Haplo Stats
(version 1.7.7)

Statistical Methods for Haplotypes When Linkage Phase is
Ambiguous

Jason P. Sinnwell*and Daniel J. Schaid
Mayo Clinic Division of Health Sciences Research
Rochester MN USA 55904

April 5, 2016

*sinnwell@mayo.edu

Contents

1

Introduction

1.1 Updates e
1.2 Operating System and Installation oL
1.3 RBasics o . e
Data Setup

2.1 Example Data. e e
2.2 Creating a Genotype Matrix L
2.3 Preview Missing Data: summaryGeno
2.4 Random Numbers and Setting Seed
Haplotype Frequency Estimation: haplo.em

3.1 Algorithm o
3.2 Example Usage L e
3.3 Summary Method L
3.4 Control Parameters for haplo.em
3.5 Haplotype Frequencies by Group Subsets oL
Power and Sample Size for Haplotype Association Studies

4.1 Quantitative Traits: haplo.power.qt
4.2 Case-Control Studies: haplo.power.cc
Haplotype Score Tests: haplo.score

5.1 Quantitative Trait Analysis L
5.2 Binary Trait Analysis e
5.3 Ordinal Trait Analysis e
5.4 Haplotype Scores, Adjusted for Covariates
5.5 Plots and Haplotype Labels
5.6 Skipping Rare Haplotypes e
5.7 Score Statistic Dependencies: the eps.svd parameter
5.8 Haplotype Model Effect
5.9 Simulation p-values L

Regression Models: haplo.glm

6.1 New and Updated Methods for haplo.glm
6.2 Preparing the data.frame for haplo.glm
6.3 Rare Haplotypes« . e
6.4 Regression for a Quantitative Trait oL
6.5 Fitting Haplotype x Covariate Interactions
6.6 Regression for a Binomial Trait L oL
6.6.1 Caution on Rare Haplotypes with Binomial Response
6.7 Control Parameters
6.7.1 Controlling Genetic Models: haplo.effect
6.7.2 Selecting the Baseline Haplotype o
6.7.3 Rank of Information Matrix and eps.svd (NEW)
6.7.4 Rare Haplotypes and haplo.min.info

W w w W

ENIS; B G; STNGTIN

14
14
15
16
17
18
20
20
21
21

7 Methods for haplo.glm (NEW)
7.1 fitted.values oL L
7.2 residuals oL L e
T3 VCOV v o i i e e e e e e e e
7.4 anova and Model Comparison

8 Extended Applications

8.1 Combine Score and Group Results: haplo.score.merge
8.2 Case-Control Haplotype Analysis: haplo.cc
8.3 Score Tests on Sub-Haplotypes: haplo.score.slide

8.3.1 Plot Results from haplo.score.slide
8.4 Scanning Haplotypes Within a Fixed-Width Window: haplo.scan
8.5 Sequential Haplotype Scan Methods: seqhap

8.5.1 Plot Results from seqhap
8.6 Creating Haplotype Effect Columns: haplo.design

9 License and Warranty
10 Acknowledgements

A Counting Haplotype Pairs When Marker Phenotypes Have Missing Alleles

35
35
35
35
36

38
38
38
41
41
43
44
46
48

50

50

51

1 Introduction

Haplo Stats is a suite of R routines for the analysis of indirectly measured haplotypes. The statistical
methods assume that all subjects are unrelated and that haplotypes are ambiguous (due to unknown linkage
phase of the genetic markers), while also allowing for missing alleles.

The user-level functions in Haplo Stats are:

e haplo.em: for the estimation of haplotype frequencies and posterior probabilities of haplotype pairs
for each subject, conditional on the observed marker data

e haplo.glm: generalized linear models for the regression of a trait on haplotypes, with the option of
including covariates and interactions

e haplo.score: score statistics to test associations between haplotypes and a variety of traits, including
binary, ordinal, quantitative, and Poisson

e haplo.score.slide: haplo.score computed on sub-haplotypes of a larger region
e seqhap: sequentially scan markers in enlarging a haplotype for association with a trait

e haplo.cc: run a combined analysis for haplotype frequencies, scores, and regression results for a
case-control study

e haplo.power.qt/haplo.power.cc: power or sample size calculatins for quantitative or binary trait

e haplo.scan: search for a trait locus for all sizes of sub-haplotypes within a fixed maximum window
width for all markers in a region

e haplo.design: create a design matrix for haplotype effects

This manual explains the basic and advanced usage of these routines, with guidelines for running the analyses
and interpreting results. We provide many of these details in the function help pages, which are accessed
within an R session using help(haplo.em), for example. We also provide brief examples in the help files,
which can be run in the R session with example(haplo.em).

1.1 Updates

The last major update to Haplo Stats included updates to haplo.glm in section 6 and new methods written for
it that resemble glm class methods. These methods include residuals, fitted.values, vcov, and anova, and they
are detailed in section 7. For full history of updates see the NEWS file, or type news(package="haplo.stats”)
in the R command prompt.

1.2 Operating System and Installation

Haplo Stats version 1.7.7 is written for R (version 3.2.3). It has been uploaded to the Comprehensive
R Archive Network (CRAN), and is made available on various operating systems through CRAN. Package
installation within R is made simple from within R using install. packages(“haplo.stats”), but other procedures
for installing R packages can be found at the R project website (http://www.r-project.org).

1.3 R Basics

For users who are new to the R environment, we demonstrate some basic concepts. In the following example
we create a vector of character alleles and use the table function to get allele counts. We first show how to
save the results of table(snp) into an R session variable, tab. We show that tab is an object of the table
class, and use the print and summary methods that are defined for table objects. Note that when you enter
just tab or table(snp) at the prompt, the print method is invoked.

R> Snp <_ C(HA ”’ IIT”’ ”T”, HAH’ HAH’ HT”’ IIT”)
R> tab <- table(snp)
R> tab

snp
AT
34

R> class(tab)
[1] "table"
R> print.table(tab)

snp
AT
34

R> summary (tab)

Number of cases in table: 7
Number of factors: 1

R>

The routines in haplo.stats are computationally intensive and return lots of information in the returned
object. Therefore, we assign classes to the returned objects and provide various methods for each of them.

2 Data Setup

We first show some typical steps when you first load a package and look for details on a function of interest.
In the sample code below, we load haplo.stats, check which functions are available in the package, view a
help file, and run the example that is within the help file.

R> # load the library, load and preview at demo dataset
R> library(haplo.stats)

R> 1s(name="package:haplo.stats")

R> help(haplo.em)

R> example(haplo.em)

2.1 Example Data

The haplo.stats package contains three example data sets. The primary data set used in this manual is named
(hla.demo), which contains 11 loci from the HLA region on chromosome 6, with covariates, qualitative, and
quantitative responses. Within /haplo.stats/data/hla.demo.tab the data is stored in tab-delimited format.
Typically data stored in this format can be read in using read.table(). Since the data is provided in the
package, we load the data in R using data() and view the names of the columns. Then to make the columns
of hla.demo accessible without typing it each time, we attach it to the current session.

R> # load and preview demo dataset stored in “/haplo.stats/data/hla.demo.tab
R> data(hla.demo)
R> names (hla.demo)

[1] "resp" "resp.cat" "male" "age" "DPB.al" "DPB.a2" "DPA.al"

[8] "DPA.a2" "DMA.al" "DMA.a2" "DMB.al" "DMB.a2" "TAP1.al" "TAP1.a2"
[15] "TAP2.al" "TAP2.a2" "DQB.al" "DQB.a2" "DQA.al" "DQA.a2" "DRB.al"
[22] "DRB.a2" "B.al" "B.a2" "A.al" "A.a2"

R> # attach hla.demo to make columns available in the session
R> attach(hla.demo)

The column names of hla.demo are shown above. They are defined as follows:

e resp: quantitative antibody response to measles vaccination

e resp.cat: a factor with levels "low”, "normal”, "high”, for categorical antibody response

e male: gender code with 1="male”, 0="female”
e age: age (in months) at immunization

The remaining columns are genotypes for 11 HLA loci, with a prefix name (e.g., "DQB”) and a suffix for
each of two alleles (”.al” and ”.a2”). The variables in hla.demo can be accessed by typing hla.demo$ before
their names, such as hla.demo$resp. Alternatively, it is easier for these examples to attach hla.demo, (as
shown above with attach()) so the variables can be accessed by simply typing their names.

2.2 Creating a Genotype Matrix

Many of the functions require a matrix of genotypes, denoted below as geno. This matrix is arranged such
that each locus has a pair of adjacent columns of alleles, and the order of columns corresponds to the order
of loci on a chromosome. If there are K loci, then the number of columns of geno is 2K. Rows represent the
alleles for each subject. For example, if there are three loci, in the order A-B-C, then the 6 columns of geno
would be arranged as A.al, A.a2, B.al, B.a2, C.al, C.a2. For illustration, three of the loci in hla.demo will
be used to demonstrate some of the functions. Create a separate data frame for 3 of the loci, and call this
geno. Then create a vector of labels for the loci.

R> geno <- hla.demo[,c(17,18,21:24)]
R> label <-c("D@B","DRB","B")

The hla.demo data already had alleles in two columns for each locus. For many SNP datasets, the data
is in a one column format, giving the count of the minor allele. To assist in converting this format to two
columns, a function named genolto2 has been added to the package. See its help file for more details.

2.3 Preview Missing Data: summaryGeno

Before performing a haplotype analysis, the user will want to assess missing genotype data to determine the
completeness of the data. If many genotypes are missing, the functions may take a long time to compute
results, or even run out of memory. For these reasons, the user may want to remove some of the subjects
with a lot of missing data. This step can be guided by using the summaryGeno function, which checks for
missing allele information and counts the number of potential haplotype pairs that are consistent with the
observed data (see the Appendix for a description of this counting scheme).

The codes for missing alleles are defined by the parameter miss.val, a vector to define all possible missing
value codes. Below, the result is saved in geno.desc, which is a data frame, so individual rows may be printed.
Here we show the results for subjects 1-10, 80-85, and 135-140, some of which have missing alleles.

R> geno.desc <- summaryGeno (geno, miss.val=c(0,NA))
R> print(geno.desc[c(1:10,80:85,135:140),1)

missing0 missingl missing2 N.enum.rows

1 3 0 0 4
2 3 0 0 4
3 3 0 0 4
4 3 0 0 2
5 3 0 0 4
6 3 0 0 2
7 3 0 0 4
8 3 0 0 2
9 3 0 0 2
10 3 0 0 1
80 3 0 0 4
81 2 0 1 1800
82 3 0 0 2
83 3 0 0 1
84 3 0 0 2
85 3 0 0 4
135 3 0 0 4
136 3 0 0 2
137 1 0 2 129600
138 3 0 0 4
139 3 0 0 4
140 3 0 0 4

The columns with ’loc miss-’ illustrate the number of loci missing either 0, 1, or 2 alleles, and the last column,
num_enum_rows, illustrates the number of haplotype pairs that are consistent with the observed data. In
the example above, subjects indexed by rows 81 and 137 have missing alleles. Subject #81 has one locus
missing two alleles, while subject #137 has two loci missing two alleles. As indicated by num_enum_rows,
subject #81 has 1,800 potential haplotype pairs, while subject #137 has nearly 130,000.

The 130,000 haplotype pairs is considered a large number, but haplo.em, haplo.score, and haplo.glm
complete in roughly 3-6 minutes (depending on system limits or control parameter settings). If person #137
were removed, the methods would take less than half that time. It is preferred to keep people if they provide
information to the analysis, given that run time and memory usage are not too much of a burden.

When a person has no genotype information, they do not provide information to any of the methods in
haplo.stats. Furthermore, they cause a much longer run time. Below, using the table function on the third
column of geno.desc, we can tabulate how many people are missing two alleles at any at of the three loci. If
there were people missing two alleles at all three loci, they should be removed. The second command below
shows how to make an index of which people to remove from hla.demo because they are missing all their
alleles.

R> # find if there are any people missing all alleles
R> table(geno.desc[,3])

R> ## create an index of people missing all alleles
R> miss.all <- which(geno.desc[,3]==3)

R> # use index to subset hla.demo

R> hla.demo.updated <- hla.demo[-miss.all,]

2.4 Random Numbers and Setting Seed

Random numbers are used in several of the functions (e.g., to determine random starting frequencies within
haplo.em, and to compute permutation p-values in haplo.score). To reproduce calculations involving random
numbers, we use set.seed() before any function that uses random numbers. Section 6.7.2 shows one example
of setting the seed for haplo.glm. We illustrate setting the seed below.

R> # this is how to set the seed for reproducing results where haplo.em is

R> # involved, and also if simulations are run. In practice, don't reset seed.
R> seed <- c¢(17, 53, 1, 40, 37, 0, 62, 56, 5, 52, 12, 1)

R> set.seed(seed)

3 Haplotype Frequency Estimation: haplo.em

3.1 Algorithm

For genetic markers measured on unrelated subjects, with linkage phase unknown, haplo.em computes maxi-
mum likelihood estimates of haplotype probabilities. Because there may be more than one pair of haplotypes
that are consistent with the observed marker phenotypes, posterior probabilities of haplotype pairs for each
subject are also computed. Unlike the usual EM which attempts to enumerate all possible haplotype pairs
before iterating over the EM steps, our progressive insertion algorithm progressively inserts batches of loci
into haplotypes of growing lengths, runs the EM steps, trims off pairs of haplotypes per subject when the
posterior probability of the pair is below a specified threshold, and then continues these insertion, EM, and
trimming steps until all loci are inserted into the haplotype. The user can choose the batch size. If the
batch size is chosen to be all loci, and the threshold for trimming is set to 0, then this reduces to the usual
EM algorithm. The basis of this progressive insertion algorithm is from the “snphap” software by David
Clayton[1]. Although some of the features and control parameters of haplo.em are modeled after snphap,
there are substantial differences, such as extension to allow for more than two alleles per locus, and some
other nuances on how the algorithm is implemented.

3.2 Example Usage

We use haplo.em on geno for the 3 loci defined above and save the result in an object named save.em, which
has the haplo.em class. The print method would normally print all 178 haplotypes from save.em, but to
keep the results short for this manual, we give a quick glance of the output by using the option nlines=10,
which prints only the first 10 haplotypes of the full results. The nlines parameter has been employed in some
of Haplo Stats’ print methods for when there are many haplotypes. In practice, it is best to exclude this
parameter so that the default will print all results.

R> save.em <- haplo.em(geno=geno, locus.label=label, miss.val=c(0,NA))
R> names (save.em)

[1] "1nlike" "Inlike.noLD" "1r" "df.1lr" "hap.prob"

[6] "hap.prob.noLD" "converge" "locus.label" "indx.subj" "subj.id"
[11] "post" "haplcode" "hap2code" "haplotype" "nreps"
[16] "rows.rem" "max.pairs" "control"

R> print(save.em, nlines=10)

Haplotypes

DQB DRB B hap.freq

1 21 1 8 0.00232

2 21 2 7 0.00227

3 21 2 18 0.00227

4 21 3 8 0.10408

5 21 3 18 0.00229

6 21 3 35 0.00570

7 21 3 44 0.00378

8 21 3 45 0.00227

9 21 3 49 0.00227

10 21 3 57 0.00227

Details

Inlike = -1847.675

1lr stat for no LD = 632.5085 125 , p-val =

Explanation of Results

The print methods shows the haplotypes and their estimated frequencies, followed by the final log-likelihood
statistic and the Ir stat for no LD, which is the likelihood ratio test statistic contrasting the Inlike for the
estimated haplotype frequencies versus the Inlike under the null assuming that alleles from all loci are in
linkage equilibrium. We note that the trimming by the progressive insertion algorithm can invalidate the Ir
stat and the degrees of freedom (df).

3.3 Summary Method

The summary method for a haplo.em object on save.em shows the list of haplotypes per subject, and their

posterior probabilities:

R> summary (save.em, nlines=7)

Subjects: Haplotype Codes and Posterior Probabilities

subj.id hapl hap2 posterior

1 1 58 78 1.00000
2 2 17 138 0.87468
3 2 13 143 0.12532
4 3 25 168 1.00000
5 4 17 38 0.71379
6 4 13 39 0.28621
7 5 565 94 1.00000
Number of haplotype pairs: max vs used
X 1 2 3 84 135
1 88 0 0 0 O
2 50 4 0 0 O
4 116 29 1 0 O
1800 0o 0 o 1 0
120600 0 O O O 1

Explanation of Results

The first part of the summary output lists the subject id (row number of input geno matrix), the codes
for the haplotypes of each pair, and the posterior probabilities of the haplotype pairs. The second part
gives a table of the maximum number of pairs of haplotypes per subject, versus the number of pairs used
in the final posterior probabilities. The haplotype codes remove the clutter of illustrating all the alleles
of the haplotypes, but may not be as informative as the actual haplotypes themselves. To see the actual
haplotypes, use the show.haplo=TRUE option, as in the following example.

R> # show full haplotypes, instead of codes
R> summary(save.em, show.haplo=TRUE, nlines=7)

Subjects: Haplotype Codes and Posterior Probabilities

subj.id hapl.DQB hapl.DRB hapl.B hap2.DQB hap2.DRB hap2.B posterior

1 1 31 11 61 32 4 62 1.00000
2 2 21 7 44 62 2 7 0.87468
3 2 21 7 7 62 2 44 0.125632
4 3 31 1 27 63 13 62 1.00000
5 4 21 7 44 31 7 7 0.71379
6 4 21 7 7 31 7 44 0.28621
7 5 31 11 51 42 8 556 1.00000
Number of haplotype pairs: max vs used

X 1 2 3 84 135

1 88 0 0 0 O

2 50 4 0 0 O

4 116 29 1 0 O

1800 6o 0 o 1 0

129600 0 O O O 1

3.4 Control Parameters for haplo.em

A set of control parameters can be passed together to haplo.em as the “control’” argument. This is a list of

parameters that control the EM algorithm based on progressive insertion of loci. The default values are set

by a function called haplo.em.control (see help(haplo.em.control) for a complete description). Although the

user can accept the default values, there are times when control parameters may need to be adjusted.
These parameters are defined as:

¢ insert.batch.size: Number of loci to be inserted in a single batch.

e min.posterior: Minimum posterior probability of haplotype pair, conditional on observed marker
genotypes. Posteriors below this minimum value will have their pair of haplotypes "trimmed” off the
list of possible pairs.

e max.iter: Maximum number of iterations allowed for the EM algorithm before it stops and prints an
error.

e n.try: Number of times to try to maximize the Inlike by the EM algorithm. The first try will use, as
initial starting values for the posteriors, either equal values or uniform random variables, as determined
by random.start. All subsequent tries will use uniform random values as initial starting values for the
posterior probabilities.

10

¢ max.haps.limit: Maximum number of haplotypes for the input genotypes. Within haplo.em, the
first step is to try to allocate the sum of the result of geno.count.pairs(), if that exceeds max.haps.limit,
start by allocating max.haps.limit. If that is exceeded in the progressive-insertions steps, the C function
doubles the memory until it can longer request more.

One reason to adjust control parameters is for finding the global maximum of the log-likelihood. It can
be difficult in particular for small sample sizes and many possible haplotypes. Different maximizations of
the log-likelihood may result in different results from haplo.em, haplo.score, or haplo.glm when rerunning
the analyses. The algorithm uses multiple attempts to maximize the log-likelihood, starting each attempt
with random starting values. To increase the chance of finding the global maximum of the log-likelihood,
the user can increase the number of attempts (n.try), increase the batch size (insert.batch.size), or decrease
the trimming threshold for posterior probabilities (min.posterior).

Another reason to adjust control parameters is when the algorithm runs out of memory because there
are too many haplotypes. If max.haps.limit is exceeded when a batch of markers is added, the algorithm
requests twice as much memory until it runs out. One option is to set max.haps.limit to a different value,
either to make haplo.em request more memory initially, or to request more memory in smaller chunks.
Another solution is to make the algorithm trim the number of haplotypes more aggressively by decreasing
insert.batch.size or increasing min.posterior. Any changes to these parameters should be made with caution,
and not drastically different from the default values. For instance, the default for min.posterior used to be
le — 7, and in some rare circumstances with many markers in only moderate linkage disequilibrium, some
subjects had all their possible haplotype pairs trimmed. The default is now set at 1le — 9, and we recommend
not increasing min.posterior much greater than le — 7.

The example below gives the command for increasing the number of tries to 20, and the batch size to 2,
since not much more can be done for three markers.

R> # demonstrate only the syntax of control parameters
R> save.em.try20 <- haplo.em(geno=geno, locus.label=label, miss.val=c(0, NA),
+ control = haplo.em.control(n.try = 20, insert.batch.size=2))

3.5 Haplotype Frequencies by Group Subsets

To compute the haplotype frequencies for each level of a grouping variable, use the function haplo.group.
The following example illustrates the use of a binomial response based on resp.cat, y.bin, that splits the
subjects into two groups.

R> ## run haplo.em on sub-groups

R> ## create ordinal and binary variables

R> y.bin <- 1*(resp.cat=="low")

R> group.bin <- haplo.group(y.bin, geno, locus.label=label, miss.val=0)
R> print(group.bin, nlines=15)

group
o 1
157 63

DQB DRB B Total y.bin.0 y.bin.1

11

1 21 1 62 NA NA 0.00794
2 21 1 8 0.00232 0.00335 NA
3 21 10 8 0.00181 0.00318 NA
4 21 13 8 0.00274 NA NA
5 21 2 18 0.00227 0.00318 NA
6 21 2 7 0.00227 0.00318 NA
7 21 3 18 0.00229 0.00637 NA
8 21 3 35 0.00570 0.00639 NA
9 21 344 0.00378 0.00333 0.01587
10 21 3 45 0.00227 NA NA
11 21 3 49 0.00227 NA NA
12 21 3 57 0.00227 NA NA
13 21 3 70 0.00227 NA 0.00000
14 21 3 8 0.10408 0.06974 0.19048
15 21 4 14 NA 0.00637 NA

Explanation of Results

The group.bin object can be very large, depending on the number of possible haplotypes, so only a portion
of the output is illustrated above (limited again by nlines). The first section gives a short summary of how
many subjects appear in each of the groups. The second section is a table with the following columns:

e The first column gives row numbers.
e The next columns (3 in this example) illustrate the alleles of the haplotypes.
e Total are the estimated haplotype frequencies for the entire data set.

e The last columns are the estimated haplotype frequencies for the subjects in the levels of the group
variable (y.bin=0 and y.bin=1 in this example). Note that some haplotype frequencies have an NA,
which appears when the haplotypes do not occur in the subgroups.

4 Power and Sample Size for Haplotype Association Studies

It is known that using haplotypes has greater power than single-markers to detect genetic association in
some circumstances. There is little guidance, however, in determining sample size and power under different
circumstances, some of which include: marker type, dominance, and effect size. The haplo.stats package now
includes functions to calculate sample size and power for haplotype association studies, which is flexible to
handle these multiple circumstances.

Based on work in Schaid 2005[2], we can take a set of haplotypes with their population frequencies, assign
a risk to a subset of the haplotypes, then determine either the sample size to achieve a stated power, or the
power for a stated sample size. Sample size and power can be calculated for either quantitative traits or
case-control studies.

4.1 Quantitative Traits: haplo.power.qt

We assume that quantitative traits will be modeled by a linear regression. Some well-known tests for
association between haplotypes and the trait include score statistics[3] and an F-test[4]. For both types of
tests, power depends on the amount of variance in the trait that is explained by haplotypes, or a multiple
correlation coefficient, R?. Rather than specifying the haplotype coefficients directly, we calculate the vector
of coefficients based on an R? value.

In the example below, we load an example set of haplotypes that contain 5 markers, and specify the
indices of the at-risk haplotypes; in this case, whichever haplotype has allele 1 at the 2nd and 3rd markers.

12

We set the first haplotype (most common) as the baseline. With these values we calculate the vector of
coefficients for haplotype effects from find.haplo.beta.qt using an R? = 0.01. Next, we use haplo.power.qt
to calculate the sample size for the set of haplotypes and their coefficients, type-I error (alpha) set to 0.05,
power at 80%, and the same mean and variance used to get haplotype coefficients. Then we use the sample
size needed for 80% power for un-phased haplotypes (2, 826) to get the power for both phased and un-phased
haplotypes.

R> # load a set of haplotypes (hap-1 from Schaid 2005)

R>

R> data(hapPower.demo)

R> #### an example using save.em hla markers may go like this.

R> # keep <- which(save.em$hap.prob > .004) # get an index of non-rare haps
R> # hfreq <- save.em$hap.prob[keep]

R> # hmat <- save.em$haplotype[keep,]

R> # hrisk <- which(hmat[,1]==31 & hmat[,2]==11) # contains 3 haps with freq=.01
R> # hbase <- 4 # 4th hap has mas freq of .103

R> ####

R>

R> ## separate the haplotype matrix and the frequencies

R> hmat <- hapPower.demo/[,-6]

R> hfreq <- hapPower.demo[, 6]

R> ## Define risk haplotypes as those with "1" allele at loc2 and loc3

R> hrisk <- which(hmat$loc.2==1 & hmat$loc.3==1)

R> # define index for baseline haplotype

R> hbase <- 1

R> hbeta.list <- find.haplo.beta.qt(haplo=hmat, haplo.freq=hfreq, base.index=hbase,
+ haplo.risk=hrisk, r2=.01, y.mu=0, y.var=1)
R> hbeta.list

$r2
[1] 0.01

$beta
[1] -0.03892497 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[8] 0.27636731 0.00000000 0.27636731 0.00000000 0.00000000 0.00000000 0.00000000
[15] 0.00000000 0.27636731 0.27636731 0.00000000 0.00000000 0.00000000 0.00000000

$base.index
[1] 1

$haplo.risk
(1] 8 10 16 17

R> ss.qt <- haplo.power.qt(hmat, hfreq, hbase, hbeta.list$beta,
+ y.mu=0, y.var=1, alpha=.05, power=.80)
R> ss.qt

$ss.phased.haplo
[1] 2091

$ss.unphased.haplo
[1] 2826

13

$power .phased.haplo
[1] 0.8

$power .unphased.haplo

[1] 0.8

R> power.qt <- haplo.power.qt(hmat, hfreq, hbase, hbeta.list$beta,

+ y.mu=0, y.var=1, alpha=.05, sample.size=2826)
R> power.qt

$ss.phased.haplo
[1] 2826

$ss.unphased.haplo
[1] 2826

$power.phased.haplo
[1] 0.9282451

$power.unphased.haplo
[1] 0.8000592

4.2 Case-Control Studies: haplo.power.cc

The steps to compute sample size and power for case-control studies is similar to the steps for quantitative
traits. If we assume a log-additive model for haplotype effects, the haplotype coefficients can be specified
first as odds ratios (OR), and then converted to logistic regression coefficients according to log(OR).

In the example below, we assume the same baseline and risk haplotypes defined in section 4.1, give the
risk haplotypes an odds ratio of 1.50, and specify a population disease prevalance of 10%. We also assume
cases make up 50% (case.frac) of the study$ subjects. We first compute the sample size for this scenario
for Type-I error (alpha) at 0.05 and 80% power, and then compute power for the sample size required for
un-phased haplotypes (4, 566).

R> ## get power and sample size for quantitative response

R> ## get beta vector based on odds ratios

R>

R> cc.OR <- 1.5

R> # determine beta regression coefficients for risk haplotypes
R>

R> hbeta.cc <- numeric(length(hfreq))

R> hbeta.cc[hrisk] <- log(cc.OR)

R> # Compute sample size for stated power

R>

R> ss.cc <- haplo.power.cc(hmat, hfreq, hbase, hbeta.cc, case.frac=.5, prevalence=.1,
+ alpha=.05, power=.8)

R> ss.cc

$ss.phased.haplo
[1] 3454

$ss.unphased.haplo
[1] 4566

14

$power .phased.haplo
[1] 0.8

$power .unphased.haplo

[1] 0.8

R> # Compute power for given sample size

R>

R> power.cc <- haplo.power.cc(hmat, hfreq, hbase, hbeta.cc, case.frac=.5, prevalence=.1,
+ alpha=.05, sample.size=4566)

R> power.cc

$ss.phased.haplo
[1] 4566

$ss.unphased.haplo
[1] 4566

$power.phased.haplo
[1] 0.9206568

$power.unphased.haplo
[1] 0.8000695

5 Haplotype Score Tests: haplo.score

The haplo.score routine is used to compute score statistics to test association between haplotypes and a wide
variety of traits, including binary, ordinal, quantitative, and Poisson. This function provides several different
global and haplotype-specific tests for association and allows for adjustment for non-genetic covariates.
Haplotype effects can be specified as additive, dominant, or recessive. This method also has an option to
compute permutation p-values, which may be needed for sparse data when distribution assumptions may
not be met. Details on the background and theory of the score statistics can be found in Schaid et al.[3].

5.1 Quantitative Trait Analysis

First, we assess a haplotype association with a quantitative trait in hla.demo called resp. To tell haplo.score
the trait is quantitative, specify the parameter trait.type="gaussian” (a reminder that a gaussian distribution
is assumed for the error terms). The other arguments, all set to default values, are explained in the help
file. Note that rare haplotypes can result in unstable variance estimates, and hence unreliable test statistics
for rare haplotypes. We restrict the analysis to get scores for haplotypes with a minimum sample count
using min.count=>5. For more explanation on handling rare haplotypes, see section 5.6. Below is an example
of running haplo.score with a quantitative trait, then viewing the results using the print method for the
haplo.score class. (again, output shortened by nlines).

R> # score statistics w/ Gaussian trait

R> score.gaus.add <- haplo.score(resp, geno, trait.type="gaussian",
+ min.count=5,

+ locus.label=label, simulate=FALSE)
R> print(score.gaus.add, nlines=10)

Haplotype Effect Model: additive

15

DQB DRB B Hap-Freq Hap-Score
[1,] 21 3 8 .10408 -2.39631
[2,] 31 4 44 0.02849 -2.24273

.01656
.02491

p
0 0
0 0
[3,] 61 1 44 0.01731 -0.99357 0.32043
[4,] 63 13 44 0.01606 -0.84453 0.39837
[6,] 63 2 7 0.01333 -0.50736 0.6119
[6,] 32 4 60 0.0306 -0.46606 0.64118
[7,1] 21 7 44 0.02332 -0.41942 0.67491
[8,]1 62 2 44 0.01367 -0.26221 0.79316
[9,]1 62 2 18 0.01545 -0.21493 0.82982
[10,] 61 1 27 0.01505 0.01539 0.98772

Explanation of Results

First, the model effect chosen by haplo.effect is printed across the top. The section Global Score Statistics
shows results for testing an overall association between haplotypes and the response. The global-stat has an
asymptotic x? distribution, with degrees of freedom (df) and p-value as indicated. Next, Haplotype-specific
scores are given in a table format. The column descriptions are as follows:

e The first column gives row numbers.

e The next columns (3 in this example) illustrate the alleles of the haplotypes.

Hap-Freq is the estimated frequency of the haplotype in the pool of all subjects.

Hap-Score is the score for the haplotype, the results are sorted by this value. Note, the score statistic
should not be interpreted as a measure of the haplotype effect.

p-val is the asymptotic x? p-value, calculated from the square of the score statistic.

5.2 Binary Trait Analysis

Let us assume that "low” responders are of primary interest, so we create a binary trait that has values of 1
when resp.cat is "low”, and 0 otherwise. Then in haplo.score specify the parameter trait.type="binomial”.

R> # scores, binary trait
R> y.bin <- 1*(resp.cat=="low")
R> score.bin <- haplo.score(y.bin, geno, trait.type="binomial",

+ x.adj = NA, min.count=5,
+ haplo.effect="additive", locus.label=label,
+ miss.val=0, simulate=FALSE)

R> print(score.bin, nlines=10)

16

DQB DRB B Hap-Freq Hap-Score
[1,1 62 2 7 .05098 -2.19387
[2,] 51 1 35 0.03018 -1.58421

[3,] 63 13 7 .01655 -1.56008 11874
(4,121 7 7 .01246 -1.47495 14023
[6,1 32 4 7

[6,]1 32 4 62 0.02349 -0.6799 49657
[7,1 61 1 27 0.01505 -0.66509 50599

[6,]1 31 11 35
[9,] 31 11 51
[10,] 51 1 44

.01754 -0.5838
.01137 -0.43721

p
0
0
0
0
.01678 -1.00091 0.31687
0
0
0
0
.01731 0.00826 O

O OO O OO OO oo

5.3 Ordinal Trait Analysis

To create an ordinal trait, here we convert resp.cat (described above) to numeric values, y.ord (with levels
1, 2, 3). For haplo.score, use y.ord as the response variable, and set the parameter trait.type = “ordinal”.

R> # scores w/ ordinal trait
R> y.ord <- as.numeric(resp.cat)
R> score.ord <- haplo.score(y.ord, geno, trait.type="ordinal",

+ x.adj = NA, min.count=5,
+ locus.label=label,
+ miss.val=0, simulate=FALSE)

R> print(score.ord, nlines=7)

DQB DRB B Hap-Freq Hap-Score p-val

17

[1,] 32 4 62 0.02349 -2.17133 0.02991
[2,] 21 3 8 0.10408 -1.34661 0.17811
[3,] 32 4 7 0.01678 -1.09487 0.27357
[4,] 62 2 7 0.05098 -0.96874 0.33268
[5,] 21 7 44 0.02332 -0.83747 0.40233
[6,] 63 13 7 0.01655 -0.80787 0.41917
[7,] 212 7 7 0.01246 -0.63316 0.52663

Warning for Ordinal Traits

When analyzing an ordinal trait with adjustment for covariates (using the x.adj option), the software
requires the rms package, distributed by Frank Harrell [5]. If the user does not have these packages installed,
then it will not be possible to use the x.adj option. However, the unadjusted scores for an ordinal trait (using
the default option x.adj=NA) do not require these pacakgeses. Check the list of your local packages in the
list shown from entering library() in your prompt.

5.4 Haplotype Scores, Adjusted for Covariates

To adjust for covariates in haplo.score, first set up a matrix of covariates from the example data. For
example, use a column for male (1 if male; 0 if female), and a second column for age. Then pass the matrix
to haplo.score using parameter x.adj. The results change slightly in this example.

R> # score w/gaussian, adjusted by covariates

R> x.ma <- cbind(male, age)

R> score.gaus.adj <- haplo.score(resp, geno, trait.type="gaussian",
+ x.adj = x.ma, min.count=5,

+ locus.label=label, simulate=FALSE)

R> print(score.gaus.adj, nlines=10)

DQB DRB B Hap-Freq Hap-Score
[1,] 21 3 8 .10408 -2.4097
[2,] 31 4 44 0.02849 -2.25293

p
0 0
0 0
[3,] 51 1 44 0.01731 -0.98763 0.32333
[4,] 63 13 44 0.01606 -0.83952 0.40118
[6,] 63 2 7 0.01333 -0.48483 0.6278
[6,] 32 4 60 0.0306 -0.46476 0.64211
[7,1 21 7 44 0.02332 -0.41249 0.67998
[8,]1 62 2 44 0.01367 -0.26443 0.79145
[9,]1 62 2 18 0.01545 -0.20425 0.83816
[10,] 51 1 27 0.01505 0.02243 0.9821

18

5.5 Plots and Haplotype Labels

A convenient way to view results from haplo.score is a plot of the haplotype frequencies (Hap-Freq) versus
the haplotype score statistics (Hap-Score). This plot, and the syntax for creating it, are shown in Figure 1.

Some points on the plot may be of interest. To identify individual points on the plot, use locator.haplo(score.gaus),
which is similar to locator(). Use the mouse to select points on the plot. After points are chosen, click on
the middle mouse button, and the points are labeled with their haplotype labels. Note, in constructing
Figure 1, we had to define which points to label, and then assign labels in the same way as done within the
locator.haplo function.

19

R>
R>
R>
R>
R>
R>
R>

R>

plot score vs. frequency, gaussian response
plot(score.gaus.add, pch="o")

locate and label pts with their haplotypes
works similar to locator() function

#> pts.haplo <- locator.haplo(score.gaus)

pts.haplo <- list(x.coord=c(0.05098, 0.03018, .100),

y.coord=c(2.1582, 0.45725, -2.1566),
hap.txt=c("62:2:7", "51:1:35", "21:3:8"))

text (x=pts.haplo$x.coord, y=pts.haplo$y.coord, labels=pts.haplo$hap.txt)

Haploltype Score Statistic

0] 0
~ 0 62:2:7
o}
- o]
o]
0 51:1:35
o}
o - o]
00
o 9 o
o
T4 o}
N
o 21:3:8
o]
[[[[I
0.02 0.04 0.06 0.08 0.10

Haplotype Frequency

Figure 1: Haplotype Statistics: Score vs. Frequency, Quantitative Response

20

5.6 Skipping Rare Haplotypes

For the haplo.score, the skip.haplo and min.count parameters control which rare haplotypes are pooled into
a common group. The min.count parameter is a recent addition to haplo.score, yet it does the same task as
skip.haplo and is the same idea as haplo.min.count used in haplo.glm.control for haplo.glm. As a guideline,
you may wish to set min.count to calculate scores for haplotypes with expected haplotype counts of 5 or
greater in the sample. We concentrate on this expected count because it adjusts to the size of the input
data. If N is the number of subjects and f the haplotype frequency, then the expected haplotype count is
count = 2 x N x f. Alternatively, you can choose skip.haplo = ”20;‘%.

In the following example we try a different cut-off than before, min.count=10, which corresponds to
skip.haplo of 10 + (2 x 220) = .045. In the output, see that the global statistic, degrees of freedom, and
p-value change because of the fewer haplotypes, while the haplotype-specific scores do not change.

R> # increase skip.haplo, expected hap counts = 10

R> score.gaus.minl0 <- haplo.score(resp, geno, trait.type="gaussian",
+ x.adj = NA, min.count=10,

+ locus.label=label, simulate=FALSE)

R> print(score.gaus.min10)

global-stat = 20.66451, df = 7, p-val = 0.0043

DQB DRB B Hap-Freq Hap-Score p-val
[1,] 21 3 8 0.10408 -2.39631 0.01656
[2,] 31 4 44 0.02849 -2.24273 0.02491
[3,] 32 4 60 0.0306 -0.46606 0.64118
[4,] 21 7 44 0.02332 -0.41942 0.67491
[5,] 51 1 35 0.03018 0.69696 0.48583
[6,] 32 4 62 0.02349 2.37619 0.01749
[7,] 62 2 7 0.05098 2.39795 0.01649

5.7 Score Statistic Dependencies: the eps.svd parameter

The global score test is calculated using the vector of scores and the generalized inverse of their variance-
covariance matrix, performed by the Ginv function. This function determines the rank of the variance matrix
by its singular value decomposition, and an epsilon value is used as the cut-off for small singular values. If all
of the haplotypes in the sample are scored, then there is dependence between them and the variance matrix
is not of full rank. However, it is more often the case that one or more rare haplotypes are not scored because
of low frequency. It is not clear how strong the dependencies are between the remaining score statistics, and
likewise, there is disparity in calculating the rank of the variance matrix. For these instances we give the
user control over the epsilon parameter for haplo.score with eps.svd.

We have seen instances where the global score test had a very significant p-value, but none of the
haplotype-specific scores showed strong association. In such instances, we found the default epsilon value

21

in Ginv was incorrectly considering the variance matrix as having full rank, and the misleading global score
test was corrected with a larger epsilon for Ginv.

5.8 Haplotype Model Effect

haplo.score allows non-additive effects for scoring haplotypes. The possible effects for haplotypes are additive,
dominant, and recessive. Under recessive effects, fewer haplotypes may be scored, because subjects are
required to be homozygous for haplotypes. Furthermore, there would have to be min.count such persons in
the sample to have the recessive effect scored. Therefore, a recessive model should only be used on samples
with common haplotypes. In the example below with the gaussian response, set the haplotype effect to
dominant using parameter haplo.effect = “dominant”. Notice the results change slightly compared to the
score.gaus.add results above.

R> # score w/gaussian, dominant effect

R>

R> score.gaus.dom <- haplo.score(resp, geno, trait.type="gaussian",
+ x.adj=NA, min.count=5,

+ haplo.effect="dominant", locus.label=label,
+ simulate=FALSE)

R> print(score.gaus.dom, nlines=10)

DQB DRB B Hap-Freq Hap-Score
[1,] 21 3 8 .10408 -2.23872
[2,] 31 4 44 0.02849 -2.13233

p
0 0
0 0
[3,1 61 1 44 0.01731 -0.99357 0.32043
[4,] 63 13 44 0.01606 -0.84453 0.39837
[6,1 63 2 7 0.01333 -0.50736 0.6119
[6,] 32 4 60 0.0306 -0.46606 0.64118
[7,] 21 7 44 0.02332 -0.41942 0.67491
[8,]1 62 2 44 0.01367 -0.26221 0.79316
[9,]1 62 2 18 0.01545 -0.21493 0.82982
[10,] 51 1 27 0.01505 0.01539 0.98772

5.9 Simulation p-values

When simulate=TRUE, haplo.score gives simulated p-values. Simulated haplotype score statistics are the
re-calculated score statistics from a permuted re-ordering of the trait and covariates and the original ordering
of the genotype matrix. The simulated p-value for the global score statistic (Global sim. p-val) is the number
of times the simulated global score statistic exceeds the observed, divided by the total number of simulations.

22

Likewise, simulated p-value for the maximum score statistic (Max-stat sim. p-val) is the number of times the
simulated maximum haplotype score statistic exceeds the observed maximum score statistic, divided by the
total number of simulations. The maximum score statistic is the maximum of the square of the haplotype-
specific score statistics, which has an unknown distribution, so its significance can only be given by the
simulated p-value. Intuitively, if only one or two haplotypes are associated with the trait, the maximum
score statistic should have greater power to detect association than the global statistic.

The score.sim.control function manages control parameters for simulations. The haplo.score function
employs the simulation p-value precision criteria of Besag and Clifford[6]. These criteria ensure that the
simulated p-values for both the global and the maximum score statistics are precise for small p-values. The
algorithm performs a user-defined minimum number of permutations (min.sim) to guarantee sufficient pre-
cision for the simulated p-values for score statistics of individual haplotypes. Permutations beyond this
minimum are then conducted until the sample standard errors for simulated p-values for both the global-
stat and max-stat score statistics are less than a threshold (p.threshold * p-value). The default value for
p-threshold= % provides a two-sided 95% confidence interval for the p-value with a width that is approx-
imately as wide as the p-value itself. Effectively, simulations are more precise for smaller p-values. The
following example illustrates computation of simulation p-values with min.sim=1000.

R> # simulations when binary response

R> score.bin.sim <- haplo.score(y.bin, geno, trait.type="binomial",
+ x.adj = NA, locus.label=label, min.count=5,

+ simulate=TRUE, sim.control = score.sim.control())
R> print(score.bin.sim)

Global sim. p-val = 0.0095
Max-Stat sim. p-val = 0.00563
Number of Simulations, Global: 2842 , Max-Stat: 2842

DQB DRB B Hap-Freq Hap-Score p-val sim p-val
[1,] 62 2 7 0.05098 -2.19387 0.02824 0.02991
[2,] 61 1 35 0.03018 -1.58421 0.11315 0.13863
[3,] 63 13 7 0.01655 -1.56008 0.11874 0.19177
[4,] 20 7 7 0.01246 -1.47495 0.14023 0.15588
[65,1 32 4 7 0.01678 -1.00091 0.31687 0.25123
[6,] 32 4 62 0.02349 -0.6799 0.49657 0.47467
[7,1 61 1 27 0.01505 -0.66509 0.50599 0.63089

[8,] 31 11 35 0.01754 -0.5838 0.55936 0.6506

[9,] 31 11 51 0.01137 -0.43721 0.66196 0.91872
[10,] 51 1 44 0.01731 0.00826 0.99341 1

[11,] 32 4 60 0.0306 0.03181 0.97462 0.95074
[12,] 62 2 44 0.01367 0.16582 0.8683 0.91872
[13,] 63 13 44 0.01606 0.22059 0.82541 0.7266

[14,] 63 2 7 0.01333 0.2982 0.76555 0.89163
[156,] 62 2 18 0.01545 0.78854 0.43038 0.6608

[16,] 21 7 44 0.02332 0.84562 0.39776 0.39796
[17,] 31 4 44 0.02849 2.50767 0.01215 0.01161
[18,] 21 3 8 0.10408 3.77763 0.00016 0.00035

6 Regression Models: haplo.glm

The haplo.glm function computes the regression of a trait on haplotypes, and possibly other covariates and
their interactions with haplotypes. We currently support the gaussian, binomial, and Poisson families of
traits with their canonical link functions. The effects of haplotypes on the link function can be modeled
as either additive, dominant (heterozygotes and homozygotes for a particular haplotype assumed to have
equivalent effects), or recessive (homozygotes of a particular haplotype considered to have an alternative
effect on the trait). The basis of the algorithm is a two-step iteration process; the posterior probabilities of
pairs of haplotypes per subject are used as weights to update the regression coefficients, and the regression
coefficients are used to update the haplotype posterior probabilities. See Lake et al.[7] for details.

6.1 New and Updated Methods for haplo.glm

We initially wrote haplo.glm with a focus on creating a basic print method for results. We have now refined the
haplo.glm class to look and act as much like a glm class object as possible with methods defined specifically for
the haplo.glm class. We provide print and summary methods that make use of the corresponding methods for
glm and then add extra information for the haplotypes and their frequencies. Furthermore, we have defined
for the haplo.glm class some of the standard methods for regression fits, including residuals, fitted.values,
vcov, and anova. We describe the challenges that haplotype regression presents with these methods in
section 7.

6.2 Preparing the data.frame for haplo.glm

A critical distinction between haplo.glm and all other functions in Haplo Stats is that the definition of the
regression model follows the S/R formula standard (see Im or glm). So, a data.frame must be defined, and this
object must contain the trait and other optional covariates, plus a special kind of genotype matrix (geno.glm
for this example) that contains the genotypes of the marker loci. We require the genotype matrix to be
prepared using setupGeno(), which handles character, numeric, or factor alleles, and keeps the columns of
the genotype matrix as a single unit when inserting into (and extracting from) a data.frame. The setupGeno
function recodes all missing genotype value codes given by miss.val to NA, and also recodes alleles to integer
values. The original allele codes are preserved within an attribute of geno.glm, and are utilized within
haplo.glm. The returned object has class model. matrix, and it can be included in a data.frame to be used in
haplo.glm. In the example below we prepare a genotype matrix, geno.glm, and create a data.frame object,
glm.data, for use in haplo.glm.

R> # set up data for haplo.glm, include geno.glm,

R> # covariates age and male, and responses resp and y.bin

R> geno <- hla.demo[,c(17,18,21:24)]

R> geno.glm <- setupGeno(geno, miss.val=c(0,NA), locus.label=label)
R> attributes(geno.glm)

24

$dim

[1] 220 6

$dimnames

$dimnames[[1]]

NULL

$dimnames [[2]]

[1] "DQB.al" "DQRB.a2" "DRB.al" "DRB.a2" "B.al" "B.a2"
$class

[1] "model.matrix"

$unique.alleles
$unique.alleles[[1]]
[1] |l21’| "31" ||32|’ ||33|| "42" |l51l| "52" ||53|l ||61|’ l|62|| "63" |’64’|

$unique.alleles[[2]]
[1] |l1|| "2" ||3|| "4" ||7" "8" ||9l| ||10|l ||11|| ||13|| "14"

$unique.alleles[[3]]
[1] |l7|| "8" ||13|’ n 14" n 18" |l27l| "35" ||37|l ||38" l|39|| "41" ||42’| "44" ||45" l|46|| ’|47|| |l48||
[18] ||49 n "50 n ||51|| n 52" n 55" ||56|| "57" ||58|| ||60" ||61|| "62" ||63’| "70"

R> y.bin <- 1*(resp.cat=="low")
R> glm.data <- data.frame(geno.glm, age=age, male=male, y=resp, y.bin=y.bin)

6.3 Rare Haplotypes

The issue of deciding which haplotypes to use for association is critical in haplo.glm. By default it will model
a rare haplotype effect so that the effects of other haplotypes are in reference to the baseline effect of the
one common happlotype. The rules for choosing haplotypes to be modeled in haplo.glm are similar to the
rules in haplo.score: by a minimum frequency or a minimum expected count in the sample.

Two control parameters in haplo.glm.control may be used to control this setting: haplo.freq.min may
be set to a selected minimum haplotype frequency, and haplo.min.count may be set to select the cut-off for
minimum expected haplotype count in the sample. The default minimum frequency cut-off in haplo.glm is
set to 0.01. More discussion on rare haplotypes takes place in section 6.7.4.

6.4 Regression for a Quantitative Trait

The following illustrates how to fit a regression of a quantitative trait y on the haplotypes estimated from
the geno.glm matrix, and the covariate male. For na.action, we use na.geno.keep, which keeps a subject with
missing values in the genotype matrix if they are not missing all alleles, but removes subjects with missing
values (NA) in either the response or covariate.

R> # glm fit with haplotypes, additive gender covariate on gaussian response
R> fit.gaus <- haplo.glm(y ~ male + geno.glm, family=gaussian, data=glm.data,
+ na.action="na.geno.keep", locus.label = label, x=TRUE,

+ control=haplo.glm.control (haplo.freq.min=.02))

R> summary(fit.gaus)

25

Call:

haplo.glm(formula = y ~ male + geno.glm, family = gaussian, data = glm.data,
na.action = "na.geno.keep", locus.label = label, control = haplo.glm.control(haplo.freq.min = 0.02)
x = TRUE)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.46945 -0.92052 -0.06533 0.94874 2.37199

Coefficients:

coef se t.stat pval
(Intercept) 1.06436 0.34283 3.10464 0.002
male 0.09735 0.15521 0.62723 0.531
geno.glm.17 0.28022 0.43549 0.64346 0.521
geno.glm.34 -0.31713 0.34342 -0.92342 0.357
geno.glm.77 0.22167 0.36126 0.61360 0.540
geno.glm.78 1.14144 0.38382 2.97390 0.003
geno.glm.100 0.55557 0.36427 1.52517 0.129
geno.glm.138 0.98229 0.30329 3.23875 0.001
geno.glm.rare 0.39765 0.18191 2.18591 0.030

(Dispersion parameter for gaussian family taken to be 1.269581)
Null deviance: 297.01 on 219 degrees of freedom

Residual deviance: 267.88 on 211 degrees of freedom

AIC: 687.65

Number of Fisher Scoring iterations: 268

Haplotypes:
DQB DRB B hap.freq

geno.glm.17 21 7 44 0.02291
geno.glm.34 31 4 44 0.02858
geno.glm.77 32 4 60 0.03022
geno.glm.78 32 4 62 0.02390
geno.glm.100 51 1 35 0.03008
geno.glm.138 62 2 7 0.05023
geno.glm.rare * * * 0.71000
haplo.base 21 3 8 0.10409

Explanation of Results

The summary function for haplo.glm shows much the same information as summary for glm objects with
the extra table for the haplotype frequencies. The above table for Coefficients lists the estimated regression
coefficients (coef), standard errors (se), the corresponding t-statistics (t.stat), and p-values (pval). The labels
for haplotype coefficients are a concatenation of the name of the genotype matrix (geno.glm) and unique
haplotype codes assigned within haplo.glm. The haplotypes corresponding to these haplotype codes are
listed in the Haplotypes table, along with the estimates of the haplotype frequencies (hap.freq). The rare
haplotypes, those with expected counts less than haplo.min.count=5 (equivalent to having frequencies less
than haplo.freq.min = 0.0113636363636364) in the above example), are pooled into a single category labeled
geno.glm.rare. The haplotype chosen as the baseline category for the design matrix (most frequent haplotype

26

is the default) is labeled as haplo.base; more information on the baseline may be found in section 6.7.2.

6.5 Fitting Haplotype x Covariate Interactions

Interactions are fit by the standard S-language model syntax, using a ’x’ in the model formula to indicate main
effects and interactions. Some other formula constructs are not supported, so use the formula parameter with
caution. Below is an example of modeling the interaction of male and the haplotypes. Because more terms
will be estimated in this case, we limit how many haplotypes will be included by increasing haplo.min.count
to 10.

R> # glm fit haplotypes with covariate interaction
R> fit.inter <- haplo.glm(formula = y ~ male * geno.glm,

+ family = gaussian, data=glm.data,

+ na.action="na.geno.keep",

+ locus.label = label,

+ control = haplo.glm.control(haplo.min.count = 10))

R> summary(fit.inter)

Call:
haplo.glm(formula = y ~ male * geno.glm, family = gaussian, data = glm.data,

na.action = "na.geno.keep", locus.label = label, control = haplo.glm.control(haplo.min.count

Deviance Residuals:
Min 1Q Median 3Q Max
-2.23387 -0.90661 -0.05953 0.96140 2.48859

Coefficients:

coef se t.stat pval
(Intercept) 0.97536 0.52268 1.86607 0.063
male 0.25806 0.67351 0.38315 0.702
geno.glm.17 0.14443 0.54544 0.26479 0.791
geno.glm.34 -0.17161 0.66773 -0.25700 0.797
geno.glm.77 0.80523 0.64951 1.23975 0.216
geno.glm.78 0.49557 0.56574 0.87596 0.382
geno.glm.100 0.52310 0.48067 1.08828 0.278
geno.glm.138 1.15704 0.423256 2.73371 0.007
geno.glm.rare 0.45547 0.28721 1.58587 0.114
male:geno.glm.17 0.50872 0.87531 0.58119 0.562
male:geno.glm.34 -0.28137 0.78570 -0.35812 0.721
male:geno.glm.77 -0.90084 0.79114 -1.13865 0.256
male:geno.glm.78 1.26376 0.77131 1.63846 0.103
male:geno.glm.100 0.05074 0.77470 0.06549 0.948
male:geno.glm.138 -0.44587 0.61903 -0.72027 0.472
male:geno.glm.rare -0.09787 0.37197 -0.26312 0.793

(Dispersion parameter for gaussian family taken to be 1.27362)
Null deviance: 297.01 on 219 degrees of freedom
Residual deviance: 259.82 on 204 degrees of freedom

AIC: 694.93

Number of Fisher Scoring iteratiomns: 120

27

10))

Haplotypes:
DQB DRB B hap.freq

geno.glm.17 21 7 44 0.02346
geno.glm.34 31 4 44 0.02845
geno.glm.77 32 4 60 0.03060
geno.glm.78 32 4 62 0.02413
geno.glm.100 51 1 35 0.03013
geno.glm.138 62 2 7 0.05049
geno.glm.rare * * *x 0.70863
haplo.base 21 3 8 0.10410

Explanation of Results

The listed results are as explained under section 6.4. The main difference is that the interaction coefficients
are labeled as a concatenation of the covariate (male in this example) and the name of the haplotype, as
described above. In addition, estimates may differ because the model has changed.

6.6 Regression for a Binomial Trait
Next we illustrate the fitting of a binomial trait with the same genotype matrix and covariate.
R> # gender and haplotypes fit on binary response,

R> # return model matrix
R> fit.bin <- haplo.glm(y.bin ~ male + geno.glm, family = binomial,

+ data=gim.data, na.action = "na.geno.keep",
+ locus.label=label,
+ control = haplo.glm.control (haplo.min.count=10))

R> summary(fit.bin)

Call:

haplo.glm(formula = y.bin ~ male + geno.glm, family = binomial,
data = glm.data, na.action = "na.geno.keep", locus.label = label,
control = haplo.glm.control(haplo.min.count = 10))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5569 -0.7996 -0.6473 1.0591 2.4348

Coefficients:

coef se t.stat pval
(Intercept) 1.5457 0.6547 2.3610 0.019
male -0.4802 0.3308 -1.4518 0.148
geno.glm.17 -0.7227 0.8011 -0.9022 0.368
geno.glm.34 0.3641 0.6798 0.5356 0.593
geno.glm.77 -0.9884 0.7328 -1.3489 0.179
geno.glm.78 -1.4093 0.8543 -1.6496 0.101
geno.glm.100 -2.5907 1.1278 -2.2971 0.023
geno.glm.138 -2.7156 0.8524 -3.1860 0.002
geno.glm.rare -1.2610 0.3537 -3.5647 0.000

28

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 263.50 on 219 degrees of freedom
Residual deviance: 233.46 on 211 degrees of freedom

AIC: 251.11

Number of Fisher Scoring iterations: 61

Haplotypes:

DQB DRB B hap.freq
geno.glm.17 21 7 44 0.02303
geno.glm.34 31 4 44 0.02843
geno.glm.77 32 4 60 0.03057
geno.glm.78 32 4 62 0.02354
geno.glm.100 51 1 35 0.02977
geno.glm.138 62 2 7 0.05181
geno.glm.rare * * *x 0.70880
haplo.base 21 3 8 0.10405

Explanation of Results

The underlying methods for haplo.glm are based on a prospective likelihood. Normally, this type of
likelihood works well for case-control studies with standard covariates. For ambiguous haplotypes, however,
one needs to be careful when interpreting the results from fitting haplo.glm to case-control data. Because
cases are over-sampled, relative to the population prevalence (or incidence, for incident cases), haplotypes
associated with disease will be over-represented in the case sample, and so estimates of haplotype frequencies
will be biased. Positively associated haplotypes will have haplotype frequency estimates that are higher than
the population haplotype frequency. To avoid this problem, one can weight each subject. The weights for
the cases should be the population prevalence, and the weights for controls should be 1 (assuming the disease
is rare in the population, and controls are representative of the general population). See Stram et al.[8] for
background on using weights, and see the help file for haplo.glm for how to implement weights.

The estimated regression coeflicients for case-control studies can be biased by either a large amount of
haplotype ambiguity and mis-specified weights, or by departures from Hardy-Weinberg Equilibrium of the
haplotypes in the pool of cases and controls. Generally, the bias is small, but tends to be towards the null
of no association. See Stram et al. [8] and Epstein and Satten [9] for further details.

6.6.1 Caution on Rare Haplotypes with Binomial Response

If a rare haplotype occurs only in cases or only in controls, the fitted values would go to 0 or 1, where R
would issue a warning. Also, the coefficient estimate for that haplotype would go to positive or negative
infinity, If the default haplo.min.count=>5 were used above, this warning would appear. To keep this from
occuring in other model fits, increase the minimum count or minimum frequency.

6.7 Control Parameters

Additional parameters are handled using control, which is a list of parameters providing additional functional-
ity in haplo.glm. This list is set up by the function haplo.glm.control. See the help file (help(haplo.glm.control))
for a full list of control parameters, with details of their usage. Some of the options are described here.

29

6.7.1 Controlling Genetic Models: haplo.effect

The haplo.effect control parameter for haplo.glm instructs whether the haplotype effects are fit as additive,
dominant, or recessive. That is, haplo.effect determines whether the covariate (z) coding of haplotypes fol-
lows the values in Table 1 for each effect type. Heterozygous means a subject has one copy of a particular
haplotype, and homozygous means a subject has two copies of a particular haplotype.

Table 1: Coding haplotype covariates in a model matrix

’ Hap - Pair \ additive \ dominant \ recessive ‘

Heterozygous 1 1 0
Homozygous 2 1 1

Note that in a recessive model, the haplotype effects are estimated only from subjects who are homozygous
for a haplotype. Some of the haplotypes which meet the haplo.freq.min and haplo.count.min cut-offs may
occur as homozygous in only a few of the subjects. As stated in 5.8, recessive models should be used when
the region has multiple common haplotypes.

The default haplo.effect is additive, whereas the example below illustrates the fit of a dominant effect of
haplotypes for the gaussian trait with the gender covariate.

R> # control dominant effect of haplotypes (haplo.effect)
R> # by using haplo.glm.control
R> fit.dom <- haplo.glm(y ~ male + geno.glm, family = gaussian,

+ data = glm.data, na.action = "na.geno.keep",

+ locus.label = label,

+ control = haplo.glm.control (haplo.effect='dominant',
+ haplo.min.count=8))

R> summary(fit.dom)

Call:
haplo.glm(formula = y ~ male + geno.glm, family = gaussian, data = glm.data,
na.action = "na.geno.keep", locus.label = label, control = haplo.glm.control(haplo.effect
haplo.min.count = 8))

Deviance Residuals:
Min 1Q Median 3Q Max
-2.48099 -1.01196 0.01035 1.00557 2.48801

Coefficients:

coef se t.stat pval
(Intercept) 1.64935 0.37350 4.41593 0.000
male 0.07969 0.15726 0.50673 0.613
geno.glm.17 -0.06035 0.42317 -0.14262 0.887
geno.glm.34 -0.66499 0.36392 -1.82731 0.069
geno.glm.77 -0.07339 0.34665 -0.21171 0.833
geno.glm.78 0.85369 0.36421 2.34394 0.020
geno.glm.100 0.24697 0.34561 0.71458 0.476
geno.glm.138 0.67295 0.28163 2.38944 0.018
geno.glm.rare 0.11195 0.34006 0.32922 0.742

30

(Dispersion parameter for gaussian family taken to be 1.300586)
Null deviance: 297.01 on 219 degrees of freedom

Residual deviance: 274.42 on 211 degrees of freedom

AIC: 692.96

Number of Fisher Scoring iterations: 91

Haplotypes:
DQB DRB B hap.freq

geno.glm.17 21 7 44 0.02297
geno.glm.34 31 4 44 0.02855
geno.glm.77 32 4 60 0.03019
geno.glm.78 32 4 62 0.02391
geno.glm.100 51 1 35 0.03003
geno.glm.138 62 2 7 0.05023
geno.glm.rare * * *x 0.71003
haplo.base 21 3 8 0.10408

6.7.2 Selecting the Baseline Haplotype

The haplotype chosen for the baseline in the model is the one with the highest frequency. Sometimes the
most frequent haplotype may be an at-risk haplotype, and so the measure of its effect is desired. To specify
a more appropriate haplotype as the baseline in the binomial example, choose from the list of other common
haplotypes, fit.bin$haplo.common. To specify an alternative baseline, such as haplotype 77, use the control
parameter haplo.base and haplotype code, as in the example below.

R> # control baseline selection, perform the same exact run as fit.bin,
R> # but different baseline by using haplo.base chosen from haplo.common
R> fit.bin$haplo.common

[11 17 34 77 78 100 138
R> fit.bin$haplo.freq.init[fit.bin$haplo.common]
[1] 0.02332031 0.02848720 0.03060053 0.02349463 0.03018431 0.05097906

R> fit.bin.base77 <- haplo.glm(y.bin ~ male + geno.glm, family = binomial,

+ data = glm.data, na.action = "na.geno.keep",
+ locus.label = label,

+ control = haplo.glm.control (haplo.base=77,

+ haplo.min.count=8))

R> summary(fit.bin.base77)

Call:

haplo.glm(formula = y.bin ~ male + geno.glm, family = binomial,
data = glm.data, na.action = "na.geno.keep", locus.label = label,
control = haplo.glm.control(haplo.base = 77, haplo.min.count = 8))

Deviance Residuals:
Min 1Q Median 3Q Max

31

-1.55569 -0.7996 -0.6473 1.0591 2.4348

Coefficients:

coef se t.stat pval
(Intercept) -0.4311 1.3586 -0.3173 0.751
male -0.4802 0.3308 -1.4518 0.148
geno.glm.4 0.9884 0.7328 1.3489 0.179
geno.glm.17 0.2657 1.0254 0.2591 0.796
geno.glm.34 1.3525 0.9223 1.4665 0.144
geno.glm.78 -0.4209 1.0430 -0.4035 0.687
geno.glm.100 -1.6023 1.3007 -1.2319 0.219
geno.glm.138 -1.7273 1.0321 -1.6736 0.096
geno.glm.rare -0.2726 0.6834 -0.3989 0.690

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 263.50 on 219 degrees of freedom
Residual deviance: 233.46 on 211 degrees of freedom

AIC: 2561.11

Number of Fisher Scoring iterations: 61

Haplotypes:

DQB DRB B hap.freq
geno.glm.4 21 3 8 0.10405
geno.glm.17 21 7 44 0.02303
geno.glm.34 31 4 44 0.02843
geno.glm.78 32 4 62 0.02354
geno.glm.100 51 1 35 0.02977
geno.glm.138 62 2 7 0.05181
geno.glm.rare * * * 0.70880
haplo.base 32 4 60 0.03057

Explanation of Results

The above model has the same haplotypes as fit.bin, except haplotype 4, the old baseline, now has an effect
estimate while haplotype 77 is the new baseline. Due to randomness in the starting values of the haplotype
frequency estimation, different runs of haplo.glm may result in a different set of haplotypes meeting the
minimum counts requirement for being modeled. Therefore, once you have arrived at a suitable model, and
you wish to modify it by changing baseline and/or effects, you can make results consistent by controlling
the randomness using set.seed, as described in section 2.4. In this document, we use the same seed before
making fit.bin and fit.bin.base77.

6.7.3 Rank of Information Matrix and eps.svd (NEW)

Similar to recent additions to haplo.score in section 5.7, we give the user control over the epsilon parameter
determining the number of singular values when determining the rank of the information matrix in haplo.glm.
Finding the generalized inverse of this matrix can be problematic when either the response variable or a
covariate has a large variance and is not scaled before passed to haplo.glm. The rank of the information matrix
is determined by the number of non-zero singular values a small cutoff, epsilon. When the singular values
for the coefficients are on a larger numeric scale than those for the haplotype frequencies, the generalized

32

inverse may incorrectly determine the information matrix is not of full rank. Therefore, we allow the user
to specify the epsilon as eps.svd in the control parameters for haplo.glm. A simpler fix, which we strongly
suggest, is for the user to pre-scale any continuous responses or covariates with a large variance.

Here we demonstrate what happens when we increase the variance of a gaussian response by 2500. We
see that the coeflicients are all highly significant and the rank of the information matrix is much smaller
than the scaled gaussian fit.

R> glm.data$ybig <- glm.data$y+*50
R> fit.gausbig <- haplo.glm(formula = ybig ~ male + geno.glm, family = gaussian,

+ data = glm.data, na.action = "na.geno.keep", locus.label = label,
+ control = haplo.glm.control (haplo.freq.min = 0.02), x = TRUE)
R> summary(fit.gausbig)
Call:
haplo.glm(formula = ybig ~ male + geno.glm, family = gaussian,
data = glm.data, na.action = "na.geno.keep", locus.label = label,

control = haplo.glm.control(haplo.freq.min = 0.02), x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max
-123.472 -46.026 -3.267 47.450 118.550
Coefficients:

coef se t.stat pval
(Intercept) 53.2180 1.7343 30.6849 0.000
male 4.8675 6.0042 0.8107 0.418
geno.glm.17 14.0111 0.2579 ©54.3195 0.000
geno.glm.34 -15.8563 1.0033 -15.8044 0.000
geno.glm.77 11.0835 0.9978 11.1078 0.000
geno.glm.78 57.0720 0.3855 148.0436 0.000
geno.glm.100 27.7784 0.3228 86.0564 0.000
geno.glm.138 49.1143 1.0334 47.5256 0.000
geno.glm.rare 19.8824 3.4583 5.7493 0.000

(Dispersion parameter for gaussian family taken to be 3173.952)
Null deviance: 742530 on 219 degrees of freedom

Residual deviance: 669704 on 211 degrees of freedom

AIC: 2408.9

Number of Fisher Scoring iterations: 268

Haplotypes:
DQB DRB B hap.freq

geno.glm.17 21 7 44 0.02291
geno.glm.34 31 4 44 0.02858
geno.glm.77 32 4 60 0.03022
geno.glm.78 32 4 62 0.02390
geno.glm.100 51 1 35 0.03008
geno.glm.138 62 2 7 0.05023
geno.glm.rare * * *x 0.71000
haplo.base 21 3 8 0.10409

33

R> fit.gausbig$rank.info
[1] 175

R> fit.gaus$rank.info
[1] 182

Now we set a smaller value for the eps.svd control parameter and find the fit matches the original Gaussian
fit.

R> fit.gausbig.eps <- haplo.glm(formula = ybig ~ male + geno.glm, family = gaussian,

+ data = glm.data, na.action = "na.geno.keep", locus.label = label,

+ control = haplo.glm.control(eps.svd=1e-10, haplo.freq.min = 0.02), x = TRUE)
R> summary(fit.gausbig.eps)

Call:

haplo.glm(formula = ybig ~ male + geno.glm, family = gaussian,
data = glm.data, na.action = "na.geno.keep", locus.label = label,
control = haplo.glm.control(eps.svd = 1e-10, haplo.freq.min = 0.02),
x = TRUE)

Deviance Residuals:

Min 1Q Median 3Q Max
-123.472 -46.026 -3.267 47.450 118.550
Coefficients:

coef se t.stat pval
(Intercept) 53.2180 17.1414 3.1046 0.002
male 4.8675 7.7603 0.6272 0.531
geno.glm.17 14.0111 21.7745 0.6435 0.521
geno.glm.34 -15.8563 17.1712 -0.9234 0.357
geno.glm.77 11.0835 18.0631 0.6136 0.540
geno.glm.78 57.0720 19.1910 2.9739 0.003
geno.glm.100 27.7784 18.2133 1.5252 0.129
geno.glm.138 49.1143 15.1646 3.2387 0.001
geno.glm.rare 19.8824 9.0957 2.1859 0.030

(Dispersion parameter for gaussian family taken to be 3173.952)

Null deviance: 742530 on 219 degrees of freedom
Residual deviance: 669704 on 211 degrees of freedom
AIC: 2408.9

Number of Fisher Scoring iterations: 268

Haplotypes:

DQB DRB B hap.freq
geno.glm.17 21 7 44 0.02291
geno.glm.34 31 4 44 0.02858
geno.glm.77 32 4 60 0.03022
geno.glm.78 32 4 62 0.02390

34

geno.glm.100 51 1 35 0.03008
geno.glm.138 62 2 7 0.05023
geno.glm.rare * * * 0.71000
haplo.base 21 3 8 0.10409

R> fit.gausbig.eps$rank.info

[1] 182

6.7.4 Rare Haplotypes and haplo.min.info

Another notable control parameter is the minimum frequency for a rare haplotype to be included in the
calculations for standard error (se) of the coefficients, or haplo.min.info. The default value is 0.001, which
means that haplotypes with frequency less than that will be part of the rare haplotype coefficient estimate,
but it will not be used in the standard error calculation.

The following example demonstrates a possible result when dealing with the rare haplotype effect. We
show with the hla genotype data one consequence for when this occurs. However, we make it happen by
setting haplo.freq.min equal to haplo.min.info, which we advise strongly against in your analyses.

R> ## set haplo.freq.min and haplo.min.info to same value to show how the

R> ## rare coefficient may be modeled but standard error estimate is not

R> ## calculated because all haps are below haplo.min.info

R> ## warning expected

R> fit.bin.rare02 <- haplo.glm(y.bin ~ geno.glm, family = binomial,

+ data = glm.data, na.action = "na.geno.keep", locus.label = label,

+ control = haplo.glm.control (haplo.freq.min=.02, haplo.min.info=.02))
R> summary(fit.bin.rare02)

Call:
haplo.glm(formula = y.bin ~ geno.glm, family = binomial, data = glm.data,
na.action = "na.geno.keep", locus.label = label, control = haplo.glm.control(haplo.freq.min = 0.02,
haplo.min.info = 0.02))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4558 -0.7238 -0.7238 1.0382 2.3083

Coefficients:

coef se t.stat pval
(Intercept) 1.2409 1.3238 0.9374 0.350
geno.glm.17 -0.6068 1.5630 -0.3882 0.698
geno.glm.34 0.3189 1.2678 0.2516 0.802
geno.glm.77 -1.0719 1.3666 -0.7844 0.434
geno.glm.78 -1.3593 4.3659 -0.3113 0.756
geno.glm.100 -2.3984 2.0878 -1.1487 0.252
geno.glm.138 -2.6096 1.5043 -1.7347 0.084
geno.glm.rare -1.2233 NA NA NA

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 263.50 on 219 degrees of freedom

Residual deviance: 235.59 on 212 degrees of freedom
AIC: 251.24

35

Number of Fisher Scoring iterations: 71

Haplotypes:
DQB DRB B hap.freq

geno.glm.17 21 7 44 0.02302
geno.glm.34 31 4 44 0.02841
geno.glm.77 32 4 60 0.03058
geno.glm.78 32 4 62 0.02353
geno.glm.100 51 1 35 0.02980
geno.glm.138 62 2 7 0.05190
geno.glm.rare * * * 0.70872
haplo.base 21 3 8 0.10403

Explanation of Results

The above results show the standard error for the rare haplotype coefficient is “NaN”, or “Not a Number”
in R, which is a consequence of having most, or all, of the rare haplotypes discarded for the standard error
estimate. In other datasets there may be only a few haplotypes between haplo.min.info and haplo.freq.min,
and may yield misleading results for the rare haplotype coefficient. For this reason, we recommend that any
inference made on the rare haplotypes be made with caution, if at all.

7 Methods for haplo.glm (NEW)

The latest updates to haplo.stats is our work to make haplo.glm to act similar to a glm object with methods
to compare and assess model fits. In this section we describe the challenges and caveats of defining these
methods for a haplo.glm object and show how to use them.

7.1 fitted.values

A challenge when defining methods for haplo.glm is that we account for the ambiguity in a person’s haplotype
pair. To handle this in the glm framework, the response and non-haplotype covariates are expanded for each
person with a posterior probability of the haplotype given their genotype as a weight. The returned object
from haplo.glm looks somewhat like a regular glm, but the model matrix, response, and thus the fitted
values, are all expanded. Users who want to work with the expanded versions of those items are welcome to
access them from the returned object.

We now provide a method to get the fitted values for each person, fitted.haplo.glm. These collapsed fitted
values are calculated by a weighted sum of the expanded fitted values for each person where the weights are
the posterior probabilities of the person’s expanded haplotype pairs.

7.2 residuals

The residuals within the haplo.glm object are also expanded for the haplotype pairs for subjects. We provide
residuals.haplo.glm to get the collapsed deviance, pearson, working, and response residuals for each person.
Because we have not implemented a predict method for haplo.glm, the method does not calculate partial
residuals.

7.3 vcov

We provide vcov.haplo.glm as a method to get the variance-covariance matrix of model parameters in the
haplo.glm object. Unlike the standard glm object, this matrix is computed and retained in the returned

36

object. We do this because the model parameters are the model coefficients and the haplotype frequencies,
and it is computationally-intensive to compute.
We show how to get the variance matrix for all the parameters and for only the model coefficients.

R> varmat <- vcov(fit.gaus)
R> dim(varmat)

[1] 182 182

R> varmat <- vcov(fit.gaus, freq=FALSE)
R> dim(varmat)

[11 9 9

R> print(varmat, digits=2)

(Intercept) male geno.glm.17 geno.glm.34 geno.glm.77 geno.glm.78
(Intercept) 0.118 -0.01513 -0.0674 -0.0544 -0.0526 -0.05123
male -0.015 0.02409 0.0065 -0.0022 -0.0038 0.00082
geno.glm.17 -0.067 0.00646 0.1897 0.0335 0.0206 0.03217
geno.glm.34 -0.054 -0.00218 0.0335 0.1179 0.0226 0.02753
geno.glm.77 -0.053 -0.00375 0.0206 0.0226 0.1305 0.02602
geno.glm.78 -0.051 0.00082 0.0322 0.0275 0.0260 0.14732
geno.glm.100 -0.059 0.00674 0.0370 0.0298 0.0204 0.02853
geno.glm.138 -0.059 0.00362 0.0307 0.0254 0.0256 0.02195
geno.glm.rare -0.058 0.00142 0.0320 0.0283 0.0278 0.02478
geno.glm.100 geno.glm.138 geno.glm.rare
(Intercept) -0.0595 -0.0587 -0.0583
male 0.0067 0.0036 0.0014
geno.glm.17 0.0370 0.0307 0.0320
geno.glm.34 0.0298 0.0254 0.0283
geno.glm.77 0.0204 0.0256 0.0278
geno.glm.78 0.0285 0.0220 0.0248
geno.glm.100 0.1327 0.0214 0.0281
geno.glm.138 0.0214 0.0920 0.0288
geno.glm.rare 0.0281 0.0288 0.0331

7.4 anova and Model Comparison

We use the anova.glm method as a framework for anova.haplo.glm to allow comparisons of model fits. We
limit the model comparisons to multiple nested model fits, which requires that each model to be compared
is either a haplo.glm or glm fitted object. We eliminate the functionality of testing sub-models of a single fit
because removal of a single covariate would require re-fitting of the reduced model to get updated coefficient
and haplotype frequency estimates with a maximized log-likelihood. We decided to simplify the usage and
require that all models to be compared are fully fitted.

As with the anova.glm method, it is difficult to check for truly nested models, so we pass the responsibility
on to the user. We discuss some of the requirements.

One type of two-model comparison is between models with haplotypes (expanded subjects) and a reduced
model without haplotypes. We check for the same sample size in these models by comparing the collapsed
sample size from a haplo.glm fit to the sample size from the glm fit, which we remind users is only a loose
check of model comparability.

The other comparison of two models in anova.haplo.glm is to compare two models that contain the same
genotypes, and inherently the same haplotypes. This is more tricky because a subject may not have the same

37

expanded set of possible haplotype pairs across two fits of haplo.glm unless the same seed is set before both
fits. Even if a seed is the same, the other effects that are different between the two models will affect the
haplotype frequency estimates, and may still result in a different expansion of haplotype pairs per subject.
Our check of the collapsed sample size for the two models still applies with the same pitfalls, but a better
assurance of model comparability is to use the same seed.

In the haplo.glm fit we provide the likelihood ratio test of the null model against the full model, which is
the most appropriate test available for haplo.glm objects, but it is difficult to compare the log-likeihood across
two haplo.glm fits. Therefore, we remain consistent with glm model comparison [10], and use the difference
in deviance to compare models. Furthermore, we restrict the asymptotic test for model comparison to be
the x? test for goodness of fit.

Below we show how to get the LRT from the fit.gaus result, then show how to compare some of the nested
models fit above, including a regular glm fit of y ~ male. The anova method requires the nested model to
be given first, and any anova with a haplo.glm object should explicitly call anova.haplo.glm.

R> fit.gaus$lrt

$1rt
[1] 22.34062

$df
(1] 8

R> glmfit.gaus <- glm(y"male, family="gaussian", data=glm.data)
R> anova.haplo.glm(glmfit.gaus, fit.gaus)

Analysis of Deviance Table

Model 1: y ~ male
Model 2: y ~ male + geno.glm
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 218 297.00
2 211 267.88 7 < 29.114 0.001752 *x*

Signif. codes: 0 aA¥***3AZ 0.001 aA¥**aAZ 0.01 aAV*ahZ 0.05 aA¥.sAZ 0.1 aAY &AZ 1
R> anova.haplo.glm(fit.gaus, fit.inter)

Analysis of Deviance Table

Model 1: y ~ male + geno.glm
Model 2: y ~ male * geno.glm
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 211 267.88
2 204 2569.82 7 8.0631 0.5017

R> anova.haplo.glm(glmfit.gaus, fit.gaus, fit.inter)

Analysis of Deviance Table

Model 1: y ~ male
Model 2: y ~ male + geno.glm
Model 3: y ~ male * geno.glm
Resid. Df Resid. Dev Df Deviance Pr(>Chi)

38

1 218 297.00
2 211 267.88 7 29.1137 0.001804 *x*
3 204 269.82 7 8.0631 0.501696

Signif. codes: 0 &A¥***3AZ 0.001 aA¥**ahZ 0.01 aAV*ahZ 0.05 aA¥.sAZ 0.1 aAY aAZ 1

8 Extended Applications

The following functions are designed to wrap the functionality of the major functions in Haplo Stats into
other useful applications.

8.1 Combine Score and Group Results: haplo.score.merge

When analyzing a qualitative trait, such as binary, it can be helpful to align the results from haplo.score
with haplo.group. To do so, use the function haplo.score.merge, as illustrated in the following example:

R> # merge haplo.score and haplo.group results
R> merge.bin <- haplo.score.merge(score.bin, group.bin)
R> print (merge.bin, nlines=10)

DQB DRB B Hap.Score p.val Hap.Freq y.bin.0 y.bin.1
1 62 2 7 -2.19387 0.02824 0.05098 0.06789 0.01587
2 51 135 -1.58421 0.11315 0.03018 0.03754 0.00907
3 63 13 7 -1.56008 0.11874 0.01655 0.02176 NA
4 21 7 7 -1.47495 0.14023 0.01246 0.01969 NA
5 32 4 7 -1.00091 0.31687 0.01678 0.02628 0.00794
6 32 462 -0.67990 0.49657 0.02349 0.01911 NA
7 51 127 -0.66509 0.50599 0.01505 0.01855 0.00907
8 31 11 35 -0.58380 0.55936 0.01754 0.01982 0.01587
9 31 11 51 -0.43721 0.66196 0.01137 0.01321 NA
10 51 144 0.00826 0.99341 0.01731 0.01595 0.00000

Explanation of Results

The first column is a row index, the next columns (3 in this example) illustrate the haplotype, the Hap.Score
column is the score statistic and p.val the corresponding x2 p-value. Hap.Freq is the haplotype frequency for
the total sample, and the remaining columns are the estimated haplotype frequencies for each of the group
levels (y.bin in this example). The default print method only prints results for haplotypes appearing in the
haplo.score output. To view all haplotypes, use the print option all. haps=TRUE, which prints all haplotypes
from the haplo.group output. The output is ordered by the score statistic, but the order.by parameter can
specify ordering by haplotypes or by haplotype frequencyies.

8.2 Case-Control Haplotype Analysis: haplo.cc

We provide haplo.cc to run and combine the results of haplo.score, haplo.group, and haplo.glm for case-
control data. The function peforms a score test and a glm on the same haplotypes. The parameters that
determine which haplotypes are used are haplo.min.count and haplo.freq.min, which are set in the control
parameter, as done for haplo.glm.

Below we run haplo.cc setting the minimum haplotype frequency at 0.02. The print results are shown,
in addition to the names of the objects stored in the cc.hla result.

39

R> # demo haplo.cc where haplo.min.count is specified

R> # use geno, and this function prepares it for haplo.glm

R> y.bin <- 1*(hla.demo$resp.cat=="1ow")

R> cc.hla <- haplo.cc(y=y.bin, geno=geno, locus.label = label,

+ control=haplo.glm.control (haplo.freq.min=.02))
R> print(cc.hla, nlines=25, digits=2)

control case
157 63

Haplotype Scores, p-values, Hap-Frequencies (hf), and Odds Ratios
(95% CI)

DQB DRB B Hap-Score p-val pool.hf control.hf case.hf glm.eff OR.lower OR

183 62 2 7 -2.103 0.03546 0.0490 0.0679 0.0159 Eff 0.0138 0.072
121 51 135 -1.583 0.11344 0.0302 0.0376 0.0089 Eff 0.0097 0.086
9% 32 4 7 -1.393 0.16349 0.0227 0.0263 0.0079 Eff 0.0047 0.058
95 32 4 62 -0.496 0.62001 0.0212 0.0191 NA Eff 0.0517 0.281
94 32 4 60 0.028 0.97762 0.0307 0.0315 0.0238 Eff 0.0763 0.318
17 21 7 44 1.069 0.28516 0.0217 0.0175 0.0476 Eff 0.1253 0.661
64 31 4 44 2.516 0.01186 0.0285 0.0150 0.0635 Eff 0.3425 1.318
11 21 3 8 3.776 0.00016 0.1042 0.0693 0.1905 Base NA 1.000
1 21 1 8 NA NA 0.0023 0.0033 NA R 0.1443 0.290
2 21 10 8 NA NA 0.0023 0.0032 NA R 0.1443 0.290
3 21 218 NA NA 0.0023 0.0032 NA R 0.1443 0.290
4 21 2 7 NA NA 0.0023 0.0032 NA R 0.1443 0.290
5 21 3 18 NA NA 0.0046 0.0067 NA R 0.1443 0.290
6 21 3 35 NA NA 0.0057 0.0065 NA R 0.1443 0.290
7 21 3 44 NA NA 0.0036 0.0033 0.0159 R 0.1443 0.290
8 21 3 49 NA NA 0.0023 NA NA R 0.1443 0.290
9 21 357 NA NA 0.0024 NA NA R 0.1443 0.290
10 21 370 NA NA 0.0023 NA NA R 0.1443 0.290
12 21 4 14 NA NA NA 0.0064 NA <NA> NA NA
13 21 4 62 NA NA 0.0045 0.0064 NA 0.1443 0.290
14 21 7 13 NA NA 0.0108 NA 0.0238 R 0.1443 0.290
15 21 7 18 NA NA 0.0025 NA NA R 0.1443 0.290
16 21 7 35 NA NA 0.0024 NA 0.0079 R 0.1443 0.290
18 21 7 45 NA NA 0.0023 0.0032 NA R 0.1443 0.290
19 21 7 47 NA NA NA NA 0.0079 <NA> NA NA
OR.upper
183 0.38
121 0.76

40

96 0.72
95 1.53
94 1.32
17 3.48
64 5.07
11 NA
1 0.58
2 0.58
3 0.58
4 0.58
5 0.58
6 0.58
7 0.58
8 0.58
9 0.58
10 0.58
12 NA
13 0.58
14 0.58
15 0.58
16 0.58
18 0.58
19 NA

R> names(cc.hla)

[1] "cc.qaf" "group.count" "score.lst" "fit.1lst" "ci.prob"
[6] "exclude.subj"

Explanation of Results

First, from the names function we see that cc.hla also contains score.lst and fit.Ist, which are the haplo.score
and haplo.glm objects, respectively. For the printed results of haplo.cc, first are the global statistics from
haplo.score, followed by cell counts for cases and controls. The last portion of the output is a data frame
containing combined results for individual haplotypes:

e Hap-Score: haplotype score statistic

e p-val: haplotype score statistic p-value

e sim p-val: (if simulations performed) simulated p-value for the haplotype score statistic
¢ pool.hf: haplotype frequency for the pooled sample

e control.hf: haplotype frequencies for the control sample only

e case.hf: haplotype frequencies for the case sample only

o glm.eff: one of three ways the haplotype appeared in the glm model: Eff: modeled as an effect; Base:
part of the baseline; and R: a rare haplotype, included in the effect of pooled rare haplotypes

¢ OR.lower: Odds Ratio confidence interval lower limit
e OR: Odds Ratio for each effect in the model

e OR.upper: Odds Ratio confidence interval upper limit

41

Significance levels are indicated by the p-values for the score statistics, and the odds ratio (OR) confidence
intervals for the haplotype effects. Note that the Odds Ratios are effect sizes of haplotypes, assuming
haplotype effects are multiplicative. Since this last table has many columns, lines are wrapped in the
output in this manual. You can align wrapped lines by the haplotype code which appears on the far left.
Alternatively, instruct the print function to only print digits significant digits, and set the width settings for
output in your session using the options() function.

8.3 Score Tests on Sub-Haplotypes: haplo.score.slide

To evaluate the association of sub-haplotypes (subsets of alleles from the full haplotype) with a trait, the
user can evaluate a "window” of alleles by haplo.score, and slide this window across the entire haplotype.
This procedure is implemented by the function haplo.score.slide. To illustrate this method, we use all 11 loci
in the demo data, hla.demo.

First, make the geno matrix and the locus labels for the 11 loci. Then use haplo.score.slide for a window
of 3 loci (n.slide=3), which will slide along the haplotype for all 9 contiguous subsets of size 3, using the
previously defined gaussian trait resp.

R> # haplo.score on 11 loci, slide on 3 comnsecutive loci at a time

R> geno.11 <- hla.demo[,-c(1:4)]

R> label.11 <- c("DPB","DPA","DMA","DMB","TAP1","TAP2","DGB", "DQA", "DRB","B","A")
R> score.slide.gaus <- haplo.score.slide(hla.demo$resp, geno.11, trait.type =

+ "gaussian", n.slide=3, min.count=5, locus.label=label.11)

R> print(score.slide.gaus)

start.loc score.global.p global.p.sim max.p.sim

1 1 0.21550 NA NA
2 2 0.09366 NA NA
3 3 0.39042 NA NA
4 4 0.48771 NA NA
5 5 0.13747 NA NA
6 6 0.14925 NA NA
7 7 0.11001 NA NA
8 8 0.00996 NA NA
9 9 0.04255 NA NA

Explanation of Results

The first column is the row index of the nine calls to haplo.score, the second column is the number of the
starting locus of the sub-haplotype, the third column is the global score statistic p-value for each call. The
last two columns are the simulated p-values for the global and maximum score statistics, respectively. If you
specify simulate=TRUE in the function call, the simulated p-values would be present.

8.3.1 Plot Results from haplo.score.slide

The results from haplo.score.slide can be easily viewed in a plot shown in Figure 2 below. The x-axis has tick
marks for each locus, and the y-axis is the —log1o(pval). To select which p-value to plot, use the parameter
pval, with choices "global”’, ”global.sim”, and "max.sim” corresponding to p-values described above. If the
simulated p-values were not computed, the default is to plot the global p-values. For each p-value, a horizontal
line is drawn at the height of —logio(pval) across the loci over which it was calculated. For example, the
p-value score.global.p = 0.009963 for loci 8-10 is plotted as a horizontal line at y = 2.002 spanning the 8",
9t" and 10*" x-axis tick marks.

42

R> # plot global p-values for sub-haplotypes from haplo.score.slide
R> plot.haplo.score.slide(score.slide.gaus)

—log10(score.global.p)
1.0 15 2.0
|

0.5

0.0

I I I I I I I I I I I
DPB DMA TAP1 DQB DRB B A

Figure 2: Global p-values for sub-haplotypes; Gaussian Response

43

8.4 Scanning Haplotypes Within a Fixed-Width Window: haplo.scan

Another method to search for a candidate locus within a genome region is haplo.scan, an implementation of
the method proposed in Cheng et al. 2005 [11]. This method searches for a region for which the haplotypes
have the strongest association with a binary trait by sliding a window of fixed width over each marker locus,
and then scans over all haplotype lengths within each window. This latter step, scanning over all possible
haplotype lengths within a window, distinguishes haplo.scan from haplo.score.slide (which considers only the
maximum haplotype length within a window). To account for unknown linkage phase, the function haplo.em
is called prior to scanning, to create a list of haplotype pairs and posterior probabilities. To illustrate the
scanning window, consider a 10-locus dataset. When placing a window of width 3 over locus 5, the possible
haplotype lengths that contain locus 5 are three (loci 3-4-5, 4-5-6, and 5-6-7), two (loci 4-5 and 5-6) and one
(locus 5). For each of these loci subsets a score statistic is computed, which is based on the difference between
the mean vector of haplotype counts for cases and that for controls. The maximum of these score statistics,
over all possible haplotype lengths within a window, is the locus-specific test statistic, or the locus scan
statistic. The global test statistic is the maximum over all computed score statistics. To compute p-values,
the case/control status is randomly permuted. Below we run haplo.scan on the 11-locus HLA dataset with
a binary response and a window width of 3, but first we use the results of summaryGeno to choose subjects
with less than 50,000 haplotype pairs to speed calculations with all 11 polymorphic loci with many missing
alleles.

R> geno.11 <- hla.demo[,-c(1:4)]

R> y.bin <- 1*(hla.demo$resp.cat=="low")

R> hla.summary <- summaryGeno(geno.11, miss.val=c(0,NA))

R> # track those subjects with too many possible haplotype pairs (> 50,000)
R> many.haps <- (1:length(y.bin)) [hla.summary[,4] > 50000]

R> # For speed, or even just so it will finish, make y.bin and geno.scan

R> # for genotypes that don't have too many ambigous haplotypes

R> geno.scan <- geno.11[-many.haps,]

R> y.scan <- y.bin[-many.haps]

R> # scan haplotypes for regions within width of 3 for each locus.

R> # test statistic measures difference in haplotype counts in cases and controls
R> # p-values are simulated for each locus and the maximum statistic,

R> # we do 100 simuations here, should use default settings for analysis

R>

R> scan.hla <- haplo.scan(y.scan, geno.scan, width=3,

+ sim.control=score.sim.control (min.sim=100, max.sim=100),

+ em.control=haplo.em.control())

R> print(scan.hla)

Call:
haplo.scan(y = y.scan, geno = geno.scan,
width = 3, em.control = haplo.em.control(),
sim.control = score.sim.control(min.sim = 100,
max.sim = 100))

Locus Scan-statistic Simulated P-values

loc-1 loc-2 loc-3 loc-4 loc-5 loc-6 loc-7 loc-8 loc-9 loc-10 loc-11
sim.p-val 0 0 0 0 0 0 0 0 0 0 0

Loci with max scan statistic: 2

44

Max-Stat Simulated Global p-value: 0
Number of Simulations: 100

Explanation of Results

In the output we report the simulated p-values for each locus test statistic. Additionally, we report the
loci (or locus) which provided the maximum observed test statistic, and the Max-Stat Simulated Global
p-value is the simulated p-value for that maximum statistic. We print the number of simulations, because
they are performed until p-value precision criteria are met, as described in section 5.9. We would typically
allow simulations to run under default parameters rather than limiting to 100 by the control parameters.

8.5 Sequential Haplotype Scan Methods: seqhap

Another approach for choosing loci for haplotype associations is seqhap, as described in Yu and Schaid, 2007
[12]. The seqhap method performs three tests for association of a binary trait over a set of bi-allelic loci.
When evaluating each locus, loci close to it are added in a sequential manner based on the Mantel-Haenszel
test [13]. For each marker locus, three tests are provided:

e single locus, the traditional single-locus x? test of association,
e sequential haplotype, based on a haplotype test for sequentially chosen loci,

¢ sequential sum, based on the sum of a series of conditional x? statistics.

All three tests are assessed for significance with permutation p-values, in addition to the asymptotic
p-value. The point-wise p-value for a statistic at a locus is the fraction of times that the statistic for the
permuted data is larger than that for the observed data. The regional p-value is the chance of observing a
permuted test statistic, maximized over a region, that is greater than that for the observed data.

Similar to the permutation p-values in haplo.score as described in section 5.9, permutations are performed
until a precision threshold is reached for the regional p-values. A minimum and maximum number of
permutations specified in the sim.control parameter list ensure a certain accuracy is met for every simulation
p-value, yet having a limit to avoid infinite run-time.

Below is an example of using seqhap on data with case-control response for a chromosome region. First
set up the binary response, y, with O=control, 1=case, then a genotype matrix with two columns per locus,
and a vector of chromosome positions. The genotype data is available in the seqhap.dat dataset while
the chromosome positions are in seqhap.pos. The following example runs seqghap with default settings for
permutations and threshold parameters.

R> # define binary response and genotype matrix

R> data(seghap.dat)

R> data(seqghap.pos)

R> y <- seqghap.dat$disease

R> geno <- seqhap.dat[,-1]

R> # get vector with chrom position

R> pos <- seghap.pos$pos

R> seqhap.out <- seghap(y=y, geno=geno, pos=pos, miss.val=c(0,NA),
+ r2.threshold=.95, mh.threshold=3.84)

R> seghap.out$n.sim

[1] 4973

R> print (seghap.out)

45

Single-locus Chi-square Test

Regional permuted P-value based on single-locus test is 0.13191
chi.stat perm.point.p asym.point.p

loc-1 1.22062 0.27729741 0.26924
loc-2 1.35462 0.23245526 0.24447
loc-3 5.20288 0.02010859 0.02255
loc-4 3.36348 0.05972250 0.06666
loc-5 3.55263 0.06153227 0.05945
loc-6 0.39263 0.53026342 0.53092
loc-7 5.54913 0.01829881 0.01849
loc-8 3.74740 0.05469535 0.05289
loc-9 0.03602 0.85682687 0.84947
loc-10 1.99552 0.17313493 0.15777

Sequential Scan

Loci Combined in Sequential Analysis
seq-loc-1 1

seq-loc-2
seq-loc-3
seq-loc-4
seq-loc-5
seq-loc-6
seq-loc-7
seq-loc-8
seq-loc-9
seq-loc-10 10

45
5

w s W

© 00N Ok WN

Sequential Haplotype Test

Regional permuted P-value based on sequential haplotype test is 0.016489
hap.stat df perm.point.p asym.point.p
seq-loc-1 1.22062 1 0.310878745 0.26924

seq-loc-2 24.16488 12 0.027950935 0.01932
seq-loc-3 19.78808 6 0.005228232 0.00302
seq-loc-4 14.95765 3 0.003016288 0.00185
seq-loc-5 3.55263 1 0.096722300 0.05945
seq-loc-6 5.45723 2 0.114216771 0.06531
seq-loc-7 5.54913 1 0.038608486 0.01849
seq-loc-8 3.74740 1 0.103961392 0.05289
seq-loc-9 0.03602 1 0.867886588 0.84947
seq-loc-10 1.99552 1 0.219384677 0.15777

46

Sequential Sum Test

Regional permuted P-value based on sequential sum test is 0.0032174
sum.stat df perm.point.p asym.point.p

seq-loc-1 1.22062 1 0.3108787452 0.26924
seq-loc-2 21.15360 4 0.0008043435 0.00030
seq-loc-3 18.65769 3 0.0008043435 0.00032
seq-loc-4 14.61897 2 0.0020108586 0.00067
seq-loc-5 3.55263 1 0.1033581339 0.05945
seq-loc-6 5.43826 2 0.1150211140 0.06593
seq-loc-7 5.54913 1 0.0386084858 0.01849
seq-loc-8 3.74740 1 0.1041624774 0.05289
seq-loc-9 0.03602 1 0.8678865876 0.84947
seq-loc-10 1.99552 1 0.2193846773 0.15777

Explanation of Results

The output above first shows n.sim, the number of permutations needed for precision on the regional
p-values. Next, in the printed results, the first section (Single-locus Chi-square Test) shows a table with
columns for single-locus tests. The table includes test statistics, permuted p-values, and asymptotic p-
values based on a x? distribution. The second section (Sequential Scan) shows which loci are combined for
association. In this example, the table shows the first locus is not combined with other loci, whereas the
second locus is combined with loci 3, 4, and 5. The third section (Sequential Haplotype Test), shows the
test statistics for the sequential haplotype method with degrees of freedom and permuted and asymptotic
p-values. The fourth section (Sequential Sum Test) shows similar information for the sequential sum tests.

8.5.1 Plot Results from seqhap

The results from seqhap can be viewed in a useful plot shown in Figure 3. The plot is similar to the plot
for haplo.score.slide results, with the x-axis having tick marks for all loci and the y-axis is the -logl10() of
p-value for the tests performed. For the sequential result for each locus, a horizontal line at the height
of -logl0(p-value) is drawn across the loci combined. The start locus is indicated by a filled triangle and
other loci combined with the start locus are indicated by an asterisk or circle. The choices for pval include
“hap” (sequential haplotype asymptotic p-value), “hap.sim” (sequential haplotype simulated p-value), “sum”
(sequential sum asymptotic p-value), and “sum.sim” (sequential sum simulated p-value). The other parameter

option is single, indicating whether to plot a line for the single-locus tests.

47

R> # plot global p-values for sub-haplotypes from haplo.score.slide
R> plot(seghap.out, pval="hap", single=TRUE, las=2)

o |
™
o—A
N
o
= « |
g
Q A = o A
S 5
@© Tol AN !
5 —) AN |'I
8 , . h
o)/ N ____A:
| o ’ I, : ‘\
1 — ’
— // ‘l : \\
/ R A
’ [N ’
____/ Il \ ’
L0 A------""7 ‘|' \\ /I
T] h ,
o Y N ’
Y N ’
\ ' ,’/
\\/
e _|
o
I I I I L I I
— N o™ < LO & (@] o
| | | | Il | —
(&) (&) (&) (&) (SN ()] (&} |
S S 8 & oo S 9

Figure 3: Plot p-values for sequential haplotype scan and single-locus tests

48

8.6 Creating Haplotype Effect Columns: haplo.design

In some instances, the desired model for haplotype effects is not possible with the methods given in haplo.glm.
Examples include modeling just one haplotype effect, or modeling an interaction of haplotypes from different
chromosomes, or analyzing censored data. To circumvent these limitations, we provide a function called
haplo.design, which will set up an expected haplotype design matrix from a haplo.em object, to create
columns that can be used to model haplotype effects in other modeling functions.

The function haplo.design first creates a design marix for all pairs of haplotypes over all subjects, and then
uses the posterior probabilities to create a weighted average contribution for each subject, so that the number
of rows of the final design matrix is equal to the number of subjects. This is sometimes called the expectation-
substitution method, as proposed by Zaykin et al. 2002 [4], and using this haplotype design matrix in a
regression model is asymptotically equivalent to the score statistics from haplo.score (Xie and Stram 2005
[14]). Although this provides much flexibility, by using the design matrix in any type of regression model,
the estimated regression parameters can be biased toward zero (see Lin and Zeng, 2006 [15] for concerns
about the expectation-substitution method).

In the first example below, using default parameters, the returned data.frame contains a column for each
haplotype that meets a minimum count in the sample min.count. The columns are named by the code they
are assigned in haplo.em.

R> # create a matrix of haplotype effect columns from haplo.em result
R> hap.effect.frame <- haplo.design(save.em)
R> names (hap.effect.frame)

[1] "hap.4" "hap.13" "hap.17" "hap.34" '"hap.50" '"hap.55" "hap.69" "hap.77"
[9] "hap.78" "hap.99" "hap.100" "hap.102" "hap.138" "hap.140" "hap.143" "hap.155"
[17] "hap.162" "hap.165"

R> hap.effect.frame[1:10,1:8]

hap.4 hap.13 hap.17 hap.34 hap.50 hap.55 hap.69 hap.77
1 0 0.0000000 0.0000000 0 0 0 0 0
2 0 0.1253234 0.8746766 0 0 0 0 0
3 0 0.0000000 0.0000000 0 0 0 0 0
4 0 0.2862131 0.7137869 0 0 0 0 0
5 0 0.0000000 0.0000000 0 0 1 0 0
6 1 0.0000000 1.0000000 0 0 0 0 0
7 0 0.0000000 0.0000000 0 0 0 0 0
8 0 0.0000000 0.0000000 0 0 0 0 0
9 0 0.0000000 0.0000000 0 0 0 0 0
10 0 0.0000000 0.0000000 0 0 0 0 0

Additionally, haplo.design gives the user flexibility to make a more specific design matrix with the fol-
lowing parameters:

e hapcodes: codes assigned in the haplo.em object, the only haplotypes to be made into effects
¢ haplo.effect: the coding of haplotypes as additive, dominant, or recessive

¢ haplo.base: code for the baseline haplotype

e min.count: minimum haplotype count

This second example below creates columns for specific haplotype codes that were most interesting in
score.gaus.add, haplotypes with alleles 21-3-8 and 62-2-7, corresponding to codes 4 and 138 in haplo.em, re-
spectively. Assume we want to test their individual effects when they are coded with haplo.effect="dominant”.

49

R> # create haplotype effect cols for haps 4 and 138

R> hap4.hap138.frame <- haplo.design(save.em, hapcodes=c(4,138),
+ haplo.effect="dominant")

R> hap4.hap138.frame[1:10,]

hap.4 hap.138
1 0 0.0000000
2 0 0.8746766
3 0 0.0000000
4 0 0.0000000
5 0 0.0000000
6 1 0.0000000
7 0 1.0000000
8 0 0.0000000
9 0 0.1358696
10 0 0.0000000

R> dat.glm <- data.frame(resp, male, age,

+ hap.4=hap4.hap138. frame$hap.4,
+ hap.138=hap4.hap138. frame$hap. 138)
R> glm.hap4.hap138 <- glm(resp ~ male + age + hap.4 + hap.138,

+ family="gaussian", data=dat.glm)
R> summary(glm.hap4.hap138)

Call:
glm(formula = resp ~ male + age + hap.4 + hap.138, family = "gaussian",
data = dat.glm)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.32614 -1.07489 -0.06559 1.04483 2.39044

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.913834 0.229577 8.336 9.1le-15 #*x
male 0.048588 0.155290 0.313 0.7547
age -0.002651 0.011695 -0.227 0.8209
hap.4 -0.405530 0.195857 -2.071 0.0396 *
hap.138 0.584480 0.261763 2.233 0.0266 *

Signif. codes: 0 aA¥***3AZ 0.001 &A¥**aAZ 0.01 sAV*ahZ 0.05 ah¥.sAZ 0.1 aAY &AZ 1
(Dispersion parameter for gaussian family taken to be 1.318277)

Null deviance: 297.01 on 219 degrees of freedom
Residual deviance: 283.43 on 215 degrees of freedom

AIC: 692.07

Number of Fisher Scoring iterations: 2

50

9 License and Warranty

License:
Copyright 2003 Mayo Foundation for Medical Education and Research.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to

Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA 02111-1307 USA

For other licensing arrangements, please contact Daniel J. Schaid.
Daniel J. Schaid, Ph.D.

Division of Biostatistics

Harwick Building - Room 775

Mayo Clinic

200 First St., SW

Rochester, MN 55905

phone: 507-284-0639

fax: 507-284-9542

email: schaid@mayo.edu

10 Acknowledgements

This research was supported by United States Public Health Services, National Institutes of Health; Contract
grant numbers R01 DE13276, R01 GM 65450, NO1 AI45240, and R01 2A133144. The hla.demo data is kindly
provided by Gregory A. Poland, M.D. and the Mayo Vaccine Research Group for illustration only, and may
not be used for publication.

o1

Appendix

A Counting Haplotype Pairs When Marker Phenotypes Have Miss-
ing Alleles

The following describes the process for counting the number of haplotype pairs that are consistent with a
subject’s observed marker phenotypes, allowing for some loci with missing data. Note that we refer to marker
phenotypes, but our algorithm is oriented towards typical markers that have a one-to-one correspondence
with their genotypes. We first describe how to count when none of the loci have missing alleles, and then
generalize to allow loci to have either one or two missing alleles. When there are no missing alleles, note
that homozygous loci are not ambiguous with respect to the underlying haplotypes, because at these loci the
underlying haplotypes will not differ if we interchange alleles between haplotypes. In contrast, heterozygous
loci are ambiguous, because we do not know the haplotype origin of the distinguishable alleles (i.e., unknown
linkage phase). However, if there is only one heterozygous locus, then it doesn’t matter if we interchange
alleles, because the pair of haplotypes will be the same. In this situation, if parental origin of alleles
were known, then interchanging alleles would switch parental origin of haplotypes, but not the composition
of the haplotypes. Hence, ambiguity arises only when there are at least two heterozygous loci. For each
heterozygous locus beyond the first one, the number of possible haplotypes increases by a factor of 2, because
we interchange the two alleles at each heterozygous locus to create all possible pairs of haplotypes. Hence,
the number of possible haplotype pairs can be expressed as 2%, where x = H — 1, if H (the number of
heterozygous loci) is at least 2, otherwise z = 0.

Now comnsider a locus with missing alleles. The possible alleles at a given locus are considered to be those
that are actually observed in the data. Let a; denote the number of distinguishable alleles at the locus.
To count the number of underlying haplotypes that are consistent with the observed and missing marker
data, we need to enumerate all possible genotypes for the loci with missing data, and consider whether the
imputed genotypes are heterozygous or homozygous.

To develop our method, first consider how to count the number of genotypes at a locus, say the ‘"
locus, when either one or two alleles are missing. This locus could have either a homozygous or heterozygous
genotype, and both possibilities must be considered for our counting method. If the locus is considered as
homozygous, and there is one allele missing, then there is only one possible genotype; if there are two alleles
missing, then there are a; possible genotypes. A function to perform this counting for homozygous loci is
denoted f(a;). If the locus is considered as heterozygous, and there is one allele missing, then there are a; — 1
possible genotypes; if there are two alleles missing, then there are w possible genotypes. A function to
perform this counting for heterozygous loci is denoted g(a;) These functions and counts are summarized in
Table A.1.

Table A.1: Factors for when a locus having missing allele(s) is counted as homozygous(f()) or heterozygous(g())

Number of | Homozygous | Heterozygous
missing alleles | function f(a;) | function g(a;)

1 1 a; — 1
2 ai ai(aéifl)

Now, to use these genotype counting functions to determine the number of possible haplotype pairs, first
consider a simple case where only one locus, say the i*" locus, has two missing alleles. Suppose that the
phenotype has H heterozygous loci (H is the count of heterozygous loci among those without missing data).
We consider whether the locus with missing data is either homozygous or heterozygous, to give the count of
possible haplotype pairs as

52

i(a; — 1
ain + |:az(az2):| 2r+1 (1>
where again © = H — 1 if H is at least 2, otherwise x = 0. This special case can be represented by our more
general genotype counting functions as

f(ai)2® + g(a;) 27 (2)

When multiple loci have missing data, we need to sum over all possible combinations of heterozygous
and homozygous genotypes for the incomplete loci. The rows of Table A.2 below present these combinations
for up to m = 3 loci with missing data. Note that as the number of heterozygous loci increases (across the
columns of Table A.2), so too does the exponent of 2. To calculate the total number of pairs of haplotypes,
given observed and possibly missing genotypes, we need to sum the terms in Table A.2 across the appropriate
row. For example, with m = 3, there are eight terms to sum over. The general formulation for this counting
method can be expressed as

Total Pairs = Z Z C(combo, j) (3)

7=0 combo

where combo is a particular pattern of heterozygous and homozygous loci among the loci with missing values
(e.g., for m = 3, one combination is the first locus heterozygous and the 2"¢ and 3" third as homozygous),
and C(combo, j) is the corresponding count for this pattern when there are i loci that are heterozygous (e.g.,
for m =3 and j =1 , as illustrated in Table A.2).

Table A.2: Genotype counting terms when m loci have missing

alleles, grouped by number of heterozygous loci (out of m)

’mH j:()ofm\ jzlofm\ j:2ofm\ j:30fm‘
0 2%
1 fla1)2® g(ap)2”+!
2 fla1)f(az)2” g(ar) f(ag)2" ™! g(a1)g(ag)2" ™!
fla1)g(ag)2"+
3] f(a1) flaz)f(a3)2” | gla1)f(az)f(as)2" 1 | g(ai)g(az)f(as)2"™2 | g(a1)g(az)g(as)2™+>
flar)g(az) f(as)2*t! | g(a1)f(az)g(as)2”+?
fla1)f(az)g(asz)2*t! | f(a1)g(az)g(ag)2”t?

53

References

[1] Clayton, David. Personal web page, software list. <http://www-gene.cimr.cam.ac.uk/clayton/software/>.
Accessed April 1, 2004.

[2] Schaid DJ. Power and Sample Size for Testing Associations of Haplotypes with Complex Traits. Annals
of Human Genetics 2005;70:116-130.

[3] Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for association between traits
and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-34.

[4] Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG. Testing Association of Sta-
tistically Inferred Haplotypes with Discreet and Continuous Traits in Samples of Unrelated Individuals.
Human Heredity 2002;53:79-91.

[5] Harrell, FE. Regression Modeling Strategies. New York: Springer-Verlag; 2001.
[6] Besag J, Clifford P. Sequential Monte Carlo p-Values. Biometrika 1991;78:301-304.

[7] Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D. Estimation and tests of haplotype-environment
interaction when linkage phase is ambiguous. Human Heredity 2003;55:56-65.

[8] Stram D, Pearce C, Bretsky P, Freedman M, Hirschhorn J, Altshuler D, Kolonel L, Henderson B, Thomas
D. Modeling and E-M estimation of haplotype-specific relative risks from genotype data for case-control
study of unrelated individuals. Hum Hered 2003;55:179-190.

[9] Epstein MP, Satten GA. Inference on haplotype effects in case-control studies using unphased genotype
data. Am J Hum Genet 2003;73:1316-1329.

[10] McCullagh P, Nelder JA. Generalized Linear Models, Second Edition. Boca Raton, FL: Chapman and
Hall. 1989:35-36.

[11] Cheng R, Ma JZ, Elston RC, Li MD. Fine Mapping Functional Sites or Regions from Case-Control Data
Using Haplotypes of Multiple Linked SNPs. Annals of Human Genetics 2005;69: 102-112.

[12] Yu Z, Schaid DJ. Sequential haplotype scan methods for association analysis. Gen Epi 2007;31:553-564.

[13] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease.
J Nat Cancer Inst 1959;22:719-48.

[14] Xie R, Stram DO. Asymptotic equivalence between two score tests for haplotype-specific risk in general
linear models. Gen Epi 2005;29:166-170.

[15] Lin DY, Zeng D. Likelihood-based inference on haplotype effects in genetic association studies. J Am
Stat Assoc 2006;101:473.

o4

