __name__ is usually sensible,
and __doc__ often is.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescrip-
tor() test, simply because the other tests promise more — you can, e.g., count on having the im_func attribute
(etc) when an object passes ismethod().

isdatadescriptor (object)
Return true if the object is a data descriptor.

70 Chapter 3. Python Runtime Services

Data descriptors have both a __get__ and a __set__ attribute. Examples are properties (defined in Python)
and getsets and members (defined in C). Typically, data descriptors will also have __name__ and __doc__
attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New in
version 2.3.

3.11.2 Retrieving source code

getdoc (object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a TypeError if
the object is a built-in module, class, or function.

getmodule (object)
Try to guess which module an object was defined in.

getsourcefile (object)
Return the name of the Python source file in which an object was defined. This will fail with a TypeError if
the object is a built-in module, class, or function.

getsourcelines (object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError is raised if the source code cannot be retrieved.

getsource (object)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. An IOError is raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classes [unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If the unique argument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (func)
Get the names and default values of a function’s arguments. A tuple of four things is returned: (args, varargs,
varkw, defaults) . args is a list of the argument names (it may contain nested lists). varargs and varkw are the
names of the = and ** arguments or None. defaults is a tuple of default argument values or None if there are
no default arguments; if this tuple has # elements, they correspond to the last n elements listed in args.

getargvalues (frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned: (args,
varargs, varkw, locals). args is a list of the argument names (it may contain nested lists). varargs and
varkw are the names of the + and * x» arguments or None. locals is the locals dictionary of the given frame.

3.11. inspect — Inspect live objects 71

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat])
Format a pretty argument spec from the four values returned by getargspec (). The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat])
Format a pretty argument spec from the four values returned by getargvalues (). The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, the lifespan
of all objects which can be accessed from the objects which form the cycle can become much longer even if
Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are
explicitly broken to avoid the delayed destruction of objects and increased memory consumption which occurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made determin-
istic by removing the cycle in a finally clause. This is also important if the cycle detector was disabled when
Python was compiled or using gc.disable (). For example:
def handle_stackframe_without_leak () :

frame = inspect.currentframe ()
try:

do something with the frame
finally:

del frame

The optional context argument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

getframeinfo (frame[, context])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame [context])
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation of frame. The first entry in the returned list represents frame; the last entry represents the outermost
call on frame’s stack.

getinnerframes (traceback[, context])
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence of frame. The first entry in the list represents traceback; the last entry represents where the
exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([context])

72 Chapter 3. Python Runtime Services

Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller; the
last entry represents the outermost call on the stack.

trace ([context])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variables sys.exc_traceback
(deprecated) and sys.last_traceback and returned as the third item from sys.exc_info ().

The module defines the following functions:

print_tb (traceback[, limit[, ﬁle]])
Print up to limit stack trace entries from traceback. If limit is omitted or None, all entries are printed. If file
is omitted or None, the output goes to sys . stderr; otherwise it should be an open file or file-like object to
receive the output.

print_exception (type, value, traceback[, limit[, ﬁle]])
Print exception information and up to limit stack trace entries from traceback to file. This differs from
print_tb () in the following ways: (1) if traceback is not None, it prints a header ‘Traceback (most
recent call last):’; (2) it prints the exception type and value after the stack trace; (3) if type is
SyntaxError and value has the appropriate format, it prints the line where the syntax error occurred with a
caret indicating the approximate position of the error.

print_exc ([limit[, ﬁle]])
This is a shorthand for print_exception (sys.exc_type, sys.exc_value,
sys.exc_traceback, Ilimit, file). (In fact, it uses sys.exc_info () to retrieve the same infor-
mation in a thread-safe way instead of using the deprecated variables.)

format_exc ([limit])
This is like print _exc (limit) but returns a string instead of printing to a file. New in version 2.4.

print_last ([limit[, ﬁle]])
This is a shorthand for print_exception (sys.last_type, sys.last_value,
sys.last_traceback, limit, file).

print_stack ([f[, limit[, ﬁle]]])
This function prints a stack trace from its invocation point. The optional f argument can be used to spec-
ify an alternate stack frame to start. The optional limit and file arguments have the same meaning as for
print_exception ().

extract_tb (traceback[, limit])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object traceback.
It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. The fext is a string with leading and trailing whitespace
stripped; if the source is not available it is None.

extract_stack ([f[limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract_tb (). The optional f and limit arguments have the same meaning as for print_stack ().

3.12. traceback — Print or retrieve a stack traceback 73

format_1list (list)
Given a list of tuples as returned by extract_tb () or extract_stack (), return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is not None.

format_exception_only (type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last_type and sys.last_value. The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, for SyntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format_exception (fype, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments to print_exception (). The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
does print _exception ().

format_tb (tb[, limit])
A shorthand for format_list (extract_tb (tb, limit)).

format_stack ([f[, limit]])
A shorthand for format_list (extract_stack (f, limit)).

tb_lineno (tb)
This function returns the current line number set in the traceback object. This function was necessary because
in versions of Python prior to 2.3 when the -O flag was passed to Python the b . tb_1ineno was not updated
correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to the code module.

import sys, traceback

def run_user_code (envdir) :

source = raw_input (">>> ")
try:

exec source in envdir
except:

print "Exception in user code:"
print '-’'%60
traceback.print_exc(file=sys.stdout)
print "-"%x60

envdir = {}

while 1:
run_user_code (envdir)

3.13 1linecache — Random access to text lines

74 Chapter 3. Python Runtime Services

The 1linecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is used by the t raceback module to
retrieve source lines for inclusion in the formatted traceback.

The 1inecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will return * on
errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path, sys.path.

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously read using get1ine ().

checkcache ([ﬁlename])
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. If filename is omitted, it will check all the entries in the cache.

Example:

>>> import linecache
>>> linecache.getline (' /etc/passwd’, 4)
"sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
"2 or “flattening”’, however, to avoid confusion, the

EEINNT3

unpickling) is alternatively known as “serialization”, “marshalling,
terms used here are “pickling” and “unpickling”.

This documentation describes both the pickle module and the cPick1le module.

3.14.1 Relationship to other Python modules

The pickle module has an optimized cousin called the cPickle module. As its name implies, cPickle is written
in C, so it can be up to 1000 times faster than pickle. However it does not support subclassing of the Pickler ()

and Unpickler () classes, because in cPickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performance of cPickle. Other than that, the interfaces of
the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively describe the pickle and
cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module called marshal, but in general pickle should always be the
preferred way to serialize Python objects. marshal exists primarily to support Python’s ‘.pyc’ files.

The pickle module differs from marshal several significant ways:

e The pickle module keeps track of the objects it has already serialized, so that later references to the same
object won’t be serialized again. marshal doesn’t do this.

2Don’t confuse this with the marshal module

3.14. pickle — Python object serialization 75

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serialized. pickle stores such objects only once, and ensures
that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instances. pickle can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e The marshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support “.pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arise. The pickle serialization format is guaranteed to be
backwards compatible across Python releases.

Warning: The pickle module is not intended to be secure against erroneous or maliciously constructed data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; although pickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. The pickle module can transform a complex object into a byte stream and it can transform
the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The module shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printable ASCII (and of some other characteristics of pickle’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

Refer to PEP 307 for more information.

If a protocol is not specified, protocol 0 is used. If protocol is specified as a negative value or HIGHEST_PROTOCOL,
the highest protocol version available will be used.

Changed in version 2.3: The bin parameter is deprecated and only provided for backwards compatibility. You should
use the protocol parameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value for the bin argument to
the Pickler constructor or the dump () and dumps () functions. A protocol version ;= 1 implies use of a binary
format.

76 Chapter 3. Python Runtime Services

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the pickler’s dump () method. To de-serialize
a data stream, you first create an unpickler, then you call the unpickler’s 1oad () method. The pickle module
provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passed as a profocol value. New in version 2.3.

Note: Be sure to always open pickle files created with protocols ;= 1 in binary mode. For the old ASCII-based pickle
protocol 0 you can use either text mode or binary mode as long as you stay consistent.

A pickle file written with protocol 0 in binary mode will contain lone linefeeds as line terminators and therefore will
look “funny” when viewed in Notepad or other editors which do not support this format.

The pickle module provides the following functions to make the pickling process more convenient:

dump (obj, ﬁle[, protocol [bin]])
Write a pickled representation of 0bj to the open file object file. This is equivalentto Pickler (file, protocol,
bin) . dump (obj) .
If the protocol parameter is omitted, protocol O is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL, the highest protocol version will be used.

Changed in version 2.3: The protocol parameter was added. The bin parameter is deprecated and only provided
for backwards compatibility. You should use the profocol parameter instead.

If the optional bin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have a write () method that accepts a single string argument. It can thus be a file object opened for
writing, a St ring IO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file object file and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalent to Unpickler (file) . load ().

file must have two methods, a read () method that takes an integer argument, and a readline () method that
requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, a
StringIO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.
dumps (0bj [, protocol [, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol O is used. If protocol is specified as a negative value or
HIGHEST_PROTOCOL, the highest protocol version will be used.

Changed in version 2.3: The protocol parameter was added. The bin parameter is deprecated and only provided
for backwards compatibility. You should use the protocol parameter instead.

If the optional bin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

The pickle module also defines three exceptions:

exception PickleError
A common base class for the other exceptions defined below. This inherits from Exception.

exception PicklingError
This exception is raised when an unpicklable object is passed to the dump () method.

3.14. pickle — Python object serialization 77

exception UnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may
also be raised during unpickling, including (but not necessarily limited to) AttributeError, EOFError,
ImportError, and IndexError.

The pickle module also exports two callables’, Pickler and Unpickler:

class Pickler (file [protocol [bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocol parameter is omitted, protocol O is used. If protocol is specified as a negative value, the highest
protocol version will be used.

Changed in version 2.3: The bin parameter is deprecated and only provided for backwards compatibility. You
should use the profocol parameter instead.

Optional bin if true, tells the pickler to use the more efficient binary pickle format, otherwise the ASCII format
is used (this is the default).

file must have a write () method that accepts a single string argument. It can thus be an open file object, a
StringIO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump (0bj)
Write a pickled representation of obj to the open file object given in the constructor. Either the binary or ASCII
format will be used, depending on the value of the bin flag passed to the constructor.

clear_memo ()
Clears the pickler’s “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3, clear_memo () was only available on the picklers created by cPickle. In the
pickle module, picklers have an instance variable called memo which is a Python dictionary. So to clear the
memo for a pickle module pickler, you could do the following:

mypickler.memo.clear ()

Code that does not need to support older versions of Python should simply use clear_memo ().

It is possible to make multiple calls to the dump () method of the same Pickler instance. These must then be
matched to the same number of calls to the 1oad () method of the corresponding Unpickler instance. If the same
object is pickled by multiple dump () calls, the 1oad () will all yield references to the same object.*

Unpickler objects are defined as:

class Unpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag as in the Pickler factory.

file must have two methods, a read () method that takes an integer argument, and a readline () method that
requires no arguments. Both methods should return a string. Thus file can be a file object opened for reading, a
StringIO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

31n the pickle module these callables are classes, which you could subclass to customize the behavior. However, in the cPickle module
these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details.

4Warning: this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the same Pickler instance, the object is not pickled again — a reference to it is pickled and the Unpickler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

78 Chapter 3. Python Runtime Services

load()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

noload()
This is just like 1oad () except that it doesn’t actually create any objects. This is useful primarily for finding
what’s called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

Note: the noload () method is currently only available on Unpickler objects created with the cPickle
module. pickle module Unpicklers do not have the noload () method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True,and False

e integers, long integers, floating point numbers, complex numbers

e normal and Unicode strings

e tuples, lists, sets, and dictionaries containing only picklable objects
¢ functions defined at the top level of a module

e built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

¢ instances of such classes whose __dict__or __setstate__ () is picklable (see section 3.14.5 for details)

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file. Trying to pickle a highly recursive data structure
may exceed the maximum recursion depth, a Runt imeError will be raised in this case. You can carefully raise this
limit with sys.setrecursionlimit ().

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will be raised.’

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class attribute at t r is not restored in
the unpickling environment:

class Foo:
attr = "a class attr’

picklestring = pickle.dumps (Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still

5The exception raised will likely be an ImportError oran AttributeError but it could be something else.

3.14. pickle — Python object serialization 79

load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s __setstate__ () method.

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects
that are being serialized. This protocol provides a standard way for you to define, customize, and control how your
objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section 3.14.6
for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, its __init__ () method is normally not invoked. If it is desirable that
the __init__ () method be called on unpickling, an old-style class can define a method __getinitargs__(),
which should return a fuple containing the arguments to be passed to the class constructor (i.e. —_init__()). The
__getinitargs__ () method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

New-style types can provide a __getnewargs__ () method that is used for protocol 2. Implementing this method
is needed if the type establishes some internal invariants when the instance is created, or if the memory allocation is
affected by the values passed to the __new__ () method for the type (as it is for tuples and strings). Instances of a
new-style type C are created using

obj = C.__new__ (C, =args)

where args is the result of calling __getnewargs__ () on the original object; if thereisno __getnewargs__ (),
an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the method __getstate__ (), itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no __getstate__ () method, the instance’s __dict__ is pickled.

Upon unpickling, if the class also defines the method __setstate__ (), it is called with the unpickled state.® If
there isno __setstate__ () method, the pickled state must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines both __getstate__() and __setstate__ (), the state object needn’t
be a dictionary and these methods can do what they want.”

Warning: For new-style classes, if __getstate__ () returns a false value, the __setstate__ () method
will not be called.

Pickling and unpickling extension types

When the Pickler encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementa __reduce__ () method. If
provided, at pickling time __reduce__ () will be called with no arguments, and it must return either a string or a
tuple.

5These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations defined in the copy module.

80 Chapter 3. Python Runtime Services

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce__ should be the object’s local name relative to its module; the pickle module searches the module names-
pace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted, or
None can be provided as their value. The semantics of each element are:

e A callable object that will be called to create the initial version of the object. The next element of the tu-
ple will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled date.

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor”
(see below), or it must have an attribute __safe_for_unpickling__ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable itself is
pickled by name.

¢ A tuple of arguments for the callable object, or None. Deprecated since release 2.3. If this item is None, then
instead of calling the callable directly, its —_basicnew__ () method is called without arguments; this method
should also return the unpickled object. Providing None is deprecated, however; return a tuple of arguments
instead.

¢ Optionally, the object’s state, which will be passed to the object’s __setstate__ () method as described in
section 3.14.5. If the object has no __setstate__ () method, then, as above, the value must be a dictionary
and it will be added to the object’s __dict__.

¢ Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled, and
appended to the object using either ob 7. append (ifem) or obj.extend (list_of_items) . This is primarily
used for list subclasses, but may be used by other classes as long as they have append () and extend ()
methods with the appropriate signature. (Whether append () or extend () is used depends on which pickle
protocol version is used as well as the number of items to append, so both must be supported.)

¢ Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the form
(key, value) . These items will be pickled and stored to the object using obj [key] = value. This is primarily
used for dictionary subclasses, but may be used by other classes as long as they implement __setitem__.

It is sometimes useful to know the protocol version when implementing __reduce__. This can be done by im-
plementing a method named __reduce_ex__ instead of __reduce__. __reduce_ex__, when it exists, is
called in preference over __reduce__ (you may still provide __reduce__ for backwards compatibility). The
__reduce_ex__ method will be called with a single integer argument, the protocol version.

The object class implements both __reduce__ and __reduce_ex__; however, if a subclass over-
rides __reduce__ but not __reduce_ex__, the __reduce_ex__ implementation detects this and calls
__reduce__.

An alternative to implementing a __reduce__ () method on the object to be pickled, is to register the callable with

the copy_reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface as the __reduce__ () method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.
Pickling and unpickling external objects

For the benefit of object persistence, the pickle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable

3.14. pickle — Python object serialization 81

ASCII characters. The resolution of such names is not defined by the pickle module; it will delegate this resolution
to user defined functions on the pickler and unpickler.

To define external persistent id resolution, you need to set the persistent_id attribute of the pickler object and
the persistent_load attribute of the unpickler object.

To pickle objects that have an external persistent id, the pickler must have a custom persistent_id () method that
takes an object as an argument and returns either None or the persistent id for that object. When None is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a custom persistent_load () function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example that might shed more light:

8The actual mechanism for associating these user defined functions is slightly different for pickle and cPickle. The description given
here works the same for both implementations. Users of the pickle module could also use subclassing to effect the same results, overriding the
persistent_id () and persistent_load () methods in the derived classes.

82 Chapter 3. Python Runtime Services

import pickle
from c¢StringIO import StringIO

src = StringIO()
p = pickle.Pickler (szrc)

def persistent_id(obj):
if hasattr(obj, 'x’'):
return ’‘the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def _ _init_ (self, x):
self.x = x
def _ str_ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print 1
p.dump (1)

datastream = src.getvalue ()
print repr (datastream)
dst = StringIO (datastream)

up = pickle.Unpickler (dst)

class FancyInteger (Integer) :
def _ str_ (self):
return ‘I am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith(’the value ’):
value = int (persid.split () [2])
return FancyInteger (value)
else:
raise pickle.UnpicklingError, ’Invalid persistent id’

up.persistent_load = persistent_load

J = up.load()
print Jj

In the cPickle module, the unpickler’s persistent_load attribute can also be set to a Python list, in which
case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickle.’ Setting persistent_load to a list is usually used in conjunction with the noload ()
method on the Unpickler.

9We’ll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.

3.14. pickle — Python object serialization 83

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets unpickled
and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different depending on
whether you’re using pickle or cPickle.!”

In the pickle module, you need to derive a subclass from Unpickler, overriding the load_global () method.
load_global () should read two lines from the pickle data stream where the first line will the name of the module
containing the class and the second line will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it finds to the unpickler’s stack. Later
on, this class will be assigned to the __class__ attribute of an empty class, as a way of magically creating an
instance without calling its class’s __init__ (). Your job (should you choose to accept it), would be to have
load_global () push onto the unpickler’s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you’re right. Refer to the source code to make this work.

Things are a little cleaner with cPickle, but not by much. To control what gets unpickled, you can set the unpickler’s
find_global attribute to a function or None. If it is None then any attempts to unpickle instances will raise an
UnpicklingError. If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and performing any necessary imports, and it may
raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a text file, and
returns the line number and line contents each time its readline () method is called. If a TextReader instance
is pickled, all attributes except the file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. The __setstate__ () and __getstate__ () methods are used to
implement this behavior.

10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in either pickle or cPickle.

84 Chapter 3. Python Runtime Services

class TextReader:
"""Print and number lines in a text file."""
def _ _init_ (self, file):
self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith ("\n"):
line = line[:-1]
return "%$d: %$s" % (self.lineno, line)

def __getstate__ (self):
odict = self._ _dict__ _.copy() # copy the dict since we change it
del odict[’fh’] # remove filehandle entry
return odict

def _ setstate_ (self,dict):

fh = open(dict[’file’]) # reopen file

count = dict[’lineno’] # read from file...

while count: # until line count 1is restored
fh.readline ()
count = count - 1

self.__dict__.update(dict) # update attributes

self.fh = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader ("TextReader.py")

>>> obj.readline ()

"1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline () here)
obj.readline ()

"7: class TextReader:’

>>> import pickle

>>> pickle.dump (obj,open(’save.p’,’w’))

If you want to see that pick 1e works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline ()

"8: "Print and number lines in a text file."’

See Also:
Module copy_reg (section 3.16):

3.14. pickle — Python object serialization 85

Pickle interface constructor registration for extension types.

Module shelve (section 3.17):
Indexed databases of objects; uses pickle.

Module copy (section 3.18):
Shallow and deep object copying.

Module marshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — Afasterpickle

The cPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to the pick1le module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster than pickle because the former is implemented in C. Second, in
the cPickle module the callables Pickler () and Unpickler () are functions, not classes. This means that
you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance of the cPickle module.

The pickle data stream produced by pickle and cPickle are identical, so it is possible to use pickle and
cPickle interchangeably with existing pickles.'!

There are additional minor differences in API between cPickle and pickle, however for most applications, they
are interchangeable. More documentation is provided in the pickle module documentation, which includes a list of
the documented differences.

3.16 copy_reg— Register pickle support functions

The copy_reg module provides support for the pickle and cPickle modules. The copy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a constructor), raises
TypeError.

pickle (type, function[, constructor])
Declares that function should be used as a “reduction” function for objects of type type; type must not be a
“classic” class object. (Classic classes are handled differently; see the documentation for the pickle module
for details.) function should return either a string or a tuple containing two or three elements.

The optional constructor parameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returned by function at pickling time. TypeError will be raised if
object is a class or constructor is not callable.

See the pickle module for more details on the interface expected of function and constructor.

3.17 shelve — Python object persistence

Since the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

86 Chapter 3. Python Runtime Services

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that the pickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

open (ﬁlename[,ﬂagz ’c’[,protocolzNone[,writebackzFal se[,binaryzNone]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default, the
underlying database file is opened for reading and writing. The optional flag parameter has the same interpreta-
tion as the flag parameter of anydbm. open.

By default, version O pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocol parameter. Changed in version 2.3: The protocol parameter was added. The binary parameter
is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the optional
writeback parameter is set to True, all entries accessed are cached in memory, and written back at close time;
this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries are accessed,
it can consume vast amounts of memory for the cache, and it can make the close operation very slow since all
accessed entries are written back (there is no way to determine which accessed entries are mutable, nor which
ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts
to those requiring persistent storage.

One additional method is supported:

sync ()
Write back all entries in the cache if the shelf was opened with writeback set to True. Also empty the cache and
synchronize the persistent dictionary on disk, if feasible. This is called automatically when the shelf is closed
with close ().

3.17.1 Restrictions

e The choice of which database package will be used (such as dbom, gdbm or bsddb) depends on which interface
is available. Therefore it is not safe to open the database directly using dbom. The database is also (unfortunately)
subject to the limitations of dbm, if it is used — this means that (the pickled representation of) the objects stored
in the database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk. The __del__ method of the Shelf class calls the c1ose method, so the programmer generally need
not do this explicitly.

e The shelve module does not support concurrent read/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. UNIX file locking can be used to solve this, but this differs across UNIX versions and
requires knowledge about the database implementation used.

class Shelf (dict[, protocolzNone[, writeback=False [binaryzNone]]])
A subclass of UserDict .DictMixin which stores pickled values in the dict object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified with
the protocol parameter. See the pickle documentation for a discussion of the pickle protocols. Changed in
version 2.3: The protocol parameter was added. The binary parameter is deprecated and provided for backwards
compatibility only.

If the writeback parameter is True, the object will hold a cache of all entries accessed and write them back to
the dict at sync and close times. This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

3.17. shelve — Python object persistence 87

class BsdDbShelf (dict[, protocol=None [, writeback:False[, binary:None]]])
A subclass of Shelf which exposes first, next, previous, last and set_location which are avail-
able in the bsddb module but not in other database modules. The dict object passed to the constructor must sup-
port those methods. This is generally accomplished by calling one of bsddb .hashopen, bsddb.btopen
or bsddb . rnopen. The optional protocol, writeback, and binary parameters have the same interpretation as
for the Shelf class.

class DbfilenameShelf (filename [, flag= ’c’[, protUcol:None[, writeback:False[, binary:None]]]])
A subclass of Shelf which accepts a filename instead of a dict-like object. The underlying file will be opened
using anydbm. open. By default, the file will be created and opened for both read and write. The optional flag
parameter has the same interpretation as for the open function. The optional protocol, writeback, and binary
parameters have the same interpretation as for the She1f class.

3.17.2 Example

To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open -- file may get suffix added by low-level
library
d[key] = data # store data at key (overwrites old data if
using an existing key)
data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)
del dlkey] # delete data stored at key (raises KeyError
if no such key)
flag = d.has_key (key) # true if the key exists

list d.keys () # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d[’xx’] = range (4) # this works as expected, but...
d[’"xx’].append(5) # *this doesn’t!x —— d[’xx’] 1s STILL range(4)!!!
having opened d without writeback=True, you need to code carefully:
temp = d[’xx’] # extracts the copy

temp.append (5) # mutates the copy

d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d[’xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close () # close it

See Also:

Module anydbm (section 7.10):
Generic interface to dbm-style databases.

Module bsddb (section 7.13):
BSD db database interface.

Module dbhash (section 7.11):
Thin layer around the bsddb which provides an open function like the other database modules.

Module dbm (section 8.6):

88 Chapter 3. Python Runtime Services

Standard UNIX database interface.

Module dumbdbm (section 7.14):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.14):
Object serialization used by shelve.

Module cPickle (section 3.15):
High-performance version of pickle.

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy (y) # make a shallow copy of y
copy .deepcopy (y) # make a deep copy of y

b
Il

For module specific errors, copy . error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other

objects, like lists or class instances):

e A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to

the objects found in the original.

e A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found

in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a

recursive loop.

e Because deep copy copies everything it may copy too much, e.g., administrative data structures that should be

shared even between copies.

The deepcopy () function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,

array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. The copy module does not use the copy_reg registration module.

3.18. copy — Shallow and deep copy operations

In order for a class to define its own copy implementation, it can define special methods __copy__ () and
__deepcopy__ (). The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the __deepcopy__ () implementation needs to make a deep copy of a component, it should call the deepcopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

Module pickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).!?

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modules pickle and shelve. The marshal module exists mainly to support reading and writing
the “pseudo-compiled” code for Python modules of ‘.pyc’ files. Therefore, the Python maintainers reserve the right
to modify the marshal format in backward incompatible ways should the need arise. If you’re serializing and de-
serializing Python objects, use the pickle module instead.

Warning: The marshal module is not intended to be secure against erroneous or maliciously constructed data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported: None, integers,
long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’s 1long int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C’s 1ong int type has only 32 bits, a Python long integer object is returned instead. While of a different type,
the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump (value, file [version])
Write the value on the open file. The value must be a supported type. The file must be an open file object such
as sys.stdout or returned by open () or posix.popen (). It must be opened in binary mode (* wb’ or
"wtb’).
If the value has (or contains an object that has) an unsupported type, a ValueError exception is raised — but
garbage data will also be written to the file. The object will not be properly read back by Load ().

New in version 2.4: The version argument indicates the data format that dump should use (see below).

load (file)
Read one value from the open file and return it. If no valid value is read, raise EOFError, ValueError or

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

90 Chapter 3. Python Runtime Services

TypeError. The file must be an open file object opened in binary mode (* rb’ or ' r+b”).

Warning: If an object containing an unsupported type was marshalled with dump (), Load () will substitute
None for the unmarshallable type.

dumps (value [version])
Return the string that would be written to a file by dump (value, file). The value must be a supported type.
Raise a ValueError exception if value has (or contains an object that has) an unsupported type.

New in version 2.4: The version argument indicates the data format that dumps should use (see below).

loads (string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

In addition, the following constants are defined:

version
Indicates the format that the module uses. Version O is the historical format, version 1 (added in Python 2.4)
shares interned strings. The current version is 1.

New in version 2.4.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling the warn () function defined in this module. (C programmers use
PyErr_Warn () ; see the Python/C API Reference Manual for details).

Warning messages are normally written to sy s . stderr, but their disposition can be changed flexibly, from ignoring
all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by calling filterwarnings () and reset to its default
state by calling resetwarnings ().

The printing of warning messages is done by calling showwarning (), which may be overridden; the default im-
plementation of this function formats the message by calling formatwarning (), which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

3.20. warnings — Warning control 91

../api/exceptionHandling.html

Class Description

Warning This is the base class of all warning category classes. It is a subclass of Exception.
UserWarning The default category for warn ().

DeprecationWarning | Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of the Warning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

e action is one of the following strings:

Value Disposition

"error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default" | print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e message is a string containing a regular expression that the warning message must match (the match is compiled
to always be case-insensitive)

e category is a class (a subclass of Warning) of which the warning category must be a subclass in order to match

e module is a string containing a regular expression that the module name must match (the match is compiled to
be case-sensitive)

e lineno is an integer that the line number where the warning occurred must match, or 0 to match all line numbers

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we simply
raise category (message) .

The warnings filter is initialized by -W options passed to the Python interpreter command line. The interpreter saves
the arguments for all -W options without interpretation in sys . warnoptions;the warnings module parses these
when it is first imported (invalid options are ignored, after printing a message to sys.stderr).

3.20.3 Available Functions

warn (message [category[, stacklevel]])
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be a warning

92 Chapter 3. Python Runtime Services

category class (see above); it defaults to UserWarning. Alternatively message can be a Warning instance,
in which case category will be ignored and message . __class__ will be used. In this case the message text
will be str (message) . This function raises an exception if the particular warning issued is changed into an
error by the warnings filter see above. The stacklevel argument can be used by wrapper functions written in
Python, like this:

def deprecation (message) :
warnings.warn (message, DeprecationWarning, stacklevel=2)

This makes the warning refer to deprecation ()’s caller, rather than to the source of deprecation ()
itself (since the latter would defeat the purpose of the warning message).

warn_explicit (message, category, filename, lineno[, module[, registry]])
This is a low-level interface to the functionality of warn (), passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry__ dictionary of the module). The module name defaults to the filename with .py
stripped; if no registry is passed, the warning is never suppressed. message must be a string and category a
subclass of Warning or message may be a Warning instance, in which case category will be ignored.

showwarning (message, category, filename, lineno[, ﬁle])
Write a warning to a file. The default implementation calls formatwarning (message, category, file-
name, lineno) and writes the resulting string to file, which defaults to sys.stderr. You may replace this
function with an alternative implementation by assigning to warnings.showwarning.

formatwarning (message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (action [, message[, category[, module[, lineno [, append]]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; if append is true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings (), including that
of the -W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines the follow-
ing constants and functions:

get_magic()
Return the magic string value used to recognize byte-compiled code files (*.pyc’ files). (This value may be
different for each Python version.)

get_suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form (suffix, mode,
type) , where suffix is a string to be appended to the module name to form the filename to search for, mode
is the mode string to pass to the built-in open () function to open the file (this can be ’ r’ for text files or
"rb’ for binary files), and type is the file type, which has one of the values PY_SOURCE, PY_COMPILED, or
C_EXTENSION, described below.

find_module (name[, path])
Try to find the module name on the search path path. If path is a list of directory names, each directory is
searched for files with any of the suffixes returned by get _suffixes () above. Invalid names in the list are

3.21. imp — Access the import internals 93

silently ignored (but all list items must be strings). If path is omitted or None, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name (C_BUILTIN), then a frozen module (PY_FROZEN), and on some systems some other places are
looked in as well (on the Mac, it looks for a resource (PY_RESOURCE); on Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triple (file, pathname, description) where file is an open file
object positioned at the beginning, pathname is the pathname of the file found, and description is a triple as
contained in the list returned by get _suffixes () describing the kind of module found. If the module does
not live in a file, the returned file is None, filename is the empty string, and the description tuple contains empty
strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find P.M, that
is, submodule M of package P, use find_module () and load_module () to find and load package P, and
then use find_module () with the path argument set to P. __path__. When P itself has a dotted name,
apply this recipe recursively.

load_module (name, file, filename, description)

Load a module that was previously found by find_module () (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to a reload () ! The name argument indicates the full module name (including the package
name, if this is a submodule of a package). The file argument is an open file, and filename is the corresponding
file name; these can be None and '/, respectively, when the module is not being loaded from a file. The
description argument is a tuple, as would be returned by get _suffixes (), describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually ImportError)
is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when an exception
is raised. This is best done using a try ... finally statement.

new_module (name)
Return a new empty module object called name. This object is not inserted in sys .modules.

lock_held()
Return True if the import lock is currently held, else False. On platforms without threads, always return
False.

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

acquire_lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to ensure
thread-safety when importing modules. On platforms without threads, this function does nothing. New in
version 2.3.

release_lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in version
2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find_module ().

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

94 Chapter 3. Python Runtime Services

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Mac OS 9 resource. This value can only be returned on a Mac OS 9 or earlier
Macintosh.

PKG_DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (see init_frozen ()).

The following constant and functions are obsolete; their functionality is available through find_module () or
load_module (). They are kept around for backward compatibility:

SEARCH_ERROR
Unused.

init_builtin (name)
Initialize the built-in module called name and return its module object. If the module was already initialized, it
will be initialized again. A few modules cannot be initialized twice — attempting to initialize these again will
raise an ImportError exception. If there is no built-in module called name, None is returned.

init_frozen (name)
Initialize the frozen module called name and return its module object. If the module was already initialized,
it will be initialized again. If there is no frozen module called name, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is_builtin (name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if there is a built-in
module called name which cannot be initialized again (see init_builtin ()). Return 0 if there is no built-in
module called name.

is_frozen (name)
Return True if there is a frozen module (see init_frozen ()) called name, or False if there is no such
module.

load_compiled (name, pathname, [ﬁle])
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initialized again. The name argument is used to create or access a
module object. The pathname argument points to the byte-compiled code file. The file argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load_dynamic (name, pathname[, ﬁle])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initialized again. Some modules don’t like that and may raise
an exception. The pathname argument must point to the shared library. The name argument is used to construct
the name of the initialization function: an external C function called ‘initname ()’ in the shared library is
called. The optional file argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load_source (name, pathname[, file])
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initialized again. The name argument is used to create or access a module
object. The pathname argument points to the source file. The file argument is the source file, open for reading

3.21. imp — Access the import internals 95

as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (This implementation wouldn’t work in that version, since find_module () has been extended and
load_module () has been added in 1.4.)

import imp
import sys

def __import__ (name, globals=None, locals=None, fromlist=None) :
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,

there’s a problem we can’t handle -- let the caller handle it.
fp, pathname, description = imp.find_module (name)
try:

return imp.load_module (name, fp, pathname, description)
finally:

Since we may exit via an exception, close fp explicitly.

if fp:

fp.close ()

A more complete example that implements hierarchical module names and includes a reload () function can be
found in the module knee. The knee module can be found in ‘Demo/imputil/’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modules (“*.py’, “*.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use the zipimport module explicitly; it is automatically used by the builtin import
mechanism for sys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an item of sys.path to
be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package im-
ports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘/tmp/example.zip/lib/> would only import from the ‘lib/> subdirectory within the archive.

Any files may be present in the ZIP archive, but only files ‘.py’ and ‘.py[co]” are available for import. ZIP import of
dynamic modules (‘.pyd’, ‘.s0’) is disallowed. Note that if an archive only contains ‘.py’ files, Python will not attempt
to modify the archive by adding the corresponding ‘.pyc’ or ‘.pyo’ file, meaning that if a ZIP archive doesn’t contain
‘.pyc’ files, importing may be rather slow.

96 Chapter 3. Python Runtime Services

Using the built-in reload () function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload () would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exception ZipImporterError
Exception raised by zipimporter objects. It’s a subclass of ImportError, so it can be caught as
ImportError, too.

class zipimporter
The class for importing ZIP files. See “zipimporter Objects” (section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http:// www.pkware.com/business_and_developers/developer/appnote/)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

PEP 0273, “Import Modules from Zip Archives”
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification in
PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in PEP
302.

PEP 0302, “New Import Hooks”
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

class zipimporter (archivepath)
Create a new zipimporter instance. archivepath must be a path to a zipfile. ZipImportError is raised if
archivepath doesn’t point to a valid ZIP archive.

find_module (fullname [path])
Search for a module specified by fullname. fullname must be the fully qualified (dotted) module name. It returns
the zipimporter instance itself if the module was found, or None if it wasn’t. The optional path argument is
ignored—it’s there for compatibility with the importer protocol.

get_code (fullname)
Return the code object for the specified module. Raise ZipImportError if the module couldn’t be found.

get_data (pathname)
Return the data associated with pathname. Raise TOError if the file wasn’t found.

get_source (fullname)
Return the source code for the specified module. Raise ZipImportError if the module couldn’t be found,
return None if the archive does contain the module, but has no source for it.

is_package (fullname)
Return True if the module specified by fullname is a package. Raise ZipImportError if the module couldn’t
be found.

load_module (fullname)
Load the module specified by fullname. fullname must be the fully qualified (dotted) module name. It returns
the imported module, or raises ZipImportError if it wasn’t found.

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note that the zipimport module is not explicitly
used.

3.22. zipimport — Import modules from Zip archives 97

http://www.pkware.com/businessprotect unhbox voidb@x kern .06emvbox {hrule width.55em}{}andprotect unhbox voidb@x kern .06emvbox {hrule width.55em}{}developers/developer/appnote/

$ unzip -1 /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name

8467 11-26-02 22:30 jwzthreading.py

$./python

Python 2.3 (#1, Aug 1 2003, 19:54:32)

>>> import sys

>>> sys.path.insert (0, ’/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading

>>> jwzthreading.__ file

" /tmp/example.zip/jwzthreading.py’

3.23 pkgutil — Package extension utility

New in version 2.3.

This module provides a single function:

extend_path (path, name)

Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s ‘__init__.py’:

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s __path__ all subdirectories of directories on sys . path named after the pack-
age. This is useful if one wants to distribute different parts of a single logical package as multiple directories.

It also looks for “*.pkg’ files beginning where « matches the name argument. This feature is similar to “*.pth’ files
(see the site module for more information), except that it doesn’t special-case lines starting with import.
A “*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found in a “*.pkg’ file are
added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Items are only appended to the copy at the end.

Itis assumed that sys . path is a sequence. Items of sy s . path that are not (Unicode or 8-bit) strings referring
to existing directories are ignored. Unicode items on sys . path that cause errors when used as filenames may
cause this function to raise an exception (in line with os.path.isdir () behavior).

3.24 modulefinder — Find modules used by a script

This module provides a ModuleF inder class that can be used to determine the set of modules imported by a script.
modulefinder.py can also be run as a script, giving the filename of a Python script as its argument, after which a
report of the imported modules will be printed.

AddPackagePath (pkg_name, path)

Record that the package named pkg_name can be found in the specified path.

98

Chapter 3. Python Runtime Services

ReplacePackage (oldname, newname)
Allows specifying that the module named oldname is in fact the package named newname. The most common
usage would be to handle how the _xm1plus package replaces the xm1 package.

class ModuleFinder ([path:None, debug=0, excludes=[], replace_paths=[]])
This class provides run_script () and report () methods to determine the set of modules imported by a
script. path can be a list of directories to search for modules; if not specified, sys.path is used. debug sets
the debugging level; higher values make the class print debugging messages about what it’s doing. excludes is
a list of module names to exclude from the analysis. replace_paths is a list of (oldpath, newpath) tuples that
will be replaced in module paths.

report ()
Print a report to standard output that lists the modules imported by the script and their paths, as well as modules
that are missing or seem to be missing.

run_script (pathname)
Analyze the contents of the pathname file, which must contain Python code.

3.25 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

class InteractiveInterpreter ([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optional locals argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
/' __name__' setto’ __console__’ andkey ' __doc__’ settoNone.

class InteractiveConsole ([locals[, ﬁlename]])

Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.psl and sys.ps2, and
input buffering.

interact ([banner[, readfunc [, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance of InteractiveConsole
and sets readfunc to be used as the raw_input () method, if provided. If local is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact () method of the instance is then run with banner passed as the banner to use, if provided. The
console object is discarded after use.

compile_command (source[, filename [symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This function almost
always makes the same decision as the real interpreter main loop.

source is the source string; filename is the optional filename from which source was read, defaulting to
" <input>’; and symbol is the optional grammar start symbol, which should be either single’ (the default)
or’eval’.

Returns a code object (the same as compile (source, filename, symbol)) if the command is complete and
valid; None if the command is incomplete; raises SyntaxError if the command is complete and contains a
syntax error, or raises OverflowError or ValueError if the command contains an invalid literal.

3.25. code — Interpreter base classes 99

3.25.1 Interactive Interpreter Objects

runsource (source[, filename [, symbol]])
Compile and run some source in the interpreter. Arguments are the same as for compile_command () ; the
default for filename is ' <input>’, and for symbol is single’. One several things can happen:

eThe input 1is incorrect; compile_command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror ()
method. runsource () returns False.

eThe input is incomplete, and more input is required; compile_command () returned None.
runsource () returns True.

eThe input is complete; compile_command () returned a code object. The code is executed by calling
the runcode () (which also handles run-time exceptions, except for SystemExit). runsource ()
returns False.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line.

runcode (code)
Execute a code object. When an exception occurs, showtraceback () is called to display a traceback. All
exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([ﬁlename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. If filename is given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses / <string>’ when reading from a string. The output is written by the write ()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by the write () method.

write (data)
Write a string to the standard error stream (sys . stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.25.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
— since it’s so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’s runsource () method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the
buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended.
The return value is True if more input is required, False if the line was dealt with in some way (this is the
same as runsource ()).

100 Chapter 3. Python Runtime Services

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw_input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequence, EOFError is raised. The base implementation uses the built-in function raw_input () ;
a subclass may replace this with a different implementation.

3.26 codeop — Compile Python code

The codeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use the code module instead.

There are two parts to this job:

b}

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to print ‘>>> ’ or
‘ " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

The codeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile_command (source[, filename [symbol]])
Tries to compile source, which should be a string of Python code and return a code object if source is valid
Python code. In that case, the filename attribute of the code object will be filename, which defaults to
" <input>’. Returns None if source is not valid Python code, but is a prefix of valid Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is invalid Python
syntax, and OverflowError or ValueError if there is an invalid literal.

The symbol argument determines whether source is compiled as a statement (’ single’, the default) or as an
expression (eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

class Compile ()
Instances of this class have __call__ () methods identical in signature to the built-in function compile (),
but with the difference that if the instance compiles program text containing a __future__ statement, the
instance ‘remembers’ and compiles all subsequent program texts with the statement in force.

class CommandCompiler ()
Instances of this class have __call__ () methods identical in signature to compile_command (); the
difference is that if the instance compiles program text containing a __future__ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: the Compile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

3.26. codeop — Compile Python code 101

try:
from codeop import CommandCompiler
compile_command = CommandCompiler ()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler () :
from codeop import compile_command
return compile_command

and then call CommandCompiler every time you need a fresh compiler object.

3.27 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. Construct Pret tyPrinter objects explicitly if you need to adjust the width constraint.

The pprint module defines one class:

class PrettyPrinter (...)

Construct a PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using the stream keyword; the only method used on the stream object is the file protocol’s
write () method. If not specified, the PrettyPrinter adopts sys. stdout. Three additional parameters
may be used to control the formatted representation. The keywords are indent, depth, and width. The amount
of indentation added for each recursive level is specified by indent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled by depth; if the data structure being printed is too deep, the next contained level is replaced by
‘...’ . By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using the width parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

102 Chapter 3. Python Runtime Services

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert (0, stuffl[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[["y
" /usr/local/lib/pythonl.5’,
" /usr/local/lib/pythonl.5/test’,
" /usr/local/lib/pythonl.5/sunos5’,
" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’],

rr
4

' /usr/local/lib/pythonl.5’,
" /usr/local/lib/pythonl.5/test’,
" /usr/local/lib/pythonl.5/sunos5’,
" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’]
>>>
>>> import parser
>>> tup = parser.ast2tuple(
e parser.suite (open ('pprint.py’) .read())) [1]1[1]1[1]
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
(266, (267, (307, (287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat (object[, indent[, width [, depth]]])
Return the formatted representation of object as a string. indent, width and depth will be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The parameters indent,
width and depth were added.

pprint (object[, stream[, indent[, width[, depth]]]])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement for in-
specting values. indent, width and depth will be passed to the PrettyPrinter constructor as formatting
parameters.

>>> stuff = sys.path[:]
>>> stuff.insert (0, stuff)
>>> pprint.pprint (stuff)

[<Recursion on list with 1d=869440>,

rr
I4

' /usr/local/lib/pythonl.5’,

" /usr/local/lib/pythonl.5/test’,

" /usr/local/lib/pythonl.5/sunos5’,

" /usr/local/lib/pythonl.5/sharedmodules’,
" /usr/local/lib/pythonl.5/tkinter’]

Changed in version 2.4: The parameters indent, width and depth were added.

isreadable (object)
Determine if the formatted representation of object is “readable,” or can be used to reconstruct the value using
eval (). This always returns false for recursive objects.

>>> pprint.isreadable (stuff)
False

3.27. pprint — Data pretty printer 103

isrecursive (object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion on typename
with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)

"[<Recursion on list with i1d=682968>, ’’, ’/usr/local/lib/pythonl.5’, ' /usr/loca
1/1ib/pythonl.5/test’, ' /usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ' /usr/local/lib/pythonl.5/tkinter’]"

3.27.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation of object. This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new PrettyPrinter objects don’t need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval (). Note that this returns false for recursive objects. If the depth parameter of the PrettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.

format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be true. Recursive calls to
the format () method should add additional entries for containers to this dictionary. The fourth argument,
maxlevels, gives the requested limit to recursion; this will be 0 if there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argument, level gives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

3.28 repr — Alternate repr () implementation

The repr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

104 Chapter 3. Python Runtime Services

This module provides a class, an instance, and a function:

class Repr ()
Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

repr (0bj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.28.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray, and 6 for the others. New in version 2.4: maxset, maxfrozenset, and set. .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The defaultis 20.

repr (0bj)
The equivalent to the built-in repr () that uses the formatting imposed by the instance.

reprl (obj, level)
Recursive implementation used by repr (). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1l () to perform recursive formatting,
with level — 1 for the value of level in the recursive call.

repr_type (obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In the
method name, type is replaced by string. join (string.split (type (0bj) .__name__, ' _')).
Dispatch to these methods is handled by reprl (). Type-specific methods which need to recursively format a
value should call ‘self.reprl (subobj, level — 1)°.

3.28. repr — Alternate repr () implementation 105

3.28.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.reprl () allows subclasses of Repr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr (repr.Repr) :
def repr_file(self, obj, level):
if obj.name in [’<stdin>’, ’<stdout>’, '<stderr>’]:
return obj.name
else:
return ‘obj

\

aRepr = MyRepr ()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.29 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module. It is
possible to supply non-sensical arguments which crash the interpreter when the object is used.

The new module defines the following functions:

instance (class[, dict])
This function creates an instance of class with dictionary dict without calling the __init__ () constructor.
If dict is omitted or None, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None. function must be
callable.

function (code, globals[, name [, argdefs [, closure]]])
Returns a (Python) function with the given code and globals. If name is given, it must be a string or None.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name. If argdefs is given, it must be a tuple and will be used to determine the default values of
parameters. If closure is given, it must be None or a tuple of cell objects containing objects to bind to the names
in code.co_freevars.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Ino-

tab)
This function is an interface to the PyCode_New () C function.

module (name/, doc])
This function returns a new module object with name name. name must be a string. The optional doc argument
can have any type.

classobj (name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should be a tuple of
classes) and with namespace dict.

106 Chapter 3. Python Runtime Services

3.30 site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic import can be suppressed using the
interpreter’s -S option.

Importing this module will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses sys.prefix
and sys.exec_prefix; empty heads are skipped. For the tail part, it uses the empty string (on Windows) or
‘lib/python2.4/site-packages’ (on UNIX and Macintosh) and then ‘lib/site-python’. For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, adds it to sys . path and also inspects the newly
added path for configuration files.

A path configuration file is a file whose name has the form ‘package.pth’ and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be added to sys.path. Non-existing items are
never added to sys.path, but no check is made that the item refers to a directory (rather than a file). No item is
added to sy s . path more than once. Blank lines and lines beginning with # are skipped. Lines starting with import
are executed.

For example, suppose sys.prefix and sys.exec_prefix are set to ‘/ust/local’. The Python 2.4.4 library is
then installed in ‘/usr/local/lib/python2.4’ (where only the first three characters of sys.version are used to form the
installation path name). Suppose this has a subdirectory ‘/usr/local/lib/python2.4/site-packages’ with three subsubdi-
rectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’. Assume ‘foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/python2.3/site-packages/bar
/usr/local/lib/python2.3/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory because ‘bar.pth’
comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which can perform
arbitrary site-specific customizations. If this import fails with an ImportError exception, it is silently ignored.

Note that for some non-UNIX systems, sys.prefix and sys.exec_prefix are empty, and the path manipula-
tions are skipped; however the import of sitecustomize is still attempted.

3.30. site — Site-specific configuration hook 107

3.31 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using
execfile ())in its own (the module user’s) global namespace. Errors during this phase are not caught; that’s up
to the program that imports the user module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variable user . spam_verbose, as follows:

import user

verbose = bool (getattr (user, "spam_verbose", 0))

(The three-argument form of getattr () is used in case the user has not defined spam_verbose in their
‘.pythonrc.py’ file.)

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns should not import this module; a user can easily break into a program by
placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the importing program.
See Also:

Module site (section 3.30):
Site-wide customization mechanism.

3.32 __builtin__ — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for example, __builtin__.open is the
full name for the built-in function open () . See chapter 2, “Built-in Objects.”

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide objects
with the same name as a built-in value, but in which the built-in of that name is also needed. For example, in a module
that wants to implement an open () function that wraps the built-in open (), this module can be used directly:

108 Chapter 3. Python Runtime Services

import _ builtin_

def open (path):
f = __builtin__ .open(path, ’'r’)
return UpperCaser (f)

class UpperCaser:
"’ "Wrapper around a file that converts output to upper-case.’’’

def _ _init_ (self, f):
self. £ = £

def read(self, count=-1):
return self._f.read(count) .upper ()

As an implementation detail, most modules have the name __builtins__ (note the ‘s’) made available as part of
their globals. The value of __builtins__ is normally either this module or the value of this modules’s __dict__
attribute. Since this is an implementation detail, it may not be used by alternate implementations of Python.

3.33 __main__ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if name == "_ _main :
main ()

3.34 __future__ — Future statement definitions
__future__ is areal module, and serves three purposes:

¢ To avoid confusing existing tools that analyze import statements and expect to find the modules they’re import-
ing.

e To ensure that future_statements run under releases prior to 2.1 at least yield runtime exceptions (the import of
__future__ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future__ and examining its contents.

Each statement in ‘__future__.py’ is of the form:

FeatureName = "_Feature (" OptionalRelease "," MandatoryRelease " ,"
CompilerFlag ")"

3.33. __main__ — Top-level script environment 109

where, normally, OptionalRelease is less than MandatoryRelease, and both are 5-tuples of the same form as
sys.version_info:

(PY_MAJOR_VERSION,
PY_MINOR_VERSION,
PY_MICRO_VERSION,
PY RELEASE_LEVEL,
PY_RELEASE_SERIAL

)

the 2 in 2.1.0a3; an int

the 1; an int

the 0; an int

"alpha", "beta", "candidate" or "final"; string
the 3; an int

4o e e e

OptionalRelease records the first release in which the feature was accepted.

In the case of a MandatoryRelease that has not yet occurred, MandatoryRelease predicts the release in which the
feature will become part of the language.

Else MandatoryRelease records when the feature became part of the language; in releases at or after that, modules no
longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryRelease may also be None, meaning that a planned feature got dropped.

Instances of class _Feature have two corresponding methods, getOptionalRelease() and
getMandatoryRelease ().

CompilerFlag is the (bitfield) flag that should be passed in the fourth argument to the builtin function compile () to
enable the feature in dynamically compiled code. This flag is stored in the compiler_flag attribute on _Feature
instances.

No feature description will ever be deleted from __future__.

110 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version of St ringIO, but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string— Common string operations

The st ring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. See the module re for string functions based on regular expressions.

4.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of the ascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase letters " abcdefghi jklmnopgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii_uppercase
The uppercase letters * ABCDEFGHIJKLMNOPQRSTUVWXYZ . This value is not locale-dependent and will not
change.

digits
The string 7 0123456789".

hexdigits

111

The string 0123456789%abcde fABCDEF’ .

letters
The concatenation of the strings 1owercase and uppercase described below. The specific value is locale-
dependent, and will be updated when locale.setlocale () is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string ' abcdefghijklmnopgrstuvwxyz’. Do not change its definition — the effect on the routines
upper () and swapcase () is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale () iscalled.

octdigits
The string ' 01234567

punctuation
String of ASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'. Do not change its definition — the effect on the routines
lower () and swapcase () is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale () is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip () and split () is undefined.

4.1.2 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the normal ‘%’-based substitutions,
Templates support ‘$’-based substitutions, using the following rules:

e ‘3%’ is an escape; it is replaced with a single ‘$’.

e ‘Sidentifier’ names a substitution placeholder matching a mapping key of “identifier”. By default, "iden-
tifier” must spell a Python identifier. The first non-identifier character after the ‘S’ character terminates this
placeholder specification.

e ‘S{identifier}’ is equivalent to ‘Sidentifier’. It is required when valid identifier characters follow
the placeholder but are not part of the placeholder, such as ”${noun}ification”.

Any other appearance of ‘$’ in the string will result in a ValueError being raised.
New in version 2.4.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class Template (template)
The constructor takes a single argument which is the template string.

substitute (mapping[, **kws])
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys that
match the placeholders in the template. Alternatively, you can provide keyword arguments, where the keywords

112 Chapter 4. String Services

are the placeholders. When both mapping and kws are given and there are duplicates, the placeholders from kws
take precedence.

safe_substitute (mapping[, **kws])
Like substitute (), except that if placeholders are missing from mapping and kws, instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute (), any other appearances of the ‘$’ will simply return ‘$’ instead of raising ValueError.

While other exceptions may still occur, this method is called “safe” because substitutions always tries to return a
usable string instead of raising an exception. In another sense, safe_substitute () may be anything other
than safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces,
or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but read-
only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template (' $who likes S$what’)

>>> s.substitute (who=’tim’, what=’kung pao’)

"tim likes kung pao’

>>> d = dict (who="tim’)

>>> Template (' Give $who $100’) .substitute(d)
Traceback (most recent call last):

[...]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template (! Swho likes S$what’) .substitute (d)
Traceback (most recent call last):

[...]

KeyError: ’what’

>>> Template (' $who likes $what’) .safe_substitute (d)
"tim likes S$what’

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

e delimiter — This is the literal string describing a placeholder introducing delimiter. The default value ‘$’. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed.

e idpattern — This is the regular expression describing the pattern for non-braced placeholders (the braces will be

added automatically as appropriate). The default value is the regular expression ‘[_a-z] [_a-z0-9] *’.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

e escaped — This group matches the escape sequence, e.g. ‘$$’, in the default pattern.

e named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

4.1. string — Common string operations 113

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

4.1.3 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s)
Split the argument into words using split (), capitalize each word using capitalize (), and join the
capitalized words using join (). Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

maketrans (from, to)
Return a translation table suitable for passing to translate () or regex.compile (), that will map each
character in from into the character at the same position in fo; from and fo must have the same length.

Warning: Don’t use strings derived from lowercase and uppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always use Lower () and upper ().

4.1.4 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see “String Methods”
(section 2.3.6) for more information on those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since release 2.0. Use the f1oat () built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sign (‘+” or ‘="). Note that this behaves identical to the built-in function
float () when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, base])
Deprecated since release 2.0. Use the int () built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘-’). The base defaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means 16, ‘0’ means 8, anything else
means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted, though not required. This behaves identically
to the built-in function int () when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in function eval ().)

atol (s[, base])
Deprecated since release 2.0. Use the 1ong () built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘=’). The base argument has the same meaning as for atoi (). A trailing ‘1’ or ‘L’
is not allowed, except if the base is 0. Note that when invoked without base or with base set to 10, this behaves
identical to the built-in function 1ong () when passed a string.

capitalize (word)
Return a copy of word with only its first character capitalized.

expandtabs (s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given

114 Chapter 4. String Services

tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index in s where the substring sub is found such that sub is wholly contained in s [start : end] .
Return —1 on failure. Defaults for start and end and interpretation of negative values is the same as for slices.

rfind (s, sub[, start[, end]])
Like £ind () but find the highest index.

index (s, sub[, start[, end]])
Like f£ind () but raise ValueError when the substring is not found.

rindex (s, sub[, start[, end]])
Like rfind () butraise ValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substring sub in string s [start : end] . Defaults for start
and end and interpretation of negative values are the same as for slices.

lower (s)
Return a copy of s, but with upper case letters converted to lower case.

split (s[, sep[, maxsplit]])

Return a list of the words of the string s. If the optional second argument sep is absent or None, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argument sep is present and not None, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argument maxsplit defaults to 0. If it is nonzero, at most maxsplit number of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have at most maxsplit+1
elements).

The behavior of split on an empty string depends on the value of sep. If sep is not specified, or specified as
None, the result will be an empty list. If sep is specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s[, sep[, maxsplit]])
Return a list of the words of the string s, scanning s from the end. To all intents and purposes, the resulting list
of words is the same as returned by split (), except when the optional third argument maxsplit is explicitly
specified and nonzero. When maxsplit is nonzero, at most maxsplit number of splits — the rightmost ones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit+1 elements). New in version 2.4.

splitfields (s[, sep[, maxsplit]])
This function behaves identically to split (). (Inthe past, split () was only used with one argument, while
splitfields () was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep is a single
space character. It is always true that ‘string. join (string.split (s, sep), sep)’ equalss.

joinfields (words[, sep])
This function behaves identically to join (). (In the past, join () was only used with one argument, while
joinfields () was only used with two arguments.) Note that there is no joinfields () method on string
objects; use the join () method instead.

1strip (s[, chars])
Return a copy of the string with leading characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3: The chars parameter was added.
The chars parameter cannot be passed in earlier 2.2 versions.

4.1. string — Common string operations 115

rstrip (s[, chars])
Return a copy of the string with trailing characters removed. If chars is omitted or None, whitespace characters
are removed. If given and not None, chars must be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3: The chars parameter was added. The
chars parameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removed. If chars is omitted or None, whitespace
characters are removed. If given and not None, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.3: The chars
parameter was added. The chars parameter cannot be passed in earlier 2.2 versions.

swapcase (s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechars])
Delete all characters from s that are in deletechars (if present), and then translate the characters using table,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Return a copy of s, but with lower case letters converted to upper case.

1just (s, width)

rjust (s, width)

center (s, width)
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at least width characters wide, created by padding the string s with spaces until the given width on
the right, left or both sides. The string is never truncated.

z£ill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str old, new[, maxreplace])
Return a copy of string str with all occurrences of substring old replaced by new. If the optional argument
maxreplace is given, the first maxreplace occurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte using the \number notation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit strings. The re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write * \\\\’ as the pattern
string, because the regular expression must be ‘\\’, and each backslash must be expressed as ‘\\’ inside a regular
Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string containing ‘\’ and ‘n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The second edition of the book no longer

116 Chapter 4. String Services

covers Python at all, but the first edition covered writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pq will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so M ast) matches the string ’ 1ast’. (In the rest of this section, we’ll write RE’s in this special style,
usually without quotes, and strings to be matched * in single quotes’.)

Some characters, like ‘| * or * (, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

¢.” (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

¢"? (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. 'fooj matches both *foo’ and foobar’, while the regular expression 'foo$) matches
only *foo’. More interestingly, searching for 'foo . $;in *fool\nfoo2\n’ matches *f002’ normally, but fool” in
MULTILINE mode.

‘%’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
fab*; will match *a’, ab’, or *a’ followed by any number of ’b’s.

4+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. 'ab+ will match *a’ followed by any
non-zero number of ’b’s; it will not match just ’a’.

2’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab 2, will match either *a’ or *ab’.

*?,+?,?2? The ‘+’, ‘+’, and ‘2’ qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. %> is matched against / <H1>title</H1>', it will match the entire
string, and not just <H1>’. Adding ‘?’ after the qualifier makes it perform the match in non-greedy or
minimal fashion; as few characters as possible will be matched. Using . «?; in the previous expression will
match only ’ <H1>".

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example, 'a { 6 }; will match exactly six ‘a’ characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, 'a {3, 5}, will match from 3 to 5 ‘a’ characters. Omitting m specifies a
lower bound of zero, and omitting n specifies an infinite upper bound. As an example, 'a {4, }b, will match
aaaab or a thousand ‘a’ characters followed by a b, but not aaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

4.2. re — Regular expression operations 117

http://www.python.org/doc/howto/

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string ’ aaaaaa’, 'a{3, 5} will match 5 ‘a’ characters, while 'a { 3, 5} 2, will only match 3 characters.

‘\’ Either escapes special characters (permitting you to match characters like ‘x’, ‘?’, and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by a ‘-’. Special characters are not active inside sets. For exam-
ple, "[akm$ 1 will match any of the characters ‘a’, ‘k’, ‘m’, or ‘$’; "[a—z]; will match any lowercase letter,
and [a-zA-Z0-9] matches any letter or digit. Character classes such as \w or \ S (defined below) are also
acceptable inside a range. If you want to include a *]” or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern '[]]; will match ’], for example.

b}

You can match the characters not within a range by complementing the set. This is indicated by including a ‘"
as the first character of the set; *~’ elsewhere will simply match the character. For example, [~5]; will
match any character except ‘5’, and '[~ ~]; will match any character except ‘"’.

C~

‘|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ‘|’ in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ‘|’ are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the |’ operator is never greedy. To match a literal ¢ |, use "\ |},
or enclose it inside a character class, asin '[| 1.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number, special sequence, described below. To match the literals ¢ (* or ¢) >, use "\ (or "\), or enclose
them inside a character class: '[(] [) 1

(?...) Thisisan extension notation (a ‘?’ following a ‘ (is not meaningful otherwise). The first character after the
2’ determines what the meaning and further syntax of the construct is. Extensions usually do not create a new
group; '(?P<name> . . .),is the only exception to this rule. Following are the currently supported extensions.

LRI B}

(?ilmsux) (One or more letters from the set ‘i’, ‘L’, ‘m’, ‘s’, ‘u’, ‘x’.) The group matches the empty string; the
letters set the corresponding flags (re. I, re.L, re.M re.S, re.U, re.X) for the entire regular expression.
This is useful if you wish to include the flags as part of the regular expression, instead of passing a flag argument
to the compile () function.

Note that the '(?x), flag changes how the expression is parsed. It should be used first in the expression string,
or after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?P<name> . . .) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group name name. Group names must be valid Python identifiers, and each group name must be defined
only once within a regular expression. A symbolic group is also a numbered group, just as if the group were not
named. So the group named ’id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern is (?P<id>[a—zA—-Z_] \wx)}, the group can be referenced by its name in argu-
ments to methods of match objects, such asm.group (* 1d’) orm.end (' id’), and also by name in pattern
text (for example, "(?P=1d))) and replacement text (such as \g<id>).

118 Chapter 4. String Services

(?P=name) Matches whatever text was matched by the earlier group named name.
(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Tsaac (?=Asimov);will match ' Isaac ’ only if it’s followed by ’ Asimov’.

(?!...) Matches if . .. doesn’t match next. This is a negative lookahead assertion. For example, Tsaac
(?!'Asimov)will match ' ITsaac ’ only if it’s not followed by ' Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for . . .; that ends at the current
position. This is called a positive lookbehind assertion. "(?<=abc) def) will find a match in ‘abcdef’, since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that 'abc or 'a | b are allowed, but 'a*jand 'a {3, 4}, are not.
Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use the search () function rather than the match () function:

>>> import re

>>> m = re.search(’ (?<=abc)def’, ’abcdef’)
>>> m.group (0)

"def’

This example looks for a word following a hyphen:

>>> m = re.search(’ (?<=-)\w+’, ’spam-egg’)
>>> m.group (0)
’ egg’
(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative

lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no—pattern) Will try to match with yes-patternif the group with given id
or name exists, and with mo—pattern;if it doesn’t. "I no—pattern;is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?:\.\w+) +) (? (1) >),is a poor email matching pattern, which will match with
’<user@host.com>’ as well as "user@host.com’, but not with ' <user@host.com’. New in
version 2.4.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example, "\ $; matches the character ‘$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
f(.+) \1 matches 'the the’ or 55 55/, but not ' the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or number
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value number-.
Inside the ‘[’ and]’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note that \b is defined as the boundary between \w and \W, so the precise set of
characters deemed to be alphanumeric depends on the values of the UNICODE and LOCALE flags. Inside a
character range, "\ represents the backspace character, for compatibility with Python’s string literals.

4.2. re — Regular expression operations 119

\B Matches the empty string, but only when it is not at the beginning or end of a word. This is just the opposite of
\b, so is also subject to the settings of LOCALE and UNICODE.

\d When the UNICODE flag is not specified, matches any decimal digit; this is equivalent to the set [[0—971;. With
UNICODE, it will match whatever is classified as a digit in the Unicode character properties database.

\D When the UNICODE flag is not specified, matches any non-digit character; this is equivalent to the set '[~0-91,.
With UNICODE, it will match anything other than character marked as digits in the Unicode character properties
database.

\s When the LOCALE and UNICODE flags are not specified, matches any whitespace character; this is equivalent to
the set '[\t\n\r\f\v],. With LOCALE, it will match this set plus whatever characters are defined as space
for the current locale. If UNICODE is set, this will match the characters '[\t\n\r\f\v];plus whatever is
classified as space in the Unicode character properties database.

\S When the LOCALE and UNICODE flags are not specified, matches any non-whitespace character; this is equivalent
to the set '[~ \t\n\r\f\v] With LOCALE, it will match any character not in this set, and not defined as
space in the current locale. If UNICODE is set, this will match anything other than [\t\n\r\f\v]; and
characters marked as space in the Unicode character properties database.

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the set [[a-zA-70-9_];. With LOCALE, it will match the set '[0-9_1; plus whatever
characters are defined as alphanumeric for the current locale. If UNICODE is set, this will match the characters
10—9_1, plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the set [“a—zA-70-9_],. With LOCALE, it will match any character not in the set '[0-9_], and not
defined as alphanumeric for the current locale. If UNICODE is set, this will match anything other than [0-9_1,
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \x
AN\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you’re looking for. See the search () function and corresponding
method of compiled regular expression objects.

3

Note that match may differ from search using a regular expression beginning with ‘“’: ‘"’ matches only at the start
of the string, or in MULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by the optional pos
argument regardless of whether a newline precedes it.

120 Chapter 4. String Services

succeeds
fails; ’"a’ not at start
fails; ’a’ not at start
succeeds
fails; no preceding \n

re.compile ("a") .match ("ba", 1)
re.compile (" ") .search ("ba", 1)
re.compile (""a") .search("\na", 1)
(
(

re.compile

He o o W

“a
"a
""a", re.M).search("\na", 1)
“a

re.compile (" ", re.M).search("ba", 1)

4.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern[, ﬂags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match () and search () methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version using compile () is more efficient when the expression will be used several times in a single

program.

I

IGNORECASE
Perform case-insensitive matching; expressions like '[A-Z]; will match lowercase letters, too. This is not
affected by the current locale.

L

LOCALE
Make \w;, \w, N\, \Bj, \'sjand "\ S; dependent on the current locale.

M

MULTILINE
When specified, the pattern character ‘"’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, *~’ matches only at the beginning of the
string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the °.’ special character match any character at all, including a newline; without this flag, ‘.’ will match
anything except a newline.

U

UNICODE

Make N\vwy, \w, \by, \Bj, \dj, \Dj, \'s;and "\ S; dependent on the Unicode character properties database. New
in version 2.0.

4.2. re — Regular expression operations 121

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’ neither
in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’ through
the end of the line are ignored.

search (pattern, string[, ﬂags])

Scan through string looking for a location where the regular expression pattern produces a match, and return a
corresponding Mat chOb ject instance. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string[, ﬂags])

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding

MatchObject instance. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

split (pattern, string[, maxsplit = O])

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all groups
in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 release, maxsplit was ignored. This has been fixed in later releases.)

>>> re.split (" \W+’, ’'Words, words, words.’)
["Words’, ’"words’, ’'words’, ’'']

>>> re.split (/ (\W+)’, ’'Words, words, words.’)
['Words’, ', ', 'words’, ', ', 'woxrds’, '.’', ''"]
>>> re.split (" \W+’, ’Words, words, words.’, 1)
["Words’, ’"words, words.’]

This function combines and extends the functionality of the old regsub.split () and regsub.splitx ().

findall (pattern, string[, ﬂags])

Return a list of all non-overlapping matches of pattern in string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2. Changed in
version 2.4: Added the optional flags argument.

finditer (pattern, sm'ng[, ﬂags])

Return an iterator over all non-overlapping matches for the RE pattern in string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2. Changed in version 2.4: Added the optional flags argument.

sub (pattern, repl, string[, count])

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single newline character,
‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\ j’ are left alone. Backreferences,
such as “\ 67, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r’def\s+ ([a-zA-Z_] [a-2zA-Z_0-9]*)\sx\ (\s*\):’",
r’ static PyObject*\npy_\1(void)\n{’,

"def myfunc():’)

"static PyObject*\npy_myfunc (void)\n{’

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single

122

Chapter 4. String Services

match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == ’-’': return ’ '
. else: return '-'
>>> re.sub(’-{1,2}’, dashrepl, ’'pro-—---gram-files’)

"pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; for example, ‘sub (" (?i)b+", "x", "bbbb BBBB")’
returns ' x x'.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous match, so ‘sub (' xx’, ’—', ’abc’)’returns’-a-b-c-'.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the substring
matched by the group named ‘name’, as defined by the (?P<name>. . .) syntax. ‘\g<number>’ uses the
corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’, but isn’t ambiguous in a replacement
such as ‘\g<2>0". ‘\20’ would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character ‘0’. The backreference ‘\g<0>’ substitutes in the entire substring matched by the RE.

subn (pattern, repl, string[, count])
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made) .

escape (string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It is
never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string [pos [endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
MatchObject instance. Return None if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere in string, use search () instead.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0. This
is not completely equivalent to slicing the string; the / ~” pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos
characters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less
than pos, no match will be found, otherwise, if rx is a compiled regular expression object, rx.match (string,
0, 50) isequivalent to rx.match (string[:50]1, 0).

search (string[, pos[, endpos]])
Scan through string looking for a location where this regular expression produces a match, and return a corre-
sponding Mat chOb ject instance. Return None if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the mat ch () method.

4.2. re — Regular expression operations 123

split (string[, maxsplit = 0])

Identical to the split () function, using the compiled pattern.

findall (string[, pos [endpos]])

Identical to the findall () function, using the compiled pattern.

finditer (string[, pos [, endpos]])

Identical to the finditer () function, using the compiled pattern.

sub (repl, string[, count = 0])

Identical to the sub () function, using the compiled pattern.

subn (repl, string [, count = O])

Identical to the subn () function, using the compiled pattern.

flags

The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groupindex

A dictionary mapping any symbolic group names defined by "(?P<id>) | to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern

The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (femplate)

Return the string obtained by doing backslash substitution on the template string template, as done by the sub ()
method. Escapes such as ‘\n’ are converted to the appropriate characters, and numeric backreferences (‘\1’,
‘\2’) and named backreferences (‘\g<1>’, ‘\g<name>’) are replaced by the contents of the corresponding

group.

group ([groupl,])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses the ' (?P<name> . . .)| syntax, the groupN arguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, an IndexError
exception is raised.

A moderately complicated example:

m = re.match (r" (?P<int>\d+)\. (\d*)", ’3.14")

After performing this match, m.group (1) is ’ 3’,asism.group (' int’),andm.group (2) is ' 14”.

groups ([default])

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

124

Chapter 4. String Services

groupdict ([default])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None.

start ([group])

end ([group])
Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent to m.group (g))
is

m.string[m.start (g) :m.end(g)]

Note thatm. start (group) will equal m. end (group) if group matched a null string. For example, afterm =
re.search('b(c?)’, ’'cba’),m.start(0) is 1, m.end (0) is2, m.start (1) and m.end (1)
are both 2, and m. start (2) raises an IndexError exception.

span ([group])
For MatchObject m, return the 2-tuple (m.start (group), m.end (group)). Note that if group did not
contribute to the match, thisis (-1, -1). Again, group defaults to zero.

pos
The value of pos which was passed to the search () ormatch () method of the RegexObject. This is the
index into the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search () or match () method of the RegexObject. This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example, the
expressions "(a) by, '((a) (b)), and '((ab)) will have lastindex == 1 if applied to the string ’ ab’,
while the expression '(a) (b)) will have lastindex == 2, if applied to the same string.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whose match () or search () method produced this Mat chObject instance.

string
The string passed to match () or search ().

4.2.6 Examples
Simulating scanf ()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

4.2. re — Regular expression operations 125

scanf () Token | Regular Expression

$c M

%5¢c .{5h

%d MT-+12\d+

Se, SE, 3£, 3g M=+712 (\d+ (\.\d#) 2 |\d*\.\d+) ([eE] [-+]2\d+) 2,
%1 M—+12(0[xX] [\dA-Fa—-f]+|0[0-7]|\d+),

%0 0[0-7]%

$s r\Sﬂ

su Nd+

$x, $X 0[xX] [\dA-Fa-fl+

To extract the filename and numbers from a string like

/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s - %d errors, %d warnings

The equivalent regular expression would be
(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a RuntimeEr-
ror exception with the message maximum recursion limit exceeded. For example,

>>> import re
>>> s = 'Begin ’ + 1000%’a very long string ’ + ’‘end’
>>> re.match ('Begin (\w|)=*? end’, s).end()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/local/lib/python2.3/sre.py", line 132, in match
return _compile (pattern, flags).match(string)
RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of the 'x ?) pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recast as Begin [a—zA-Z0-9_]=x?end;. As a further benefit, such
regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It uses format
strings (explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other

sources.

126 Chapter 4. String Services

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fint, vi, v2,...)
Return a string containing the values v/, v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fint, string)
Unpack the string (presumably packed by pack (fimt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (len (string) must equal calcsize (fimt)).

calcsize (fint)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘©’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘1’ int integer
‘T unsigned int long
‘1’ long integer
‘T’ unsigned long long
‘q’ long long long (D
‘Q unsigned long long | long D
‘£ float float
el double float
‘s’ char[] string
‘P’ char[] string
‘P’ void = integer

Notes:

(1) The ‘g’ and ‘Q’ conversion codes are available in native mode only if the platform C compiler supports C Long
long, or, on Windows, __int 64. They are always available in standard modes. New in version 2.2.

A format character may be preceded by an integral repeat count. For example, the format string 4h’ means exactly
the same as * hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other format
characters; for example, 10s’ means a single 10-byte string, while * 10c’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special case, ' 0s’ means a single, empty string (while 0c’ means
0 characters).

The ‘p’ format character encodes a “’Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed in to pack () is too long (longer than the count minus

4.3. struct — Interpret strings as packed binary data 127

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note that for unpack (), the ‘p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

For the ‘I’, ‘I’, ‘g’ and ‘Q’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer type. A NULL pointer will always be returned as the Python integer 0.
When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘=’ native standard
‘< little-endian standard
>’ big-endian standard
e network (= big-endian) | standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2 bytes; int and long are 4 bytes; long long(—_int64 on Windows) is 8 bytes; f1oat and double
are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference between ‘@” and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of ‘<’ or *>’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the ‘@ byte order
character). The byte order character ‘=" chooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, so the ‘P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import =

>>> pack (‘hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ("hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize ('hhl’)

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for

128 Chapter 4. String Services

that type with a repeat count of zero. For example, the format * 11h01’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

See Also:

Module array (section 5.14):
Packed binary storage of homogeneous data.

Module xdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

class SequenceMatcher
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

class Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning

r— line unique to sequence 1
T line unique to sequence 2
o line common to both sequences

72 ' | line not present in either input sequence

Lines beginning with ‘2 ’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

_init__([tabsize] [, wrapcolumn] [linejunk] [charjunk])
Initializes instance of Htm1Diff.
tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.
wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped, de-
faults to None where lines are not wrapped.
linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Htm1lDiff to
generate the side by side HTML differences). See ndiff () documentation for argument default values
and descriptions.

4.4. difflib — Helpers for computing deltas 129

The following methods are public:

make_file (fromlines, tolines [, fromdesc][, todesc] [, context] [, numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual differ-
ences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines [fromdesc] [todesc] [context] [numlines])
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.
“Tools/scripts/diff.py’ is a command-line front-end to this class and contains a good example of its use.

New in version 2.4.

context_diff (a, b [fromfile] [tofile] [fromfiledate] [tofiledate] [n] [lineterm])

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with «x+ or ———) are created with a trailing newline. This is
helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the format returned by t ime . ct ime (). If not specified, the strings default to blanks.

“Tools/scripts/diff.py’ is a command-line front-end for this function.

New in version 2.3.

get_close_matches (word, possibilities[, n] [cutoﬁ”])

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; » must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

130

Chapter 4. String Services

>>> get_close_matches ("appel’, ['ape’, ’"apple’, ’'peach’, "puppy’l)
["apple’, "ape’]

>>> import keyword

>>> get_close_matches (' wheel’, keyword.kwlist)

["while’]

>>> get_close_matches (’apple’, keyword.kwlist)

[]

>>> get_close_matches (’accept’, keyword.kwlist)

["except’]

ndiff (a, b[, linejunk] [, charjunk])
Compare a and b (lists of strings); return a Di f fer-style delta (a generator generating the delta lines).

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is (None), starting with Python 2.3. Before then, the default was the module-level function
IS_LINE_JUNK (), which filters out lines without visible characters, except for at most one pound character
(‘4#’). As of Python 2.3, the underlying SequenceMatcher class does a dynamic analysis of which lines are
so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level function IS_CHARACTER_JUNK (), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

“Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff (' one\ntwo\nthree\n’ .splitlines (1),
... ’ore\ntree\nemu\n’ .splitlines (1))
>>> print '’/ .join(diff),

- one

5 -

+ +
t
[n}
D
)

restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff (' one\ntwo\nthree\n’ .splitlines (1),
... "ore\ntree\nemu\n’ .splitlines (1))
>>> diff list (diff) # materialize the generated delta into a list
>>> print '’ .Jjoin(restore(diff, 1)),

one

two

three

>>> print '’ .Jjoin(restore(diff, 2)),

ore

tree

emu

4.4. difflib — Helpers for computing deltas 131

unified _diff (q, b[, [fromfile] [, tofile] [[fromfiledate] [, tofiledate] [, n] [, lineterm])
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.
Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The

changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @Q) are created with a trailing newline. This
is helpful so that inputs created from file.readlines () result in diffs that are suitable for use with
file.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the format returned by t ime . ct ime () . If not specified, the strings default to blanks.

“Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.
IS_LINE_JUNK (line)

Return true for ignorable lines. The line line is ignorable if line is blank or contains a single ‘#’, otherwise it is
not ignorable. Used as a default for parameter linejunk in ndiff () before Python 2.3.

IS_CHARACTER_JUNK (ch)
Return true for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in Dr. Dobb’s
Journal in July, 1988.

4.41 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

class SequenceMatcher ([isjunk[, a[, b]]])
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: 0;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.
The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMat cher objects have the following methods:

set_seqgs (q, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequences, use set_seqg2 () to set the commonly used sequence once and call
set_seql () repeatedly, once for each of the other sequences.

132 Chapter 4. String Services

http://www.ddj.com/documents/s=1103/ddj8807c/
http://www.ddj.com/
http://www.ddj.com/

set_seql (a)

Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)

Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)

Find longest matching block in a [alo: ahi] and b [blo : bhi] .

If isjunk was omitted or None, get _longest_match () returns (i, j, k) suchthatal[i:i+k] isequal to
blj:j+k]l,where alo <= i <= i+k <= ahiand blo <= j <= j+k <= bhi. Forall (i’, j’, k’) meeting
those conditions, the additional conditions k >= k’,i <= i’,andif i == i’,j <= j’ are also met. In other
words, of all maximal matching blocks, return one that starts earliest in a, and of all those maximal matching
blocks that start earliest in a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
(0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents / abcd’ from matching
the © abcd’ at the tail end of the second sequence directly. Instead only the * abcd’ can match, and matches
the leftmost * abcd’ in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns (alo, blo, 0).

get_matching _blocks ()

Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and means that
ali:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j.

The last triple is a dummy, and has the value (len (a), len(b), O0). Itisthe only triple withn ==

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[0, 0, 23, (3, 2, 2), (5, 4, 0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (rag, il, i2, jlI, j2).The
first tuple has i/ == jlI == 0, and remaining tuples have i/ equal to the i2 from the preceding tuple, and,
likewise, jI equal to the previous j2.

The tag values are strings, with these meanings:

Value | Meaning

"replace’ | alil:i2] should be replaced by b [jI:j2].

"delete’ a[il :i2] should be deleted. Note that jI == ;2 in this case.

"insert’ b [jI:j2] should be inserted at @ [i/ :il]. Note that i/ == i2 in this case.
"equal’ alil:i2] == b[jl:j2] (the sub-sequences are equal).

For example:

4.4. difflib — Helpers for computing deltas 133

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)

>>> for tag, i1, i2, jl, J2 in s.get_opcodes|() :

print ("$7s a[%d:%d] (%s) b[%d:%d]
. (tag, 11, i2, aflil:i2]1, Jji1,
delete

al0:1] (q) b[0:0] ()
equal af[l:3] (ab) bl[0:2] (ab)
replace al[3:4] (x) b[2:3] (y)
equal af[4:6] (cd) b[3:5] (cd)
insert af[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return a generator of groups with up to z lines of context.

b[j1:32]))

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters and

eliminates intervening ranges which have no changes.

The groups are returned in the same format as get _opcodes ().

ratio ()

New in version 2.3.

Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0¥M / T.
Note that this is 1. 0 if the sequences are identical, and 0. 0 if they have nothing in common.

This is expensive to compute if get _matching_blocks () or get_opcodes () hasn’t already been
called, in which case you may want to try quick_ratio () or real_quick_ratio () first to get an

upper bound.

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

This isn’t defined beyond that it is an upper bound on ratio (), and is faster to compute than either ratio ()

orquick_ratio().

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, although quick_ratio () and real _quick_ratio () are always at least as large as ratio ():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

134

Chapter 4. String Services

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match, get _matching_blocks () is handy:

>>> for block in s.get_matching_blocks():
print "a[%d] and b[%d] match for %d elements" % block
] and b[0] match for 8 elements
] and b[17] match for 6 elements
4] and b[23] match for 15 elements
9] and b[38] match for 0 elements

Note that the last tuple returned by get _matching_blocks () is always a dummy, (len(a), len(b), 0),
and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get _opcodes ():

>>> for opcode in s.get_opcodes():
.. print "%$6s a[%d:%d] b[%d:%d]" % opcode
equal af[0:8] b[0:8]
insert a[8:8] b[8:17]
equal af8:14] b[17:23]
equal af[l4:29] b[23:38]

See also the function get_close_matches () in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note that Dif fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Dif fer class has this constructor:

class Differ ([linejunk[, charjunk]])
Optional keyword parameters linejunk and charjunk are for filter functions (or None):
linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

4.4. difflib — Helpers for computing deltas 135

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained
from the readlines () method of file-like objects. The delta generated also consists of newline-terminated
strings, ready to be printed as-is via the writelines () method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl =’’’ 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. rrr splitlines (1)

>>> len(textl)

4

>>> textl1l[0] [-1]

4 \nl

>>> text2 = "'/ 1. Beautiful is better than ugly.

3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

rrr splitlines (1)

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating a Di ffer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is alist of strings, so let’s pretty-print it:

136 Chapter 4. String Services

>>> from pprint import pprint
>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n’,

r— 2. Explicit is better than implicit.\n’,

" - 3. Simple is better than complex.\n’,

"+ 3 Simple is better than complex.\n’,

’? ++ \n’,

" - 4. Complex is better than complicated.\n’,
" - -—— " A\n’,
"+ 4. Complicated is better than complex.\n’,
"2 +H++ 7 ~ A\n’,

"+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
5 N .
+ 4. Complicated is better than complex.
? ++++ »
+ 5. Flat is better than nested.

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python. Note: This module is unneeded: everything here could be done via the % string interpolation operator.

The fpformat module defines the following functions and an exception:

fix (x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

sci (x, digs)
Format x as [-]d.dddE [+-]ddd with digs digits after the point and exactly one digit before. If digs <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception Not ANumber
Exception raised when a string passed to £ix () or sci () as the x parameter does not look like a number. This
is a subclass of ValueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

4.5. fpformat — Floating point conversions 137

Example:

>>> import fpformat
>>> fpformat.fix (1.23, 1)
r1.2’

4.6 StringI0O— Read and write strings as files

This module implements a file-like class, St ringIO, that reads and writes a string buffer (also known as memory
files). See the description of file objects for operations (section 2.3.9).

class StringIO ([buﬁ”er])
When a StringIO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, the St ringIO will start empty. In both cases, the initial file position starts at
Zero.

The St ringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care. If both
are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a UnicodeError
to be raised when getvalue () is called.

The following methods of St ringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before the St ringIO object’s close () method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
toraise UnicodeError.

close ()
Free the memory buffer.

4.7 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function StringIO () from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the original St ringIO module in that case.

Unlike the memory files implemented by the St ringI0O module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as plain ASCIT strings.

Another difference from the St r ingI0O module is that calling StringIO () with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods. These objects are not
generally visible. They turn up in tracebacks as St ringI and StringO.

The following data objects are provided as well:

InputType
The type object of the objects created by calling St ringIO with a string parameter.

OutputType
The type object of the objects returned by calling St ringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

138 Chapter 4. String Services

4.8 textwrap — Text wrapping and filling

New in version 2.3.

The textwrap module provides two convenience functions, wrap () and £i11 (), as well as TextWrapper,
the class that does all the work, and a utility function dedent (). If you're just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an instance of TextWrapper
for efficiency.

wrap (text[, width [,]])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below. width
defaults to 70.

£i11 (text[, widh[, ... 1])
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. £i11 () is
shorthand for

"\n".join (wrap (text, ...))

In particular, £i11 () accepts exactly the same keyword arguments as wrap () .

Both wrap () and £111 () work by creating a TextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your own TextWrapper object.

An additional utility function, dedent (), is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (fext)
Remove any whitespace that can be uniformly removed from the left of every line in fext.

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
S:III\
hello
world
rrr
print repr(s) # prints ’ hello\n world\n ’

print repr(dedent(s)) # prints ’'hello\n world\n’

class TextWrapper (...)
The TextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper (initial_indent="x ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "x "

4.8. textwrap — Text wrapping and filling 139

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer than width, TextWrapper guarantees that no output line will be longer than width characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the expandtabs ()
method of text.

replace_whitespace
(default: True) If true, each whitespace character (as defined by st ring.whitespace) remaining after tab
expansion will be replaced by a single space. Note: If expand_tabs is false and replace_whitespace
is true, each tab character will be replaced by a single space, which is not the same as tab expansion.

initial_indent
(default: *) String that will be prepended to the first line of wrapped output. Counts towards the length of the
first line.

subsequent_indent
(default: *) String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of “.”, “!’, or ‘?’, possibly followed by one of ‘" or *’’, followed by a space. One problem
with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on st ring. lowercase for the definition of “lowercase letter,”
and a convention of using two spaces after a period to separate sentences on the same line, it is specific to
English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines are longer
than width. If it is false, long words will not be broken, and some lines may be longer than width. (Long
words will be put on a line by themselves, in order to minimize the amount by which width is exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines, without
final newlines.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

140 Chapter 4. String Services

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function)
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functions (encoder, decoder, stream_reader, stream_writer)
taking the following arguments:

encoder and decoder: These must be functions or methods which have the same interface as the
encode ()/decode () methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

stream_reader and stream_writer: These have to be factory functions providing the following interface:
factory (stream, errors=’' strict’)

The factory functions must return objects providing the interfaces defined by the base classes St reamWriter
and St reamReader, respectively. Stream codecs can maintain state.

Possible values for errors are strict’ (raise an exception in case of an encoding error), ' replace’ (re-
place malformed data with a suitable replacement marker, such as ‘?’), " ignore’ (ignore malformed data
and continue without further notice), ' xmlcharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) and ' backslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name defined via register_error ().

In case a search function cannot find a given encoding, it should return None.

lookup (encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, a LookupError is raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions which use 1ookup () for
the codec lookup:

getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

getreader (encoding)
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.
getwriter (encoding)
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a LookupError in case the encoding cannot be found.

register_error (name, error_handler)
Register the error handling function error_handler under the name name. error_handler will be called during
encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding error_handler will be called with a UnicodeEncodeError instance, which contains informa-
tion about the location of the error. The error handler must either raise this or a different exception or return a

4.9. codecs — Codec registry and base classes 141

tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, except UnicodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup_error (name)
Return the error handler previously register under the name name.

Raises a LookupError in case the handler cannot be found.

strict_errors (exception)
Implements the st rict error handling.

replace_errors (exception)
Implements the replace error handling.

ignore_errors (exception)
Implements the i gnore error handling.

xmlcharrefreplace_errors_errors (exception)
Implements the xmlcharrefreplace error handling.

backslashreplace_errors_errors (exception)
Implements the backslashreplace error handling.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode [, encoding[, errors [, buﬁering]]])
Open an encoded file using the given mode and return a wrapped version providing transparent encod-
ing/decoding.
Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encoding specifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaults to ’ st rict’ which causes a ValueError to be
raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to line buffered.

EncodedFile (file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then written to
the original file as strings using the output encoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If output is not given, it defaults to input.

errors may be given to define the error handling. It defaults to * strict’, which causes ValueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOM_BE
BOM_LE
BOM_UTF8
BOM_UTF16
BOM_UTF16_BE
BOM_UTF16_LE
BOM_UTF32

142 Chapter 4. String Services

BOM_UTF32_BE

BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the platform’s native byte order,
BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for BOM_UTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

4.9.1 Codec Base Classes

The codecs module defines a set of base classes which define the interface and can also be used to easily write you
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode () and decode () methods may implement different error
handling schemes by providing the errors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

"strict’ Raise UnicodeError (or a subclass); this is the default.

"ignore’ Ignore the character and continue with the next.

"replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT
"xmlcharrefreplace’ | Replace with the appropriate XML character reference (only for encoding).

"backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extended via register_error.

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.g., cp1252 or iso-8859-1).

errors defines the error handling to apply. It defaults to * st rict’ handling.

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides the bf_getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaults to * strict’ handling.

4.9. codecs — Codec registry and base classes 143

The method may not store state in the Codec instance. Use St reamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter and St reamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. See encodings.ut £_8 for an example of how this is done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

class StreamWriter (stream[, errors])
Constructor for a St reamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing (binary) data.

The St reamWriter may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are predefined:

o’ strict’ Raise ValueError (or a subclass); this is the default.

e’ ignore’ Ignore the character and continue with the next.

e’ replace’ Replace with a suitable replacement character

e’ xmlcharrefreplace’ Replace with the appropriate XML character reference

e’ backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamWriter object.

The set of allowed values for the errors argument can be extended with register_error ().

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The StreamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class StreamReader (stream[, errors])
Constructor for a St reamReader instance.

144 Chapter 4. String Services

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading binary data.

The St reamReader may implement different error handling schemes by providing the errors keyword argu-
ment. These parameters are defined:

e’ strict’ Raise ValueError (or a subclass); this is the default.
e’ ignore’ Ignore the character and continue with the next.

o’ replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the St reamReader object.

The set of allowed values for the errors argument can be extended with register_error ().

read ([size [chars, [ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

chars indicates the number of characters to read from the stream. read () will never return more than chars
characters, but it might return less, if there are not enough characters available.

size indicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible. size is intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.g. if optional encoding endings or state markers are available on
the stream, these should be read too.

Changed in version 2.4: chars argument added. Changed in version 2.4.2: firstline argument added.

readline ([size [keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s readline () method.
If keepends is false line-endings will be stripped from the lines returned.

Changed in version 2.4: keepends argument added.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if keepends
is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

4.9. codecs — Codec registry and base classes 145

StreamReaderWriter Objects

The St reamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class StreamReaderWriter (stream, Reader, Writer, errors)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must be fac-
tory functions or classes providing the St reamReader and StreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by the 1ookup () function to construct the instance.

class St reamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend (the input to read () and output of write ()) while Reader and Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
stream must be a file-like object.

encode, decode must adhere to the Codec interface. Reader, Writer must be factory functions or classes
providing objects of the St reamReader and St reamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

St reamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes. They
inherit all other methods and attributes from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

¢ an IBM EBCDIC code page

e an IBM PC code page, which is ASCII compatible

146 Chapter 4. String Services

Codec

Aliases

Languages

ascii

big5
bigShkscs
cp037

cp424

cp437

cpS00

cp737

cp775

cp850

cp852

cp855

cp856

cp857

cp860

cp861

cp862

cp863

cp864

cp865

cp866

cp869

cp874

cp875

cp932

cp949

cp950
cpl1006
cpl026
cpl140
cpl250
cpl251
cpl252
cpl253
cpl254
cpl255
cpl256
cpl257
cpl258
euc_jp
euc_jis_2004
euc_jisx0213
euc_kr
gb2312

gbk

gb18030

hz
1502022_jp
1502022 _jp_1
1502022 _jp_2
1502022 _jp_2004
1502022 _jp_3
1502022 _jp_ext

646, us-ascii

big5-tw, csbigd

big5-hkscs, hkscs

IBMO037, IBM039

EBCDIC-CP-HE, IBM424

437, IBM437

EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500

IBMT775

850, IBMS850
852, IBMS852
855, IBMS855

857, IBM857

860, IBM860

861, CP-IS, IBM861
862, IBMS862

863, IBM863
IBM8&64

865, IBM865

866, IBM866

869, CP-GR, IBM869

932, ms932, mskanji, ms-kanji
949, ms949, uhc
950, ms950

ibm1026
ibm1140
windows-1250
windows-1251
windows-1252
windows-1253
windows-1254
windows-1255
windows1256
windows-1257
windows-1258
eucjp, ujis, u-jis
jisx0213, euc;jis2004
eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks_c-5601-1987, ksx1001, ks_x-1001
chinese, csis058gb231280, euc-cn, euccn, eucgb2312-cn, gb2312-1980, gb2312-80, iso-ir-58

936, cp936, ms936

gb18030-2000

hzgb, hz-gb, hz-gb-2312
¢sis02022jp, 1s02022jp, is0-2022-jp
1502022jp-1, is0-2022-jp-1
1502022jp-2, is0-2022-jp-2
1502022jp-2004, is0-2022-jp-2004
1502022jp-3, is0-2022-jp-3
1502022jp-ext, is0-2022-jp-ext

4.9. codecs — Codec registry and base classes

147

English
Traditional Ching
Traditional Ching
English

Hebrew

English

Western Europe
Greek

Baltic languages
Western Europe
Central and East:
Bulgarian, Byelo
Hebrew

Turkish
Portuguese
Icelandic
Hebrew
Canadian

Arabic

Danish, Norwegi
Russian

Greek

Thai

Greek

Japanese
Korean
Traditional Chin
Urdu

Turkish

Western Europe
Central and East
Bulgarian, Byelo
Western Europe
Greek

Turkish

Hebrew

Arabic

Baltic languages
Vietnamese
Japanese
Japanese
Japanese
Korean
Simplified Chine
Unified Chinese
Unified Chinese
Simplified Chine
Japanese
Japanese
Japanese, Korear
Japanese
Japanese
Japanese

Codec Aliases Languages
1502022 _kr ¢sis02022kr, is02022kr, is0-2022-kr Korean

latin_1 150-8859-1, i1s08859-1, 8859, cp819, latin, latinl, L1 West Europe
1s08859_2 180-8859-2, latin2, L2 Central and Eastc
1s08859_3 1s0-8859-3, latin3, L3 Esperanto, Malte
1s08859_4 150-8859-4, latin4, L4 Baltic languague
1s08859_5 150-8859-5, cyrillic Bulgarian, Byelo
1s08859_6 180-8859-6, arabic Arabic
1s08859_7 150-8859-7, greek, greek8 Greek
1s08859_8 150-8859-8, hebrew Hebrew
1s08859_9 1s0-8859-9, latin5, L5 Turkish
1s08859_10 150-8859-10, latin6, L6 Nordic language:
1s08859_13 150-8859-13 Baltic languages
1s08859_14 150-8859-14, latin8, L8 Celtic languages
1s08859_15 150-8859-15 Western Europe
johab cpl361, ms1361 Korean

koi8_r Russian

koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byelo
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastc
mac_roman macroman Western Europe
mac_turkish macturkish Turkish

ptcpl54 csptep154, pt154, cpl54, cyrillic-asian Kazakh

shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, s_jisx0213 Japanese

utf_16
utf_16_be
utf_16_le
utf_7
utf_8

Ul16, utfl6
UTF-16BE
UTF-16LE
u7

U8, UTF, utf8

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don’t convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

148

Chapter 4. String Services

all languages
all languages (B!
all languages (B!
all languages
all languages

Codec Aliases Operand type | Purpose

base64_codec base64, base-64 byte string Convert operand to MIME base64

bz2_codec bz2 byte string Compress the operand using bz2

hex_codec hex byte string Convert operand to hexadecimal representation,
idna Unicode string | Implements RFC 3490. New in version 2.3. S
mbcs dbcs Unicode string | Windows only: Encode operand according to th
palmos Unicode string | Encoding of PalmOS 3.5

punycode Unicode string | Implements RFC 3492. New in version 2.3.

quopri_codec
raw_unicode_escape

quopri, quoted-printable, quotedprintable

byte string
Unicode string

Convert operand to MIME quoted printable
Produce a string that is suitable as raw Unicode

rot_13 rotl3 Unicode string | Returns the Caesar-cypher encryption of the op:
string_escape byte string Produce a string that is suitable as string literal
undefined any Raise an exception for all conversion. Can be u:
unicode_escape Unicode string | Produce a string that is suitable as Unicode liter
unicode_internal Unicode string | Return the internal representation of the operan
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3.

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name containing
non-ASCII characters (such as “www.Alliancefrancaise.nu”) is converted into an ASCII-compatible encoding (ACE,
such as “www.xn—alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places where
arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host: fields, and so on. This
conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: The idna codec allows to convert between Unicode and the ACE.
Furthermore, the socket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, such as httplib and ftplib, accept Unicode host names
(httplib then also transparently sends an IDNA hostname in the Host: field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version of label.
AllowUnassigned is true.

The implementation currently assumes query strings, So

ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.9. codecs — Codec registry and base classes 149

410 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.2.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/3.2-Update/UnicodeData-3.2.0.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found, KeyError is raised.

name (unichr[, default])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined, default is returned,
or, if not given, ValueError is raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is defined,
default is returned, or, if not given, ValueError is raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is defined, default
is returned, or, if not given, ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns 0 if no
combining class is defined.

east_asian_width (unichr)
Returns the east asian width assigned to the Unicode character unichr as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode character unichr as integer. Returns 1 if the character
has been identified as a “mirrored” character in bidirectional text, O otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string. An empty
string is returned in case no such mapping is defined.

normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are 'NFC’, "NFKC’, "NFD’,
and "NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form

150 Chapter 4. String Services

ftp://ftp.unicode.org/
http://www.unicode.org/Public/3.2-Update/UnicodeData-3.2.0.html

C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata_version
The version of the Unicode database used in this module.

New in version 2.3.

411 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile is
nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

in_table_cll_c12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

4.11. stringprep — Internet String Preparation 151

in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

152 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying interactive Python examples.
unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.
test.test_support Support for Python regression tests.

decimal Implementation of the General Decimal Arithmetic Specification.

math Mathematical functions (sin () etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.

whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

collections High-performance datatypes

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions for working with calendars, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for UNIX shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in function help () invokes the online help system in the interactive interpreter, which uses pydoc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by running pydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on the sys module, in a style similar to the manual pages shown by

153

the UNIX man command. The argument to pydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argument to pydoc looks
like a path (that is, it contains the path separator for your operating system, such as a slash in UNTX), and refers to an
existing Python source file, then documentation is produced for that file.

Specifying a -w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying a -k flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to the UNIX man command. The synopsis line of a module is the first line
of its documentation string.

You can also use pydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers. pydoc -p 1234 will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost:1234/ in your preferred Web browser. pydoc -g will start the server and additionally
bring up a small Tkinter-based graphical interface to help you search for documentation pages.

When pydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spam documents precisely the version of the module you would get if you started the Python interpreter and
typed ‘import spam’.

Module docs for core modules are assumed to reside in http://www.python.org/doc/current/lib/. This can be overridden
by setting the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages.

5.2 doctest — Test interactive Python examples

The doctest module searches for pieces of text that look like interactive Python sessions, and then executes those
sessions to verify that they work exactly as shown. There are several common ways to use doctest:

e To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as docu-
mented.

e To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

e To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending on
whether the examples or the expository text are emphasized, this has the flavor of “literate testing” or “executable
documentation”.

Here’s a complete but small example module:

154 Chapter 5. Miscellaneous Services

http://www.python.org/doc/current/lib/

nun

This is the "example" module.

The

>>>
120

nwn

def

example module supplies one function, factorial(). For example,

factorial (5)

factorial(n) :

"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int,
Else return a long.

>>> [factorial(n) for n in range (6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial (long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial (30)
265252859812191058636308480000000L

>>> factorial (30L)
265252859812191058636308480000000L

>>> factorial (-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:

>>> factorial (30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial (30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial (1e100)
Traceback (most recent call last):

OverflowError: n too large

wnn

return an int.

5.2. doctest — Test interactive Python examples

155

def

if

import math
if not n >= O0:
raise ValueError ("n must be >= 0")

if math.floor(n) !'= n:
raise ValueError ("n must be exact integer")
if ntl == n: # catch a value like 1e300
raise OverflowError ("n too large")
result = 1
factor = 2

while factor <= n:
result *= factor
factor += 1

return result

_test():

import doctest
doctest.testmod ()
__name_ == "_ _main__ ":
_test ()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$p
$

ython example.py

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and doctest prints a
detailed log of what it’s trying, and prints a summary at the end:

$p
Try

Exp

ok
Try

Exp

ok

ython example.py -v
ing:

factorial (5)
ecting:

120

ing:

[factorial (n) for n in range(6)]
ecting:

(1, 1, 2, 6, 24, 120]

Trying:

[factorial (long(n)) for n in range(6)]

Expecting:

ok

[1, 1, 2, 6, 24, 120]

And so on, eventually ending with:

156

Chapter 5. Miscellaneous Services

Trying:
factorial (1el100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large

ok
1 items had no tests:
_ _main___._test
2 items passed all tests:
1 tests in _ _main___
8 tests in _ main__ .factorial

9 tests in 3 items.
9 passed and 0 failed.
Test passed.

$

That’s all you need to know to start making productive use of doctest! Jump in. The following sections provide
full details. Note that there are many examples of doctests in the standard Python test suite and libraries. Especially
useful examples can be found in the standard test file ‘Lib/test/test_doctest.py’.

5.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you’ll continue to do it) is to end each module M
with:

def _test():
import doctest
doctest.testmod ()

if __name_ == "_ _main_ ":
_test ()

doctest then examines docstrings in module M.
Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outputis ‘*x*Test Failedsx* N failures.’, where N is
the number of examples that failed.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passing verbose=True to testmod(), or prohibit it by passing
verbose=False. In either of those cases, sys.argv is not examined by testmod () (so passing -v or not
has no effect).

5.2. doctest — Test interactive Python examples 157

For more information on testmod (), see section 5.2.4.

5.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile () function:

import doctest
doctest.testfile ("example.txt")

That short script executes and verifies any interactive Python examples contained in the file ‘example.txt’. The file
content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For example,
perhaps ‘example.txt’ contains this:

LYY

The ‘‘example module

This is an example text file in reStructuredText format. First import
‘‘factorial'' from the ‘‘example' module:

>>> from example import factorial
Now use it:

>>> factorial (6)
120

Running doctest.testfile ("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:
factorial (6)
Expected:
120
Got:
720

As with testmod (), testfile () won’t display anything unless an example fails. If an example does fail, then
the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same format as testmod ().

By default, testfile () looks for files in the calling module’s directory. See section 5.2.4 for a description of the
optional arguments that can be used to tell it to look for files in other locations.

Like testmod (), testfile ()’s verbosity can be set with the -v command-line switch or with the optional key-
word argument verbose.

For more information on testfile (), see section 5.2.4.

158 Chapter 5. Miscellaneous Services

5.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running doctest
on these examples, see the following sections.

Which Docstrings Are Examined?
The module docstring, and all function, class and method docstrings are searched. Objects imported into the module
are not searched.

In addition, if M. __test__ exists and is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings found from M. __test__ are searched, and strings
are treated as if they were docstrings. In output, akey K in M. __test__ appears with name

<name of M>._ test_ .K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.

Changed in version 2.4: A “’private name” concept is deprecated and no longer documented.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn’t trying to do an exact
emulation of any specific Python shell. All hard tab characters are expanded to spaces, using 8-column tab stops. If
you don’t believe tabs should mean that, too bad: don’t use hard tabs, or write your own DocTestParser class.

Changed in version 2.4: Expanding tabs to spaces is new; previous versions tried to preserve hard tabs, with confusing
results.

>>> # comments are ignored

>>> x = 12

>>> x

12

>>> if x == 13:
print "yes"

else:

print "no"
print "NO"
print "NO!!'!I"

no

NO

NO!!!

>>>

Any expected output must immediately follow the final 7 >>> 7 or /... ' line containing the code, and the ex-

pected output (if any) extends to the next / >>> ’ or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected

5.2. doctest — Test interactive Python examples 159

output. If expected output does contain a blank line, put <BLANKLINE> in your doctest example each place a
blank line is expected. Changed in version 2.4: <BLANKLINE> was added; there was no way to use expected
output containing empty lines in previous versions.

¢ Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

¢ If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):

.. r’’’Backslashes in a raw docstring: m\n’’’
>>> print f.__doc___

Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example, the ”\” above would be inter-
preted as a newline character. Alternatively, you can double each backslash in the doctest version (and not use
araw string):

>>> def f(x):

"’ ’Backslashes in a raw docstring: m\\n’’’
>>> print f.__doc___

Backslashes in a raw docstring: m\n

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor (1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
" >>> ' line that started the example.

What'’s the Execution Context?

By default, each time doctest finds a docstring to test, it uses a shallow copy of M’s globals, so that running tests
doesn’t change the module’s real globals, and so that one test in M can’t leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top-level in M, and names defined
earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by passing globs=your_dict to testmod () or
testfile () instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback.'
Since tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers), this
is one case where doctest works hard to be flexible in what it accepts.

Simple example:

'Examples containing both expected output and an exception are not supported. Trying to guess where one ends and the other begins is too
error-prone, and that also makes for a confusing test.

160 Chapter 5. Miscellaneous Services

>>> [1, 2, 3].remove (42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeeds if ValueError is raised, with the ‘1ist.remove (x): x not in list’ detail as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The traceback
stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail. This
is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line detail:

>>> raise ValueError ('multi\n line\ndetail’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: multi
line
detail

The last three lines (starting with ValueError) are compared against the exception’s type and detail, and the rest
are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the last
example is probably better as:

>>> raise ValueError (multi\n line\ndetail’)
Traceback (most recent call last):

ValueError: multi
line
detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the use of *. . .’ is independent
of doctest’s ELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three (or three
hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won’t need to remember:

e Doctest can’t guess whether your expected output came from an exception traceback or from ordinary printing.
So, e.g., an example that expects ‘ValueError: 42 is prime’ will pass whether ValueError is
actually raised or if the example merely prints that traceback text. In practice, ordinary output rarely begins with
a traceback header line, so this doesn’t create real problems.

e Each line of the traceback stack (if present) must be indented further than the first line of the example, or start

5.2. doctest — Test interactive Python examples 161

with a non-alphanumeric character. The first line following the traceback header indented the same and starting
with an alphanumeric is taken to be the start of the exception detail. Of course this does the right thing for
genuine tracebacks.

e When the IGNORE_EXCEPTION_DETAIL doctest option is is specified, everything following the leftmost
colon is ignored.

e The interactive shell omits the traceback header line for some SyntaxErrors. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test a
SyntaxError that omits the traceback header, you will need to manually add the traceback header line to
your test example.

e For some SyntaxErrors, Python displays the character position of the syntax error, using a ~ marker:

>>> 1 1
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not checked
by doctest. For example, the following test would pass, even though it puts the ~ marker in the wrong location:

>>> 1 1
Traceback (most recent call last):
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Changed in version 2.4: The ability to handle a multi-line exception detail, and the IGNORE_EXCEPTION_DETAIL
doctest option, were added.

Option Flags and Directives

A number of option flags control various aspects of doctest’s behavior. Symbolic names for the flags are supplied as
module constants, which can be or’ed together and passed to various functions. The names can also be used in doctest
directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

DONT_ACCEPT_TRUE_FOR_1
By default, if an expected output block contains just 1, an actual output block containing just 1 or just True
is considered to be a match, and similarly for 0 versus False. When DONT_ACCEPT_TRUE_FOR_1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return type of
many functions from integer to boolean; doctests expecting "little integer” output still work in these cases. This
option will probably go away, but not for several years.

DONT_ACCEPT_BLANKLINE
By default, if an expected output block contains a line containing only the string <BLANKLINE>, then that line
will match a blank line in the actual output. Because a genuinely blank line delimits the expected output, this is
the only way to communicate that a blank line is expected. When DONT_ACCEPT_BLANKLINE is specified,
this substitution is not allowed.

162 Chapter 5. Miscellaneous Services

NORMALIZE _WHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By de-
fault, whitespace must match exactly. NORMALI ZE_WHITESPACE is especially useful when a line of expected
output is very long, and you want to wrap it across multiple lines in your source.

ELLIPSIS
When specified, an ellipsis marker (. . .) in the expected output can match any substring in the actual output.
This includes substrings that span line boundaries, and empty substrings, so it’s best to keep usage of this simple.
Complicated uses can lead to the same kinds of ”oops, it matched too much!” surprises that !. «; is prone to in
regular expressions.

IGNORE_EXCEPTION_DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised, even
if the exception detail does not match. For example, an example expecting ‘ValueError: 42’ will pass if
the actual exception raised is ‘ValueError: 3%14’, but will fail, e.g., if TypeError is raised.

Note that a similar effect can be obtained using ELLIPSIS, and IGNORE_EXCEPTION_DETAIL may go
away when Python releases prior to 2.4 become uninteresting. Until then, IGNORE_EXCEPTION_DETAIL
is the only clear way to write a doctest that doesn’t care about the exception detail yet continues to pass under
Python releases prior to 2.4 (doctest directives appear to be comments to them). For example,

>>> (1, 2)[3] = 'moo’ #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment

passes under Python 2.4 and Python 2.3. The detail changed in 2.4, to say ’does not” instead of “doesn’t”.

COMPARISON_FLAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

REPORT_UDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified diff.

REPORT_CDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

REPORT_NDIFF
When specified, differences are computed by difflib.Differ, using the same algorithm as the popular
‘ndiff.py” utility. This is the only method that marks differences within lines as well as across lines. For example,
if a line of expected output contains digit 1 where actual output contains letter 1, a line is inserted with a caret
marking the mismatching column positions.

REPORT_ONLY_FIRST_ FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remaining examples.
This will prevent doctest from reporting correct examples that break because of earlier failures; but it might also
hide incorrect examples that fail independently of the first failure. When REPORT_ONLY_FIRST_FAILURE
is specified, the remaining examples are still run, and still count towards the total number of failures reported;
only the output is suppressed.

REPORTING_FLAGS
A bitmask or’ing together all the reporting flags above.

“Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are expressed
as a special Python comment following an example’s source code:

5.2. doctest — Test interactive Python examples 163

directive = "#" "doctest:" directive_options
directive_options directive_option ("," directive_option) *
directive_option on_or_off directive_option_name

on_or_off R

directive_option_name "DONT_ACCEPT_BLANKLINE" | "NORMALIZE_WHITESPACE"

Whitespace is not allowed between the + or — and the directive option name. The directive option name can be any of
the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example. Use + to enable the named behavior,
or - to disable it.

For example, this test passes:

>>> print range (20) #doctest: +NORMALIZE_WHITESPACE
[0, 1, 2, 3, 4, 5 6, 1, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit list
elements, and because the actual output is on a single line. This test also passes, and also requires a directive to do so:

>>> print range(20) # doctest:+ELLIPSIS
(o, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range (20) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[0, 1, ..., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print range(20) # doctest: +ELLIPSIS
ce # doctest: +NORMALIZE_WHITESPACE
[0, 1, ..., 18, 19]

As the previous example shows, you can add ‘. ..’ lines to your example containing only directives. This can be
useful when an example is too long for a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
doctest: +ELLIPSIS
(o, ..., 4, 10, ..., 19, 30, ..., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via + in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option via — in a directive can
be useful.

Changed in version 2.4: Constants DONT_ACCEPT_BLANKLINE, NORMALIZE_WHITESPACE,
ELLIPSIS, IGNORE_EXCEPTION_DETAIL, REPORT_UDIFF, REPORT_CDIFF, REPORT_NDIFF,
REPORT_ONLY_FIRST_FAILURE, COMPARISON_FLAGS and REPORTING_FLAGS were added; by de-

164 Chapter 5. Miscellaneous Services

fault <BLANKLINE> in expected output matches an empty line in actual output; and doctest directives were
added.

There’s also a way to register new option flag names, although this isn’t useful unless you intend to extend doctest
internals via subclassing:

register_optionflag (name)
Create a new option flag with a given name, and return the new flag’s integer value.
register_optionflag() can be used when subclassing OutputChecker or DocTestRunner
to create new options that are supported by your subclasses. register_optionflag should always be
called using the following idiom:

MY_FLAG = register_optionflag(’MY_FLAG’)
New in version 2.4.
Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match, the
test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t guarantee
about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs will be printed in
any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo () == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items ()
>>> d.sort ()
>>> d

[("Harry’, ’"broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> 1id(1.0) # certain to fail some of the time

7948648
>>> class C: pass
>>> C () # the default repr() for instances embeds an address

<__main__.C instance at O0x00AC18F0>

The ELLIPSIS directive gives a nice approach for the last example:

5.2. doctest — Test interactive Python examples 165

>>> C() #doctest: +ELLIPSIS
<__main__.C instance at O0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky

0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(l./7, 6) # much safer
0.142857

Numbers of the form I/2 . »«J are safe across all platforms, and I often contrive doctest examples to produce numbers
of that form:

>>> 3./4 4 utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

5.2.4 Basic API

The functions testmod () and testfile () provide a simple interface to doctest that should be sufficient for most
basic uses. For a less formal introduction to these two functions, see sections 5.2.1 and 5.2.2.

testfile (filename [, module_relative] [, name] [, package] [, globs] [, verbose] [, report] [, optionﬂags] [, ex-

traglobs] [raise_on_error ||, parser |)
All arguments except filename are optional, and should be specified in keyword form.

Test examples in the file named filename. Return (failure_count, test_count)’.

Optional argument module_relative specifies how the filename should be interpreted:

olf module_relative is True (the default), then filename specifies an OS-independent module-relative path.
By default, this path is relative to the calling module’s directory; but if the package argument is specified,
then it is relative to that package. To ensure OS-independence, filename should use / characters to separate
path segments, and may not be an absolute path (i.e., it may not begin with /).

oIf module_relative is False, then filename specifies an OS-specific path. The path may be absolute or
relative; relative paths are resolved with respect to the current working directory.

Optional argument name gives the name of the test; by default, or if None, os.path.basename (filename)
is used.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for a module-relative filename. If no package is specified, then the calling mod-
ule’s directory is used as the base directory for module-relative filenames. It is an error to specify package if
module_relative is False.

Optional argument globs gives a dict to be used as the globals when executing examples. A new shallow copy of
this dict is created for the doctest, so its examples start with a clean slate. By default, or if None, a new empty
dict is used.

166

Chapter 5. Miscellaneous Services

Optional argument extraglobs gives a dict merged into the globals used to execute examples. This works like
dict.update (): if globs and extraglobs have a common key, the associated value in extraglobs appears in
the combined dict. By default, or if None, no extra globals are used. This is an advanced feature that allows
parameterization of doctests. For example, a doctest can be written for a base class, using a generic name for
the class, then reused to test any number of subclasses by passing an extraglobs dict mapping the generic name
to the subclass to be tested.

Optional argument verbose prints lots of stuff if true, and prints only failures if false; by default, or if None, it’s
true if and only if / —v’ isin sys.argv.

Optional argument report prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argument optionflags or’s together option flags. See section 5.2.3.

Optional argument raise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is to
continue running examples.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser ()).

New in version 2.4.

testmod ([m] [, name] [globs] [, verbose] [, isprivate] [, report] [, optionflags] [, extraglobs] [, raise_on_error

, exclude _empty |)
All arguments are optional, and all except for m should be specified in keyword form.

Test examples in docstrings in functions and classes reachable from module m (or module __main__ if mis
not supplied or is None), starting with m. __doc__.

Also test examples reachable from dict m . __test __, if it exists and is not None. m. __test__ maps names
(strings) to functions, classes and strings; function and class docstrings are searched for examples; strings are
searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to module m are searched.
Return * (failure_count, test_count)’.
Optional argument name gives the name of the module; by default, or if None, m. __name__ is used.

Optional argument exclude_empty defaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize () in conjunction with testmod () continues to get output for objects
with no tests. The exclude_empty argument to the newer DocTestFinder constructor defaults to true.

Optional arguments extraglobs, verbose, report, optionflags, raise_on_error, and globs are the same as for
function testfile () above, except that globs defaultstom . __dict__.

Optional argument isprivate specifies a function used to determine whether a name is private. The default
function treats all names as public. isprivate can be set to doctest.is_private to skip over names
that are private according to Python’s underscore naming convention. Deprecated since release 2.4. ispri-
vate was a stupid idea — don’t use it. If you need to skip tests based on name, filter the list returned by
DocTestFinder.find () instead.

Changed in version 2.3: The parameter optionflags was added.

Changed in version 2.4: The parameters extraglobs, raise_on_error and exclude_empty were added.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

run_docstring_examples (f, globs [, verbose] [, name] [, Compileﬂags] [, optionﬂags])
Test examples associated with object f; for example, f may be a module, function, or class object.

A shallow copy of dictionary argument globs is used for the execution context.

Optional argument name is used in failure messages, and defaults to "NoName".

5.2. doctest — Test interactive Python examples 167

If optional argument verbose is true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argument compileflags gives the set of flags that should be used by the Python compiler when running
the examples. By default, or if None, flags are deduced corresponding to the set of future features found in
globs.

Optional argument optionflags works as for function testfile () above.

5.2.5 Unittest API

As your collection of doctest’ed modules grows, you’ll want a way to run all their doctests systematically. Prior to
Python 2.4, doctest had a barely documented Tester class that supplied a rudimentary way to combine doctests
from multiple modules. Tester was feeble, and in practice most serious Python testing frameworks build on the
unittest module, which supplies many flexible ways to combine tests from multiple sources. So, in Python 2.4,
doctest’s Tester class is deprecated, and doctest provides two functions that can be used to create unittest
test suites from modules and text files containing doctests. These test suites can then be run using unittest test
runners:

import unittest
import doctest
import my_module_with_doctests, and_another

suite = unittest.TestSuite ()

for mod in my_module_with_doctests, and_another:
suite.addTest (doctest.DocTestSuite (mod))

runner = unittest.TextTestRunner ()

runner.run(suite)

There are two main functions for creating unittest.TestSuite instances from text files and modules with
doctests:

DocFileSuite ([modulefrelative] [, package] [, setUp] [tearDown] [, globs] [optionflags] [, parser])

Convert doctest tests from one or more text files toa unittest .TestSuite.

The returned unittest .TestSuite is to be run by the unittest framework and runs the interactive examples
in each file. If an example in any file fails, then the synthesized unit test fails, and a failureException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Pass one or more paths (as strings) to text files to be examined.
Options may be provided as keyword arguments:

Optional argument module_relative specifies how the filenames in paths should be interpreted:

elf module_relative is True (the default), then each filename specifies an OS-independent module-relative
path. By default, this path is relative to the calling module’s directory; but if the package argument is
specified, then it is relative to that package. To ensure OS-independence, each filename should use /
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with /).

elf module_relative is False, then each filename specifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argument package is a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames. If no package is specified, then the calling module’s
directory is used as the base directory for module-relative filenames. It is an error to specify package if mod-
ule_relative is False.

168

Chapter 5. Miscellaneous Services

Optional argument setUp specifies a set-up function for the test suite. This is called before running the tests in
each file. The setUp function will be passed a DocTest object. The setUp function can access the test globals
as the globs attribute of the test passed.

Optional argument tearDown specifies a tear-down function for the test suite. This is called after running the
tests in each file. The fearDown function will be passed a DocTest object. The setUp function can access the
test globals as the globs attribute of the test passed.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument optionflags specifies the default doctest options for the tests, created by or-ing together
individual option flags. See section 5.2.3. See function set_unittest_reportflags () below for a
better way to set reporting options.

Optional argument parser specifies a DocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (i.e., DocTestParser ()).

New in version 2.4.

DocTestSuite ([module] [globs] [extraglobs] [testfﬁnder] [setUp] [tearDown] [checker])
Convert doctest tests for a module to a unittest.TestSuite.

The returned unittest.TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, and a failureException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Optional argument module provides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argument globs is a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By default, globs is a new empty dictionary.

Optional argument extraglobs specifies an extra set of global variables, which is merged into globs. By default,
no extra globals are used.

Optional argument fest_finder is the DocTestFinder object (or a drop-in replacement) that is used to extract
doctests from the module.

Optional arguments setUp, tearDown, and optionflags are the same as for function DocFileSuite () above.
New in version 2.3.

Changed in version 2.4: The parameters globs, extraglobs, test_finder, setUp, tearDown, and optionflags were
added; this function now uses the same search technique as testmod ().

Under the covers, DocTestSuite () creates a unittest.TestSuite out of doctest.DocTestCase in-
stances, and DocTestCase is a subclass of unittest.TestCase. DocTestCase isn’t documented here (it’s
an internal detail), but studying its code can answer questions about the exact details of unittest integration.

Similarly, DocFileSuite () createsaunittest.TestSuiteoutof doctest.DocFileCase instances, and
DocFileCase is asubclass of DocTestCase.

So both ways of creating a unittest.TestSuite run instances of DocTestCase. This is important for a
subtle reason: when you run doctest functions yourself, you can control the doctest options in use directly,
by passing option flags to doctest functions. However, if you’re writing a unittest framework, unittest
ultimately controls when and how tests get run. The framework author typically wants to control doctest reporting
options (perhaps, e.g., specified by command line options), but there’s no way to pass options through unittest to
doctest test runners.

For this reason, doctest also supports a notion of doctest reporting flags specific to unittest support, via this
function:

set_unittest_reportflags (flags)
Set the doctest reporting flags to use.

Argument flags or’s together option flags. See section 5.2.3. Only “reporting flags” can be used.

5.2. doctest — Test interactive Python examples 169

This is a module-global setting, and affects all future doctests run by module unittest: the runTest ()
method of DocTestCase looks at the option flags specified for the test case when the DocTest Case instance
was constructed. If no reporting flags were specified (which is the typical and expected case), doctest’s
unittest reporting flags are or’ed into the option flags, and the option flags so augmented are passed to
the DocTestRunner instance created to run the doctest. If any reporting flags were specified when the
DocTestCase instance was constructed, doctest’s unittest reporting flags are ignored.

The value of the unittest reporting flags in effect before the function was called is returned by the function.

New in version 2.4.

5.2.6 Advanced API

The basic API is a simple wrapper that’s intended to make doctest easy to use. It is fairly flexible, and should meet most
users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s capabilities,
then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples extracted
from doctest cases:
e Example: A single python statement, paired with its expected output.

e DocTest: A collection of Examples, typically extracted from a single docstring or text file.
Additional processing classes are defined to find, parse, and run, and check doctest examples:
e DocTestFinder: Finds all docstrings in a given module, and uses a DocTestParser to create a DocTest
from every docstring that contains interactive examples.

e DocTestParser: Creates a DocTest object from a string (such as an object’s docstring).

e DocTestRunner: Executes the examples in a DocTest, and uses an OutputChecker to verify their
output.

e OutputChecker: Compares the actual output from a doctest example with the expected output, and decides
whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:

- + o +

|[module| —--DocTestFinder-> | DocTest | —--DocTestRunner-> results

Fe———— + \ B Fom + | - (printed)

\ | | Example | | \
v | \ . | v
DocTestParser | Example | OutputChecker

o +

DocTest Objects

class DocTest (examples, globs, name, filename, lineno, docstring)
A collection of doctest examples that should be run in a single namespace. The constructor arguments are used
to initialize the member variables of the same names. New in version 2.4.

170 Chapter 5. Miscellaneous Services

DocTest defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by this test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names to values.
Any changes to the namespace made by the examples (such as binding new variables) will be reflected in globs
after the test is run.

name
A string name identifying the DocTest. Typically, this is the name of the object or file that the test was
extracted from.

filename
The name of the file that this DocTest was extracted from; or None if the filename is unknown, or if the
DocTest was not extracted from a file.

lineno
The line number within £ilename where this DocTest begins, or None if the line number is unavailable.
This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None* if the string is unavailable, or if the test was not extracted
from a string.

Example Objects

class Example (source, want [exc_msg] [lineno] [indent] [options])
A single interactive example, consisting of a Python statement and its expected output. The constructor argu-
ments are used to initialize the member variables of the same names. New in version 2.4.

Example defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

source
A string containing the example’s source code. This source code consists of a single Python statement, and
always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback in case of
exception). want ends with a newline unless no output is expected, in which case it’s an empty string. The
constructor adds a newline when necessary.

exc_msg
The exception message generated by the example, if the example is expected to generate an exception; or None
if it is not expected to generate an exception. This exception message is compared against the return value
of traceback.format_exception_only (). exc_msg ends with a newline unless it’s None. The
constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line number is
zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that precede the exam-
ple’s first prompt.

options

5.2. doctest — Test interactive Python examples 171

A dictionary mapping from option flags to True or False, which is used to override default options for this
example. Any option flags not contained in this dictionary are left at their default value (as specified by the
DocTestRunner’s optionflags). By default, no options are set.

DocTestFinder objects

class DocTestFinder ([verbose] [, parser] [, recurse] [, exclude,empty])

A processing class used to extract the DocTests that are relevant to a given object, from its docstring and
the docstrings of its contained objects. DocTests can currently be extracted from the following object types:
modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argument verbose can be used to display the objects searched by the finder. It defaults to False
(no output).

The optional argument parser specifies the DocTestParser object (or a drop-in replacement) that is used to
extract doctests from docstrings.

If the optional argument recurse is false, then DocTestFinder.find () will only examine the given object,
and not any contained objects.

If the optional argument exclude _empty is false, then DocTestFinder . find () will include tests for objects
with empty docstrings.

New in version 2.4.

DocTestFinder defines the following method:

find (obj [name] [, module] [globs] [, extraglobs])

Return a list of the DocTests that are defined by obj’s docstring, or by any of its contained objects’ docstrings.

The optional argument name specifies the object’s name; this name will be used to construct names for the
returned DocTests. If name is not specified, then obj. __name__ is used.

The optional parameter module is the module that contains the given object. If the module is not specified or is
None, then the test finder will attempt to automatically determine the correct module. The object’s module is
used:

¢ As a default namespace, if globs is not specified.

oTo prevent the DocTestFinder from extracting DocTests from objects that are imported from other modules.
(Contained objects with modules other than module are ignored.)

oTo find the name of the file containing the object.

¢To help find the line number of the object within its file.

If module is False, no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: if module is False, or is None but cannot be found automatically, then all objects are considered
to belong to the (non-existent) module, so all contained objects will (recursively) be searched for doctests.

The globals for each DocTest is formed by combining globs and extraglobs (bindings in extraglobs override
bindings in globs). A new shallow copy of the globals dictionary is created for each DocTest. If globs is not
specified, then it defaults to the module’s __dict__, if specified, or { } otherwise. If extraglobs is not specified,
then it defaults to { }.

DocTestParser objects

class DocTestParser ()

A processing class used to extract interactive examples from a string, and use them to create a DocTest object.
New in version 2.4.

DocTestParser defines the following methods:

172

Chapter 5. Miscellaneous Services

get_doctest (string, globs, name, filename, lineno)
Extract all doctest examples from the given string, and collect them into a DocTest object.

globs, name, filename, and lineno are attributes for the new DocTest object. See the documentation for
DocTest for more information.

get_examples (string[, name])
Extract all doctest examples from the given string, and return them as a list of Example objects. Line numbers
are 0-based. The optional argument name is a name identifying this string, and is only used for error messages.

parse (string [name])
Divide the given string into examples and intervening text, and return them as a list of alternating Examples
and strings. Line numbers for the Examples are 0-based. The optional argument name is a name identifying
this string, and is only used for error messages.

DocTestRunner objects

class DocTestRunner ([checker] [verbose] [optionﬂags])
A processing class used to execute and verify the interactive examples in a DocTest.

The comparison between expected outputs and actual outputs is done by an OutputChecker. This compari-
son may be customized with a number of option flags; see section 5.2.3 for more information. If the option flags
are insufficient, then the comparison may also be customized by passing a subclass of Out putChecker to the
constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed to
TestRunner.run (); this function will be called with strings that should be displayed. It defaults to
sys.stdout.write. If capturing the output is not sufficient, then the display output can be also cus-
tomized by subclassing DocTestRunner, and overriding the methods report_start, report_success,
report_unexpected_exception, and report_failure.

The optional keyword argument checker specifies the OutputChecker object (or drop-in replacement) that
should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argument verbose controls the DocTestRunner’s verbosity. If verbose is True, then
information is printed about each example, as it is run. If verbose is False, then only failures are printed. If
verbose is unspecified, or None, then verbose output is used iff the command-line switch -v is used.

The optional keyword argument optionflags can be used to control how the test runner compares expected output
to actual output, and how it displays failures. For more information, see section 5.2.3.

New in version 2.4.
DocTestParser defines the following methods:

report_start (out, test, example)
Report that the test runner is about to process the given example. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. test is the test containing example. out is the output function that
was passed to DocTestRunner.run ().

report_success (out, test, example, got)
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. got is the actual output from the example. fest is the test
containing example. out is the output function that was passed to DocTestRunner.run ().

report_failure (out, test, example, got)
Report that the given example failed. This method is provided to allow subclasses of DocTestRunner to
customize their output; it should not be called directly.

5.2. doctest — Test interactive Python examples 173

example is the example about to be processed. got is the actual output from the example. fest is the test
containing example. out is the output function that was passed to DocTestRunner.run ().

report_unexpected_exception (out, test, example, exc_info)
Report that the given example raised an unexpected exception. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

example is the example about to be processed. exc_info is a tuple containing information about the unexpected
exception (as returned by sys.exc_info ()). fest is the test containing example. out is the output function
that was passed to DocTestRunner.run ().

run (test[, compileflags] [out] [clear_globs])
Run the examples in fest (a DocTest object), and display the results using the writer function out.
The examples are run in the namespace test . globs. If clear_globs is true (the default), then this namespace
will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace
after the test completes, then use clear_globs=False.

compileflags gives the set of flags that should be used by the Python compiler when running the examples. If
not specified, then it will default to the set of future-import flags that apply to globs.

The output of each example is checked using the DocTestRunner’s output checker, and the results are for-
matted by the DocTestRunner.report_»* methods.

summarize ([verbose])
Print a summary of all the test cases that have been run by this DocTestRunner, and return a tuple
‘ (failure_count, test_count)’.

The optional verbose argument controls how detailed the summary is. If the verbosity is not specified, then the
DocTestRunner’s verbosity is used.

OutputChecker objects

class OutputChecker ()
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methods: check_output, which compares a given pair of outputs, and re-
turns true if they match; and output _dif ference, which returns a string describing the differences between
two outputs. New in version 2.4.

OutputChecker defines the following methods:

check_output (want, got, optionflags)
Return True iff the actual output from an example (gof) matches the expected output (want). These strings are
always considered to match if they are identical; but depending on what option flags the test runner is using,
several non-exact match types are also possible. See section 5.2.3 for more information about option flags.

output_difference (example, got, optionflags)
Return a string describing the differences between the expected output for a given example (example) and the
actual output (got). optionflags is the set of option flags used to compare want and got.

5.2.7 Debugging
Doctest provides several mechanisms for debugging doctest examples:
e Several functions convert doctests to executable Python programs, which can be run under the Python debugger,

pdb.

e The DebugRunner class is a subclass of DocTestRunner that raises an exception for the first failing exam-
ple, containing information about that example. This information can be used to perform post-mortem debug-
ging on the example.

174 Chapter 5. Miscellaneous Services

e The unittest cases generated by DocTestSuite ()

unittest.TestCase.

support the debug ()

method defined by

e You can add a call to pdb.set_trace () in a doctest example, and you’ll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example, suppose

‘a.py’ contains just this module docstring:

wnn

>>> def f(x):

.. g (x*2)
>>> def g(x):
print x+3
. import pdb; pdb.set_trace/()
>>> £ (3)
9

wnn

Then an interactive Python session may look like this:

>>> import a, doctest

>>> doctest.testmod (a)
——Return—--

> <doctest a[l]l>(3)g()-—>None
-> import pdb; pdb.set_trace()

(Pdb) 1list
1 def g(x):
2 print x+3
3 —> import pdb; pdb.set_trace()
[EOF]
(Pdb) print x
6
(Pdb) step
—-—Return——
> <doctest a[0]>(2)f () —->None
-> g (x*2)
(Pdb) 1list
1 def f(x):
2 > g(x*2)
[EOF]
(Pdb) print x
3
(Pdb) step
—-—Return——
> <doctest a[2]>(1)?()—>None
-> f£(3)
(Pdb) cont
(0, 3)
>>>

Changed in version 2.4: The ability to use pdb . set _trace () usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

script_from_examples (s)
Convert text with examples to a script.

5.2. doctest — Test interactive Python examples

175

Argument s is a string containing doctest examples. The string is converted to a Python script, where doctest
examples in s are converted to regular code, and everything else is converted to Python comments. The generated
script is returned as a string. For example,

import doctest

print doctest.script_from_examples (r"""
Set x and y to 1 and 2.
>>> x, y =1, 2

Print their sum:
>>> print x+y
3

nn ")

displays:

Set x and y to 1 and 2.
x, vy =1, 2

#

Print their sum:

print x+y

Expected:

3

This function is used internally by other functions (see below), but can also be useful when you want to transform
an interactive Python session into a Python script.

New in version 2.4.

testsource (module, name)

Convert the doctest for an object to a script.

Argument module is a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argument name is the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script_from_examples () above. For example, if module ‘a.py’ contains a top-level function f (), then

import a, doctest

print doctest.testsource(a, "a.f")

prints a script version of function f ()’s docstring, with doctests converted to code, and the rest placed in
comments.

New in version 2.3.

debug (module, name[, pm])

Debug the doctests for an object.

The module and name arguments are the same as for function test source () above. The synthesized Python
script for the named object’s docstring is written to a temporary file, and then that file is run under the control
of the Python debugger, pdb.

A shallow copy of module . __dict__is used for both local and global execution context.

Optional argument pm controls whether post-mortem debugging is used. If pm has a true value, the script file
is run directly, and the debugger gets involved only if the script terminates via raising an unhandled exception.
If it does, then post-mortem debugging is invoked, via pdb.post_mortem (), passing the traceback object
from the unhandled exception. If pm is not specified, or is false, the script is run under the debugger from the
start, via passing an appropriate execfile () call to pdb.run ().

176

Chapter 5. Miscellaneous Services

New in version 2.3.

Changed in version 2.4: The pm argument was added.

debug_src (src [pm] [globs])
Debug the doctests in a string.

This is like function debug () above, except that a string containing doctest examples is specified directly, via
the src argument.

Optional argument pm has the same meaning as in function debug () above.

Optional argument globs gives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework authors,
and will only be sketched here. See the source code, and especially DebugRunner’s docstring (which is a doctest!)
for more details:

class DebugRunner ([Checker] [, verbose] [, optionflags])
A subclass of DocTestRunner that raises an exception as soon as a failure is encountered. If an unexpected
exception occurs, an UnexpectedException exception is raised, containing the test, the example, and the
original exception. If the output doesn’t match, then a DocTestFailure exception is raised, containing the
test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentation for DocTestRunner
in section 5.2.6.

There are two exceptions that may be raised by DebugRunner instances:

exception DocTestFailure (test, example, got)
An exception thrown by DocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:
test
The DocTest object that was being run when the example failed.

example
The Example that failed.

got
The example’s actual output.

exception UnexpectedException (fest, example, exc_info)
An exception thrown by DocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:
test
The DocTest object that was being run when the example failed.

example
The Example that failed.

exc_info
A tuple containing information about the unexpected exception, as returned by sys.exc_info ().

5.2.8 Soapbox

As mentioned in the introduction, doctest has grown to have three primary uses:

5.2. doctest — Test interactive Python examples 177

1. Checking examples in docstrings.
2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often be
worth many words. If done with care, the examples will be invaluable for your users, and will pay back the time it
takes to collect them many times over as the years go by and things change. I’m still amazed at how often one of my
doctest examples stops working after a "harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what’s actually being tested, and why. When
a test fails, good prose can make it much easier to figure out what the problem is, and how it should be fixed. It’s
true that you could write extensive comments in code-based testing, but few programmers do. Many have found that
using doctest approaches instead leads to much clearer tests. Perhaps this is simply because doctest makes writing
prose a little easier than writing code, while writing comments in code is a little harder. I think it goes deeper than just
that: the natural attitude when writing a doctest-based test is that you want to explain the fine points of your software,
and illustrate them with examples. This in turn naturally leads to test files that start with the simplest features, and
logically progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It’s a different attitude, and produces different
results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

e Write text files containing test cases as interactive examples, and test the files using testfile () or
DocFileSuite (). This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

e Define functions named _regrtest_topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a separate
test file.

e Define a __test__ dictionary mapping from regression test topics to docstrings containing test cases.

5.3 unittest — Unit testing framework

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework. The unittest module provides classes that make it
easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixture represents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

178 Chapter 5. Miscellaneous Services

test case
A test case is the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base class, TestCase, which may be used to create new test cases. You may provide your own
implementation that does not subclass from TestCase, of course.

test suite
A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runner is a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported through the TestCase and FunctionTestCase classes;
the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures using TestCase, the setUp () and tearDown ()
methods can be overridden to provide initialization and cleanup for the fixture. With FunctionTestCase, existing
functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;
if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of the TestCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method, run (), which accepts a TestCase or TestSuite object
as a parameter, and returns a result object. The class TestResult is provided for use as the result object. PyUnit
provide the Text TestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

Module doctest (section 5.2):
Another test-support module with a very different flavor.

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http:// www.XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern shared by unittest.

5.3.1 Basic example

The unittest module provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions from the random module:

5.3. unittest — Unit testing framework 179

http://pyunit.sourceforge.net/
http://www.XProgramming.com/testfram.htm

import random
import unittest

class TestSequenceFunctions (unittest.TestCase) :

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seqg.sort ()
self.assertEqual (self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample (self):
self.assertRaises (ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

if name == '__main__ ’:
unittest.main ()

A testcase is created by subclassing unittest.TestCase. The three individual tests are defined with methods
whose names start with the letters ‘test’. This naming convention informs the test runner about which methods
represent tests.

The crux of each testis a call to assertEqual () to check for an expected result; assert_ () to verify a condition;
or assertRaises () to verify that an expected exception gets raised. These methods are used instead of the
assert statement so the test runner can accumulate all test results and produce a report.

When a setUp () method is defined, the test runner will run that method prior to each test. Likewise, if a
tearDown () method is defined, the test runner will invoke that method after each test. In the example, setUp ()
was used to create a fresh sequence for each test.

The final block shows a simple way to run the tests. unittest.main () provides a command line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead of unittest.main (), there are other ways to run the tests with a finer level of control, less terse output,
and no requirement to be run from the command line. For example, the last two lines may be replaced with:

suite = unittest.makeSuite (TestSequenceFunctions)
unittest.TextTestRunner (verbosity=2) .run (suite)

Running the revised script from the interpreter or another script produces the following output:

180 Chapter 5. Miscellaneous Services

testchoice (__main__ .TestSequenceFunctions) ... ok
testsample (__main__ .TestSequenceFunctions) ... ok
testshuffle (__main__ .TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly used unittest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instances of the TestCase class in the unittest module. To make
your own test cases you must write subclasses of TestCase, oruse FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply override the runTest () method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase (unittest.TestCase) :
def runTest (self):
widget = Widget ("The widget")
self.failUnless (widget.size () == (50,50), ’'incorrect default size’)

Note that in order to test something, we use the one of the assert+ () or failx () methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case as a failure. Other exceptions that do not arise from checks made through the assert« ()
and failx« () methods are identified by the testing framework as errors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase ()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called setUp (), which the testing framework
will automatically call for us when we run the test:

5.3. unittest — Unit testing framework 181

import unittest

class SimpleWidgetTestCase (unittest.TestCase) :
def setUp(self):
self.widget = Widget ("The widget")

class DefaultWidgetSizeTestCase (SimpleWidgetTestCase) :
def runTest (self):
self.failUnless (self.widget.size () == (50,50),
"incorrect default size’)

class WidgetResizeTestCase (SimpleWidgetTestCase) :
def runTest (self):
self.widget.resize (100, 150)
self.failUnless (self.widget.size () == (100,150),
"wrong size after resize’)

If the setUp () method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and the runTest () method will not be executed.

Similarly, we can provide a tearDown () method that tidies up after the runTest () method has been run:

import unittest

class SimpleWidgetTestCase (unittest.TestCase) :
def setUp(self):
self.widget = Widget ("The widget")

def tearDown (self) :
self.widget.dispose ()
self.widget = None

If setUp () succeeded, the tearDown () method will be run regardless of whether or not runTest () succeeded.

Such a working environment for the testing code is called a fixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such as DefaultWidgetSizeTestCase.
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

182

Chapter 5. Miscellaneous Services

import unittest

class WidgetTestCase (unittest.TestCase):
def setUp(self):
self.widget = Widget ("The widget")

def tearDown (self):
self.widget.dispose ()
self.widget = None

def testDefaultSize(self):
self.failUnless (self.widget.size () == (50,50),
"incorrect default size’)

def testResize(self):
self.widget.resize (100, 150)
self.failUnless (self.widget.size () == (100,150),
"wrong size after resize’)

Here we have not provided a runTest () method, but have instead provided two different test methods. Class
instances will now each run one of the test () methods, with self.widget created and destroyed separately
for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase ("testDefaultSize")
resizeTestCase = WidgetTestCase ("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite, represented by the class TestSuite in the unittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest (WidgetTestCase ("testDefaultSize"))
widgetTestSuite.addTest (WidgetTestCase ("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

def suite() :
sulite = unittest.TestSuite ()
suite.addTest (WidgetTestCase ("testDefaultSize"))
suite.addTest (WidgetTestCase ("testResize"))
return suite

or even:

class WidgetTestSuite (unittest.TestSuite) :
def _ init_ (self):
unittest.TestSuite.__init__ (self,map (WidgetTestCase,
("testDefaultSize",
"testResize")))

5.3. unittest — Unit testing framework 183

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to create a TestCase subclass with many similarly named test functions, there is a
convenience function called makeSuite () that constructs a test suite that comprises all of the test cases in a test
case class:

suite = unittest.makeSuite (WidgetTestCase)

Note that when using the makeSuite () function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names using the cmp () built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, since TestSuite instances can be added to a TestSuite just as TestCase instances can be added to a
TestSuite:

suitel = modulel.TheTestSuite ()
suite2 = module2.TheTestSuite ()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module, such as ‘widgettests.py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

o If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code
Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to a TestCase subclass.

For this reason, PyUnit provides a Funct ionTestCase class. This subclass of TestCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething() :
something = makeSomething()
assert something.name is not None

#

one can create an equivalent test case instance as follows:

184 Chapter 5. Miscellaneous Services

testcase = unittest.FunctionTestCase (testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase (testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use of AssertionError as an indicator of test failure, but does not recommend it.
Future versions may treat AssertionError differently.

5.3.4 Classes and functions

class TestCase ()
Instances of the TestCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

class FunctionTestCase (festF unc[, setUp[, tearDown[, description]]])
This class implements the portion of the Test Case interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated into a unittest-based test framework.

class TestSuite ([tests])
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregation. If fests is given,
it must be a sequence of individual tests that will be added to the suite.

class TestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite. It can load all tests within a given module or TestCase class. When loading from a mod-
ule, it considers all Test Case-derived classes. For each such class, it creates an instance for each method with
a name beginning with the string ‘test’.

defaultTestLoader
Instance of the TestLoader class which can be shared. If no customization of the TestLoader is needed,
this instance can always be used instead of creating new instances.

class TextTestRunner ([stream [, descriptions[, verbosity]]])
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ([module [defaultTest[, argv[, testRunner[, testRimner]]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

’

if name == main_ '’ :
unittest.main ()

5.3. unittest — Unit testing framework 185

In some cases, the existing tests may have be written using the doctest module. If so, that module provides a
DocTestSuite class that can automatically build unittest . TestSuite instances from the existing test code.
New in version 2.3.

5.3.5 TestCase Objects

Each TestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if the setUp () succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passed as result. If result is omitted or None, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling the TestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert_ (expr[, msg])
failUnless (expr[, msg])
Signal a test failure if expr is false; the explanation for the error will be msg if given, otherwise it will be None.

assertEqual (first, second[, msg])

failUnlessEqual (first, second[, msg])
Test that first and second are equal. If the values do not compare equal, the test will fail with the explanation
given by msg, or None. Note that using failUnlessEqual () improves upon doing the comparison as the
first parameter to failUnless (): the default value for msg can be computed to include representations of
both first and second.

assertNotEqual (first, second [msg])

failIfEqual (first, second[, msg |)
Test that first and second are not equal. If the values do compare equal, the test will fail with the explanation
given by msg, or None. Note that using failIfEqual () improves upon doing the comparison as the first
parameter to failUnless () is that the default value for msg can be computed to include representations of
both first and second.

assertAlmostEqual (first, second [, places [, msg]])
failUnlessAlmostEqual (first, second [, places[, msg]])
Test that first and second are approximately equal by computing the difference, rounding to the given number

186 Chapter 5. Miscellaneous Services

of places, and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given by msg, or None.

assertNotAlmostEqual (first, second [, places[, msg]])

failIfAlmostEqual (first, second[, places [msg]])
Test that first and second are not approximately equal by computing the difference, rounding to the given number
of places, and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given by msg, or None.

assertRaises (exception, callable, ...)

failUnlessRaises (exception, callable, ...)
Test that an exception is raised when callable is called with any positional or keyword arguments that are also
passed to assertRaises (). The test passes if exception is raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed as exception.

faillf (expr[, msg])
The inverse of the failUnless () methodisthe failIf () method. This signals a test failure if expr is true,
with msg or None for the error message.

fail ([msg])
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test () method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute is AssertionError.

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object. For TestCase instances, this will always be 1,
but this method is also implemented by the Test Suite class, which can return larger values.

defaultTestResult ()
Return the default type of test result object to be used to run this test.

id()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription ()
Returns a one-line description of the test, or None if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if available, or None.

5.3.6 TestSuite Objects

TestSuite objects behave much like TestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests to Test Suite instances:

addTest (rest)
Add a TestCase or TestSuite to the set of tests that make up the suite.

addTests (tests)
Add all the tests from a sequence of TestCase and TestSuite instances to this test suite.

The run () method is also slightly different:

5.3. unittest — Unit testing framework 187

run (result)
Run the tests associated with this suite, collecting the result into the test result object passed as result. Note that
unlike TestCase.run (), TestSuite.run () requires the result object to be passed in.

In the typical usage of a TestSuite object, the run () method is invoked by a TestRunner rather than by the
end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by running
a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner. run () method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test
runs. The collections contain tuples of (festcase, traceback), where traceback is a string containing a formatted
version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs of TestCase instances and the formatted tracebacks for tests which raised an ex-
ception but did not signal a test failure. ~Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc_info () results.

failures
A list containing pairs of TestCase instances and the formatted tracebacks for tests which signalled a failure
in the code under test. Changed in version 2.2: Contains formatted tracebacks instead of sys.exc_info ()
results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of the TestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest (fest)
Called when the test case test is about to be run.

stopTest (rest)
Called when the test case fest has been executed, regardless of the outcome.

addError (test, err)
Called when the test case fest raises an exception without signalling a test failure. err is a tuple of the form
returned by sys.exc_info (): (type, value, traceback).

addFailure (test, err)
Called when the test case fest signals a failure. err is a tuple of the form returned by sys.exc_info ():
(type, value, traceback) .

addSuccess (fest)
This method is called for a test that does not fail; fest is the test case object.

One additional method is available for TestResult objects:

188 Chapter 5. Miscellaneous Services

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been
called, the TestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; the unittest module provides an instance that can be shared as the defaultTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClass)
Return a suite of all tests cases contained in the TestCase-derived class testCaseClass.

loadTestsFromModule (module)
Return a suite of all tests cases contained in the given module. This method searches module for classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy of Testcase-derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName (name[, module])
Return a suite of all tests cases given a string specifier.

The specifier name is a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returns a TestCase or TestSuite in-
stance. For example, if you have a module SampleTests containing a TestCase-derived class
SampleTestCase with three test methods (test _one (), test_two (),and test_three ()), the spec-
ifier " SampleTests.SampleTestCase’ would cause this method to return a suite which will run all three
test methods. Using the specifier / SampleTests.SampleTestCase.test_two’ would cause it to re-
turn a test suite which will run only the test_two () test method. The specifier can refer to modules and
packages which have not been imported; they will be imported as a side-effect.

The method optionally resolves name relative to a given module.

loadTestsFromNames (names [module])
Similar to 1loadTestsFromName (), but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClass)
Return a sorted sequence of method names found within festCaseClass.

The following attributes of a Test Loader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
"test’.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in get TestCaseNames (). The default
value is the built-in cmp () function; it can be set to None to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is the Test Suite class.

5.3. unittest — Unit testing framework 189

5.4 test — Regression tests package for Python

The test package contains all regression tests for Python as well as the modules test.test_support and
test.regrtest. test.test_support is used to enhance your tests while test . regrtest drives the test-
ing suite.

Each module in the test package whose name starts with ‘test_’ is a testing suite for a specific module or feature.
All new tests should be written using the unittest module; using unittest is not required but makes the tests
more flexible and maintenance of the tests easier. Some older tests are written to use doctest and a “traditional”
testing style; these styles of tests will not be covered.

See Also:

Module unittest (section 5.3):
Writing PyUnit regression tests.

Module doctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for the test package use the unittest module and follow a few guidelines. One is to
have the name of all the test methods start with ‘test_" as well as the module’s name. This is needed so that the
methods are recognized by the test driver as test methods. Also, no documentation string for the method should be
included. A comment (such as ‘#Tests function returns only True or False’) should be used to
provide documentation for test methods. This is done because documentation strings get printed out if they exist and
thus what test is being run is not stated.

A basic boilerplate is often used:

190 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCasel (unittest.TestCase) :
Only use setUp() and tearDown () if necessary

def setUp(self):
code to execute in preparation for tests

def tearDown (self):
code to execute to clean up after tests

def test_feature_one(self):
Test feature one.
testing code

def test_feature_two(self) :
Test feature two.
testing code

more test methods

class MyTestCase2 (unittest.TestCase) :
same structure as MyTestCasel

more test classes

def test_main():
test_support.run_unittest (MyTestCasel,
MyTestCase2,
list other tests

if name == '__main__'":
test_main ()

This boilerplate code allows the testing suite to be run by test . regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:

The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also “’private” code.

Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as many
different paths through the code are taken.

Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not crop
up again if the code is changed in the future.

Make sure to clean up after your tests (such as close and remove all temporary files).

5.4.

test — Regression tests package for Python 191

e Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

¢ Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences (unittest.TestCase) :
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arq)

class AcceptLists (TestFuncAcceptsSequences) :
arg = [1,2,3]

class AcceptStrings (TestFuncAcceptsSequences) :
arg = ’"abc’

class AcceptTuples (TestFuncAcceptsSequences) :
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests using test.regrtest

test.regrtest canbe used as a script to drive Python’s regression test suite. Running the script by itself automat-
ically starts running all regression tests in the test package. It does this by finding all modules in the package whose
name starts with ‘test_’, importing them, and executing the function test _main () if present. The names of tests
to execute may also be passed to the script. Specifying a single regression test (python regrtest.py test_spam.py)
will minimize output and only print whether the test passed or failed and thus minimize output.

Running test . regrtest directly allows what resources are available for tests to use to be set. You do this by using
the -u command-line option. Run python regrtest.py -uall to turn on all resources; specifying all as an option for
-u enables all possible resources. If all but one resource is desired (a more common case), a comma-separated list of
resources that are not desired may be listed after all. The command python regrtest.py -uall,-audio,-largefile will
run test . regrtest with all resources except the audio and largefile resources. For a list of all resources and more
command-line options, run python regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executed on. On UNIX,
you can run make test at the top-level directory where Python was built. On Windows, executing rt.bat from your
‘PCBuild’ directory will run all regression tests.

55 test.test_support — Ultility functions for tests

The test .test_support module provides support for Python’s regression tests.
This module defines the following exceptions:

exception TestFailed
Exception to be raised when a test fails.

192 Chapter 5. Miscellaneous Services

exception TestSkipped
Subclass of TestFailed. Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exception ResourceDenied
Subclass of Test Skipped. Raised when a resource (such as a network connection) is not available. Raised
by the requires () function.

The test .test_support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about a
running test. verbose is set by test . regrtest.

have_unicode
True when Unicode support is available.

is_jython
True if the running interpreter is Jython.

TESTFN
Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

The test .test_support module defines the following functions:

forget (module_name)
Removes the module named module_name from sys.modules and deletes any byte-compiled files of the
module.

is_resource_enabled (resource)
Returns True if resource is enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resource [msg])
Raises ResourceDenied if resource is not available. msg is the argument to ResourceDenied if it is
raised. Always returns true if called by a function whose __name__is / __main__’. Used when tests are
executed by test . regrtest.

findfile (filename)
Return the path to the file named filename. If no match is found filename is returned. This does not equal a
failure since it could be the path to the file.

run_unittest (*classes)
Execute unittest.TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefix ‘test_" and executes the tests individually. This is the preferred way to execute tests.

run_suite (suite[, testclass])
Execute the unittest.TestSuite instance suite. The optional argument festclass accepts one of the test
classes in the suite so as to print out more detailed information on where the testing suite originated from.

5.6 decimal — Decimal floating point arithmetic

New in version 2.4.

The decimal module provides support for decimal floating point arithmetic. It offers several advantages over the
float () datatype:

e Decimal numbers can be represented exactly. In contrast, numbers like 1 . 1 do not have an exact representation
in binary floating point. End users typically would not expect 1. 1 to display as 1.1000000000000001 as

5.6. decimal — Decimal floating point arithmetic 193

it does with binary floating point.

e The exactness carries over into arithmetic. In decimal floating point, ‘0.1 + 0.1 + 0.1 - 0.3’ isexactly
equal to zero. In binary floating point, result is 5.5511151231257827e-017. While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal would be
preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates a notion of significant places so that ‘1.30 + 1.20’is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multipli-
cation, the “schoolbook™ approach uses all the figures in the multiplicands. For instance, ‘1.3 % 1.2’ gives
1.56 while ‘1.30 » 1.20" gives 1.5600.

e Unlike hardware based binary floating point, the decimal module has a user settable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ("0.1428571428571428571428571429")

e Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeroes. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF_DOWN, ROUND_HALF_EVEN,
ROUND_HALF_UP, and ROUND_UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module are: Clamped, InvalidOperation,DivisionByZero, Inexact, Rounded, Subnormal,
Overflow, and Underflow.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag incremented from zero and,
then, if the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before
monitoring a calculation.

See Also:
IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

IEEE standard 854-1987, Unofficial IEEE 854 Text.

5.6.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with getcontext () and, if
necessary, setting new values for precision, rounding, or enabled traps:

194 Chapter 5. Miscellaneous Services

http://www2.hursley.ibm.com/decimal/decarith.html
http://www.cs.berkeley.edu/unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {global mathchardef accent@spacefactor spacefactor }accent 126 egroup spacefactor accent@spacefactor ejr/projects/754/private/drafts/854-1987/dir.html

>>> from decimal import =«

>>> getcontext ()

Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, InvalidOperation,
DivisionByZero])

>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings or tuples. To create a Decimal from a float, first
convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values such as NaN which stands for “Not a number”, positive and negative
Infinity, and -0.

>>> Decimal (10)

Decimal ("10")

>>> Decimal ("3.14")

Decimal ("3.14")

>>> Decimal ((0, (3, 1, 4), -2))
Decimal ("3.14")

>>> Decimal (str (2.0 *x 0.5))
Decimal ("1.41421356237")

>>> Decimal ("NaN")

Decimal ("NaN")

>>> Decimal ("-Infinity")
Decimal ("-Infinity")

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ("3.07)

Decimal ("3.0")

>>> Decimal (¥3.1415926535")

Decimal ("3.1415926535")

>>> Decimal (73.1415926535’) + Decimal(’2.7182818285")
Decimal ("5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal (73.1415926535’) + Decimal(’2.7182818285")
Decimal ("5.85988")

Decimals interact well with much of the rest of python. Here is a small decimal floating point flying circus:

5.6. decimal — Decimal floating point arithmetic 195

>>> data = map (Decimal, ’1.34 1.87 3.45 2.35 1.00 0.03 9.25".split())
>>> max (data)

Decimal ("9.25")

>>> min (data)

Decimal ("0.03")

>>> sorted(data)

[Decimal ("0.03"), Decimal("1.00"), Decimal("1.34"),
Decimal ("2.35"), Decimal ("3.45"), Decimal ("9.25")]
>>> sum (data)

Decimal ("19.29")

>>> a,b,c = datal[:3]

>>> str(a)

r1.347

>>> float (a)

1.3400000000000001

>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int (a)

1

>>> a % 5

Decimal ("6.70")

>>> a x b

Decimal ("2.5058")

>>> c % a

Decimal ("0.77")

Decimal ("1.87"),

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal (' 7.325") .quantize (Decimal (' .01’), rounding=ROUND_DOWN)
Decimal ("7.32")

>>> Decimal (' 7.325") .quantize (Decimal ("1.”), rounding=ROUND_UP)
Decimal ("8")

As shown above, the getcontext () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the setcontext () function.

In accordance with the standard, the Decimal module provides two ready to use standard contexts, BasicContext
and ExtendedContext. The former is especially useful for debugging because many of the traps are enabled:

196

Chapter 5. Miscellaneous Services

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

Decimal ("0.142857143")

>>> Decimal (42) / Decimal (0)

Decimal ("Infinity")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags()

>>> Decimal (355) / Decimal (113)

Decimal ("3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> Decimal (1) / Decimal (0)
Decimal ("Infinity")
>>> getcontext () .traps[DivisionByZero] =1
>>> Decimal (1) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal (1) / Decimal (0)
DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

5.6. decimal — Decimal floating point arithmetic 197

5.6.2 Decimal objects

class Decimal ([value [, context]])

Constructs a new Decimal object based from value.

value can be an integer, string, tuple, or another Decimal object. If no value is given, returns Decimal ("0").
If value is a string, it should conform to the decimal numeric string syntax:

sign B A LA A

digit A O A T T A A A I L A S I LA A LA I A A A LAY - LA |
indicator = e’ | TE!

digits ::= digit [digit]...

decimal-part ::= digits ’.’ [digits] | [’.’] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity’ | ’Inf’

nan ::= 'NaN’ [digits] | ’sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, ‘Decimal ((0, (1, 4, 1, 4), -3))’ returns
Decimal ("1.414").

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, ‘Decimal ("3.00000")’ records all five zeroes even if the context precision
is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps InvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with the
value of NaN.

Once constructed, Decimal objects are immutable.

Decimal floating point objects share many properties with the other builtin numeric types such as float and int.
All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed,
used as dictionary keys, used as set elements, compared, sorted, and coerced to another type (such as f1oat or long).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized meth-

ods:

adjusted()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit re-
mains: Decimal ("321e+5") .adjusted () returns seven. Used for determining the position of the most
significant digit with respect to the decimal point.

as_tuple()

>

Returns a tuple representation of the number: ‘ (sign, digittuple, exponent)

compare (other[, context])

Compares like __cmp__ () but returns a decimal instance:

a or b is a NaN ==> Decimal ("NaN")
a <b ==> Decimal ("-1")
a ==>b ==> Decimal ("0")
a>>b ==> Decimal ("1")

max (other[, context])

Like ‘max (self, other)’ except that the context rounding rule is applied before returning and that NaN

198

Chapter 5. Miscellaneous Services

values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

min (other[, context])
Like ‘min (self, other)’ except that the context rounding rule is applied before returning and that NaN
values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

normalize ([context])
Normalize the number by stripping the rightmost trailing zeroes and converting any result equal to
Decimal ("0") to Decimal ("0e0"). Used for producing canonical values for members of an equiva-
lence class. For example, Decimal ("32.100") and Decimal ("0.321000e+2") both normalize to the
equivalent value Decimal ("32.1").

quantize (exp [, rounding [, context[, watchexp]]])
Quantize makes the exponent the same as exp. Searches for a rounding method in rounding, then in context, and
then in the current context.

If watchexp is set (default), then an error is returned whenever the resulting exponent is greater than Emax or
less than Etiny.

remainder_near (other[, context])
Computes the modulo as either a positive or negative value depending on which is closest to zero. For in-
stance, ‘Decimal (10) .remainder_near (6)’ returns Decimal ("-2") which is closer to zero than
Decimal ("4").

If both are equally close, the one chosen will have the same sign as self.

same_quantum (other[, context])
Test whether self and other have the same exponent or whether both are NaN.

sqgrt ([context])
Return the square root to full precision.

to_eng_string([context])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal (123E+1’) to Decimal ("1.23E+3")

to_integral ([rounding [context]])
Rounds to the nearest integer without signaling Inexact or Rounded. If given, applies rounding; otherwise,
uses the rounding method in either the supplied context or the current context.

5.6.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the getcontext () and
setcontext () functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread to c.

New contexts can formed using the Context constructor described below. In addition, the module provides three
pre-made contexts:

class BasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except

5.6. decimal — Decimal floating point arithmetic 199

Inexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the trapped are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class DefaultContext

This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow, In-
validOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class Context (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)

Creates a new context. If a field is not specified or is None, the default values are copied from the
DefaultContext. If the flags field is not specified or is None, all flags are cleared.

The prec field is a positive integer that sets the precision for arithmetic operations in the context.

The rounding option is one of:

eROUND_CEILING (towards Infinity),

eROUND_DOWN (towards zero),

#ROUND_FLOOR (towards —~Infinity),

eROUND_HALF_DOWN (to nearest with ties going towards zero),

eROUND_HALF_EVEN (to nearest with ties going to nearest even integer),

eROUND_HALF _UP (to nearest with ties going away from zero), or

eROUND_UP (away from zero).
The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.
The Emin and Emax fields are integers specifying the outer limits allowable for exponents.

The capitals field is either O or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e isused: Decimal (' 6.02e+23").

The Context class defines several general purpose methods as well as a large number of methods for doing arithmetic
directly in a given context.

clear_flags ()

Resets all of the flags to 0.

copy ()

Return a duplicate of the context.

200

Chapter 5. Miscellaneous Services

create_decimal (num)
Creates a new Decimal instance from num but using self as context. Unlike the Decimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application. Another
benefit is that rounding immediately eliminates unintended effects from digits beyond the current precision. In
the following example, using unrounded inputs means that adding zero to a sum can change the result:

>>> getcontext () .prec = 3

>>> Decimal ("3.4445") + Decimal ("1.0023")

Decimal ("4.45")

>>> Decimal ("3.4445") + Decimal (0) + Decimal ("1.0023")
Decimal ("4.44™"™)

Etiny ()
Returns a value equal to ‘Emin - prec + 1’ which is the minimum exponent value for subnormal results.
When underflow occurs, the exponent is set to Etiny.

Etop ()
Returns a value equal to ‘Emax - prec + 1°.

The usual approach to working with decimals is to create Decimal instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternate approach is to use context methods for
calculating within a specific context. The methods are similar to those for the Decimal class and are only briefly
recounted here.

abs (x)
Returns the absolute value of x.

add (x, y)
Return the sum of x and y.

compare (X, y)
Compares values numerically.

Like __cmp__ () but returns a decimal instance:

a or b is a NaN ==> Decimal ("NaN")
a <b ==> Decimal ("-1")
a ==>b ==> Decimal ("O")
a>>b ==> Decimal ("1")
divide (x, y)
Return x divided by y.

divmod (x, y)
Divides two numbers and returns the integer part of the result.

max (x, y)

Compare two values numerically and return the maximum.

If they are numerically equal then the left-hand operand is chosen as the result.
min (x, y)

Compare two values numerically and return the minimum.

If they are numerically equal then the left-hand operand is chosen as the result.

minus (x)
Minus corresponds to the unary prefix minus operator in Python.

5.6. decimal — Decimal floating point arithmetic 201

multiply (x, y)
Return the product of x and y.

normalize (x)
Normalize reduces an operand to its simplest form.

Essentially a plus operation with all trailing zeros removed from the result.

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision and
rounding, so it is not an identity operation.

powver (x, y[, modulo])
Return ‘x x* y’ to the modulo if given.

The right-hand operand must be a whole number whose integer part (after any exponent has been applied) has
no more than 9 digits and whose fractional part (if any) is all zeros before any rounding. The operand may
be positive, negative, or zero; if negative, the absolute value of the power is used, and the left-hand operand is
inverted (divided into 1) before use.

If the increased precision needed for the intermediate calculations exceeds the capabilities of the implementation
then an InvalidOperation condition is signaled.

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is not halted
at that point but continues.

quantize (x, y)
Returns a value equal to x after rounding and having the exponent of y.

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than pre-
cision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the
quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.
remainder (x, y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (x, y)
Computed the modulo as either a positive or negative value depending on which is closest to zero. For in-
stance, ‘Decimal (10) .remainder_near (6)’ returns Decimal ("-2") which is closer to zero than
Decimal ("4").

If both are equally close, the one chosen will have the same sign as self.

same_quantum (x, y)
Test whether x and y have the same exponent or whether both are NaN.

sqgrt (x)
Return the square root of x to full precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string()
Convert to engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, converts Decimal (' 123E+1’) to Decimal ("1.23E+3")

to_integral (x)
Rounds to the nearest integer without signaling Inexact or Rounded.

to_sci_string (x)
Converts a number to a string using scientific notation.

202 Chapter 5. Miscellaneous Services

5.6.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is incremented whenever the condition is encountered. After the computation, flags may be checked
for informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
ifthe DivisionByZero trapis set, thenaDivisionByZero exception is raised upon encountering the condition.

class Clamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible, the
exponent is reduced to fit by adding zeroes to the coefficient.

class DecimalException
Base class for other signals and is a subclass of ArithmeticError.

class DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or —-Infinity with the sign determined by the inputs to the calculation.

class Inexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class InvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible causes
include:

Infinity - Infinity

0 * Infinity

Infinity / Infinity

x % 0

Infinity % x

X._rescale(non—-integer)

sgrt (-x) and x > 0

0 xx 0

X %% (non—-integer)

x xx Infinity

class Overflow
Numerical overflow.

Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity. In either case, Inexact and Rounded are also signaled.

class Rounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

5.6. decimal — Decimal floating point arithmetic 203

class Subnormal
Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class Underflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Inexact and Subnormal are also signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.StandardError)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

5.6.5 Floating Point Notes
Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to represent 0 . 1 exactly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import =
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal ("9.5111111")

>>> u + (v + w)

Decimal ("10")

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal (’6.0000003")
>>> (uxv) + (uxw)

Decimal ("0.01")

>>> u o« (v+w)

Decimal ("0.0060000™)

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

204 Chapter 5. Miscellaneous Services

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (u + v) + w

Decimal ("9.51111111")

>>> u + (v + w)

Decimal ("9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal (’6.0000003")
>>> (uxv) + (uxw)

Decimal ("0.0060000")

>>> u o« (v+w)

Decimal ("0.0060000™)

Special values

The number system for the decimal module provides special values including NaN, sNaN, -Infinity,
Infinity, and two zeroes, +0 and —0.

Infinities can be constructed directly with: Decimal (' Infinity’). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Over f1ow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the InvalidOperation signal is trapped, raise an excep-
tion. For example, 0/ 0 returns NaN which means “not a number”. This variety of NaN is quiet and, once created, will
flow through other computations always resulting in another NaN. This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal (' Infinity’)
Decimal ("OE-1000000026")

5.6.6 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread contexts
means that threads may make changes (such as get context . prec=10) without interfering with other threads.

Likewise, the setcontext () function automatically assigns its target to the current thread.

If setcontext () has not been called before get context (), then getcontext () will automatically create a

5.6. decimal — Decimal floating point arithmetic 205

new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling getcontext (). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

setcontext (DefaultContext)

Afterwards, the threads can be started
tl.start ()
t2.start ()
t3.start ()

5.6.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decimal class:

206

Chapter 5. Miscellaneous Services

def moneyfmt (value, places=2, curr='', sep=’,’, dp=".’,
pos=’'', neg='-', trailneg='’):
"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places is zero
pos: optional sign for positive numbers: ’'+’, space or blank
neg: optional sign for negative numbers: '-', ' (', space or blank
trailneg:optional trailing minus indicator: '-', ’)’, space or blank

>>> d = Decimal (' -1234567.8901")

>>> moneyfmt (d, curr=’'$")

'-$1,234,567.89"

>>> moneyfmt (d, places=0, sep=’'.’, dp='’, neg=’’, trailneg='-")
71.234.568-"

>>> moneyfmt (d, curr=’'$’, neg=’ (', trailneg=")")
"($1,234,567.89)"

>>> moneyfmt (Decimal (123456789), sep=’' ')

123 456 789.00"

>>> moneyfmt (Decimal (' -0.02"), neg='<’, trailneg=’'>")

'<.02>7

nnn

g = Decimal ((0, (1,), -places)) # 2 places -——> "0.01’
sign, digits, exp = value.quantize(q) .as_tuple()

assert exp == -places

result = []

digits = map(str, digits)
build, next = result.append, digits.pop

if sign:
build(trailnegqg)
for i in range(places):
if digits:
build (next ())
else:
build(’0")
build (dp)
i=20
while digits:
build (next ())
i+=1
if i == 3 and digits:
i=20
build(sep)
build(curr)
if sign:
build(neqg)
else:
build(pos)

result.reverse ()
return '’ .join(result)

def pi():
"""Compute Pi to the current precision.

>>> print pi ()
3. 1415026535807Q93238462643383

T

5.6. decimal — Decimal floating point arithmetic 207

wnn

getcontext () .prec += 2 # extra digits for intermediate steps

three = Decimal (3) # substitute "three=3.0" for regular floats
T N o~ o~ . . — . Al - — N e T o o~ o~ - 1 aY aY SN

5.6.8 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal (' 1234.5"). Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D(’1.23") + D(’3.45")
Decimal ("4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A.The quantize () method rounds to a fixed number of decimal places. If the Inexact trap is set, it is also useful
for validation:

>>> TWOPLACES = Decimal (10) %% -2 # same as Decimal ('0.01")

>>> # Round to two places
>>> Decimal ("3.214") .quantize (TWOPLACES)
Decimal ("3.21")

>>> # Validate that a number does not exceed two places
>>> Decimal ("3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ("3.21")

>>> Decimal ("3.214") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Traceback (most recent call last):

Inexact: Changed in rounding

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition and subtraction automatically preserve fixed point. Others, like multiplication and
division, change the number of decimal places and need to be followed-up with a quantize () step.

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and . 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values = map (Decimal, 200 200.000 2E2 .02E+4' .split())
>>> [v.normalize () for v in values]
[Decimal ("2E+2"), Decimal ("2E+2"), Decimal ("2E+2"), Decimal ("2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5.0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take more
precision than intuition would suggest, so trapping Inexact will signal a need for more precision:

208 Chapter 5. Miscellaneous Services

def floatToDecimal (f):
"Convert a floating point number to a Decimal with no loss of information"
Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
exponent. Double the mantissa until it is an integer. Use the integer
mantissa and exponent to compute an equivalent Decimal. If this cannot
be done exactly, then retry with more precision.

mantissa, exponent = math.frexp (f)
while mantissa != int (mantissa):
mantissa *x= 2.0
exponent —-= 1
mantissa = int (mantissa)

oldcontext = getcontext ()
setcontext (Context (traps=[Inexact]))
try:
while True:
try:
return mantissa x Decimal (2) xx exponent
except Inexact:
getcontext () .prec += 1
finally:
setcontext (oldcontext)

Q. Why isn’t the floatToDecimal () routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use requires
some care to avoid the representation issues associated with binary floating point:

>>> floatToDecimal (1.1)
Decimal ("1.100000000000000088817841970012523233890533447265625")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the results
can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3
>>> Decimal ("3.1047) + D ('
Decimal ("5.21")

>>> Decimal (*3.104’) 4+ D(’0.000") + D('2.104")
Decimal ("5.20")

2.104")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

5.6. decimal — Decimal floating point arithmetic 209

>>> getcontext () .prec = 3
>>> +Decimal (11.23456789") # unary plus triggers rounding
Decimal ("1.23")

Alternatively, inputs can be rounded upon creation using the Context .create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ('1.2345678")
Decimal ("1.2345")

5.7 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

Number-theoretic and representation functions:

ceil (x)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

fabs (x)
Return the absolute value of x.

floor (x)
Return the floor of x as a float, the largest integer value less than or equal to x.

fmod (x, y)
Return fmod (x, y), as defined by the platform C library. Note that the Python expression x % y may not
return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically; to infinite
precision) equal to x — n«y for some integer n such that the result has the same sign as x and magnitude less
than abs (y) . Python’s x % y returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod (-1e-100, 1e100) is —1e-100, but the result of Python’s —1e-100
% 1e100is 1e100-1e-100, which cannot be represented exactly as a float, and rounds to the surprising

1e100. For this reason, function fmod () is generally preferred when working with floats, while Python’s x

[o)

% yis preferred when working with integers.

frexp (x)
Return the mantissa and exponent of x as the pair (m, e). mis afloat and e is an integer such thatx == m
x 2x*e exactly. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs (m) < 1. This is used to "pick
apart” the internal representation of a float in a portable way.

ldexp (x, i)
Returnx * (2«*i). This is essentially the inverse of function frexp ().

modf (x)
Return the fractional and integer parts of x. Both results carry the sign of x, and both are floats.

210 Chapter 5. Miscellaneous Services

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For the ceil (), floor (), and modf () functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs (x) >= 2x*52 necessarily has no fractional bits.

Power and logarithmic functions:

exp (x)
Return e x xx.

log (x[, base])
Return the logarithm of x to the given base. If the base is not specified, return the natural logarithm of x (that is,
the logarithm to base e). Changed in version 2.3: base argument added.

logl0 (x)
Return the base-10 logarithm of x.

pPow (x, y)
Return x* *y.

sqrt (x)
Return the square root of x.

Trigonometric functions:

acos (x)
Return the arc cosine of x, in radians.

asin (x)
Return the arc sine of x, in radians.

atan (x)
Return the arc tangent of x, in radians.

atan2 (y x)
Return atan (y / x),inradians. The result is between —pi and pi. The vector in the plane from the origin to
point (x, y) makes this angle with the positive X axis. The point of atan2 () is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and atan?2 (1,
1) are both pi/4,butatan2 (-1, -1) is -3xpi/4.

cos (x)
Return the cosine of x radians.

hypot (x, y)
Return the Euclidean norm, sgrt (xxx + y*y). This is the length of the vector from the origin to point (x,

).

sin (x)
Return the sine of x radians.

tan (x)
Return the tangent of x radians.

Angular conversion:

degrees (x)
Converts angle x from radians to degrees.

radians (x)
Converts angle x from degrees to radians.

5.7. math — Mathematical functions 211

Hyperbolic functions:

cosh (x)
Return the hyperbolic cosine of x.

sinh (x)
Return the hyperbolic sine of x.

tanh (x)
Return the hyperbolic tangent of x.

The module also defines two mathematical constants:

pi
The mathematical constant pi.

The mathematical constant e.

Note: The math module consists mostly of thin wrappers around the platform C math library functions. Behavior in
exceptional cases is loosely specified by the C standards, and Python inherits much of its math-function error-reporting
behavior from the platform C implementation. As a result, the specific exceptions raised in error cases (and even
whether some arguments are considered to be exceptional at all) are not defined in any useful cross-platform or cross-
release way. For example, whethermath.log (0) returns —Inf orraises ValueError or OverflowErrorisn’t
defined, and in cases where math.log (0) raises OverflowError, math.log (0L) may raise ValueError
instead.

See Also:

Module cmath (section 5.8):
Complex number versions of many of these functions.

5.8 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.

acosh (x)
Return the hyperbolic arc cosine of x. There is one branch cut, extending left from 1 along the real axis to -oo,
continuous from above.

asin (x)
Return the arc sine of x. This has the same branch cuts as acos ().

asinh (x)
Return the hyperbolic arc sine of x. There are two branch cuts, extending left from +1 7 to £-007j, both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release. The
correct branch cuts should extend along the imaginary axis, one from 17j up to ooj and continuous from the
right, and one from -1 j down to -co j and continuous from the left.

atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 j along the imaginary axis to 0o j,
continuous from the left. The other extends from -1 j along the imaginary axis to -o0o j, continuous from the
left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)

212 Chapter 5. Miscellaneous Services

Return the hyperbolic arc tangent of x. There are two branch cuts: One extends from 1 along the real axis to
00, continuous from above. The other extends from -1 along the real axis to -co, continuous from above. (This
should probably be changed so the right cut becomes continuous from the other side.)

cos (x)
Return the cosine of x.

cosh (x)
Return the hyperbolic cosine of x.

exp (x)
Return the exponential value e * xx.

log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x. There
is one branch cut, from 0 along the negative real axis to -oo, continuous from above. Changed in version 2.4:
base argument added.

logl0 (x)
Return the base-10 logarithm of x. This has the same branch cut as 1og () .

sin (x)
Return the sine of x.

sinh (x)
Return the hyperbolic sine of x.

sqrt (x)
Return the square root of x. This has the same branch cut as 1og ().

tan (x)
Return the tangent of x.

tanh (x)
Return the hyperbolic tangent of x.

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math.sqrt (-1) raise an exception than return a complex number. Also note that the functions
defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

5.8. cmath — Mathematical functions for complex numbers 213

5.9 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly in
the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random. Random class.
You can instantiate your own instances of Random to get generators that don’t share state. This is especially useful
for multi-threaded programs, creating a different instance of Random for each thread, and using the jumpahead ()
method to ensure that the generated sequences seen by each thread don’t overlap.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case,
override the random (), seed (), getstate (), setstate () and jumpahead () methods. Optionally, a new
generator can supply a getrandombits () method — this allows randrange () to produce selections over an
arbitrarily large range. New in version 2.4: the get randombits () method.

As an example of subclassing, the random module provides the WichmannHill class which implements an al-
ternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier
versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version 2.3: Substi-
tuted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argument x can be any hashable object. If x is omitted or
None, current system time is used; current system time is also used to initialize the generator when the module
is first imported. If randomness sources are provided by the operating system, they are used instead of the
system time (see the os.urandom () function for details on availability). Changed in version 2.4: formerly,
operating system resources were not used. If x is not None or an int or long, hash (x) is used instead. If x is
an int or long, x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to setstate ()
to restore the state. New in version 2.1.

setstate (srate)
state should have been obtained from a previous call to getstate (), and setstate () restores the internal
state of the generator to what it was at the time setstate () was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current state. n is a non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjuction with multiple instances of the Random class: setstate () or seed () can be used to force all
instances into the same internal state, and then jumpahead () can be used to force the instances’ states far
apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specific state, n steps ahead,
jumpahead (n) jumps to another state likely to be separated by many steps.

getrandbits (k)
Returns a python 1ong int with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When available, getrandbits ()

214 Chapter 5. Miscellaneous Services

enables randrange () to handle arbitrarily large ranges. New in version 2.4.
Functions for integers:

randrange ([start,] stop[, step])
Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)),butdoesn’t actually build a range object. New in version 1.5.2.

randint (q, b)
Return a random integer N such thata <= N <= b.

Functions for sequences:

choice (seq)
Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

shuffle (x[, random])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the function random ().

Note that for even rather small 1en (x), the total number of permutations of x is larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

sample (population, k)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occur-
rence is a possible selection in the sample.

To choose a sample from a range of integers, use xrange as an argument. This is especially fast and space
efficient for sampling from a large population: sample (xrange (10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real number N such thata <= N < b.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values range
between O and 1.

expovariate (lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values range from O to positive infinity.

gammavariate (alpha, beta)
Gamma distribution. (Nof the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.

gauss (mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the
normalvariate () function defined below.

lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

5.9. random — Generate pseudo-random numbers 215

normalvariate (mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which
must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random
angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generators

class WichmannHill ([seed])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus the whseed method described below. Because this class is implemented in pure Python, it is
not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is
small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed for details.
whseed does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more
than about 2**24 distinct internal states in all.

class SystemRandom ([seed])
Class that uses the os . urandom () function for generating random numbers from sources provided by the op-
erating system. Not available on all systems. Does not rely on software state and sequences are not reproducible.
Accordingly, the seed () and jumpahead () methods have no effect and are ignored. The getstate ()
and setstate () methods raise Not ImplementedError if called. New in version 2.4.

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”’, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

5.10 whrandom — Pseudo-random number generator

Deprecated since release 2.1. Use random instead.

Note: This module was an implementation detail of the random module in releases of Python prior to 2.1. It is no
longer used. Please do not use this module directly; use random instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is also named whrandom.
Instances of the whrandom class conform to the Random Number Generator interface described in the docs for the
random module. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed([x, Yy, z])
Initializes the random number generator from the integers x, y and z. When the module is first imported, the
random number is initialized using values derived from the current time. If x, y, and z are either omitted or
0, the seed will be computed from the current system time. If one or two of the parameters are 0, but not all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

Other supported methods include:

216 Chapter 5. Miscellaneous Services

choice (seq)
Chooses a random element from the non-empty sequence seq and returns it.

randint (a, b)
Returns a random integer N such that a<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (x, y, 2)
Initializes the random number generator from the integers x, y and z. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (q, b)
Returns a random real number N such that a<=N<b.

When imported, the whrandom module also creates an instance of the whrandom class, and makes the methods of
that instance available at the module level. Therefore one can write either N = whrandom.random () or:

generator = whrandom.whrandom ()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Module random (section 5.9):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

5.11 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called bisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect_left (list, item[, lo[, hi]])
Locate the proper insertion point for item in list to maintain sorted order. The parameters /o and hi may be used
to specify a subset of the list which should be considered; by default the entire list is used. If item is already
present in /ist, the insertion point will be before (to the left of) any existing entries. The return value is suitable
for use as the first parameter to /ist. insert (). This assumes that /ist is already sorted. New in version 2.1.

bisect_right (list, item[, lo[, hi]])
Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of item in list. New in version 2.1.

bisect (...)
Alias for bisect _right ().

insort_left (list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent to list. insert (bisect.bisect_left (list, item,
lo, hi), item). This assumes that [ist is already sorted. New in version 2.1.

5.11. bisect — Array bisection algorithm 217

insort_right (list, item[, lo[, hi]])
Similar to insort_left (), but inserting ifem in list after any existing entries of item. New in version 2.1.

insort (...)
Alias for insort_right ().

5.11.1 Examples

The bisect () function is generally useful for categorizing numeric data. This example uses bisect () to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’, 75..84 is a
‘B’, etc.

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade (total):
return grades|[bisect (breakpoints, total)]

>>> grade (66)

ICI

>>> map (grade, [33, 99, 77, 44, 12, 88])
[IEI, IAI, IBI, IDI, IFI’ IAIJ

5.12 collections — High-performance container datatypes

New in version 2.4.

This module implements high-performance container datatypes. Currently, the only datatype is a deque. Future
additions may include B-trees and Fibonacci heaps.

deque ([iterable])
Returns a new deque objected initialized left-to-right (using append ()) with data from iterable. If iterable is
not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O (1) performance in either direction.

Though 11ist objects support similar operations, they are optimized for fast fixed-length operations and incur
O (n) memory movement costs for ‘pop (0)’ and ‘insert (0, v)’ operations which change both the size
and position of the underlying data representation. New in version 2.4.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

218 Chapter 5. Miscellaneous Services

extendleft (iterable)
Extend the left side of the deque by appending elements from iterable. Note, the series of left appends results
in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError.

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

rotate (n)
Rotate the deque n steps to the right. If n is negative, rotate to the left. Rotating one step to the right is equivalent
to: ‘d.appendleft (d.pop())’.

In addition to the above, deques support iteration, pickling, ‘len(d)’, ‘reversed(d)’, ‘copy.copy(d)’,

)

‘copy .deepcopy (d) ’, membership testing with the in operator, and subscript references such as ‘d[-1]".

Example:

5.12. collections — High-performance container datatypes 219

>>> from collections import deque

>>> d = deque(’ghi’)
>>> for elem in d:

print elem.upper ()

G
H
I

>>> d.append ('’ j")

>>> d.appendleft (' £’)
>>> d

deque(["f", 'g’, "h',

>>> d.pop ()

Ijl

>>> d.popleft ()
Ifl

>>> list (d)
[IgI, Ihl, Iil]
>>> d[0]

Igl

>>> d[-1]

Iil

>>> list (reversed(d))
[*i7, "h', ’'g’]

>>> "h’ in d

True

>>> d.extend(’ jkl1’)
>>> d

deque([’g", '"h’, "i’,
>>> d.rotate (1)

>>> d

deque(['1’, 'g’, 'h’,
>>> d.rotate (-1)

>>> d

deque([’g’, 'h’, "i’,

>>> deque (reversed(d))

deque (["1", 'k’', "3,
>>> d.clear ()
>>> d.pop ()

ror
J°

Ikl,

’h,,

Traceback (most recent call last):

File "<pyshell#6>",
d.pop ()

line 1,

IndexError: pop from an empty deque

>>> d.extendleft ("abc’)

>>> d

deque(['c’, 'b’, 'a’l)

5.12.1 Recipes

4=

#

make a new deque with three items
iterate over the deque’s elements

add a new entry to the right side
add a new entry to the left side
show the representation of the deque
return and remove the rightmost item
return and remove the leftmost item
list the contents of the deque

peek at leftmost item

peek at rightmost item

list the contents of a deque in reverse
search the deque

add multiple elements at once

right rotation

left rotation

make a new deque in reverse order

empty the deque
cannot pop from an empty deque

in -toplevel-

extendleft () reverses the input order

This section shows various approaches to working with deques.

220

Chapter 5. Miscellaneous Services

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—-n)
d.popleft ()
d.rotate (n)

To implement deque slicing, use a similar approach applying rotate () to bring a target element to the left side of
the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.

With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

A roundrobin task server can be built from a deque using popleft () to select the current task and append () to
add it back to the tasklist if the input stream is not exhausted:

def roundrobin (*iterables):
pending = deque(iter (i) for i in iterables)
while pending:
task = pending.popleft ()
try:
yield task.next ()
except Stoplteration:
continue
pending.append (task)

>>> for value in roundrobin(’abc’, 'd’, ’'efgh’):
print value

o0Q QOO0 QR

Multi-pass data reduction algorithms can be succinctly expressed and efficiently coded by extracting elements with
multiple calls to popleft (), applying the reduction function, and calling append () to add the result back to the
queue.

For example, building a balanced binary tree of nested lists entails reducing two adjacent nodes into one by grouping
them in a list:

5.12. collections — High-performance container datatypes 221

def maketree (iterable):
d = deque (iterable)
while len(d) > 1:
pair = [d.popleft (), d.popleft ()]
d.append (pair)
return list (d)

>>> print maketree (’abcdefgh’)
(reerar, "1, rer, a1y, ('e’, "£71, ["g’, "h'111]

5.183 heapg— Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for which heap (k] <= heap [2+k+1] and heap [k] <= heap[2k+2] for all k, counting ele-
ments from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is that heap [0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap . sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function heapify ().
The following functions are provided:

heappush (heap, item)
Push the value ifem onto the heap, maintaining the heap invariant.

heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty,
IndexError is raised.

heapify (x)
Transform list x into a heap, in-place, in linear time.

heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new ifem. The heap size doesn’t change. If the
heap is empty, IndexError is raised. This is more efficient than heappop () followed by heappush (),
and can be more appropriate when using a fixed-size heap. Note that the value returned may be larger than item!
That constrains reasonable uses of this routine unless written as part of a conditional replacement:

if item > heap[0]:
item = heapreplace (heap, item)

Example of use:

222 Chapter 5. Miscellaneous Services

>>> from heapqg import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush (heap, item)

>>> sorted = []
>>> while heap:
sorted.append (heappop (heap))

>>> print sorted

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> data.sort ()

>>> print data == sorted

True

>>>

The module also offers two general purpose functions based on heaps.

nlargest (n, iterable)
Return a list with the n largest elements from the dataset defined by iterable. Equivalent to:
sorted (iterable, reverse=True) [:n] New in version 2.4.

nsmallest (n, iterable)
Return a list with the n smallest elements from the dataset defined by iterable. Equivalent to:
sorted (iterable) [:n] New in version 2.4.

Both functions perform best for smaller values of n. For larger values, it is more efficient to use the sorted ()
function. Also, when n==1, it is more efficient to use the builtin min () and max () functions.

5.13.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for which a [k] <= a[2xk+1] and a[k] <= a[2+k+2] for all k, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k, not a [k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2+k+1 and 2+k+2. In an usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule

5.13. heapg — Heap queue algorithm 223

becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped
cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “’better”” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organised?. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because the
value ”wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

5.14 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

2The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

224 Chapter 5. Miscellaneous Services

Type code | C Type Python Type Minimum size in bytes
rc’ char character 1
"o’ signed char int 1
"B’ unsigned char int 1
ru’ Py_UNICODE | Unicode character 2
"h' signed short int 2
"H' unsigned short | int 2
ri’ signed int int 2
"I’ unsigned int long 2
ry’ signed long int 4
"L’ unsigned long | long 4
i float float 4
rd’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the itemsize attribute. The values stored for ' L’ and ' I’ items
will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecode [initializer])
Return a new array whose items are restricted by typecode, and initialized from the optional initializer value,
which must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4: For-
merly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new array’s
fromlist (), fromstring (), or fromunicode () method (see below) to add initial items to the array.
Otherwise, the iterable initializer is passed to the extend () method.

ArrayType
Obsolete alias for array.

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (x)
Append a new item with value x to the end of the array.

buffer_info ()
Return a tuple (address, length) giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as ar-
ray.buffer_info () [1] =« array.itemsize. This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1 () operations. The
returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in the Python/C API Reference Manual.

byteswap ()

5.14. array — Efficient arrays of numeric values 225

../api/newTypes.html

“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, Runt imeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (x)
Return the number of occurrences of x in the array.

extend (iterable)
Append items from iferable to the end of the array. If iterable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could only
be another array.

fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than
n items are available, EOFError is raised, but the items that were available are still inserted into the array. f
must be a real built-in file object; something else with a read () method won’t do.

fromlist (/ist)
Append items from the list. This is equivalent to ‘for x in list: a.append (x)’ except that if there is a
type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using the fromfile () method).

fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type ’u’ array; otherwise a
ValueError is raised. Use ‘array.fromstring (ustr.decode (enc))’ to append Unicode data to an
array of some other type.

index (x)
Return the smallest i such that i is the index of the first occurrence of x in the array.

insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

pop ([i])
Removes the item with the index i from the array and returns it. The optional argument defaults to —1, so that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.1. Use the fromfile () method.

Read n items (as machine values) from the file object f a