Topology Interface


Data Structures

struct  snd_tplg_tlv_template
 Template type for all TLV objects. More...
struct  snd_tplg_tlv_dbscale_template
 Template type for TLV Scale objects. More...
struct  snd_tplg_channel_elem
struct  snd_tplg_channel_map_template
 Template type for channel mapping. More...
struct  snd_tplg_pdata_template
 Template type for private data objects. More...
struct  snd_tplg_io_ops_template
 Template type for object operations mapping. More...
struct  snd_tplg_ctl_template
 Template type for control objects. More...
struct  snd_tplg_mixer_template
 Template type for mixer control objects. More...
struct  snd_tplg_enum_template
 Template type for enumerated control objects. More...
struct  snd_tplg_bytes_template
 Template type for TLV Scale objects. More...
struct  snd_tplg_graph_elem
 Template type for single DAPM graph element. More...
struct  snd_tplg_graph_template
 Template type for array of DAPM graph elements. More...
struct  snd_tplg_widget_template
 Template type for DAPM widget objects. More...
struct  snd_tplg_stream_template
 Stream configurations. More...
struct  snd_tplg_stream_caps_template
 Stream Capabilities. More...
struct  snd_tplg_pcm_template
 Template type for PCM (FE DAI & DAI links). More...
struct  snd_tplg_link_template
 Template type for BE and CC DAI Links. More...
struct  snd_tplg_obj_template_t
struct  snd_tplg_channel_template
 Template type for single channel mapping. More...
struct  snd_tplg_obj_template
 Generic Template Object. More...

Defines

#define SND_TPLG_MAX_CHAN   8

Typedefs

typedef struct snd_tplg snd_tplg_t

Enumerations

enum  snd_tplg_type {
  SND_TPLG_TYPE_TLV = 0, SND_TPLG_TYPE_MIXER, SND_TPLG_TYPE_ENUM, SND_TPLG_TYPE_TEXT,
  SND_TPLG_TYPE_DATA, SND_TPLG_TYPE_BYTES, SND_TPLG_TYPE_STREAM_CONFIG, SND_TPLG_TYPE_STREAM_CAPS,
  SND_TPLG_TYPE_PCM, SND_TPLG_TYPE_DAPM_WIDGET, SND_TPLG_TYPE_DAPM_GRAPH, SND_TPLG_TYPE_BE,
  SND_TPLG_TYPE_CC, SND_TPLG_TYPE_MANIFEST, SND_TPLG_TYPE_TOKEN, SND_TPLG_TYPE_TUPLE
}

Functions

snd_tplg_tsnd_tplg_new (void)
 Create a new topology parser instance.
void snd_tplg_free (snd_tplg_t *tplg)
 Free a topology parser instance.
int snd_tplg_build_file (snd_tplg_t *tplg, const char *infile, const char *outfile)
 Parse and build topology text file into binary file.
void snd_tplg_verbose (snd_tplg_t *tplg, int verbose)
 Enable verbose reporting of binary file output.
int snd_tplg_add_object (snd_tplg_t *tplg, snd_tplg_obj_template_t *t)
 Register topology template object.
int snd_tplg_build (snd_tplg_t *tplg, const char *outfile)
 Build all registered topology data into binary file.
int snd_tplg_set_manifest_data (snd_tplg_t *tplg, const void *data, int len)
 Attach private data to topology manifest.
int snd_tplg_set_version (snd_tplg_t *tplg, unsigned int version)
 Set an optional vendor specific version number.

ALSA Topology Interface

The topology interface allows developers to define DSP topologies in a text file format and to convert the text topology to a binary topology representation that can be understood by the kernel. The topology core currently recognises the following object types :-

* Controls (mixer, enumerated and byte) including TLV data. * PCMs (FE and BE configurations and capabilities) * DAPM widgets * DAPM graph elements. * Private data for each object type. * Manifest (containing count of each object type)

Topology File Format

The topology text format uses the standard ALSA configuration file format to describe each topology object type. This allows topology objects to include other topology objects as part of their definition. i.e. a TLV data object can be shared amongst many control objects that use the same TLV data.

Controls

Topology audio controls can belong to three different types :- * Mixer control * Enumerated control * Byte control

Each control type can contain TLV data, private data, operations and also belong to widget objects.

Control Operations

Driver Kcontrol callback info(), get() and put() operations are mapped with the CTL ops section in topology configuration files. The ctl ops section can assign operations using the standard names (listed below) for the standard kcontrol types or use ID numbers (>256) to map to bespoke driver controls.

	ops."ctl" {
		info "volsw"
		get "257"
		put "257"
	}

 

This mapping shows info() using the standard "volsw" info callback whilst the get() and put() are mapped to bespoke driver callbacks.

The Standard operations names for control get(), put() and info calls are :- * volsw * volsw_sx * volsw_xr_sx * enum * bytes * enum_value * range * strobe

Control Access

Controls access can be specified using the "access" section. If no "access" section is defined then default RW access flags are set for normal and TLV controls.

	access [
		read
		write
		tlv_command
	]
 

The standard access flags are as follows :- * read * write * read_write * volatile * timestamp * tlv_read * tlv_write * tlv_read_write * tlv_command * inactive * lock * owner * tlv_callback * user

Control TLV Data

Controls can also use TLV data to represent dB information. This can be done by defining a TLV section and using the TLV section within the control. The TLV data for DBScale types are defined as follows :-

	scale {
		min "-9000"
		step "300"
		mute "1"
	}
 

Where the meanings and values for min, step and mute are exactly the same as defined in driver code.

Control Channel Mapping

Controls can also specify which channels they are mapped with. This is useful for userspace as it allows applications to determine the correct control channel for Left and Right etc. Channel maps are defined as follows :-

	channel."name" {
		reg "0"
		shift "0"
	}
 

The channel map reg is the register offset for the control, shift is the bit shift within the register for the channel and the section name is the channel name and can be one of the following :-

  * mono		# mono stream
  * fl 		# front left
  * fr		# front right
  * rl		# rear left
  * rr		# rear right
  * fc		# front center
  * lfe		# LFE
  * sl		# side left
  * sr		# side right
  * rc		# rear center
  * flc		# front left center
  * frc		# front right center
  * rlc		# rear left center
  * rrc		# rear right center
  * flw		# front left wide
  * frw		# front right wide
  * flh		# front left high
  * fch		# front center high
  * frh		# front right high
  * tc		# top center
  * tfl		# top front left
  * tfr		# top front right
  * tfc		# top front center
  * trl		# top rear left
  * trr		# top rear right
  * trc		# top rear center
  * tflc		# top front left center
  * tfrc		# top front right center
  * tsl		# top side left
  * tsr		# top side right
  * llfe		# left LFE
  * rlfe		# right LFE
  * bc		# bottom center
  * blc		# bottom left center
  * brc		# bottom right center
 

Control Private Data

Controls can also have private data. This can be done by defining a private data section and including the section within the control. The private data section is defined as follows :-

 SectionData."pdata for EQU1" {
	file "/path/to/file"
	bytes "0x12,0x34,0x56,0x78"
	shorts "0x1122,0x3344,0x5566,0x7788"
	words "0xaabbccdd,0x11223344,0x66aa77bb,0xefef1234"
	tuples "section id of the vendor tuples"
 };
 
The file, bytes, shorts, words and tuples keywords are all mutually exclusive as the private data should only be taken from one source. The private data can either be read from a separate file or defined in the topology file using the bytes, shorts, words or tuples keywords. The keyword tuples is to define vendor specific tuples. Please refer to section Vendor Tokens and Vendor tuples.

How to define an element with private data

An element can refer to a single data section or multiple data sections.

To refer to a single data section:

 Sectionxxx."element name" {
    ...
	data "name of data section"		# optional private data
 }
 

To refer to multiple data sections:

 Sectionxxx."element name" {
	...
	data [						# optional private data
		"name of 1st data section"
		"name of 2nd data section"
		...
	]
 }
 
And data of these sections will be merged in the same order as they are in the list, as the element's private data for kernel.

Vendor Tokens

A vendor token list is defined as a new section. Each token element is a pair of string ID and integer value. And both the ID and value are vendor-specific.

 SectionVendorTokens."id of the vendor tokens" {
	comment "optional comments"
	VENDOR_TOKEN_ID1 "1"
	VENDOR_TOKEN_ID2 "2"
	VENDOR_TOKEN_ID3 "3"
	...
 }
 

Vendor Tuples

Vendor tuples are defined as a new section. It contains a reference to a vendor token list and several tuple arrays. All arrays share a vendor token list, defined by the tokens keyword. Each tuple array is for a specific type, defined by the string following the tuples keyword. Supported types are: string, uuid, bool, byte, short and word.

 SectionVendorTuples."id of the vendor tuples" {
	tokens "id of the vendor tokens"

	tuples."string" {
		VENDOR_TOKEN_ID1 "character string"
		...
	}

	tuples."uuid" {			# 16 characters separated by commas
		VENDOR_TOKEN_ID2 "0x01,0x02,...,0x0f"
		...
	}

	tuples."bool" {
		VENDOR_TOKEN_ID3 "true/false"
		...
	}

	tuples."byte" {
		VENDOR_TOKEN_ID4 "0x11"
		VENDOR_TOKEN_ID5 "0x22"
		...
	}

	tuples."short" {
		VENDOR_TOKEN_ID6 "0x1122"
		VENDOR_TOKEN_ID7 "0x3344"
		...
	}

	tuples."word" {
		VENDOR_TOKEN_ID8 "0x11223344"
		VENDOR_TOKEN_ID9 "0x55667788"
		...
	}
 }
 
To define multiple vendor tuples of same type, please append some characters after the type string ("string", "uuid", "bool", "byte", "short" or "word"), to avoid ID duplication in the SectionVendorTuples.
The parser will check the first few characters in ID to get the tuple type. Here is an example:
 SectionVendorTuples."id of the vendor tuples" {
    ...
	tuples."word.module0" {
		VENDOR_TOKEN_PARAM_ID1 "0x00112233"
		VENDOR_TOKEN_PARAM_ID2 "0x44556677"
		...
	}

	tuples."word.module2" {
		VENDOR_TOKEN_PARAM_ID1 "0x11223344"
		VENDOR_TOKEN_PARAM_ID2 "0x55667788"
		...
	}
	...
 }

 

Mixer Controls

A mixer control is defined as a new section that can include channel mapping, TLV data, callback operations and private data. The mixer section also includes a few other config options that are shown here :-

 SectionControlMixer."mixer name" {
	comment "optional comments"

	index "1"			# Index number

	channel."name" {		# Channel maps
	   ....
	}

	ops."ctl" {			# Ops callback functions
	   ....
	}

	max "32"			# Max control value
	invert "0"			# Whether control values are inverted

	tlv "tld_data"			# optional TLV data

	data "pdata for mixer1"		# optional private data
 }
 

The section name is used to define the mixer name. The index number can be used to identify topology objects groups. This allows driver operations on objects with index number N and can be used to add/remove pipelines of objects whilst other objects are unaffected.

Byte Controls

A byte control is defined as a new section that can include channel mapping, TLV data, callback operations and private data. The bytes section also includes a few other config options that are shown here :-

 SectionControlBytes."name" {
	comment "optional comments"

	index "1"			# Index number

	channel."name" {		# Channel maps
	   ....
	}

	ops."ctl" {			# Ops callback functions
	   ....
	}

	base "0"			# Register base
	num_regs "16"			# Number of registers
	mask "0xff"			# Mask
	max "255"			# Maximum value

	tlv "tld_data"			# optional TLV data

	data "pdata for mixer1"		# optional private data
 }
 

Enumerated Controls

A enumerated control is defined as a new section (like mixer and byte) that can include channel mapping, callback operations, private data and text strings to represent the enumerated control options.

The text strings for the enumerated controls are defined in a separate section as follows :-

 SectionText."name" {

		Values [
			"value1"
			"value2"
			"value3"
		]
 }
 

All the enumerated text values are listed in the values list.
The enumerated control is similar to the other controls and defined as follows :-

 SectionControlMixer."name" {
	comment "optional comments"

	index "1"			# Index number

	texts "EQU1"			# Enumerated text items

	channel."name" {		# Channel maps
	   ....
	}

	ops."ctl" {			# Ops callback functions
	   ....
	}

	data "pdata for mixer1"		# optional private data
 }
 

DAPM Graph

DAPM graphs can easily be defined using the topology file. The format is very similar to the DAPM graph kernel format. :-

 SectionGraph."dsp" {
	index "1"			# Index number

	lines [
		"sink1, control, source1"
		"sink2, , source2"
	]
 }
 

The lines in the graph are defined as a variable size list of sinks, controls and sources. The control name is optional as some graph lines have no associated controls. The section name can be used to differentiate the graph with other graphs, it's not used by the kernel atm.

DAPM Widgets

DAPM widgets are similar to controls in that they can include many other objects. Widgets can contain private data, mixer controls and enum controls.

The following widget types are supported and match the driver types :-

* input * output * mux * mixer * pga * out_drv * adc * dac * switch * pre * post * aif_in * aif_out * dai_in * dai_out * dai_link

Widgets are defined as follows :-

 SectionWidget."name" {

	index "1"			# Index number

	type "aif_in"			# Widget type - detailed above

	no_pm "true"			# No PM control bit.
	reg "20"			# PM bit register offset
	shift "0"			# PM bit register shift
	invert "1			# PM bit is inverted
	subseq "8"			# subsequence number

	event_type "1"			# DAPM widget event type
	event_flags "1"			# DAPM widget event flags

	mixer "name"			# Optional Mixer Control
	enum "name"			# Optional Enum Control

	data "name"			# optional private data
 }
 

The section name is the widget name. The mixer and enum fields are mutually exclusive and used to include controls into the widget. The index and data fields are the same for widgets as they are for controls whilst the other fields map on very closely to the driver widget fields.

Widget Private Data

Widget can have private data. For the format of the private data, please refer to section Control Private Data.

PCM Capabilities

Topology can also define the capabilities of FE and BE PCMs. Capabilities can be defined with the following section :-

 SectionPCMCapabilities."name" {

	formats "S24_LE,S16_LE"		# Supported formats
	rate_min "48000"		# Max supported sample rate
	rate_max "48000"		# Min supported sample rate
	channels_min "2"		# Min number of channels
	channels_max "2"		# max number of channels
 }
 
The supported formats use the same naming convention as the driver macros. The PCM capabilities name can be referred to and included by BE, PCM and Codec <-> codec topology sections.

PCM Configurations

PCM runtime configurations can be defined for playback and capture stream directions with the following section :-

 SectionPCMConfig."name" {

	config."playback" {		# playback config
		format "S16_LE"		# playback format
		rate "48000"		# playback sample rate
		channels "2"		# playback channels
		tdm_slot "0xf"		# playback TDM slot
	}

	config."capture" {		# capture config
		format "S16_LE"		# capture format
		rate "48000"		# capture sample rate
		channels "2"		# capture channels
		tdm_slot "0xf"		# capture TDM slot
	}
 }
 

The supported formats use the same naming convention as the driver macros. The PCM configuration name can be referred to and included by BE, PCM and Codec <-> codec topology sections.

PCM Configurations

PCM, BE and Codec to Codec link sections define the supported capabilities and configurations for supported playback and capture streams. The definitions and content for PCMs, BE and Codec links are the same with the exception of the section type :-

 SectionPCM."name" {
	....
 }
 SectionBE."name" {
	....
 }
 SectionCC."name" {
	....
 }
 

The section types above should be used for PCMs, Back Ends and Codec to Codec links respectively.

The data for each section is defined as follows :-

 SectionPCM."name" {

	index "1"			# Index number

	id "0"				# used for binding to the PCM

	dai."name of front-end DAI" {
		id "0"		# used for binding to the front-end DAI
	}

	pcm."playback" {
		capabilities "capabilities1"	# capabilities for playback

		configs [		# supported configs for playback
			"config1"
			"config2"
		]
	}

	pcm."capture" {
		capabilities "capabilities2"	# capabilities for capture

		configs [		# supported configs for capture
			"config1"
			"config2"
			"config3"
		]
	}
 }
 

Manifest Private Data

Manfiest may have private data. Users need to define a manifest section and add the references to 1 or multiple data sections. Please refer to section 'How to define an element with private data'.
And the text conf file can have at most 1 manifest section.

Manifest section is defined as follows :-

 SectionManifest"name" {

	data "name"			# optional private data
 }
 

Define Documentation

#define SND_TPLG_MAX_CHAN   8

Maximum number of channels supported in one control


Typedef Documentation

typedef struct snd_tplg snd_tplg_t

Topology context


Enumeration Type Documentation

Topology object types

Enumerator:
SND_TPLG_TYPE_TLV  TLV Data
SND_TPLG_TYPE_MIXER  Mixer control
SND_TPLG_TYPE_ENUM  Enumerated control
SND_TPLG_TYPE_TEXT  Text data
SND_TPLG_TYPE_DATA  Private data
SND_TPLG_TYPE_BYTES  Byte control
SND_TPLG_TYPE_STREAM_CONFIG  PCM Stream configuration
SND_TPLG_TYPE_STREAM_CAPS  PCM Stream capabilities
SND_TPLG_TYPE_PCM  PCM stream device
SND_TPLG_TYPE_DAPM_WIDGET  DAPM widget
SND_TPLG_TYPE_DAPM_GRAPH  DAPM graph elements
SND_TPLG_TYPE_BE  BE DAI link
SND_TPLG_TYPE_CC  Hostless codec <-> codec link
SND_TPLG_TYPE_MANIFEST  Topology manifest
SND_TPLG_TYPE_TOKEN  Vendor tokens
SND_TPLG_TYPE_TUPLE  Vendor tuples


Function Documentation

int snd_tplg_add_object ( snd_tplg_t tplg,
snd_tplg_obj_template_t *  t 
)

Register topology template object.

Parameters:
tplg Topology instance.
t Template object.
Returns:
Zero on success, otherwise a negative error code

int snd_tplg_build ( snd_tplg_t tplg,
const char *  outfile 
)

Build all registered topology data into binary file.

Parameters:
tplg Topology instance.
outfile Binary topology output file.
Returns:
Zero on success, otherwise a negative error code

int snd_tplg_build_file ( snd_tplg_t tplg,
const char *  infile,
const char *  outfile 
)

Parse and build topology text file into binary file.

Parameters:
tplg Topology instance.
infile Topology text input file to be parsed
outfile Binary topology output file.
Returns:
Zero on success, otherwise a negative error code

void snd_tplg_free ( snd_tplg_t tplg  ) 

Free a topology parser instance.

Parameters:
tplg Topology parser instance

snd_tplg_t* snd_tplg_new ( void   ) 

Create a new topology parser instance.

Returns:
New topology parser instance

int snd_tplg_set_manifest_data ( snd_tplg_t tplg,
const void *  data,
int  len 
)

Attach private data to topology manifest.

Parameters:
tplg Topology instance.
data Private data.
len Length of data in bytes.
Returns:
Zero on success, otherwise a negative error code

int snd_tplg_set_version ( snd_tplg_t tplg,
unsigned int  version 
)

Set an optional vendor specific version number.

Parameters:
tplg Topology instance.
version Vendor specific version number.
Returns:
Zero on success, otherwise a negative error code

void snd_tplg_verbose ( snd_tplg_t tplg,
int  verbose 
)

Enable verbose reporting of binary file output.

Parameters:
tplg Topology Instance
verbose Enable verbose output level if non zero


Generated on Sat Aug 6 18:42:28 2016 for ALSA project - the C library reference by  doxygen 1.5.6