--- title: Working with 3D Image Volumes date: '`r Sys.Date()`' output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Working with 3D Image Volumes} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} params: family: red css: albers.css resource_files: - albers.css - albers.js includes: in_header: |- --- ```{r, echo = FALSE, message = FALSE} knitr::opts_chunk$set(collapse = T, comment = "#>") ``` ## Reading a NIFTI formatted image volume The way to read an volumetric image file is to use `read_vol`: ```{r} library(neuroim2) file_name <- system.file("extdata", "global_mask2.nii.gz", package="neuroim2") vol <- read_vol(file_name) ``` ## Working with image volumes Information about the geometry of the image volume is shown here: ```{r} print(vol) ``` `read_vol` returns an object of class `NeuroVol` object which extends an R `array` and has 3 dimensions (x,y,z). ```{r} class(vol) is.array(vol) dim(vol) vol[1,1,1] vol[64,64,24] ``` Arithmetic can be performed on images as if they were ordinary `array`s: ```{r} vol2 <- vol + vol sum(vol2) == 2 * sum(vol) vol3 <- vol2 - 2*vol all(vol3 == 0) ``` ## Inspecting geometry and spatial metadata Each `NeuroVol` has an associated `NeuroSpace` describing its geometry (dimensions, spacing, origin, axes/orientation). ```{r} sp <- space(vol) sp # human-readable summary dim(vol) # spatial dimensions (x, y, z) spacing(vol) # voxel size in mm origin(vol) # image origin ``` You can convert between indices, voxel grid coordinates, and real-world coordinates: ```{r} idx <- 1:5 g <- index_to_grid(vol, idx) # 1D index -> (i,j,k) w <- index_to_coord(vol, idx) # 1D index -> world coords idx2 <- coord_to_index(vol, w) # back to indices all.equal(idx, idx2) ``` A numeric image volume can be converted to a binary image as follows: ```{r} vol2 <- as.logical(vol) class(vol2) print(vol2[1,1,1]) ``` ## Masks and LogicalNeuroVol Create a mask from a threshold or an explicit set of indices. Masks are `LogicalNeuroVol` and align with the 3D space. ```{r} # Threshold-based mask mask1 <- as.mask(vol > 0.5) mask1 # Index-based mask idx_hi <- which(vol > 0.8) mask2 <- as.mask(vol, idx_hi) sum(mask2) == length(idx_hi) # Use a mask to compute a summary mean_in_mask <- mean(vol[mask1@.Data]) mean_in_mask ``` We can also create a `NeuroVol` instance from an `array` or `numeric` vector. First we consruct a standard R `array`: ```{r} x <- array(0, c(64,64,64)) ``` Now we reate a `NeuroSpace` instance that describes the geometry of the image including, at minimum, its dimensions and voxel spacing. ```{r} bspace <- NeuroSpace(dim=c(64,64,64), spacing=c(1,1,1)) vol <- NeuroVol(x, bspace) vol ``` We do not usually have to create `NeuroSpace` objects, because geometric information about an image is automatically determined from information stored in the image file header. Thus, `NeuroSpace` objects are usually copied from existing images using the `space` extractor function when needed: ```{r} vol2 <- NeuroVol((vol+1)*25, space(vol)) max(vol2) space(vol2) ``` ## Slicing and quick visualization Extract a single 2D slice for display using standard array indexing: ```{r slice_mid, fig.alt='Mid-slice of example volume (grayscale image).', fig.cap='Mid-slice of example volume'} z <- ceiling(dim(vol)[3] / 2) image(vol[,,z], main = paste("Slice z=", z)) ``` ## Reorienting and resampling You can change an image’s orientation and voxel spacing. Use `reorient()` to remap axes (e.g., to RAS) and `resample_to()` to match a target space. ```{r} # Reorient the space (LPI -> RAS) and compare coordinate mappings sp_lpi <- space(vol) sp_ras <- reorient(sp_lpi, c("R","A","S")) g <- t(matrix(c(10, 10, 10))) world_lpi <- grid_to_coord(sp_lpi, g) world_ras <- grid_to_coord(sp_ras, g) # world_lpi and world_ras differ due to axis remapping ``` Resample to a new spacing or match a target `NeuroSpace`: ```{r eval=FALSE} # Create a target space with 2x finer resolution sp <- space(vol) sp2 <- NeuroSpace(sp@dim * c(2,2,2), sp@spacing/2, origin=sp@origin, trans=trans(vol)) # Resample (trilinear) vol_resamp <- resample_to(vol, sp2, method = "linear") dim(vol_resamp) ``` ## Downsampling Reduce spatial resolution to speed up downstream operations. ```{r} # Downsample by target spacing vol_ds1 <- downsample(vol, spacing = spacing(vol)[1:3] * 2) dim(vol_ds1) # Or by factor vol_ds2 <- downsample(vol, factor = 0.5) dim(vol_ds2) ``` ## Writing a NIFTI formatted image volume When we're ready to write an image volume to disk, we use `write_vol` ```{r eval=FALSE} write_vol(vol2, "output.nii") ## adding a '.gz' extension results ina gzipped file. write_vol(vol2, "output.nii.gz") ``` You can also write to a temporary file during workflows: ```{r} tmp <- tempfile(fileext = ".nii.gz") write_vol(vol2, tmp) file.exists(tmp) unlink(tmp) ```