
Package ‘Rdistance’
February 11, 2026

Type Package

Title Density and Abundance from Distance-Sampling Surveys

Version 4.3.1

Date 2026-02-10

Maintainer Trent McDonald <trent@mcdonalddatasciences.com>

Description Distance-sampling (<doi:10.1007/978-3-319-19219-2>)
is a field survey and analytical method that estimates density and
abundance of survey targets (e.g., animals) when
detection probability declines with observation distance.
Distance-sampling is popular in ecology,
especially when survey targets are observed from aerial platforms (e.g.,
airplane or drone), surface vessels (e.g., boat or truck), or along
walking transects. Analysis involves fitting smooth (parametric) curves to
histograms of observation distances and using those functions to
adjust density estimates for missed targets. Routines included here
fit curves to observation distance histograms, estimate effective
sampling area, density of targets in surveyed areas, and the abundance
of targets in a surrounding study area. Confidence interval estimation
uses built-in bootstrap resampling. Help files are extensive and have been
vetted by multiple authors. Many tutorials are available on the package's
website (URL below).

License GNU General Public License

URL https://mcdonalddata.science/Rdistance.html

BugReports https://github.com/tmcd82070/Rdistance/issues

LazyData TRUE

Suggests testthat (>= 3.0.0),

Depends R (>= 4.1.0), units

Imports graphics, stats, utils, crayon, withr, tidyr, dplyr, progress,
tibble, tidyselect, dfoptim, expint, multidplyr

RoxygenNote 7.3.3

Encoding UTF-8

1

https://doi.org/10.1007/978-3-319-19219-2
https://mcdonalddata.science/Rdistance.html
https://github.com/tmcd82070/Rdistance/issues

2 Contents

Config/testthat/edition 3

NeedsCompilation no

Author Trent McDonald [cre, aut],
Jason Carlisle [aut],
Aidan McDonald [aut] (point transect methods),
Ryan Nielson [ctb] (smoothed likelihood),
Ben Augustine [ctb] (maximization method),
James Griswald [ctb] (maximization method),
Patrick McKann [ctb] (maximization method),
Lacey Jeroue [ctb] (vignettes),
Hoffman Abigail [ctb] (vignettes),
Kleinsausser Michael [ctb] (vignettes),
Joel Reynolds [ctb] (Gamma likelihood),
Pham Quang [ctb] (Gamma likelihood),
Earl Becker [ctb] (Gamma likelihood),
Aaron Christ [ctb] (Gamma likelihood),
Brook Russelland [ctb] (Gamma likelihood),
Stefan Emmons [ctb] (Automated tests),
Will McDonald [ctb] (Automated tests),
Reid Olson [ctb] (Automated tests and bug fixes)

Repository CRAN

Date/Publication 2026-02-11 08:40:13 UTC

Contents
Rdistance-package . 4
abundEstim . 6
AIC.dfunc . 10
autoDistSamp . 11
bcCI . 15
bootstrap . 16
bspline.expansion . 17
checkNEvalPts . 18
checkUnits . 18
coef.dfunc . 19
colorize . 20
cosine.expansion . 21
dE.multi . 22
dE.single . 25
dfuncEstim . 30
dfuncEstimErrMessage . 34
differentiableLikelihoods . 35
distances . 35
EDR . 36
effectiveDistance . 37
effort . 38

Contents 3

errDataUnk . 39
estimateN . 39
ESW . 41
expansionTerms . 42
Gamma.like . 44
Gamma.start.limits . 46
GammaModes . 47
GammaReparam . 47
getNCores . 48
groupSizes . 49
gxEstim . 50
halfnorm.like . 52
halfnorm.start.limits . 53
hazrate.like . 54
hazrate.start.limits . 56
hermite.expansion . 57
HookeJeeves . 58
insertOneStepBreaks . 59
integrateDfuncs . 59
integrateGammaLines . 61
integrateHalfnormLines . 63
integrateHalfnormPoints . 65
integrateHazrateLines . 67
integrateKey . 68
integrateNegexpLines . 69
integrateNegexpPoints . 71
integrateNumeric . 73
integrateOneStepLines . 75
integrateOneStepNumeric . 77
integrateOneStepPoints . 79
intercept.only . 81
is.points . 81
is.RdistDf . 82
is.smoothed . 83
is.Unitless . 83
likeParamNames . 84
lines.dfunc . 85
maximize.g . 86
mlEstimates . 87
model.matrix.dfunc . 88
nCovars . 88
negexp.like . 89
negexp.start.limits . 90
nLL . 91
Nlminb . 92
observationType . 93
oneBsIter . 94
oneStep.like . 95

4 Rdistance-package

oneStep.start.limits . 97
Optim . 99
parseModel . 100
perpDists . 102
plot.dfunc . 103
plot.dfunc.para . 107
predDensity . 110
predDfuncs . 111
predict.dfunc . 111
predLikelihood . 115
print.abund . 116
print.dfunc . 117
RdistanceControls . 118
RdistDf . 119
secondDeriv . 124
simple.expansion . 125
simpsonCoefs . 126
sine.expansion . 127
sparrowDetectionData . 128
sparrowDf . 129
sparrowDfuncObserver . 131
sparrowSiteData . 132
startLimits . 133
summary.abund . 134
summary.dfunc . 135
summary.rowwise_df . 137
thrasherDetectionData . 138
thrasherDf . 139
thrasherSiteData . 140
transectType . 141
unnest . 141
varcovarEstim . 142
%#% . 143

Index 146

Rdistance-package Rdistance - Distance Sampling Analyses for Abundance Estimation

Description

Rdistance contains functions and associated routines to analyze distance-sampling data collected
on point or line transects. Some of Rdistance’s features include:

• Accommodation of both point and line transect analyses in one routine (dfuncEstim).

• Regression-like formula for inclusion of distance function covariates (dfuncEstim).

• Automatic bootstrap confidence intervals (abundEstim).

Rdistance-package 5

• Availability of both study-area and site-level abundance estimates (help("predict.dfunc")).

• Classical, parametric distance functions (halfnorm.like, hazrate.like, negexp.like),
and expansion functions (cosine.expansion, hermite.expansion, simple.expansion).

• Automated distance function fits and selection autoDistSamp.

• print, plot, predict, coef, and summary methods for distance function objects and abun-
dance classes.

Background

Distance-sampling is a popular method for abundance estimation in ecology. Line transect surveys
are conducted by traversing randomly placed transects in a study area with the objective of sighting
animals and estimating density or abundance. Data collected during line transect surveys consists of
sighting records for targets, usually either individuals or groups of individuals. Among the collected
data, off-transect distances are recorded or computed from other information (see perpDists). Off-
transect distances are the perpendicular distances from the transect to the location of the initial
sighting cue. When groups are the target, the number of individuals in the group is recorded.

Point transect surveys are similar except that observers stop one or more times along the transect
to observe targets. This is a popular method for avian surveys where detections are often auditory
cues, but is also appropriate when automated detectors are placed along a route. Point transect
surveys collect distances from the observer to the target and are sometimes called radial distances.

A fundamental characteristic of both line and point-based distance sampling analyses is that prob-
ability of detecting a target declines as off-transect or radial distances increase. Targets far from
the observer are usually harder to detect than closer targets. In most classical line transect studies,
targets on the transect (off-transect distance = 0) are assume to be sighted with 100% probability.
This assumption allows estimation of the proportion of targets missed during the survey, and thus it
is possible to adjust the actual number of sighted targets for the proportion of targets missed. Some
studies utilize two observers searching the same areas to estimate the proportion of individuals
missed and thereby eliminating the assumption that all individuals on the line have been observed.

Relationship to other software

A detailed comparison of Rdistance to other options for distance sampling analysis (e.g., Program
DISTANCE, R package Distance, and R package unmarked) is forthcoming. While some of the
functionality in Rdistance is not unique, our aim is to provide an easy-to-use, rigorous, and flexible
analysis option for distance-sampling data. We understand that beginning users often need software
that is both easy to use and easy to understand, and that advanced users often require greater flexi-
bility and customization. Our aim is to meet the demands of both user groups. Rdistance is under
active development, so please contact us with issues, feature requests, etc. through the package’s
GitHub website (https://github.com/tmcd82070/Rdistance).

Data sets

Rdistance contains four example data sets: two collected using line-transect methods (i.e., sparrowDetectionData
and sparrowSiteData) and two collected using point-transect methods (i.e., thrasherDetectionData
and thrasherSiteData).

https://github.com/tmcd82070/Rdistance

6 abundEstim

Author(s)

Main author and maintainer: Trent McDonald <trent@mcdonalddatasciences.com>

Coauthors: Ryan Nielson, Jason Carlisle, and Aidan McDonald

Contributors: Ben Augustine, James Griswald, Joel Reynolds, Pham Quang, Earl Becker, Aaron
Christ, Brook Russelland, Patrick McKann, Lacey Jeroue, Abigail Hoffman, Michael Kleinsasser,
and Ried Olson

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

Useful links:

• https://mcdonalddata.science/Rdistance.html

• Report bugs at https://github.com/tmcd82070/Rdistance/issues

abundEstim Distance Sampling Abundance Estimates

Description

Estimate abundance (or density) from an estimated detection function and supplemental information
on observed group sizes, transect lengths, area surveyed, etc. Computes confidence intervals on
abundance (or density) using a the bias corrected bootstrap method.

Usage

abundEstim(
object,
area = NULL,
propUnitSurveyed = 1,
ci = 0.95,
R = 500,
plot.bs = FALSE,
showProgress = TRUE,
parallel = TRUE

)

https://mcdonalddata.science/Rdistance.html
https://github.com/tmcd82070/Rdistance/issues

abundEstim 7

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

ci A scalar indicating the confidence level of confidence intervals. Confidence
intervals are computed using a bias corrected bootstrap method. If ci = NULL or
ci == NA, confidence intervals are not computed.

R The number of bootstrap iterations to conduct when ci is not NULL.

plot.bs A logical scalar indicating whether to plot individual bootstrap iterations. Ig-
nored unless parallel = FALSE.

showProgress A logical indicating whether to show a text-based progress bar during boot-
strapping. Default is TRUE. It is handy to shut off the progress bar if running this
within another function. Ignored unless parallel = FALSE.

parallel A logical scalar, or a positive integer; ignored unless confidence intervals are
requested (i.e., !is.null(ci)). If TRUE, bootstrap iterations are run in parallel
using the maximum number of CPU cores minus 1. The maximum number of
CPU cores is reported by parallel::detectCores(). If a positive integer (1
<= parallel <= maximum cores), bootstrap iterations are performed in parallel
on that many cores. If FALSE, bootstrap iterations are performed in series, and
progress will be shown if showProgress == TRUE. Parameters showProgress
and plot.bs are ignored when operating in parallel.

Details

The abundance estimate for line-transect surveys (if no covariates are included in the detection
function and both sides of the transect are observed) is

N =
n(A)

2(ESW)(L)

where n is total number of sighted individuals (i.e., sum(groupSizes(dfunc))), L is the total length
of surveyed transect (i.e., sum(effort(dfunc))), and ESW is effective strip width computed from

8 abundEstim

the estimated distance function (i.e., ESW(dfunc)). If only one side of transects were observed, the
"2" in the denominator is not present (or, replaced with a "1").

The abundance estimate for point transect surveys (if no covariates are included) is

N =
n(A)

π(ESR2)(P)

where n is total number of sighted individuals (i.e., sum(groupSizes(dfunc))), P is the total num-
ber of surveyed points (i.e., sum(effort(dfunc))), and ESR is effective search radius computed
from the estimated distance function (i.e., ESR(dfunc)).

This routine, abundEstim, estimates abundance on the entire study area. Site-specific density esti-
mates are computed by predict(x, type = "density"), which returns a tibble containing density
and abundance on the area surveyed by every transect.

Value

An Rdistance ’abundance estimate’ object, which is a list of class c("abund", "dfunc"), contain-
ing all the components of a "dfunc" object (see dfuncEstim), plus the following:

estimates A tibble containing fitted coefficients in the distance function, density in the
area(s) surveyed, abundance on the study area, the number of groups seen be-
tween w.lo and w.hi, the number of individuals seen between w.lo and w.hi,
study area size, surveyed area, average group size, and average effective detec-
tion distance.

B If confidence intervals were requested, a tibble containing all bootstrap values of
coefficients, density, abundance, groups seen, individuals seen, study area size,
surveyed area size, average group size, and average effective detection distance.
The number of rows is always R, the requested number of bootstrap iterations. If
an iteration fails, the corresponding row in B is NA (hence, use ’na.rm = TRUE’
when computing summaries). Columns 1 through length(coef(dfunc)) con-
tain bootstrap realizations of the distance function’s coefficients.

ci Confidence level of the confidence intervals

Bootstrap Confidence Intervals

Rdistance’s nested data frames (produced by RdistDf) contain all information required to estimate
bootstrap CIs. To compute bootstrap CIs, Rdistance resamples, with replacement, the rows of the
$data component contained in Rdistance fitted models. Rdistance assumes each row of $data
contains information on one transect. The $data component also contains information on which
observations inform the detection function, which observations should be counted as detected tar-
gets, and which transects count toward transect length. After resampling rows of $data, Rdistance
refits the distance function using non-missing distances, recomputes the detected number of targets
using non-missing group sizes on transects with non-missing length, and re-computes total tran-
sect length from transects with non-missing lengths. By default, R = 500 bootstrap iterations are
performed, after which bias corrected confidence intervals are computed (Manly, 1997, section 3.4).

The distance function is not re-selected during bootstrap resampling. The model of the input object
is re-fitted every iteration.

abundEstim 9

During bootstrap iterations, the distance function can fail. An iteration can fail for a two reasons: (1)
no detections on the iteration, and (2) a bad configuration of distances that push the distance func-
tion’s parameters to their limits. When an iteration fails, Rdistance skips the iteration and effectively
ignores the failed iterations. If the proportion of failed iterations is small (less than 20% by default),
the resulting abundance confidence interval is probably valid and no warning is issued. If the pro-
portion of non-convergent iterations is not small (exceeds 20% by default), a warning is issued.
The warning can be modified by re-setting option "Rdistance_maxBSFailPropForWarning" to
the acceptable proportion of failures.. Setting options(Rdistance_masBSFailPropForWarning
= 1.0) will turn suppress the warning. Setting options(Rdistance_masBSFailPropForWarning
= 0.0) will warn if any iteration failed. Results (density and effective sampling distance) from all
successful iterations are contained in the non-NA rows of data frame ’B’ in the output object.

Missing Transect Lengths

Transect lengths can be missing in the RdistDf object. Missing length transects are equivalent to
0 [m] transects and do not count toward total surveyed units, nor do group sizes on these transects
count toward total detected individuals. Use NA-length transects to include their associated dis-
tances during distance function estimation, but not when estimating abundance. For example, this
allows estimation of abundance on one study area using off-transect distances from another. This
allows sightability to be estimated using two or more similar targets (e.g., two similar species), but
abundance to be estimated separate for each target type. Include NA-length transects by including
the "extra" distance observations in the detection data frame, with valid site IDs, but set the length
of those site IDs to NA in the site data frame.

Point Transect Lengths

Point transects do not have a physical measurement for length. The "length" of point transects is
the number of points on the transect. Point transects can contain only one point. Rdistance treats
transects of points as independent and bootstrap resamples them to estimate variance. The number
of points on each point transect must exist in the RdistDf and cannot have physical measurement
units (it is a count, not a distance).

References

Manly, B.F.J. (1997) Randomization, bootstrap, and Monte-Carlo methods in biology, London:
Chapman and Hall.

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

dfuncEstim, autoDistSamp, predict.dfunc with ’type = "density"’.

Examples

Load example sparrow data (line transect survey type)
sparrowDf <- RdistDf(sparrowSiteData, sparrowDetectionData)
data(sparrowDf)

10 AIC.dfunc

Fit half-normal detection function
dfunc <- sparrowDf |>

dfuncEstim(formula=dist ~ groupsize(groupsize)
, likelihood="halfnorm"
, w.hi=150 %m%.

)

Estimate abundance - Convenient for programming
abundDf <- estimateN(dfunc

, area = 4105 %km^2%.
)

Same - Nicer output
Set ci=0.95 (or another value) to estimate bootstrap CI's
fit <- abundEstim(dfunc

, area = 4105 %km^2%.
, ci = NULL
)

AIC.dfunc AIC-related fit statistics for detection functions

Description

Computes AICc, AIC, or BIC for estimated distance functions.

Usage

S3 method for class 'dfunc'
AIC(object, ..., criterion = "AICc")

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

... Included for compatibility with generic predict methods.

criterion String specifying the criterion to compute. Either "AICc", "AIC", or "BIC".

Details

Regular Akaike’s information criterion (https://en.wikipedia.org/wiki/Akaike_information_
criterion) (AIC) is

AIC = LL+ 2p,

where LL is the maximized value of the log likelihood (the minimized value of the negative log
likelihood) and p is the number of coefficients estimated in the detection function. For dfunc
objects, AIC = obj$loglik + 2*length(coef(obj)).

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Akaike_information_criterion

autoDistSamp 11

A correction for small sample size, AICc, is

AICc = LL+ 2p+
2p(p+ 1)

n− p− 1
,

where n is sample size or number of detected groups for distance analyses. By default, this function
computes AICc. AICc converges quickly to AIC as n increases.

The Bayesian Information Criterion (BIC) is

BIC = LL+ log(n)p,

.

Value

A scalar, the requested fit statistic for object.

References

Burnham, K. P., and D. R. Anderson, 2002. Model selection and multi-model inference: A practical
information-theoretic approach, Second ed. Springer-Verlag. ISBN 0-387-95364-7.

McQuarrie, A. D. R., and Tsai, C.-L., 1998. Regression and time series model selection. World
Scientific. ISBN 981023242X

See Also

coef, dfuncEstim

Examples

data(sparrowDf)
dfunc <- sparrowDf |> dfuncEstim(dist~1)

Fit statistics
AIC(dfunc) # AICc
AIC(dfunc, criterion="AIC") # AIC
AIC(dfunc, criterion="BIC") # BIC

autoDistSamp Automated classical distance analysis

Description

Perform automated likelihood, expansion, and series selection for a classic distance sampling anal-
ysis. Estimate abundance using the best fitting likelihood, expansion, and series.

12 autoDistSamp

Usage

autoDistSamp(
data,
formula,
likelihoods = c("halfnorm", "hazrate", "negexp"),
w.lo = setUnits(0, "m"),
w.hi = NULL,
expansions = 0:3,
series = c("cosine"),
x.scl = w.lo,
g.x.scl = 1,
warn = TRUE,
outputUnits = NULL,
area = NULL,
propUnitSurveyed = 1,
ci = 0.95,
R = 500,
plot.bs = FALSE,
showProgress = TRUE,
plot = TRUE,
criterion = "AICc"

)

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function
RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 + covar2).
The left-hand side (before ~) is the name of the vector containing off-transect or
radial detection distances. The right-hand side contains the names of covariate
vectors to fit in the detection function, and potentially group sizes. Group sizes
are specified by including + groupsize(<variable>) in the RHS (see ’Group
Sizes’ section). Covariates can be either detection level or transect level and can
appear in data or exist in the global working environment. Regular R scoping
rules apply.

likelihoods String vector specifying the likelihoods to fit. See ’likelihood’ parameter of
dfuncEstim.

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0, it
must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If unspecified (i.e., NULL), right-

autoDistSamp 13

truncation is set to the maximum of the observed distances. If w.hi is specified,
it must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which the detection function will be scaled.
g.x.scl can be a distance or the string "max". When x.scl is specified (i.e., not
0 or "max"), it must have measurement units assigned. See help(unitHelpers)
for assistance assigning units.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When com-
puting bootstrap confidence intervals, setting warn = FALSE turns off annoying
warnings when an iteration does not converge. Regardless of warn, after com-
pletion all messages about convergence and boundary conditions are printed by
print.dfunc, print.abund, and plot.dfunc.

outputUnits A string specifying the symbolic measurement units for results. Valid units are
listed in units::valid_udunits(). The strings for common distance symbolic
units are: "m" - meters, "ft" - feet, "cm" - centimeters, "mm" - millimeters, "mi"
- miles, "nmile" - nautical miles ("nm" is nano meters), "in" - inches, "yd" -
yards, "km" - kilometers, "fathom" - fathoms, "chains" - chains, and "furlong" -
furlongs. If outputUnits is unspecified (NULL), output units will be the same
as those on distances in data.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

14 autoDistSamp

ci A scalar indicating the confidence level of confidence intervals. Confidence
intervals are computed using a bias corrected bootstrap method. If ci = NULL or
ci == NA, confidence intervals are not computed.

R The number of bootstrap iterations to conduct when ci is not NULL.

plot.bs A logical scalar indicating whether to plot individual bootstrap iterations. Ig-
nored unless parallel = FALSE.

showProgress A logical indicating whether to show a text-based progress bar during boot-
strapping. Default is TRUE. It is handy to shut off the progress bar if running this
within another function. Ignored unless parallel = FALSE.

plot Logical scalar specifying whether to plot models during model selection. If
TRUE, a histogram with fitted distance function is plotted for every model. The
function pauses between each plot and prompts the user for whether they want
to continue. To suppress user prompts, set plot = FALSE.

criterion A string specifying the criterion to use when assessing model fit. The best fitting
model, as defined by this routine, has the lowest value of this criterion. This must
be one of "AICc" (the default), "AIC", or "BIC". See AIC.dfunc for formulas.

Details

During distance function selection, all combinations of likelihoods, series, and number of ex-
pansions is fitted. For example, if likelihoods has 3 elements, series has 2 elements, and
expansions has 4 elements, this routine fits a total of 3 (likelihoods) * 2 (series) * 4 (expansions)
= 24 models. Default parameters fit 9 detection functions, i.e., all combinations of "halfnorm",
"hazrate", and "negexp" likelihoods and 0 through 3 expansions. Other combinations are specified
through values of likelihoods, series, and expansions.

Suppress all intermediate output using plot.bs=FALSE, showProgress=FALSE, and plot=FALSE.

The returned abundance estimate object contains an additional component, the fitting table (a list of
models fitted and criterion values) in component $fitTable.

Value

An Rdistance ’abundance estimate’ object, which is a list of class c("abund", "dfunc"), contain-
ing all the components of a "dfunc" object (see dfuncEstim), plus the following:

estimates A tibble containing fitted coefficients in the distance function, density in the
area(s) surveyed, abundance on the study area, the number of groups seen be-
tween w.lo and w.hi, the number of individuals seen between w.lo and w.hi,
study area size, surveyed area, average group size, and average effective detec-
tion distance.

B If confidence intervals were requested, a tibble containing all bootstrap values of
coefficients, density, abundance, groups seen, individuals seen, study area size,
surveyed area size, average group size, and average effective detection distance.
The number of rows is always R, the requested number of bootstrap iterations. If
an iteration fails, the corresponding row in B is NA (hence, use ’na.rm = TRUE’
when computing summaries). Columns 1 through length(coef(dfunc)) con-
tain bootstrap realizations of the distance function’s coefficients.

ci Confidence level of the confidence intervals

bcCI 15

See Also

dfuncEstim, abundEstim.

Examples

Load example sparrow data (line transect survey type)
data(sparrowDf)

autoDistSamp(data = sparrowDf
, formula = dist ~ groupsize(groupsize)
, likelihoods = c("halfnorm","negexp")
, expansions = 0
, plot = FALSE
, ci = NULL
, area = 1 %ha%.

)

Not run:
autoDistSamp(data = sparrowDf

, formula = dist ~ 1 + groupsize(groupsize)
, ci = 0.95
, area = 1 %ha%.

)

End(Not run)

bcCI Bias corrected bootstraps

Description

Calculate bias-corrected confidence intervals for bootstrap data using methods in Manly textbook.

Usage

bcCI(x.bs, x, ci = 0.95)

Arguments

x.bs A vector of bootstrap estimates of some quantity.
x A scalar of the original estimate of the quantity.
ci A scalar of the desired confidence interval coverage.

Value

A named vector containing the lower and upper endpoints of the bias-corrected bootstrap confidence
interval.

16 bootstrap

bootstrap Perform bootstrap iterations

Description

Performs bootstrap resampling iterations, either in parallel across CPU cores or in serial on a single
core.

Usage

bootstrap(
object,
area,
propUnitSurveyed,
R,
plot.bs,
plotCovValues,
showProgress,
parallel,
cores

)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

R The number of bootstrap iterations to conduct when ci is not NULL.

plot.bs A logical scalar indicating whether to plot individual bootstrap iterations. Ig-
nored unless parallel = FALSE.

plotCovValues Data frame containing values of covariates to plot. Ignored if plot.bs is FALSE.

bspline.expansion 17

showProgress A logical indicating whether to show a text-based progress bar during boot-
strapping. Default is TRUE. It is handy to shut off the progress bar if running this
within another function. Ignored unless parallel = FALSE.

parallel Logical scalar. TRUE if we are running iterations in parallel across CPU cores.
Number of cores specified in cores.

cores Integer scalar. The number of CPU cores to use during parallel operations, if
requested. Ignored if parallel == FALSE.

Value

A data frame containing density, abundance, and other relevant statistics for every bootstrap it-
eration. Number of rows is R. If the model from one iteration failed for any reason (e.g., non-
convergence), the entire row except the ID column is missing.

See Also

abundEstim; oneBsIter

bspline.expansion B-spline expansion terms

Description

Computes spline, specifically b-spline, expansion terms that modify the shape of distance likelihood
functions.

Usage

bspline.expansion(x, expansions)

Arguments

x A numeric matrix of distances at which to evaluate the expansion series. For
distance analysis, x should be the proportion of the maximum sighting distance
at which a group was sighted, i.e., x = d/w, where d is sighting distance and w
is maximum sighting distance.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

Value

A 3D array of size nrow(x) X ncol(x) X expansions. The ’pages’ (3rd dimension) of this array
are the cosine expansions of x. i.e., page 1 is the first expansion term of x, page 2 is the second
expansion term of x, etc.

See Also

dfuncEstim, cosine.expansion, hermite.expansion, simple.expansion.

18 checkUnits

Examples

x <- matrix(seq(0, 1, length = 200), ncol = 1)
spl.expn <- bspline.expansion(x, 5)
plot(range(x), range(spl.expn), type="n")
matlines(x, spl.expn[,1,1:5], col=rainbow(5), lty = 1)

checkNEvalPts Check number of numeric integration intervals

Description

Check that number of integration intervals is odd and sufficiently large. Plus, compute and store the
Simpson’s Composite rule coefficients.

Usage

checkNEvalPts(nEvalPts)

Arguments

nEvalPts An integer to check.

Value

The first element of nEvalPts is returned if it is acceptable. If nEvalPts is not acceptable, an error is
thrown. Simpson’s composite coefficients are store in options()

checkUnits Check for the presence of units

Description

Check for the presence of physical measurement units on key columns of an RdistDf data frame.

Usage

checkUnits(ml)

Arguments

ml An Rdistance model list produced by parseModel containing a list of parame-
ters for the distance model.

Value

The input ml list, with units of various quantities converted to common units. If a check fails, for
example, a quantity does not have units, an error is thrown.

coef.dfunc 19

coef.dfunc Coefficients of an estimated detection function

Description

Extract distance model coefficients from an estimated detection function object.

Usage

S3 method for class 'dfunc'
coef(object, ...)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

... Ignored

Value

The estimated coefficient vector for the detection function. Length and interpretation of values vary
depending on the form of the detection function and expansion terms.

See Also

AIC, dfuncEstim

Examples

data(sparrowDfuncObserver) # pre-estimated dfunc

Same as sparrowDfuncObserver$par
coef(sparrowDfuncObserver)

Not run:
data(sparrowDf)
dfunc <- sparrowDf |> dfuncEstim(dist~bare + observer,

w.hi = 150 %m%.)
coef(dfunc)

End(Not run)

20 colorize

colorize Add color to result if terminal accepts it

Description

Add ANSI color to a string using the crayon package, if the R environment accepts color. This
function is needed because some output cannot be colorized. Color determination is made by
crayon::has_color().

Rdistance results often include units, e.g., "25 [m]". Only colorize the numbers, not the units.
Everything between the first set of square brackets ([...]) is NOT colorized. Subsequent sets of
brackets (e.g., "25 [m] + 30 [ft]") ARE colorized (i.e., "[ft]" is color).

Usage

colorize(STR, col = NULL, bg = NULL)

Arguments

STR A vector of strings to colorize.

col A string specifying the desired foreground color. This is passed straight to
crayon::style and so must be recognized as one of the 8 base crayon col-
ors. i.e., "black", "red", "green", "yellow", "blue", "magenta", "cyan", "white",
and "silver" (silver = gray). By default, numbers are styled in "green".

bg A string specifying the desired background color. Must be one of "bgBlack",
"bgRed", "bgGreen", "bgYellow", "bgBlue" "bgMagenta", "bgCyan", or "bg-
White". By default, no background is applied.

Value

If color is not allowed in the terminal, the input string is returned unperturbed. If color is allowed,
the input string is returned with color and background ANSI code surrounding the initial part of the
string from character 1 to the character before the [in the first pair of [].

See Also

crayon::style

cosine.expansion 21

cosine.expansion Cosine expansion terms

Description

Computes the cosine expansion terms that modify the shape of distance likelihood functions.

Usage

cosine.expansion(x, expansions)

Arguments

x A numeric matrix of distances at which to evaluate the expansion series. For
distance analysis, x should be the proportion of the maximum sighting distance
at which a group was sighted, i.e., x = d/w, where d is sighting distance and w
is maximum sighting distance.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

Details

The cosine expansion used here is:

• First term:
h1(x) = cos(2πx),

• Second term:
h2(x) = cos(4πx),

• Third term:
h3(x) = cos(6πx),

• Fourth term:
h4(x) = cos(8πx),

• Fifth term:
h5(x) = cos(10πx),

The maximum number of expansion terms is 5.

The cosine expansion frequency in Rdistance is 2*pi. Each term is two pi more than the previous.
The sine expansion frequency in Rdistance is pi. Consequently, the sine and cosine expansions fit
different models.

Value

A 3D array of size nrow(x) X ncol(x) X expansions. The ’pages’ (3rd dimension) of this array
are the cosine expansions of x. i.e., page 1 is the first expansion term of x, page 2 is the second
expansion term of x, etc.

22 dE.multi

See Also

dfuncEstim, hermite.expansion, simple.expansion

Examples

x <- matrix(seq(0, 1, length = 200), ncol = 1)
cos.expn <- cosine.expansion(x, 5)
plot(range(x), range(cos.expn), type="n")
matlines(x, cos.expn[,1,1:5], col=rainbow(5), lty = 1)

dE.multi Estimate multiple-observer line-transect distance functions

Description

Fits a detection function to off-transect distances collected by multiple observers.

Usage

dE.multi(
data,
formula,
likelihood = "halfnorm",
w.lo = setUnits(0, "m"),
w.hi = NULL,
expansions = 0,
series = "cosine",
x.scl = setUnits(0, "m"),
g.x.scl = 1,
warn = TRUE,
outputUnits = NULL

)

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function
RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 + covar2).
The left-hand side (before ~) is the name of the vector containing off-transect or
radial detection distances. The right-hand side contains the names of covariate
vectors to fit in the detection function, and potentially group sizes. Group sizes
are specified by including + groupsize(<variable>) in the RHS (see ’Group

dE.multi 23

Sizes’ section). Covariates can be either detection level or transect level and can
appear in data or exist in the global working environment. Regular R scoping
rules apply.

likelihood String specifying the likelihood to fit. Built-in likelihoods at present are "halfnorm",
"hazrate", and "negexp".

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0, it
must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If unspecified (i.e., NULL), right-
truncation is set to the maximum of the observed distances. If w.hi is specified,
it must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which the detection function will be scaled.
g.x.scl can be a distance or the string "max". When x.scl is specified (i.e., not
0 or "max"), it must have measurement units assigned. See help(unitHelpers)
for assistance assigning units.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When com-
puting bootstrap confidence intervals, setting warn = FALSE turns off annoying
warnings when an iteration does not converge. Regardless of warn, after com-
pletion all messages about convergence and boundary conditions are printed by
print.dfunc, print.abund, and plot.dfunc.

outputUnits A string specifying the symbolic measurement units for results. Valid units are
listed in units::valid_udunits(). The strings for common distance symbolic
units are: "m" - meters, "ft" - feet, "cm" - centimeters, "mm" - millimeters, "mi"
- miles, "nmile" - nautical miles ("nm" is nano meters), "in" - inches, "yd" -
yards, "km" - kilometers, "fathom" - fathoms, "chains" - chains, and "furlong" -
furlongs. If outputUnits is unspecified (NULL), output units will be the same
as those on distances in data.

Value

An object of class ’dfunc’. Objects of class ’dfunc’ are lists containing the following components:

24 dE.multi

par The vector of estimated parameter values. Length of this vector for built-in
likelihoods is one (for the function’s parameter) plus the number of expansion
terms plus one if the likelihood is ’hazrate’ (which has two parameters).

varcovar The variance-covariance matrix for coefficients of the distance function, esti-
mated by the inverse of the fit’s Hessian. If maximization has been performed
by Nlminb or HookesJeeves, Rdistance estimates the Hessian from the sec-
ond derivative of the log likelihood surface at the final estimates, where second
derivatives are estimated by numeric differentiation (see secondDeriv. If Op-
tim performed the maximization, Rdistance uses the Hessian returned by Optim.
The variance-covariance matrix is re-set to NULL if the Hessian is not positive-
definite. Error estimates derived from bootstrapping are generally more reliable.
I.e., re-compute coefficient confidence intervals using the bootstrap values in
component $B of an abundance object.

loglik The maximized value of the log likelihood.

convergence The convergence code. This code is returned by optim or nlminb. Values other
than 0 indicate suspect convergence.

likelihood The name of the likelihood. This is the value of the argument likelihood.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

mf A modelframe of detections within the strip or circle used in the fit. Column
’dist’ contains the observed distances. Column ’offset(...)’ contains group sizes
associated with the values of ’dist’. Group sizes are only used in abundEstim.
This model frame contains only non-missing distances between w.lo and w.hi.

model.frame A model.frame object containing observed distances (the ’response’), covari-
ates specified in the formula, and group sizes if they were specified. If speci-
fied, the name of the group size column is "offset(-variable-)", not "groupsize(-
variable-)", because internally it is easier to treat group sizes as an offset in the
model. This component is a proper model.frame and contains both ’terms’ and
’contrasts’ attributes.

siteID.cols A vector containing the transect ID column names in detectionData and siteData.
Transect IDs can be a composite of two or more columns and hence this com-
ponent can have length greater than 1.

expansions The number of expansion terms used during estimation.

series The type of expansion used during estimation.

call The original call of this function.

call.x.scl The input or user requested distance at which the distance function is scaled.

call.g.x.scl The input value specifying the height of the distance function at a distance of
call.x.scl.

call.observer The value of input parameter observer. The input observer parameter is only
applicable when g.x.scl is a data frame.

fit The fitted object returned by optim. See documentation for optim.

factor.names The names of any factors in formula.

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

dE.single 25

formula The formula specified for the detection function.

control A list containing values of the ’control’ parameters set by RdistanceControls.

outputUnits The measurement units used for output. All distance measurements are con-
verted to these units internally.

asymptoticSE Logical indicating whether the variance- covariance matrix in component varcovar
is asymptotic (TRUE) (i.e., based on the Hessian of maximization) or bootstrap
(FALSE) (i.e., estimated after bootstrap iterations).

x.scl The actual distance at which the distance function is scaled to some value. i.e.,
this is the actual x at which g(x) = g.x.scl. Note that call.x.scl = x.scl
unless call.x.scl == "max", in which case x.scl is the distance at which g()
is maximized.

g.x.scl The actual height of the distance function at a distance of x.scl. Note that
g.x.scl = call.g.x.scl unless call.g.x.scl is a multiple observer data
frame, in which case g.x.scl is the actual height of the distance function at
x.scl computed from the multiple observer data frame.

dE.single Estimate single-observer line-transect distance function

Description

Fits a detection function to off-transect distances collected by a single observer.

Usage

dE.single(
data,
formula,
likelihood = "halfnorm",
w.lo = setUnits(0, "m"),
w.hi = NULL,
expansions = 0,
series = "cosine",
x.scl = w.lo,
g.x.scl = 1,
warn = TRUE,
outputUnits = NULL,
asymptoticSE = TRUE

)

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function

26 dE.single

RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 + covar2).
The left-hand side (before ~) is the name of the vector containing off-transect or
radial detection distances. The right-hand side contains the names of covariate
vectors to fit in the detection function, and potentially group sizes. Group sizes
are specified by including + groupsize(<variable>) in the RHS (see ’Group
Sizes’ section). Covariates can be either detection level or transect level and can
appear in data or exist in the global working environment. Regular R scoping
rules apply.

likelihood String specifying the likelihood to fit. Built-in likelihoods at present are "halfnorm",
"hazrate", and "negexp".

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0, it
must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If unspecified (i.e., NULL), right-
truncation is set to the maximum of the observed distances. If w.hi is specified,
it must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which the detection function will be scaled.
g.x.scl can be a distance or the string "max". When x.scl is specified (i.e., not
0 or "max"), it must have measurement units assigned. See help(unitHelpers)
for assistance assigning units.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When com-
puting bootstrap confidence intervals, setting warn = FALSE turns off annoying
warnings when an iteration does not converge. Regardless of warn, after com-
pletion all messages about convergence and boundary conditions are printed by
print.dfunc, print.abund, and plot.dfunc.

outputUnits A string specifying the symbolic measurement units for results. Valid units are
listed in units::valid_udunits(). The strings for common distance symbolic
units are: "m" - meters, "ft" - feet, "cm" - centimeters, "mm" - millimeters, "mi"
- miles, "nmile" - nautical miles ("nm" is nano meters), "in" - inches, "yd" -

dE.single 27

yards, "km" - kilometers, "fathom" - fathoms, "chains" - chains, and "furlong" -
furlongs. If outputUnits is unspecified (NULL), output units will be the same
as those on distances in data.

asymptoticSE Logical variable for whether to calculate asymptotic standard errors. The de-
fault (TRUE) estimates an asymptotic variance-covariance matrix for parame-
ters based on the likelihood’s Hessian (2nd derivative). If maximization has
been performed by Nlminb or HookesJeeves, the asymptotic Hessian is esti-
mated using numeric second deriviatives of the likelihood at the maximum like-
lihood solution. If maximization was performed by Optim, the last Hessian
of the maximization is returned by Optim and used (see varcovarEstim and
secondDeriv). Asymptotic standard errors will not be estimated if asymptoticSE
= FALSE. If not estimated, bootstrap iterations will run faster because the nu-
meric Hessian, which is discarded during bootstrapping, will not be calculated
every iteration.

Details

Optimization and estimation controls can be modified using options(). See RdistanceControls.

Value

An object of class ’dfunc’. Objects of class ’dfunc’ are lists containing the following components:

par The vector of estimated parameter values. Length of this vector for built-in
likelihoods is one (for the function’s parameter) plus the number of expansion
terms plus one if the likelihood is ’hazrate’ (which has two parameters).

varcovar The variance-covariance matrix for coefficients of the distance function, esti-
mated by the inverse of the fit’s Hessian. If maximization has been performed
by Nlminb or HookesJeeves, Rdistance estimates the Hessian from the sec-
ond derivative of the log likelihood surface at the final estimates, where second
derivatives are estimated by numeric differentiation (see secondDeriv. If Op-
tim performed the maximization, Rdistance uses the Hessian returned by Optim.
The variance-covariance matrix is re-set to NULL if the Hessian is not positive-
definite. Error estimates derived from bootstrapping are generally more reliable.
I.e., re-compute coefficient confidence intervals using the bootstrap values in
component $B of an abundance object.

loglik The maximized value of the log likelihood.

convergence The convergence code. This code is returned by optim or nlminb. Values other
than 0 indicate suspect convergence.

likelihood The name of the likelihood. This is the value of the argument likelihood.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

mf A modelframe of detections within the strip or circle used in the fit. Column
’dist’ contains the observed distances. Column ’offset(...)’ contains group sizes
associated with the values of ’dist’. Group sizes are only used in abundEstim.
This model frame contains only non-missing distances between w.lo and w.hi.

28 dE.single

model.frame A model.frame object containing observed distances (the ’response’), covari-
ates specified in the formula, and group sizes if they were specified. If speci-
fied, the name of the group size column is "offset(-variable-)", not "groupsize(-
variable-)", because internally it is easier to treat group sizes as an offset in the
model. This component is a proper model.frame and contains both ’terms’ and
’contrasts’ attributes.

siteID.cols A vector containing the transect ID column names in detectionData and siteData.
Transect IDs can be a composite of two or more columns and hence this com-
ponent can have length greater than 1.

expansions The number of expansion terms used during estimation.

series The type of expansion used during estimation.

call The original call of this function.

call.x.scl The input or user requested distance at which the distance function is scaled.

call.g.x.scl The input value specifying the height of the distance function at a distance of
call.x.scl.

call.observer The value of input parameter observer. The input observer parameter is only
applicable when g.x.scl is a data frame.

fit The fitted object returned by optim. See documentation for optim.

factor.names The names of any factors in formula.

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

formula The formula specified for the detection function.

control A list containing values of the ’control’ parameters set by RdistanceControls.

outputUnits The measurement units used for output. All distance measurements are con-
verted to these units internally.

asymptoticSE Logical indicating whether the variance- covariance matrix in component varcovar
is asymptotic (TRUE) (i.e., based on the Hessian of maximization) or bootstrap
(FALSE) (i.e., estimated after bootstrap iterations).

x.scl The actual distance at which the distance function is scaled to some value. i.e.,
this is the actual x at which g(x) = g.x.scl. Note that call.x.scl = x.scl
unless call.x.scl == "max", in which case x.scl is the distance at which g()
is maximized.

g.x.scl The actual height of the distance function at a distance of x.scl. Note that
g.x.scl = call.g.x.scl unless call.g.x.scl is a multiple observer data
frame, in which case g.x.scl is the actual height of the distance function at
x.scl computed from the multiple observer data frame.

Group Sizes

To specify non-unity group sizes, use groupsize() on the RHS of formula. When group sizes
are not all 1, they must appear in a column of the ’detections’ list-column of data. For example, d
~ habitat + groupsize(number) specifies distances in column d, one covariate named habitat,
and that column number contains the number of individuals associated with each detection. If group
sizes are not specified, all group sizes are assumed to be 1.

dE.single 29

Contrasts

Factor contrasts in Rdistance are specified the same way as in lm or glm. By default, Rdistance
uses contrasts in getOption("contrasts"). To change contrasts, use a statement like options(contrasts
= c(unordered = "contr.SAS",ordered = "contr.poly")). Or, to set contrasts for a specific
factor in the input data frame, use contrasts(df$A) <- "contr.sum" or similar. See contrasts
or the contrasts.arg of model.matrix.

Transect types

Rdistance accommodates two kinds of transects: continuous and point. Detections can occur
at any point on continuous transects. Rdistance calls these ’line-transects’ even though routes
are not necessarily a straight line. On point transects, detections occur at a series of stops (points).
Rdisance calls these point-transects. Transects are the basic sampling unit in both cases. Rdistance
assumes each row of data contains information from one transect. See RdistDf for more details.

Measurement Units

As of Rdistance version 3.0.0, measurement units are require on all physical distances. Requiring
units ensures that internal calculations and results (e.g., ESW and abundance) are correct and that
output units are clear. Physical distances are required on off-transect distances, radial distances,
truncation distances (w.lo, unless it is zero; and w.hi, unless it is NULL), scale locations (x.scl,
unless it is zero), line-transect lengths, and study area size. All units are 1-dimensional except those
on study area, which are 2-dimensional.

Physical measurement units can vary. For example, off-transect distances can be meters ("m"), w.hi
can be inches ("in"), and w.lo can be kilometers ("km"). Internally, all distances are converted to
the units specified by outputUnits (or the units of input distances if outputUnits is NULL), and
all output is reported in units of outputUnits. Valid conversions must exist between units or an
error is thrown. For example, meters cannot be converted into hectares.

Measurement units can be assigned using one of Rdistance’s unit helper routines (see help(unitHelpers)),
or from routines in the units package (e.g., x <- units::set_units(x, "<units>")). See units::valid_udunits
for a list of valid symbolic units.

If measurements are truly unit-less, or measurement units are unknown, set options(Rdist_requireUnits
= FALSE). This suppresses all unit checks and conversions. Users are on their own to make sure in-
puts are scaled correctly and that output units are known.

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

abundEstim, autoDistSamp. Likelihood-specific help files (e.g., halfnorm.like).

30 dfuncEstim

Examples

Load example sparrow data (line transect survey type)
data(sparrowDf)

dfunc <- dfuncEstim(data = sparrowDf
, formula = dist ~ 1)

dfunc
plot(dfunc)

dfuncEstim Estimate a distance-based detection function

Description

Fits a detection function using maximum likelihood.

Usage

dfuncEstim(data, ...)

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function
RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

... Arguments passed on to dE.single, dE.multi

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 +
covar2). The left-hand side (before ~) is the name of the vector containing
off-transect or radial detection distances. The right-hand side contains the
names of covariate vectors to fit in the detection function, and potentially
group sizes. Group sizes are specified by including + groupsize(<variable>)
in the RHS (see ’Group Sizes’ section). Covariates can be either detection
level or transect level and can appear in data or exist in the global working
environment. Regular R scoping rules apply.

likelihood String specifying the likelihood to fit. Built-in likelihoods at present
are "halfnorm", "hazrate", and "negexp".

w.lo Lower or left-truncation limit of the distances in distance data. This is the
minimum possible off-transect distance. Default is 0. If w.lo is greater than
0, it must have measurement units. See help(unitHelpers) for assistance
assigning units.

dfuncEstim 31

w.hi Upper or right-truncation limit of the distances in dist. This is the max-
imum off-transect distance that could be observed. If unspecified (i.e.,
NULL), right-truncation is set to the maximum of the observed distances. If
w.hi is specified, it must have measurement units. See help(unitHelpers)
for assistance assigning units.

expansions A scalar specifying the number of terms in series to compute.
Depending on the series, this could be 0 through 5. The default of 0 equates
to no expansion terms of any type. No expansion terms are allowed (i.e.,
expansions is forced to 0) if covariates are present in the detection function
(i.e., right-hand side of formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use.
Valid values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which the detection function will be
scaled. g.x.scl can be a distance or the string "max". When x.scl is
specified (i.e., not 0 or "max"), it must have measurement units assigned.
See help(unitHelpers) for assistance assigning units.

g.x.scl Height of the distance function at coordinate x. The distance function
will be scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame,
it must be a numeric value (vector of length 1) between 0 and 1.

warn A logical scalar specifying whether to issue an R warning if the estimation
did not converge or if one or more parameter estimates are at their bound-
aries. For estimation, warn should generally be left at its default value
of TRUE. When computing bootstrap confidence intervals, setting warn =
FALSE turns off annoying warnings when an iteration does not converge.
Regardless of warn, after completion all messages about convergence and
boundary conditions are printed by print.dfunc, print.abund, and plot.dfunc.

outputUnits A string specifying the symbolic measurement units for results.
Valid units are listed in units::valid_udunits(). The strings for com-
mon distance symbolic units are: "m" - meters, "ft" - feet, "cm" - centime-
ters, "mm" - millimeters, "mi" - miles, "nmile" - nautical miles ("nm" is
nano meters), "in" - inches, "yd" - yards, "km" - kilometers, "fathom" -
fathoms, "chains" - chains, and "furlong" - furlongs. If outputUnits is
unspecified (NULL), output units will be the same as those on distances in
data.

Details

Optimization and estimation controls can be modified using options(). See RdistanceControls.

Value

An object of class ’dfunc’. Objects of class ’dfunc’ are lists containing the following components:

par The vector of estimated parameter values. Length of this vector for built-in
likelihoods is one (for the function’s parameter) plus the number of expansion
terms plus one if the likelihood is ’hazrate’ (which has two parameters).

varcovar The variance-covariance matrix for coefficients of the distance function, esti-
mated by the inverse of the fit’s Hessian. If maximization has been performed

32 dfuncEstim

by Nlminb or HookesJeeves, Rdistance estimates the Hessian from the sec-
ond derivative of the log likelihood surface at the final estimates, where second
derivatives are estimated by numeric differentiation (see secondDeriv. If Op-
tim performed the maximization, Rdistance uses the Hessian returned by Optim.
The variance-covariance matrix is re-set to NULL if the Hessian is not positive-
definite. Error estimates derived from bootstrapping are generally more reliable.
I.e., re-compute coefficient confidence intervals using the bootstrap values in
component $B of an abundance object.

loglik The maximized value of the log likelihood.

convergence The convergence code. This code is returned by optim or nlminb. Values other
than 0 indicate suspect convergence.

likelihood The name of the likelihood. This is the value of the argument likelihood.

w.lo Left-truncation value used during the fit.

w.hi Right-truncation value used during the fit.

mf A modelframe of detections within the strip or circle used in the fit. Column
’dist’ contains the observed distances. Column ’offset(...)’ contains group sizes
associated with the values of ’dist’. Group sizes are only used in abundEstim.
This model frame contains only non-missing distances between w.lo and w.hi.

model.frame A model.frame object containing observed distances (the ’response’), covari-
ates specified in the formula, and group sizes if they were specified. If speci-
fied, the name of the group size column is "offset(-variable-)", not "groupsize(-
variable-)", because internally it is easier to treat group sizes as an offset in the
model. This component is a proper model.frame and contains both ’terms’ and
’contrasts’ attributes.

siteID.cols A vector containing the transect ID column names in detectionData and siteData.
Transect IDs can be a composite of two or more columns and hence this com-
ponent can have length greater than 1.

expansions The number of expansion terms used during estimation.

series The type of expansion used during estimation.

call The original call of this function.

call.x.scl The input or user requested distance at which the distance function is scaled.

call.g.x.scl The input value specifying the height of the distance function at a distance of
call.x.scl.

call.observer The value of input parameter observer. The input observer parameter is only
applicable when g.x.scl is a data frame.

fit The fitted object returned by optim. See documentation for optim.

factor.names The names of any factors in formula.

pointSurvey The input value of pointSurvey. This is TRUE if distances are radial from a
point. FALSE if distances are perpendicular off-transect.

formula The formula specified for the detection function.

control A list containing values of the ’control’ parameters set by RdistanceControls.

outputUnits The measurement units used for output. All distance measurements are con-
verted to these units internally.

dfuncEstim 33

asymptoticSE Logical indicating whether the variance- covariance matrix in component varcovar
is asymptotic (TRUE) (i.e., based on the Hessian of maximization) or bootstrap
(FALSE) (i.e., estimated after bootstrap iterations).

x.scl The actual distance at which the distance function is scaled to some value. i.e.,
this is the actual x at which g(x) = g.x.scl. Note that call.x.scl = x.scl
unless call.x.scl == "max", in which case x.scl is the distance at which g()
is maximized.

g.x.scl The actual height of the distance function at a distance of x.scl. Note that
g.x.scl = call.g.x.scl unless call.g.x.scl is a multiple observer data
frame, in which case g.x.scl is the actual height of the distance function at
x.scl computed from the multiple observer data frame.

Group Sizes

To specify non-unity group sizes, use groupsize() on the RHS of formula. When group sizes
are not all 1, they must appear in a column of the ’detections’ list-column of data. For example, d
~ habitat + groupsize(number) specifies distances in column d, one covariate named habitat,
and that column number contains the number of individuals associated with each detection. If group
sizes are not specified, all group sizes are assumed to be 1.

Contrasts

Factor contrasts in Rdistance are specified the same way as in lm or glm. By default, Rdistance
uses contrasts in getOption("contrasts"). To change contrasts, use a statement like options(contrasts
= c(unordered = "contr.SAS",ordered = "contr.poly")). Or, to set contrasts for a specific
factor in the input data frame, use contrasts(df$A) <- "contr.sum" or similar. See contrasts
or the contrasts.arg of model.matrix.

Measurement Units

As of Rdistance version 3.0.0, measurement units are require on all physical distances. Requiring
units ensures that internal calculations and results (e.g., ESW and abundance) are correct and that
output units are clear. Physical distances are required on off-transect distances, radial distances,
truncation distances (w.lo, unless it is zero; and w.hi, unless it is NULL), scale locations (x.scl,
unless it is zero), line-transect lengths, and study area size. All units are 1-dimensional except those
on study area, which are 2-dimensional.

Physical measurement units can vary. For example, off-transect distances can be meters ("m"), w.hi
can be inches ("in"), and w.lo can be kilometers ("km"). Internally, all distances are converted to
the units specified by outputUnits (or the units of input distances if outputUnits is NULL), and
all output is reported in units of outputUnits. Valid conversions must exist between units or an
error is thrown. For example, meters cannot be converted into hectares.

Measurement units can be assigned using one of Rdistance’s unit helper routines (see help(unitHelpers)),
or from routines in the units package (e.g., x <- units::set_units(x, "<units>")). See units::valid_udunits
for a list of valid symbolic units.

If measurements are truly unit-less, or measurement units are unknown, set options(Rdist_requireUnits
= FALSE). This suppresses all unit checks and conversions. Users are on their own to make sure in-
puts are scaled correctly and that output units are known.

34 dfuncEstimErrMessage

References

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. (2001)
Introduction to distance sampling: estimating abundance of biological populations. Oxford Uni-
versity Press, Oxford, UK.

See Also

abundEstim, autoDistSamp. Likelihood-specific help files (e.g., halfnorm.like).

Examples

Sparrow line transect example
data(sparrowDetectionData)
data(sparrowSiteData)

sparrowDf <- RdistDf(sparrowSiteData, sparrowDetectionData)

dfunc <- dfuncEstim(sparrowDf,
formula = dist ~ 1

)
summary(dfunc)

data(sparrowDfuncObserver) # pre-estimated object
Not run:
Commands that produced 'sparrowDfuncObserver'
sparrowDfuncObserver <- sparrowDf |>

dfuncEstim(
formula = dist ~ observer

)

End(Not run)
sparrowDfuncObserver
summary(sparrowDfuncObserver)
plot(sparrowDfuncObserver)
plot(sparrowDfuncObserver

, newdata = data.frame(observer = c("obs1", "obs2", "obs3"
, "obs4", "obs5")))

dfuncEstimErrMessage dfuncEstim error messages

Description

Utility function to produce error messages suitable for stop

Usage

dfuncEstimErrMessage(txt, attri)

differentiableLikelihoods 35

Arguments

txt A text string describing the error.

attri An attribute to report.

Value

A string

differentiableLikelihoods

Differentiable likelihoods in Rdistance

Description

Return a character vector of likelihoods which are differentiable and hence the second deriva-
tive method can be used to estimate variance-covariance. Any likelihoods not in this list must
use bootstrapping. This vector is polled in a few Rdistance routines, notably parseModel and
varcovarEstim.

Usage

differentiableLikelihoods()

Value

A character vector of differentiable likelihoods.

distances Observation distances

Description

Extract the observation distances (i.e., responses for an Rdistance model) from an Rdistance model
frame.

Usage

distances(ml, na.rm = TRUE, ...)

36 EDR

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

na.rm Whether to include or exclude missing distance values. In ml, the model list
containing the model frame, missing values of the response (distance) are po-
tentially present for two reasons: (1) they are outside the strip w.lo to w.hi, and
(2) they are missing because the crew did not get a distance for that observation.

... Ignored

Value

A vector containing observation distances contained in the Rdistance model frame.

Examples

data(sparrowDf)
sparrowModel <- parseModel(sparrowDf, dist ~ observer)
stats::model.response(sparrowModel$mf)
distances(sparrowModel) # same, but future-proof

EDR Effective Detection Radius (EDR) for point transects

Description

Computes Effective Detection Radius (EDR) for estimated detection functions on point transects.
See ESW is for line transects.

Usage

EDR(object, newdata = NULL)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

effectiveDistance 37

newdata A data frame containing new values of the covariates at which to evaluate the
distance functions. If newdata is NULL, distance functions are evaluated at
values of the observed covariates and results in one prediction per distance or
transect (see parameter type). If newdata is not NULL and the model does not
contains covariates, this routine returns one prediction for each row in newdata,
but columns and values in newdata are ignored.

Details

Effective Detection Radius is the integral under the detection function times distance. I.e.,

EDR =

∫ w.hi

w.lo

xg(x)dx,

where g(x) is the distance function scaled so that g(x.scl) = g.x.scl and w.lo and w.hi are the
lower and upper truncation limits.

Value

If newdata is present, the returned value is a vector of effective sampling distances associated with
covariate values in newdata. Length of return in this case is the number of rows in newdata. If
newdata is NULL, the returned value is a vector of effective sampling distances associated with
covariate values in object. Length of return in this case is the number of detected groups. The
returned vector has measurement units, i.e., object$outputUnits.

See Also

dfuncEstim, ESW, effectiveDistance

Examples

Load example thrasher data (point transect survey type)
data(thrasherDf)

Fit half-normal detection function
dfunc <- thrasherDf |> dfuncEstim(formula=dist~bare)

Compute effective detection radius (EDR)
EDR(dfunc) # vector length 192
effectiveDistance(dfunc) # same
EDR(dfunc, newdata = data.frame(bare=30)) # vector length 1

effectiveDistance Effective sampling distances

Description

Computes Effective Strip Width (ESW) for line-transect detection functions, or the analogous Ef-
fective Detection Radius (EDR) for point-transect detection functions.

38 effort

Usage

effectiveDistance(object, newdata = NULL)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

newdata A data frame containing new values for covariates at which either ESW’s or
EDR’s will be computed. If NULL and object contains covariates, the covari-
ates stored in object are used (like predict.lm). If not NULL, covariate values
in newdata are used. See Value section for more information.

Details

Serves as a wrapper for ESW and EDR.

Effective distances are areas under scaled distance functions (i.e., area under g(x)). Areas are exact
for functions whose integral is known (e.g., negexp). Numeric integration is used for all others.

Value

If newdata is present, the returned value is a vector of effective sampling distances associated with
covariate values in newdata. Length of return in this case is the number of rows in newdata. If
newdata is NULL, the returned value is a vector of effective sampling distances associated with
covariate values in object. Length of return in this case is the number of detected groups. The
returned vector has measurement units, i.e., object$outputUnits.

See Also

dfuncEstim, ESW, EDR, integrateNumeric, integrateNegexpLines

effort Effort information

Description

Extract effort information from an Rdistance data frame. Effort is length of line-transects or number
of points on point-transects.

Usage

effort(x, ...)

Arguments

x Either an estimated distance function, output by dfuncEstim, or an Rdistance
nested data frame, output by RdistDf.

... Ignored

errDataUnk 39

Value

A vector containing effort. If line-transects, return is length of transects, with units. If point-
transects, return is number of points (integers, no units). Vector length is number of transects. If
input is not an RdistDf or estimated distance function, return is NULL.

Examples

data(sparrowDf)
effort(sparrowDf)
fit <- dfuncEstim(sparrowDf, dist ~ 1)
effort(fit)

errDataUnk Unknown error message

Description

Constructs a string stating what is "unknown" that is suitable for use in warning and error functions.

Usage

errDataUnk(txt, attri)

Arguments

txt Text. The "unknown" we are looking for.

attri Attribute description we are looking for.

Value

A descriptive string, suitable for warning or error.

estimateN Abundance point estimates

Description

Estimate abundance from an Rdistance fitted model. This function is called internally by abundEstim.
Most users will call abundEstim to estimate abundance unless they are running simulations or boot-
strapping.

Usage

estimateN(object, area = NULL, propUnitSurveyed = 1)

40 estimateN

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

Details

The abundance estimate for line-transect surveys (if no covariates are included in the detection
function and both sides of the transect are observed) is

N =
n(A)

2(ESW)(L)

where n is total number of sighted individuals (i.e., sum(groupSizes(dfunc))), L is the total length
of surveyed transect (i.e., sum(effort(dfunc))), and ESW is effective strip width computed from
the estimated distance function (i.e., ESW(dfunc)). If only one side of transects were observed, the
"2" in the denominator is not present (or, replaced with a "1").

The abundance estimate for point transect surveys (if no covariates are included) is

N =
n(A)

π(ESR2)(P)

where n is total number of sighted individuals (i.e., sum(groupSizes(dfunc))), P is the total num-
ber of surveyed points (i.e., sum(effort(dfunc))), and ESR is effective search radius computed
from the estimated distance function (i.e., ESR(dfunc)).

This routine, abundEstim, estimates abundance on the entire study area. Site-specific density esti-
mates are computed by predict(x, type = "density"), which returns a tibble containing density
and abundance on the area surveyed by every transect.

Value

A list containing the following components:

density Estimated density in the surveyed area.

ESW 41

abundance Estimated abundance on the study area. Equals density if area is not specified.

n.groups The number of detected groups (not individuals, unless all group sizes = 1).

n.seen The number of individuals (sum of group sizes).

area Total area of inference. Study area size

surveyedUnits Number of surveyed sites. This is total transect length for line-transects or num-
ber of points for point-transects. This total transect length does not include
transects with missing lengths.

propUnitSurveyed

Proportion of the standard survey unit that was observed

avg.group.size Average group size on non-NA transects

w Strip width.

pDetection Probability of detection.

For line-transects that do not involve covariates, object$density is object$n.seen / (2 * propUnitSur-
veyed * object$w * object$pDetection * object$surveyedUnits)

See Also

dfuncEstim, abundEstim

ESW Effective Strip Width (ESW) for line transects

Description

Returns effective strip width (ESW) for line-transect detection functions. See EDR is for point
transects.

Usage

ESW(object, newdata = NULL)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

newdata A data frame containing new values for covariates at which either ESW’s or
EDR’s will be computed. If NULL and object contains covariates, the covari-
ates stored in object are used (like predict.lm). If not NULL, covariate values
in newdata are used. See Value section for more information.

42 expansionTerms

Details

ESW is area under a scaled distance function between its left-truncation limit (obj$w.lo) and its
right-truncation limit (obj$w.hi). I.e.,

ESW =

∫ w.hi

w.lo

g(x)dx,

where g(x) is the distance function scaled so that g(x.scl) = g.x.scl and w.lo and w.hi are the
lower and upper truncation limits.

If detection does not decline with distance, the detection function is flat (horizontal), and area under
the detection function is g(0)(w.hi − w.lo). If, in this case, g(0) = 1, effective sampling distance
is the half-width of the surveys, (w.hi− w.lo)

Value

If newdata is present, the returned value is a vector of effective sampling distances associated with
covariate values in newdata. Length of return in this case is the number of rows in newdata. If
newdata is NULL, the returned value is a vector of effective sampling distances associated with
covariate values in object. Length of return in this case is the number of detected groups. The
returned vector has measurement units, i.e., object$outputUnits.

See Also

dfuncEstim, EDR, effectiveDistance

Examples

data(sparrowDfuncObserver)

ESW(sparrowDfuncObserver) # vector length 356 = number of groups
ESW(sparrowDfuncObserver, newdata = data.frame(observer =

c("obs2", "obs4"))) # vector length 2

expansionTerms Distance function expansion terms

Description

Compute "expansion" terms that modify the shape of a base distance function.

Usage

expansionTerms(a, d, series, nexp, w)

expansionTerms 43

Arguments

a A vector or matrix of (estimated) coefficients. a has length p + nexp (if a vector)
or dimension (k, p + nexp), where p is the number of canonical parameters in
the likelihood and k is the number of ’cases’ (coefficient vectors = nrow(a)) to
evaluate. The first p elements of a, or the first p columns if a is a matrix, are
ignored. I.e., Expansion term coefficients are the last nexp elements or columns
of a.

d A vector or 1-column matrix of distances at which to evaluate the expansion
terms. d should be distances above w.lo, i.e., distances - w.lo. Parameters d and
w must have compatible measurement units.

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

nexp Number of expansion terms. Integer from 0 to 5.

w A vector specifying strip width for every ’case’ in a. Vector must have length
length(a) or nrow(a). In general, this is constant vector containing the range
of sighting distances, i.e., rep(w.hi - w.low, nrow(a)). But, for some likeli-
hoods (e.g., ’oneStep’) this vector allows the user to restrict application of the
expansion terms to less than the full range of distances. For the ’oneStep’ like-
lihood, expansion terms are only applied between 0 and Θ, the boundary of the
two uniforms, which varies by ’case’ when covariates are present. Parameters d
and w must have compatible measurement units.

Details

Expansion terms modify the base likelihood function and are used to incorporate "wiggle". The
modified distance function is, key * expTerms where key is a vector of values in the base likeli-
hood function (e.g., halfnorm.like()$L.unscaled) and expTerms is the matrix returned by this
routine. In equation form,

f(xi|β, a1, a2, . . . , am) = f(xi|β)(1 +
m∑

k=1

akhk(xi/w)).

, where m = the the number of expansions (nexp), hj(x) are expansion terms for distance x, and
a1, a2, . . . , am are the (estimated) expansion term coefficients.

Value

If nexp equals 0, 1 is returned. If nexp is greater than 0, a matrix of size nXk containing expansion
terms, where n = length(d) and k = nrow(a). The expansion series associated with row j of a are
in column j of the return. i.e., element (i,j) of the return is

1 +

m∑
k=1

ajkhk(xi/w).

Examples

a1 <- c(log(40), 0.5, -.5)

44 Gamma.like

a2 <- c(log(40), 0.25, -.5)
dists <- seq(0, 100, length = 100) %m%.
w = 100 %m%.

expTerms1 <- expansionTerms(a1, dists, "cosine", 2, w)
expTerms2 <- expansionTerms(a2, dists, "cosine", 2, w)
plot(dists, expTerms2, ylim = c(0,2.5))
points(dists, expTerms1, pch = 16)

Same as above
a <- rbind(a1, a2)
w <- rep(w, nrow(a))
expTerms <- expansionTerms(a, dists, "cosine", 2, w)
matlines(dists, expTerms, lwd=2, col=c("red", "blue"), lty=1)

Showing key and expansions
key <- halfnorm.like(log(40), dists, matrix(1,length(dists),1))$L.unscaled
plot(dists, key, type = "l", col = "blue", ylim=c(0,1.5))
lines(dists, key * expTerms1, col = "red")
lines(dists, key * expTerms2, col = "purple")

Gamma.like Gamma distance function

Description

Evaluate the gamma distance function for sighting distances, potentially including covariates and
expansion terms

Usage

Gamma.like(a, dist, covars, w.hi = NULL)

Arguments

a A vector or matrix of covariate and expansion term coefficients. If matrix, di-
mension is k X p, where k = nrow(a)) is the number of coefficient vectors to
evaluate (cases) and p = ncol(a)) is the number of covariate and expansion co-
efficients in the likelihood (i.e., rows are cases and columns are covariates). If a
is a dimensionless vector, it is interpreted as a single row with k = 1. Covariate
coefficients in a are the first q values (q <= p), and must be on a log scale.

dist A numeric vector of length n or a single-column matrix (dimension nX1) con-
taining detection distances at which to evaluate the likelihood.

covars A numeric vector of length q or a matrix of dimension nXq containing covariate
values associated with distances in argument dist.

w.hi A numeric scalar containing maximum distance. The right-hand cutoff or upper
limit. Ignored by some likelihoods (such as halfnorm, negexp, and hazrate), but
is a fixed parameter in other likelihoods (such as oneStep and uniform).

Gamma.like 45

Details

The Rdistance implementation of a Gamma distance function follows Becker and Quang (2009).
Rdistance’s Gamma distance function is

f(d|α, σ) =
(

d

m

)α−1

e−(d−m)/σ,

where α is the shape parameter, σ is the scale parameter, and m = (α− 1)σ. m is the mode of the
Gamma function, and in Rdistance it’s scaled to have a maximum of 1.0 at m. The scale parameter
is a function of the shape parameter and sighting covariates, i.e.,

σ = k[exp(x′β)],

where x is a vector of covariate values associated with distance d (i.e., a row of covars), β is a
vector of the first q (=ncol(covars)) values of the first argument of the function (a), and k is a
function of the shape parameter, i.e.,

k =
1

Γ(α)

(
a− 1

e1

)a−1

.

The shape parameter α is the q+ 1-st value in the function’s first argument and is constrained to be
strictly greater than 1.0.

See Examples for use of GammaReparam to compute α and σ from fitted object coefficients.

Value

A list containing the following two components:

• L.unscaled: A matrix of size nXk containing likelihood values evaluated at distances in dist.
Each row is associated with a single distance, and each column is associated with a single case
(row of a). This matrix is "unscaled" because the underlying likelihood does not integrate to
one. Values in L.unscaled are always greater than or equal to zero.

• params: A nXkXb array of the likelihood’s (canonical) parameters in link space (i.e., on log
scale). First page contains parameter values related to covariates (i.e., s = exp(x’a)), while
subsequent pages contain other parameters. b = 1 for halfnorm, negexp; b = 2 for hazrate,
oneStep, Gamma, and others. Rows correspond to distances in dist. Columns correspond to
rows from argument a.

References

Becker, E. F., and P. X. Quang, 2009. A Gamma-Shaped Detection Function for Line-Transect
Surveys with Mark-Recapture and Covariate Data. Journal of Agricultural, Biological, and Envi-
ronmental Statistics 14(2):207-223.

See Also

dfuncEstim, abundEstim, other <likelihood>.like functions

46 Gamma.start.limits

Examples

x <- seq(0, 100, length=100)
covars <- matrix(1,100,1)

Plots showing changes in scale
plot(x, Gamma.like(c(log(20),2.5), x, covars)$L.unscaled, type="l", col="red")
lines(x, Gamma.like(c(log(40),2.5), x, covars)$L.unscaled, col="blue")

Plots showing changes in shape
plot(x, Gamma.like(c(log(20),1.5), x, covars)$L.unscaled, type="l", col="red")
lines(x, Gamma.like(c(log(20),2.5), x, covars)$L.unscaled, col="blue")
lines(x, Gamma.like(c(log(20),4.5), x, covars)$L.unscaled, col="green")

Roll-your-own plot, showing "re-parameterization":
Assume fitted object coefficients are c(log(20), 4.5)
fit <- list(par = c(log(20), 4.5))

The distance function is then,
gammaPar <- GammaReparam(scl = exp(fit$par[1])

, shp = fit$par[2]) # returns scl=k*exp(x'B)
scl <- gammaPar$scl
shp <- gammaPar$shp
m <- (shp - 1) * scl
g <- (x / m)^(shp - 1) * exp(-(x - m) / scl) # distance function
lines(x, g, lwd = 3, lty = 2, col="green3")

Gamma.start.limits Gamma.start.limits - Start and limit values for Gamma distance func-
tion

Description

Compute starting values and limits for the Gamma distance function.

Usage

Gamma.start.limits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

GammaModes 47

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

GammaModes Modes of the Gamma distribution

Description

Compute mode (i.e., maximum) of Rdistance’s version of the gamma distribution.

Usage

GammaModes(params)

Arguments

params A matrix of Gamma distribution parameters. First column is the scale parameter,
and is a fuction of covariates. Second column is the shape parameter.

Value

A vector of the locations of the gamma modes associated with each row in the params matrix.

GammaReparam Reparameterise Gamma parameters for use in dgamma

Description

Transform Rdistance’s version of the Gamma distribution parameters, which is that of Becker and
Quan, into the version for use in R::dgamma() and elsewhere.

Usage

GammaReparam(shp, scl)

48 getNCores

Arguments

shp Rdistance’s shape parameter

scl Rdistance’s scale parameter. This parameter is related to covariates via exp(x’B).

Value

A list with components $shp and $scl, which are the re-parameterized versions of the input param-
eters suitable for us in R::dgamma().

See Also

’Details’ section of Gamma.like for Rdistance’s Gamma distribution

Examples

Rdistance Gamma parameters
Rd.scl <- 50 # must be >0
Rd.shp <- 1.5 # must be >1

dgamma parameters
dgParams <- GammaReparam(Rd.shp, Rd.scl)
dgParams

Gamma distribution with (Rd.scl, Rd.shp) from 0 to 100
curve(dgamma(x, shape=dgParams$shp, scale = dgParams$scl)

, from = 0
, to = 100)

Rdistance's version: same curve but scaled so maximum = 1
x <- seq(0, 100, length = 200)
scl <- dgParams$scl
shp <- dgParams$shp
m <- (shp - 1) * scl
g <- (x / m)^(shp - 1) * exp(-(x - m) / scl) # distance function
plot(x, g, type = "l")

getNCores Set number of cores

Description

Set the number of cores for parallel operations. Also convert integer ’parallel’ to TRUE-FALSE for
ease.

Usage

getNCores(parallel)

groupSizes 49

Arguments

parallel A logical scalar, or a positive integer; ignored unless confidence intervals are
requested (i.e., !is.null(ci)). If TRUE, bootstrap iterations are run in parallel
using the maximum number of CPU cores minus 1. The maximum number of
CPU cores is reported by parallel::detectCores(). If a positive integer (1
<= parallel <= maximum cores), bootstrap iterations are performed in parallel
on that many cores. If FALSE, bootstrap iterations are performed in series, and
progress will be shown if showProgress == TRUE. Parameters showProgress
and plot.bs are ignored when operating in parallel.

Details

Input parallel <= 0 is converted to 1. Input parallel > maxCores is converted to maxCores. If
input parallel is numeric, is first converted to integer by rounding down.

Value

A list with components $parallel and $cores. $parallel is logical, T for parallel operations, F o.w.
$cores is the number of cores to use during parallel operations. $cores is integer in the range 1, 2,
..., max(Available cores).

groupSizes Group Sizes

Description

Extract the group size information from an Rdistance model frame.

Usage

groupSizes(ml, ...)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

... Ignored

Value

A vector containing group sizes contained in the Rdistance model frame or fitted object.

50 gxEstim

Examples

data("sparrowDf")
sparrowModel <- parseModel(sparrowDf, dist ~ observer)
stats::model.offset(sparrowModel$mf)
groupSizes(sparrowModel) # same, but future-proof

sparrowModel <- parseModel(sparrowDf
, dist ~ observer + groupsize(groupsize))

groupSizes(sparrowModel)

gxEstim Estimate g(0) or g(x)

Description

Estimate distance function scaling factor , g(0) or g(x), for a specified distance function.

Usage

gxEstim(fit)

Arguments

fit An estimated dfunc object. See dfuncEstim.

Details

This routine scales sightability such that g(x.scl) = g.x.scl, where g() is the sightability function.
Specification of x.scl and g.x.scl covers several estimation cases:

1. g(0) = 1 : (the default) Inputs are x.scl = 0, g.x.scl = 1. If w.lo > 0, x.scl will be set to
w.lo so technically this case is g(w.low) = 1.

2. User supplied probability at specified distance: Inputs are x.scl = a number greater than
or equal to w.lo, g.x.scl = a number between 0 and 1. This case covers situations where
sightability on the transect (distance 0) is not perfect. This case assumes researchers have
an independent estimate of sightability at distance x.scl off the transect. For example, re-
searchers could be using multiple observers to estimate that sightability at distance x.scl is
g.x.scl.

3. Maximum sightability specified: Inputs are x.scl="max", g.x.scl = a number between
0 and 1. In this case, g() is scaled such that its maximum value is g.x.scl. This routine
computes the distance at which g() is maximum, sets g()’s height there to g.x.scl, and returns
x.max where x.max is the distance at which g is maximized. This case covers the common
aerial survey situation where maximum sightability is slightly off the transect, but the distance
at which the maximum occurs is unknown.

4. Double observer system: Inputs are x.scl="max", g.x.scl = <a data frame>. In this case,
g(x) = h, where x is the distance that maximizes g and h is the height of g() at x computed from
the double observer data frame (see below for structure of the double observer data frame).

gxEstim 51

5. Distance of independence specified, height computed from double observer system: In-
puts are x.scl = a number greater than or equal to w.lo g.x.scl = a data frame. In this
case, g(x.scl) = h, where h is computed from the double observer data frame (see below for
structure of the double observer data frame).

When x.scl, g.x.scl, or observer are NULL, the routine will look for and use $call.x.scl, or
$call.g.x.scl, or $call.observer components of the fit object for whichever of these three
parameters is missing. Later, different values can be specified in a direct call to F.gx.estim
without having to re-estimate the distance function. Because of this feature, the default values
in dfuncEstim are x.scl = 0 and g.x.scl = 1 and observer = "both".

Value

A list comprised of the following components:

x.scl The value of x (distance) at which g() is evaluated.

comp2 The estimated value of g() when evaluated at x.scl.

Structure of the double observer data frame

When g.x.scl is a data frame, it is assumed to contain the components $obsby.1 and $obsby.2
(no flexibility on names). Each row in the data frame contains data from one sighted target. The
$obsby.1 and $obsby.2 components are TRUE/FALSE (logical) vectors indicating whether ob-
server 1 (obsby.1) or observer 2 (obsby.2) spotted the target.

See Also

dfuncEstim

Examples

data(sparrowDf)
fit <- dfuncEstim(sparrowDf, dist ~ groupsize(groupsize))
gxEstim(fit)

fit <- dfuncEstim(sparrowDf, dist ~ groupsize(groupsize)
, x.scl = 50 %m%.
, g.x.scl = 0.75)

gxEstim(fit)
plot(fit)
abline(h=0.75)
abline(v=50%m%.)

52 halfnorm.like

halfnorm.like Half-normal distance function

Description

Evaluate the half-normal distance function, for sighting distances, potentially including covariates
and expansion terms

Usage

halfnorm.like(a, dist, covars, w.hi = NULL)

Arguments

a A vector or matrix of covariate and expansion term coefficients. If matrix, di-
mension is k X p, where k = nrow(a)) is the number of coefficient vectors to
evaluate (cases) and p = ncol(a)) is the number of covariate and expansion co-
efficients in the likelihood (i.e., rows are cases and columns are covariates). If a
is a dimensionless vector, it is interpreted as a single row with k = 1. Covariate
coefficients in a are the first q values (q <= p), and must be on a log scale.

dist A numeric vector of length n or a single-column matrix (dimension nX1) con-
taining detection distances at which to evaluate the likelihood.

covars A numeric vector of length q or a matrix of dimension nXq containing covariate
values associated with distances in argument dist.

w.hi A numeric scalar containing maximum distance. The right-hand cutoff or upper
limit. Ignored by some likelihoods (such as halfnorm, negexp, and hazrate), but
is a fixed parameter in other likelihoods (such as oneStep and uniform).

Details

The half-normal distance function is

f(d|σ) = exp(− d2

2σ2
)

where σ = exp(x′a), x is a vector of covariate values associated with distance d (i.e., a row of
covars), and a is a vector of the first q (=ncol(covars)) values in argument a.

Some authors parameterize the halfnorm without the "2" in the denominator of the exponent.
Rdistance includes "2" in this denominator to make quantiles of the half normal agree with the
standard normal. This means that half-normal coefficients in Rdistance (i.e., σ = exp(x′a)) can be
interpreted as normal standard errors. Approximately 95% of distances should occur between 0 and
2σ.

halfnorm.start.limits 53

Value

A list containing the following two components:

• L.unscaled: A matrix of size nXk containing likelihood values evaluated at distances in dist.
Each row is associated with a single distance, and each column is associated with a single case
(row of a). This matrix is "unscaled" because the underlying likelihood does not integrate to
one. Values in L.unscaled are always greater than or equal to zero.

• params: A nXkXb array of the likelihood’s (canonical) parameters in link space (i.e., on log
scale). First page contains parameter values related to covariates (i.e., s = exp(x’a)), while
subsequent pages contain other parameters. b = 1 for halfnorm, negexp; b = 2 for hazrate,
oneStep, Gamma, and others. Rows correspond to distances in dist. Columns correspond to
rows from argument a.

See Also

dfuncEstim, abundEstim, other <likelihood>.like functions

Examples

d <- seq(0, 100, length=100)
covs <- matrix(1,length(d),1)
halfnorm.like(log(20), d, covs)

plot(d, halfnorm.like(log(20), d, covs)$L.unscaled, type="l", col="red")
lines(d, halfnorm.like(log(40), d, covs)$L.unscaled, col="blue")

Evaluate 3 functions at once using matrix of coefficients:
sigma ~ 20, 30, 40
coefs <- matrix(log(c(7.39,7.33, 4.48,44.80, 2.72,216.54))

, byrow = TRUE
, ncol=2) # (3 coef vectors)X(2 covars)

covs <- matrix(c(rep(1,length(d))
, rep(0.5,length(d)))
, nrow = length(d)) # 100 X 2

L <- halfnorm.like(coefs, d, covs)
L$L.unscaled # 100 X (3 coef vectors)
L$params # 100 X (3 coef vectors); ~ log(c(20,30,40))
matplot(d, L$L.unscaled, type="l")

halfnorm.start.limits Start and limit values for halfnorm distance function

Description

Compute starting values and limits for the half normal distance function.

54 hazrate.like

Usage

halfnorm.start.limits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

hazrate.like Hazard rate likelihood

Description

Computes the hazard rate distance function.

Usage

hazrate.like(a, dist, covars, w.hi = NULL)

Arguments

a A vector or matrix of covariate and expansion term coefficients. If matrix, di-
mension is k X p, where k = nrow(a)) is the number of coefficient vectors to
evaluate (cases) and p = ncol(a)) is the number of covariate and expansion co-
efficients in the likelihood (i.e., rows are cases and columns are covariates). If a
is a dimensionless vector, it is interpreted as a single row with k = 1. Covariate
coefficients in a are the first q values (q <= p), and must be on a log scale.

dist A numeric vector of length n or a single-column matrix (dimension nX1) con-
taining detection distances at which to evaluate the likelihood.

hazrate.like 55

covars A numeric vector of length q or a matrix of dimension nXq containing covariate
values associated with distances in argument dist.

w.hi A numeric scalar containing maximum distance. The right-hand cutoff or upper
limit. Ignored by some likelihoods (such as halfnorm, negexp, and hazrate), but
is a fixed parameter in other likelihoods (such as oneStep and uniform).

Details

The hazard rate likelihood is

f(x|σ, k) = 1− exp(−(x/σ)−k)

where σ determines location (i.e., distance at which the function equals 1 - exp(-1) = 0.632), and k
determines slope of the function at σ (i.e., larger k equals steeper slope at σ). For distance analysis,
the valid range for both σ and k is ≥ 0.

Value

A list containing the following two components:

• L.unscaled: A matrix of size nXk containing likelihood values evaluated at distances in dist.
Each row is associated with a single distance, and each column is associated with a single case
(row of a). This matrix is "unscaled" because the underlying likelihood does not integrate to
one. Values in L.unscaled are always greater than or equal to zero.

• params: A nXkXb array of the likelihood’s (canonical) parameters in link space (i.e., on log
scale). First page contains parameter values related to covariates (i.e., s = exp(x’a)), while
subsequent pages contain other parameters. b = 1 for halfnorm, negexp; b = 2 for hazrate,
oneStep, Gamma, and others. Rows correspond to distances in dist. Columns correspond to
rows from argument a.

See Also

dfuncEstim, abundEstim, other <likelihood>.like functions

Examples

d <- seq(0, 100, length=100)
covs <- matrix(1,length(d),1)
hazrate.like(c(log(20), 5), d, covs)

Changing location parameter
plot(d, hazrate.like(c(log(20), 5), d, covs)$L.unscaled, type="l", col="red")
lines(d, hazrate.like(c(log(40), 5), d, covs)$L.unscaled, col="blue")
abline(h = 1 - exp(-1), lty = 2)
abline(v = c(20,40), lty = 2)

Changing slope parameter
plot(d, hazrate.like(c(log(50), 20), d, covs)$L.unscaled, type="l", col="red")
lines(d, hazrate.like(c(log(50), 2), d, covs)$L.unscaled, col="blue")
abline(h = 1 - exp(-1), lty = 2)
abline(v = 50, lty = 2)

56 hazrate.start.limits

hazrate.start.limits Start and limit values for hazrate distance function

Description

Compute starting values and limits for the hazard rate distance function.

Usage

hazrate.start.limits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

hermite.expansion 57

hermite.expansion Hermite expansion factors

Description

Computes Hermite expansion terms for use in distance analysis. The Hermite (and other expan-
sions) allow "wiggle" in estimated distance functions.

Usage

hermite.expansion(x, expansions)

Arguments

x A numeric matrix of distances at which to evaluate the expansion series. For
distance analysis, x should be the proportion of the maximum sighting distance
at which a group was sighted, i.e., x = d/w, where d is sighting distance and w
is maximum sighting distance.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

Details

There are, in general, several expansions that can be called Hermite. Let w = 4x − 2. Rdistance’s
Hermite expansions are:

• First term:
h1(w) = w + 2,

• Second term:
h2(w) = w2 − 4,

• Third term:
h3(w) = w3 − 3w + 2,

• Fourth term:
h4(w) = w4 − 6w2 + 8,

The maximum number of expansion terms computed is 4.

Value

A 3D array of size nrow(x) X ncol(x) X expansions. The ’pages’ (3rd dimension) of this array
are the cosine expansions of x. i.e., page 1 is the first expansion term of x, page 2 is the second
expansion term of x, etc.

See Also

dfuncEstim , cosine.expansion , sine.expansion , simple.expansion.

58 HookeJeeves

Examples

x <- matrix(seq(0, 1, length = 200), ncol = 1)
herm.expn <- hermite.expansion(x, 4)
plot(range(x), range(herm.expn), type="n")
matlines(x, herm.expn[,1,1:4], col=rainbow(4), lty = 1)

HookeJeeves ’nlminb’ optimizer

Description

Call R native function ’nlminb’ to perform optimization.

Usage

HookeJeeves(ml, strt.lims)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

strt.lims A list containing start, low, and high limits for parameters of the requested like-
lihood. This list is typically produced by a call to startLimits.

Value

A list with following named components:

• par = parameters

• loglik = objective function value at minimum

• convergence = 0 for yes, other for no

• iterations = number of iterations

• evaluations = function evaluations

• message = a convergence message

• varcovar = a variance covariance matrix of parameters

• limits = low and high limits

insertOneStepBreaks 59

insertOneStepBreaks Insert oneStep Likelihood breaks

Description

Compute break points in a onestep likelihood and insert them into a sequence of distances. The idea
is to insert a point just left and just right of the breaks so that they plot as vertical lines.

Usage

insertOneStepBreaks(obj, newData, xseq)

Arguments

obj A fitted Rdistance model object

newData A data frame containing covariate values to use in prediction.

xseq A vector of distances into which the break points are inserted.

Value

A vector like xseq, but with the break points inserted.

integrateDfuncs Integration of distance functions

Description

Integrates under distances functions using exact integrals when possible. If exact integrals are not
known, numerical integration is used.

Usage

integrateDfuncs(object, ml)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

60 integrateDfuncs

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Details

Let K be the integral under distance function g(x) (i.e., the output from this routine). In distance
analysis, the observation likelihood being evaluated for maximization is the density, f(x) = g(x)/K.
K is a key quantity in distance analysis and is called the "effective sampling distance".

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

Examples

Faking a model frame
ml <- list(likelihood = "halfnorm"

, expansions = 0
, w.lo = 0 %m% .
, w.hi = 100 %m% .
, Units = "m"
)

attr(ml, "transType") <- "line"

parms <- matrix(75, nrow = 1)
integrateDfuncs(parms, ml)

check: Normal, 0 to 100, sd = 75, scaled to mode = 1
(pnorm(q = 100, mean = 0, sd = 75) - 0.5) * sqrt(2*pi)*75

integrateGammaLines 61

integrateGammaLines Integrate Gamma line surveys

Description

Compute integral of the Gamma distance function for line-transect surveys.

Usage

integrateGammaLines(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

Details

#’ Returned integrals are ∫ w

0

(x

m

)α−1

e−(x−m)/σidx,

62 integrateGammaLines

where w = w.hi− w.lo, σi is the i-th estimated scale parameter for the Gamma distance function,
and m is the mode of Gamma (i.e., (α − 1)σi. Rdistance computes the integral using R’s base
function pgamma(), which for all intents and purposes is exact. See also Gamma.like.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpLines; integrateOneStepLines

Examples

Fake distance function object w/ minimum inputs for integration
d <- rep(1,4) %m%. # Only units needed, not values
obs <- factor(rep(c("obs1", "obs2"), 2))
beta <- c(4.0, -0.5, 1.5) # {'Intercept', b_1, shape}
w.hi <- 125
w.lo <- 20
ml <- list(

mf = model.frame(d ~ obs)
, par = beta
, likelihood = "Gamma"
, w.lo = w.lo %#% "m"
, w.hi = w.hi %#% "m"
, expansions = 0

)
class(ml) <- "dfunc"
integrateGammaLines(ml)

Check: Integral of Gamma density from 0 to w.hi-w.lo
b <- exp(c(beta[1], beta[1] + beta[2]))
B <- Rdistance::GammaReparam(shp = beta[3], scl = b)
m <- (B$shp - 1)*B$scl
f.at.m <- dgamma(m, shape = B$shp, scale = B$scl)
intgral <- pgamma(q = w.hi - w.lo, shape = B$shp, scale = B$scl) / f.at.m
intgral

integrateHalfnormLines 63

integrateHalfnormLines

Integrate Half-normal line surveys

Description

Compute integral of the half-normal distance function for line-transect surveys.

Usage

integrateHalfnormLines(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

64 integrateHalfnormLines

Details

Returned integrals are ∫ w

0

e−x2/2σ2
i dx =

√
2πσi(Φ(w)− 0.5),

where w = w.hi − w.lo, σi is the estimated half-normal distance function parameter for the i-th
observed distance, and Φ is the standard normal cumulative probability function. Rdistance uses
R’s base function pnorm(), which for all intents and purposes is exact.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpLines; integrateOneStepLines

Examples

Fake distance function object w/ minimum inputs for integration
d <- rep(1,4) %m%. # Only units needed, not values
obs <- factor(rep(c("obs1", "obs2"), 2))
beta <- c(3.5, -0.5)
w.hi <- 125
w.lo <- 20
ml <- list(

mf = model.frame(d ~ obs)
, par = beta
, likelihood = "halfnorm"
, w.lo = w.lo %#% "m"
, w.hi = w.hi %#% "m"
, expansions = 0

)
class(ml) <- "dfunc"
integrateHalfnormLines(ml)

Check: Integral of exp(-x^2/(2*s^2)) from 0 to w.hi-w.lo
b <- exp(c(beta[1], beta[1] + beta[2]))
intgral <- (pnorm(w.hi, mean=w.lo, sd = b) - 0.5) * sqrt(2*pi)*b
intgral

integrateHalfnormPoints 65

integrateHalfnormPoints

Integrate Half-normal Point transects

Description

Compute integral of the half-normal distance function for point surveys.

Usage

integrateHalfnormPoints(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

66 integrateHalfnormPoints

Details

Returned integrals are ∫ w

0

xe−x2/2σ2
i dx = 0.5σ2

i (1− e−w2/2σ2
i),

where w = w.hi−w.lo and σi is the estimated half-normal distance function parameter for the i-th
observed distance.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpPoints; integrateOneStepPoints

Examples

Fake distance function object w/ minimum inputs for integration
d <- rep(1,4) %m%. # Only units needed, not values
obs <- factor(rep(c("obs1", "obs2"), 2))
beta <- c(3.5, -0.5)
w.hi <- 125
w.lo <- 20
ml <- list(

mf = model.frame(d ~ obs)
, par = beta
, likelihood = "halfnorm"
, w.lo = w.lo %#% "m"
, w.hi = w.hi %#% "m"
, expansions = 0

)
class(ml) <- "dfunc"
integrateHalfnormPoints(ml)

Check: Integral of x exp(-x^2/(2*s^2)) from 0 to w = w.hi-w.lo
sigma <- exp(c(beta[1], beta[1] + beta[2]))
w <- w.hi - w.lo
intgral <- sigma^2 * (1 - exp(-w^2 / (2*sigma^2)))
intgral

Effective detection radius
sqrt(2 * intgral)

integrateHazrateLines 67

integrateHazrateLines Integrate Hazard-rate line survey distance functions

Description

Compute integral of the hazard-rate distance function for line-transect surveys.

Usage

integrateHazrateLines(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

Details

Returned integrals are ∫ w

0

(1− e−(x/σi)
−k

)dx = w − σi

k
Γ(−1

k
,
σi

w

k
),

68 integrateKey

where w = w.hi − w.lo, σi and k are estimated hazard-rate distance function parameters for the
i-th observed distance, and Γ() is the incomplete gamma function. Rdistance uses the incomplete
gamma function implemented in gammainc, which for all intents and purposes is exact.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpLines; integrateOneStepLines

Examples

A pre-estimated hazard rate distance function: sparrowDfuncObserver
fit <- sparrowDfuncObserver
table(ESW(fit))
table(integrateHazrateLines(fit))

Check: Integral of 1 - exp(-(x/s)^(-k)) from 0 to w.hi-w.lo
w <- dropUnits(fit$w.hi - fit$w.lo)
params <- predict(fit)
sigma <- params[,1]
minusk <- -params[,2]

outArea <- w + sigma *
expint::gammainc(1/minusk, (w/sigma)^(minusk)) / minusk

table(outArea)

integrateKey Compute and print distance function integration

Description

Check several integration characteristics, and report them to screen. This was designed to print info
when user asks for higher verbose level. The scaled distance function should integrate to 1.0 every
iteration of maximization, and this function checks that.

Usage

integrateKey(ml, key, f0, plot = FALSE)

integrateNegexpLines 69

Arguments

ml The fitted object or model list

key The scaled distance function.

f0 The value of f(0) when integrating line transects. This should be the ESW for
the case.

plot Logical scalar. If TRUE, plot a diagnostic consisting of the distance function
and approximating points we use for quadrature.

Value

Nothing. Prints information on integrals to the screen.

integrateNegexpLines Integrate Negative exponential

Description

Compute integral of the negative exponential distance function.

Usage

integrateNegexpLines(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

70 integrateNegexpLines

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

Details

Returned integrals are ∫ w

0

e−aixdx =
1

ai
(1− e−aiw),

where w = w.hi − w.lo and ai is the estimated negative exponential distance function parameter
for the i-th observed distance.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpPoints; integrateOneStepLines

Examples

Fake distance function object w/ minimum inputs for integration
d <- rep(1,4) %#% "m" # Only units needed, not values
obs <- factor(rep(c("obs1", "obs2"), 2))
beta <- c(-5, -0.5)
w.hi <- 125
w.lo <- 20
ml <- list(

mf = model.frame(d ~ obs)
, par = beta
, likelihood = "negexp"
, w.lo = w.lo %#% "m"
, w.hi = w.hi %#% "m"
, expansions = 0

)
class(ml) <- "dfunc"

integrateNegexpPoints 71

integrateNegexpLines(ml)

Check: Integral of exp(-bx) from 0 to w.hi-w.lo
b <- c(exp(beta[1]), exp(beta[1] + beta[2]))
intgral <- (1 - exp(-b*(w.hi - w.lo))) / b
intgral

integrateNegexpPoints Integrate Negative exponential point surveys

Description

Compute integral of the negative exponential distance function for point surveys

Usage

integrateNegexpPoints(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

72 integrateNegexpPoints

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

Details

Returned integrals are ∫ w

0

xe−aixdx =
1− e−aiw(aiw + 1)

a2i
,

where w = w.hi − w.lo and ai is the estimated negative exponential distance function parameter
for the i-th observed distance.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpLines

Examples

Fake distance function object w/ minimum inputs for integration
d <- rep(1,4) %#% "m" # Only units needed, not values
obs <- factor(rep(c("obs1", "obs2"), 2))
beta <- c(-5, -0.5)
w.hi <- 125
w.lo <- 20
ml <- list(

mf = model.frame(d ~ obs)
, par = beta
, likelihood = "negexp"
, w.lo = w.lo %#% "m"
, w.hi = w.hi %#% "m"
, expansions = 0

)
class(ml) <- "dfunc"
integrateNegexpPoints(ml)

Check: Integral of x*exp(-bx) from 0 to w.hi-w.lo
b <- c(exp(beta[1]), exp(beta[1] + beta[2]))
intgral <- (1 - exp(-b*(w.hi - w.lo)) * (b*(w.hi - w.lo) + 1)) / (b^2)
intgral

integrateNumeric 73

integrateNumeric Numeric Integration

Description

Numerically integrate under a distance function.

Usage

integrateNumeric(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL,
expansions = NULL,
series = NULL,
isPoints = NULL,
likelihood = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

74 integrateNumeric

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

isPoints Boolean. TRUE if integration is for point surveys. FALSE for line-transect
surveys. Line-transect surveys integrate under the distance function, g(x), while
point surveys integrate under the distance function times distances, xg(x).

likelihood String specifying the likelihood to fit. Built-in likelihoods at present are "halfnorm",
"hazrate", and "negexp".

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Numeric Integration

Rdistance uses Simpson’s composite 1/3 rule to numerically integrate distance functions from 0
to the maximum sighting distance (w.hi - w.lo). The number of points evaluated during numer-
ical integration is controlled by options(Rdistance_intEvalPts) (default 101). Option ’Rdis-
tance_intEvalPts’ must be odd because Simpson’s rule requires an even number of intervals. Lower
values of ’Rdistance_intEvalPts’ increase calculation speeds; but, decrease accuracy. ’Rdistance_intEvalPts’
must be >= 5. A warning is thrown if ’Rdistance_intEvalPts’ < 29. Empirical tests by the author
suggest ’Rdistance_intEvalPts’ values >= 30 are accurate to several decimal points for smooth dis-
tance functions (e.g., hazrate, halfnorm, negexp) and that all ’Rdistance_intEvalPts’ >= 101 produce
identical results if the distance function is not smooth.

Details: Let n = options(Rdistance_intEvalPts). Evaluate the distance function at n equal-
spaced locations {f(x0), f(x1), ..., f(xn)} between 0 and (w.hi - w.lo). Simpson’s composite approx-
imation to the area under the curve is

1

3
h(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ...+ 2f(xn−2) + 4f(xn−1) + f(xn))

where h is the interval size (w.hi - w.lo) / n.

Physical units on the return values are the original (linear) units if object contains line-transect data
(e.g., [m]), or square of the original units if object contains point-transect data (e.g., [m^2]). Point-
transect units are squared because the likelihood is the product of the detection function (which is
unitless) and distances (which have units).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

integrateOneStepLines 75

Examples

A halfnorm distance function
fit <- dfuncEstim(sparrowDf, dist~1, likelihood = "halfnorm")

exact <- integrateHalfnormLines(fit)[1,] # exact area
apprx <- integrateNumeric(fit)[1] # Numeric approx
pd <- options(digits = 20)
cbind(exact, apprx)
absDiff <- abs(apprx - exact)
absDiff
options(pd)

halfnorm approx good to this number of digits
round(log10(absDiff),1)

integrateOneStepLines Integrate Line-transect One-step function

Description

Compute exact integral of the one-step distance function for line transects.

Usage

integrateOneStepLines(object, newdata = NULL, Units = NULL)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

76 integrateOneStepLines

Details

Returned integrals are∫ w

0

(
p

θi
I(0 ≤ x ≤ θi) +

1− p

w − θi
I(θi < x ≤ w))dx =

θi
p
,

where w = w.hi−w.lo, θi is the estimated one-step distance function threshold for the i-th observed
distance, and p is the estimated one-step proportion.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateNegexpLines; integrateHalfnormLines

Examples

A oneStep distance function on simulated data
whi <- 250
T <- 100 # true threshold
p <- 0.85 # true proportion <T
n <- 200 # num simulated points
x <- c(runif(n*p, min=0, max=T), runif(n*(1-p), min=T, max=whi))
x <- setUnits(x, "m")
tranID <- sample(rep(1:10, each=n/10), replace=FALSE)
detectDf <- data.frame(transect = tranID, dist = x)
siteDf <- data.frame(transect = 1:10

, length = rep(setUnits(10,"m"), 10))
distDf <- RdistDf(siteDf, detectDf)

Estimation
fit <- dfuncEstim(distDf

, formula = dist ~ 1
, likelihood = "oneStep"
, w.hi = setUnits(whi, "m")
)

table(integrateOneStepLines(fit))
table(ESW(fit))

Check:
T.hat <- exp(fit$par[1])
p.hat <- fit$par[2]
gAtT <- ((1-p.hat) * T.hat) / (p.hat * (whi - T.hat))

integrateOneStepNumeric 77

plot(fit)
abline(h = gAtT, col="blue")

areaLE.T <- (1.0) * T.hat
areaGT.T <- gAtT * (whi - T.hat)
areaLE.T + areaGT.T # ESW

Equivalent
T.hat / p.hat

integrateOneStepNumeric

Numeric Integration of One-step Function

Description

Compute integral of the one-step distance function using numeric integration. This function is only
called for oneStep functions that contain expansion factors.

Usage

integrateOneStepNumeric(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL,
expansions = NULL,
series = NULL,
isPoints = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

78 integrateOneStepNumeric

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

isPoints Boolean. TRUE if integration is for point surveys. FALSE for line-transect
surveys. Line-transect surveys integrate under the distance function, g(x), while
point surveys integrate under the distance function times distances, xg(x).

Details

The oneStep.like function has an extremely large discontinuity at Theta. Accurate numeric inte-
gration requires inserting Theta and Theta+ (a value just larger than Theta) into the series of points
being evaluated. Because this creates un-equal intervals, the Trapazoid rule must be used. Rdis-
tance’s Simpson’s rule routine (integrateNumeric) will not work for oneStep likelihoods that have
expansions.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateOneStepLines; integrateOneStepPoints

integrateOneStepPoints 79

integrateOneStepPoints

Integrate Point-survey One-step function

Description

Compute integral of the one-step distance function for point-surveys.

Usage

integrateOneStepPoints(
object,
newdata = NULL,
w.lo = NULL,
w.hi = NULL,
Units = NULL

)

Arguments

object Either an Rdistance fitted distance function (an object that inherits from class
"dfunc"; usually produced by a call to dfuncEstim), or a matrix of canonical dis-
tance function parameters (e.g., matrix(exp(fit$par),1)). If a matrix, each
row corresponds to a distance function and each column is a parameter. The first
column is the parameter related to sighting covariates and must be transformed
to the "real" space (i.e., inverse link, which is exp(), must be applied outside this
routine). If object is a matrix, it should not have measurement units because
only derived quantities (e.g., ESW) have units; Rdistance function parameters
themselves never have units.

newdata A data frame containing new values for the distance function covariates. If
NULL and object is a fitted distance function, the observed covariates stored
in object are used (behavior similar to predict.lm). Argument newdata is
ignored if object is a matrix.

w.lo Minimum sighting distance or left-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

w.hi Maximum sighting distance or right-truncation value if object is a matrix. Ig-
nored if object is a fitted distance function. Must have physical measurement
units.

Units Physical units of sighting distances if object is a matrix. Sighting distance units
can differ from units of w.lo or w.hi. Ignored if object is a fitted distance
function.

80 integrateOneStepPoints

Details

Returned integrals are∫ w

0

x(
p

θi
I(0 ≤ x ≤ θi) +

1− p

w − θi
I(θi < x ≤ w))dx =

θi
2p

((1− p)w + θi),

where w = w.hi−w.lo, θi is the estimated one-step distance function threshold for the i-th observed
distance, and p is the estimated one-step proportion.

Value

A vector of areas under the distance functions represented in object. If object is a distance
function and newdata is specified, the returned vector’s length is nrow(newdata). If object is a
distance function and newdata is NULL, returned vector’s length is length(distances(object)).
If object is a matrix, return’s length is nrow(object).

Note

Users will not normally call this function. It is called internally by nLL and effectiveDistance.

See Also

integrateNumeric; integrateOneStepNumeric; integrateOneStepLines

Examples

fit <- dfuncEstim(thrasherDf, dist~1, likelihood = "oneStep")
integrateOneStepPoints(fit, newdata = data.frame(`(Intercept)`=1))
EDR(fit, newdata = data.frame(`(Intercept)`=1))

Check:
Theta <- exp(fit$par[1])
Theta <- setUnits(Theta, "m")
p <- fit$par[2]
w.hi <- fit$w.hi
w.lo <- fit$w.lo
g.at0 <- w.lo
g.atT <- Theta
g.atTPlusFuzz <- (((1-p) * Theta) / ((w.hi - Theta) * p))*Theta
g.atWhi <- (((1-p) * Theta) / ((w.hi - Theta) * p))*w.hi
area.0.to.T <- (Theta - w.lo) * (g.atT - g.at0) / 2 # triangle; Theta^2/2
area.T.to.w <- (w.hi - Theta) * (g.atTPlusFuzz + g.atWhi) / 2 # trapazoid
area <- area.0.to.T + area.T.to.w
edr <- sqrt(2*area)

intercept.only 81

intercept.only Detect intercept-only distance function

Description

Utility function to detect whether a distance function has covariates beyond the intercept. If the
model contains an intercept-only, effective distance is constant across detections and short-cuts can
be implemented in code.

Usage

intercept.only(object)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

Value

TRUE if object contains an intercept-only. FALSE if object contains at least one detection-level
or transect-level covariate in the detection function.

is.points Tests for point surveys

Description

Determines whether a distance function is for a point survey or line survey.

Usage

is.points(x)

Arguments

x Either an estimated distance function, output by dfuncEstim, or an Rdistance
nested data frame, output by RdistDf.

Value

TRUE if the model frame or fitted distance function contains point surveys. FALSE if the model
frame or distance function contains line transect surveys.

82 is.RdistDf

is.RdistDf Check RdistDf data frames

Description

Checks the validity of Rdistance nested data frames. Rdistance data frames are a particular
implementation of rowwise tibbles that contain detections in a list column, and extra attributes
specifying types.

Usage

is.RdistDf(df, verbose = FALSE)

Arguments

df A data frame to check

verbose If TRUE, an explanation of the check that fails is printed. Otherwise, no infor-
mation on checks is provided.

Details

The following checks are performed (in this order):

• attr(df, "detectionColumn") exists and points to a valid list-based column in the data
frame.

• attr(df, "obsType") exists and is one of the valid values.

• attr(df, "transType") exists and is one of the valid values.

• The data frame is either a ’rowwise_df’ or ’grouped_df’ tibble.

• The data frame has only one row per group. One row per group is implied by ’rowwise_df’,
but not a ’grouped_df’, and both are allowed in Rdistance. One row per group ensures rows
are uniquely identified and hence represents one transect.

• No column names in the list-column are duplicated in the non-list columns of the data frame.
This check ensures that tidyr::unnest executes.

Other data checks, e.g., for measurement units, are performed later in dfuncEstim, after the model
is specified.

Value

TRUE or FALSE invisibly. TRUE means all checks passed. FALSE implies at least one check
failed. Use verbose = TRUE to see which.

is.smoothed 83

Examples

data(sparrowDf)
is.RdistDf(sparrowDf)

Data frame okay, but no attributes
data(sparrowDetectionData)
data(sparrowSiteData)
sparrowDf <- sparrowDetectionData |>

dplyr::nest_by(siteID
, .key = "distances") |>

dplyr::right_join(sparrowSiteData, by = "siteID")
is.RdistDf(sparrowDf, verbose = TRUE)

is.smoothed Tests for smoothed distance functions

Description

Determines whether a distance function is a non-parametric smooth or classic parameterized func-
tion.

Usage

is.smoothed(object)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

Value

TRUE if the model frame or fitted distance function arises from a non-parametric density smoother.
FALSE if the model frame or distance function is a parameterized function.

is.Unitless Test whether object is unitless

Description

Tests whether a ’units’ object is actually unitless. Unitless objects, such as ratios, should be assigned
units of ’[1]’. Often they are, but sometimes unitless ratios are assigned units like ’[m/m]’. The
units package should always convert ’[m/m]’ to ’[1]’, but it does not always. Sometimes units like
’[m/m]’ mess things up, so it is better to remove them before calculations.

84 likeParamNames

Usage

is.Unitless(obj)

Arguments

obj A numeric scalar or vector, with or without units.

Value

TRUE if obj has units and they are either ’[1]’ or the denominator units equal the numerator units.
Otherwise, return FALSE. If obj does not have units, this routine returns TRUE.

Examples

a <- setUnits(2, "m")
b <- a / a
is.Unitless(a)
is.Unitless(b)
is.Unitless(3)

likeParamNames Likelihood parameter names

Description

Returns names of the likelihood parameters. This is a helper function and is not necessary for
estimation. It is nice to label some outputs in Rdistance with parameter names like "sigma" or
"knee", depending on the likelihood, and this routine provides a way to do that.

Usage

likeParamNames(like.form)

Arguments

like.form A text string naming the form of the likelihood.

Details

For user defined functions, ensure that the user defined start-limits function named <likelihood>.start.limits
can be evaluated on a distance of 1, can accept 0 expansions, a low limit of 0 a high limit of 1, and
that it returns the parameter names as the $names component of the result. That is, the code that re-
turns user-defined parameter names is, fn <- match.fun(paste0(like.form, ".start.limits"));
ans <- fn(1, 0, 0, 1); ans$names

Value

A vector of parameter names for that likelihood

lines.dfunc 85

lines.dfunc lines.dfunc - Line plotting method for distance functions

Description

Line plot method for objects of class ’dfunc’ that adds distance functions to an existing plot.

Usage

S3 method for class 'dfunc'
lines(x, newdata = NULL, prob = NULL, ...)

Arguments

x An estimated detection function object, normally produced by calling dfuncEstim.

newdata A data frame containing new values of the covariates at which to evaluate the
distance functions. If newdata is NULL, distance functions are evaluated at
values of the observed covariates and results in one prediction per distance or
transect (see parameter type). If newdata is not NULL and the model does not
contains covariates, this routine returns one prediction for each row in newdata,
but columns and values in newdata are ignored.

prob Logical scalar for whether to scale the distance function to be a density function
(integrates to one). Default behavior is designed to be compatible with the plot
method for distance functions (plot.dfunc). By default, line transect distance
functions are not scaled to a density and integrate to the effective strip width. In
contrast, point transects distance functions are scaled to be densities by default.

... Parameters passed to lines.default that control attributes like color, line width,
line type, etc.

Value

A data frame containing the x and y coordinates of the plotted line(s) is returned invisibly. X
coordinates in the return are names x. Y coordinates in the return are named y1, y2, ..., yn, i.e.,
one column per returned distance function.

See Also

dfuncEstim, plot.dfunc, print.abund

Examples

a simulated RdistDf
set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- setUnits(x, "mi")
Df <- data.frame(transectID = "A"

86 maximize.g

, distance = x
) |>

dplyr::nest_by(transectID
, .key = "detections") |>

dplyr::mutate(length = setUnits(100,"km"))
attr(Df, "detectionColumn") <- "detections"
attr(Df, "obsType") <- "single"
attr(Df, "transType") <- "line"
attr(Df,'effortColumn') <- "length"
is.RdistDf(Df) # TRUE

dfunc <- Df |> dfuncEstim(distance ~ 1, likelihood="halfnorm")
plot(dfunc, nbins = 40, col="lightgrey", border=NA, vertLines=FALSE)
lines(dfunc, col="grey30", lwd=15)
lines(dfunc, col="grey90", lwd=5, lty = 2)

Multiple lines
data(sparrowDfuncObserver)
obsLevs <- levels(sparrowDfuncObserver$data$observer)
plot(sparrowDfuncObserver

, vertLines = FALSE
, lty = 0
, plotBars = FALSE
, main="Detection by observer"
, legend = FALSE)

y <- lines(sparrowDfuncObserver
, newdata = data.frame(observer = obsLevs)
, col = palette.colors(length(obsLevs))
, lty = 1
, lwd = 4)

head(y) # values returned, with distances as column

maximize.g Find coordinate of function maximum

Description

Find the x coordinate that maximizes g(x).

Usage

maximize.g(fit, covars = NULL)

Arguments

fit An estimated ’dfunc’ object produced by dfuncEstim.

covars Covariate values to calculate g(x).

mlEstimates 87

Value

The value of x that maximizes g(x) in fit.

See Also

dfuncEstim

Examples

Not run:
Fake data
set.seed(22223333)
x <- rgamma(100, 10, 1)

fit <- dfuncEstim(x, likelihood="Gamma", x.scl="max")

maximize.g(fit) # should be near 10.
fit$x.scl # same thing

End(Not run)

mlEstimates Distance function maximum likelihood estimates

Description

Estimate parameters of a distance function using maximum likelihood.

Usage

mlEstimates(ml, strt.lims)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

strt.lims A list containing start, low, and high limits for parameters of the requested like-
lihood. This list is typically produced by a call to startLimits.

88 nCovars

Value

An Rdistance fitted model object. This object contains the raw object returned by the optimization
routine (e.g., nlming), and additional components specific to Rdistance.

model.matrix.dfunc Rdistance model matrix

Description

Extract the model matrix ("X" matrix) from an Rdistance model object.

Usage

S3 method for class 'dfunc'
model.matrix(object, ...)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

... Ignored

Value

A matrix containing covariates for fitting an Rdistance model.

Examples

data(sparrowDf)
sparrowModel <- parseModel(sparrowDf, dist ~ observer)
model.matrix(sparrowModel)

nCovars Number of covariates

Description

Return number of covariates in a distance model

Usage

nCovars(X)

negexp.like 89

Arguments

X The X matrix of covariates, or a vector.

Details

The reason this routine is needed is that sometimes we pass one row of covariates to a likelihood
function. If so, it may come in as a normal vector, not a matrix. If a normal vector, ncol(X) does
not work.

Value

An integer scalar

do not export

negexp.like Negative exponential likelihood

Description

Computes the negative exponential distance function.

Usage

negexp.like(a, dist, covars, w.hi = NULL)

Arguments

a A vector or matrix of covariate and expansion term coefficients. If matrix, di-
mension is k X p, where k = nrow(a)) is the number of coefficient vectors to
evaluate (cases) and p = ncol(a)) is the number of covariate and expansion co-
efficients in the likelihood (i.e., rows are cases and columns are covariates). If a
is a dimensionless vector, it is interpreted as a single row with k = 1. Covariate
coefficients in a are the first q values (q <= p), and must be on a log scale.

dist A numeric vector of length n or a single-column matrix (dimension nX1) con-
taining detection distances at which to evaluate the likelihood.

covars A numeric vector of length q or a matrix of dimension nXq containing covariate
values associated with distances in argument dist.

w.hi A numeric scalar containing maximum distance. The right-hand cutoff or upper
limit. Ignored by some likelihoods (such as halfnorm, negexp, and hazrate), but
is a fixed parameter in other likelihoods (such as oneStep and uniform).

Details

The negative exponential likelihood is

f(x|α) = exp(−αx)

where α is the slope parameter.

90 negexp.start.limits

Value

A list containing the following two components:

• L.unscaled: A matrix of size nXk containing likelihood values evaluated at distances in dist.
Each row is associated with a single distance, and each column is associated with a single case
(row of a). This matrix is "unscaled" because the underlying likelihood does not integrate to
one. Values in L.unscaled are always greater than or equal to zero.

• params: A nXkXb array of the likelihood’s (canonical) parameters in link space (i.e., on log
scale). First page contains parameter values related to covariates (i.e., s = exp(x’a)), while
subsequent pages contain other parameters. b = 1 for halfnorm, negexp; b = 2 for hazrate,
oneStep, Gamma, and others. Rows correspond to distances in dist. Columns correspond to
rows from argument a.

See Also

dfuncEstim, abundEstim, other <likelihood>.like functions

Examples

d <- seq(0, 100, length=100)
covs <- matrix(1,length(d),1)
negexp.like(log(0.01), d, covs)

Changing slope parameter
plot(d, negexp.like(log(0.1), d, covs)$L.unscaled, type="l", col="red")
lines(d, negexp.like(log(0.05), d, covs)$L.unscaled, col="blue")

negexp.start.limits Start and limit values for negexp distance function

Description

Compute starting values and limits for the negative exponential distance function.

Usage

negexp.start.limits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

nLL 91

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

nLL Negative log likelihood of distances

Description

Return the negative log likelihood of observed detection distances given a likelihood and the esti-
mated parameters.

Usage

nLL(a, ml, verbosity = 0)

Arguments

a A vector of likelihood parameter values. Length and meaning depend on ml$series
and ml$expansions. If no expansion terms were called for (i.e., ml$expansions
= 0), the distance likelihood contain one or two canonical parameters (see De-
tails). If one or more expansions are called for, coefficients for the expansion
terms follow coefficients for the canonical parameters. i.e., length of this vector
is (num Covars incl. intercept) + expansions + 1*(like %in% c("hazrate")).

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

verbosity The level of output produced during estimation. verbosity = 0 produces no
output. Increasing values of verbosity >= 1 produce increasing levels of inter-
mediate details. This is mostly used for de-bugging and checking convergence.

92 Nlminb

Details

Expansion Terms: If ml$expansions = k (k > 0), the expansion function specified by ml$series is
called (see for example cosine.expansion). Assuming hij(x) is the jth expansion term for the ith

distance and that c1, c2, . . . , ck are (estimated) coefficients for the expansion terms, the likelihood
contribution for the ith distance is,

f(x|a, b, c1, c2, . . . , ck) = f(x|a, b)(1 +
k∑

j=1

cjhij(x)).

Value

A scalar, the negative of the log likelihood evaluated at parameters a.

See Also

See halfnorm.like and links there; dfuncEstim

Examples

A halfnorm distance function
fit <- dfuncEstim(sparrowDf, dist~1, likelihood = "halfnorm")
nLL(fit$par, fit, 3)
fit$loglik
ESW(fit)[1]

Another way, b/c we have pnorm()
d <- distances(fit)
ones <- matrix(1, nrow = length(d), ncol = 1)
l <- halfnorm.like(fit$par, d, ones)
esw <-(pnorm(units::drop_units(fit$w.hi)

, units::drop_units(fit$w.lo)
, sd = exp(l$params)) - 0.5) * sqrt(2*pi) * exp(l$params)

-sum(log(l$L.unscaled/esw))

A third way, b/c we have pnorm() and dnorm().
l2 <- dnorm(units::drop_units(d), mean = 0, sd = exp(fit$par))
scaler <- pnorm(units::drop_units(fit$w.hi), mean = 0, sd = exp(fit$par)) - 0.5
-sum(log(l2/scaler))

Nlminb ’nlminb’ optimizer

Description

Call R native function ’nlminb’ to perform optimization.

observationType 93

Usage

Nlminb(ml, strt.lims)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

strt.lims A list containing start, low, and high limits for parameters of the requested like-
lihood. This list is typically produced by a call to startLimits.

Value

A list with following named components:

• par = parameters

• loglik = objective function value at minimum

• convergence = 0 for yes, other for no

• iterations = number of iterations

• evaluations = function evaluations

• message = a convergence message

• varcovar = a variance covariance matrix of parameters

• limits = low and high limits

observationType Type of observations

Description

Return the type of observations (single or multiple observers) represented in either a fitted distance
function or Rdistance data frame.

Usage

observationType(x)

Arguments

x Either an estimated distance function, output by dfuncEstim, or an Rdistance
nested data frame, output by RdistDf.

94 oneBsIter

Details

This function is a simple helper function. If x is an estimated distance object, it polls the obsType
attribute of the object’s Rdistance data frame. If x is an Rdistance nested data frame, it polls the
obsType attribute.

Value

One of the following values: "single", "1given2", "2given1", or "both". If observation type has not
been assigned, return is NULL.

oneBsIter Calculations for one bootstrap iteration

Description

Performs density and abundance estimation for one bootstrap iteration.

Usage

oneBsIter(
object,
area,
propUnitSurveyed,
pb,
plot.bs,
plotCovValues,
warn = FALSE,
asymptoticSE = FALSE

)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were

oneStep.like 95

observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

pb A progress bar created with progress::progress_bar$new().

plot.bs Logical. Whether to plot bootstrap estimate of detection function. A plot must
already exist because this uses lines.

plotCovValues Data frame containing values of covariates to plot. Ignored if plot.bs is FALSE.

warn A logical scalar specifying whether to issue an R warning if the estimation did
not converge or if one or more parameter estimates are at their boundaries. For
estimation, warn should generally be left at its default value of TRUE. When com-
puting bootstrap confidence intervals, setting warn = FALSE turns off annoying
warnings when an iteration does not converge. Regardless of warn, after com-
pletion all messages about convergence and boundary conditions are printed by
print.dfunc, print.abund, and plot.dfunc.

asymptoticSE Logical variable for whether to calculate asymptotic standard errors. The de-
fault (TRUE) estimates an asymptotic variance-covariance matrix for parame-
ters based on the likelihood’s Hessian (2nd derivative). If maximization has
been performed by Nlminb or HookesJeeves, the asymptotic Hessian is esti-
mated using numeric second deriviatives of the likelihood at the maximum like-
lihood solution. If maximization was performed by Optim, the last Hessian
of the maximization is returned by Optim and used (see varcovarEstim and
secondDeriv). Asymptotic standard errors will not be estimated if asymptoticSE
= FALSE. If not estimated, bootstrap iterations will run faster because the nu-
meric Hessian, which is discarded during bootstrapping, will not be calculated
every iteration.

Value

A data frame containing density and abundance and other relevant statistics for one iteration of the
bootstrap.

See Also

bootstrap; abundEstim

oneStep.like Mixture of two uniforms likelihood

Description

Compute likelihood function for a mixture of two uniform distributions.

Usage

oneStep.like(a, dist, covars, w.hi = NULL)

96 oneStep.like

Arguments

a A vector or matrix of covariate and expansion term coefficients. If matrix, di-
mension is k X p, where k = nrow(a)) is the number of coefficient vectors to
evaluate (cases) and p = ncol(a)) is the number of covariate and expansion co-
efficients in the likelihood (i.e., rows are cases and columns are covariates). If a
is a dimensionless vector, it is interpreted as a single row with k = 1. Covariate
coefficients in a are the first q values (q <= p), and must be on a log scale.

dist A numeric vector of length n or a single-column matrix (dimension nX1) con-
taining detection distances at which to evaluate the likelihood.

covars A numeric vector of length q or a matrix of dimension nXq containing covariate
values associated with distances in argument dist.

w.hi A numeric scalar containing maximum distance. The right-hand cutoff or upper
limit. Ignored by some likelihoods (such as halfnorm, negexp, and hazrate), but
is a fixed parameter in other likelihoods (such as oneStep and uniform).

Details

Rdistance’s oneStep likelihood is a mixture of two non-overlapping uniform distributions. The
’oneStep’ density function is

f(d|p, θ) = p

θ
I(0 ≤ d ≤ θ) +

1− p

w − θ
I(θ ≤ d ≤ w),

where I(x) is the indicator function for event x, and w is the nominal strip width (i.e., w.hi - w.lo
in Rdistance). The unknown parameters to be estimated are θ and p (w is fixed - given by the user).

Covariates influence values of θ via a log link function, i.e., θ = ex
′b, where x is the vector of

covariate values associated with distance d, and b is the vector of estimated coefficients.

Value

A list containing the following two components:

• L.unscaled: A matrix of size nXk containing likelihood values evaluated at distances in dist.
Each row is associated with a single distance, and each column is associated with a single case
(row of a). This matrix is "unscaled" because the underlying likelihood does not integrate to
one. Values in L.unscaled are always greater than or equal to zero.

• params: A nXkXb array of the likelihood’s (canonical) parameters in link space (i.e., on log
scale). First page contains parameter values related to covariates (i.e., s = exp(x’a)), while
subsequent pages contain other parameters. b = 1 for halfnorm, negexp; b = 2 for hazrate,
oneStep, Gamma, and others. Rows correspond to distances in dist. Columns correspond to
rows from argument a.

References

Peter F. Craigmile & D.M. Tirrerington (1997) "Parameter estimation for finite mixtures of uni-
form distributions", Communications in Statistics - Theory and Methods, 26:8, 1981-1995, DOI:
10.1080/03610929708832026

A. Hussein & J. Liu (2009) "Parametric estimation of mixtures of two uniform distributions", Jour-
nal of Statistical Computation and Simulation, 79:4, 395-410, DOI:10.1080/00949650701810406

oneStep.start.limits 97

See Also

dfuncEstim, abundEstim, other <likelihood>.like functions

Examples

Fit oneStep to simulated data
whi <- 250
T <- 100 # true threshold
p <- 0.85
n <- 200
x <- c(runif(n*p, min=0, max=T), runif(n*(1-p), min=T, max=whi))
x <- setUnits(x, "m")
tranID <- sample(rep(1:10, each=n/10), replace=FALSE)
detectDf <- data.frame(transect = tranID, dist = x)
siteDf <- data.frame(transect = 1:10

, length = rep(setUnits(10,"m"), 10))
distDf <- RdistDf(siteDf, detectDf)

Estimation
fit <- dfuncEstim(distDf

, formula = dist ~ 1
, likelihood = "oneStep"
, w.hi = setUnits(whi, "m")
)

plot(fit)
thetaHat <- exp(coef(fit)[1])
pHat <- coef(fit)[2]
c(thetaHat, pHat) # should be close to c(100,0.85)

summary(abundEstim(fit, ci=NULL))

oneStep.start.limits oneStep likelihood start and limit values

Description

Compute starting values and limits for the oneStep distance function.

Usage

oneStep.start.limits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are

98 oneStep.start.limits

typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

See Also

oneStep.like

Examples

make 'model list' object
Boundary is 10, p is 100 / 120 = 0.833
library(Rdistance)
whi <- 50
x <- c(runif(100, min=0, max=10), runif(20, min=10, max=whi))
x <- setUnits(x, "m")
detectDf <- data.frame(transect = 1, dist = x)
siteDf <- data.frame(transect = 1, length = setUnits(10,"m"))
distDf <- RdistDf(siteDf, detectDf)
ml <- parseModel(distDf

, formula = dist ~ 1
, w.lo = 0
, w.hi = setUnits(whi, "m")
)

sl <- oneStep.start.limits(ml)
hist(x, n = 20)
abline(v = exp(sl$start["(Intercept)"]))

Optim 99

Optim ’optim’ optimizer

Description

Call R native function ’optim’ to perform optimization.

Usage

Optim(ml, strt.lims)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

strt.lims A list containing start, low, and high limits for parameters of the requested like-
lihood. This list is typically produced by a call to startLimits.

Value

A list with following named components:

• par = parameters

• loglik = objective function value at minimum

• convergence = 0 for yes, other for no

• iterations = number of iterations

• evaluations = function evaluations

• message = a convergence message

• varcovar = a variance covariance matrix of parameters

• limits = low and high limits

100 parseModel

parseModel Parse Rdistance model

Description

Parse an ’Rdistance’ formula and produce a list containing all model parameters. This routine is
not normally called directly by the user, but it might be helpful in simulations. It is called internally
from the model estimation routines.

Usage

parseModel(
data,
formula = NULL,
likelihood = "halfnorm",
w.lo = 0,
w.hi = NULL,
expansions = 0,
series = "cosine",
x.scl = w.lo,
g.x.scl = 1,
outputUnits = NULL,
asymptoticSE = TRUE

)

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function
RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 + covar2).
The left-hand side (before ~) is the name of the vector containing off-transect or
radial detection distances. The right-hand side contains the names of covariate
vectors to fit in the detection function, and potentially group sizes. Group sizes
are specified by including + groupsize(<variable>) in the RHS (see ’Group
Sizes’ section). Covariates can be either detection level or transect level and can
appear in data or exist in the global working environment. Regular R scoping
rules apply.

likelihood String specifying the likelihood to fit. Built-in likelihoods at present are "halfnorm",
"hazrate", and "negexp".

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0, it
must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

parseModel 101

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If unspecified (i.e., NULL), right-
truncation is set to the maximum of the observed distances. If w.hi is specified,
it must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

expansions A scalar specifying the number of terms in series to compute. Depending on
the series, this could be 0 through 5. The default of 0 equates to no expansion
terms of any type. No expansion terms are allowed (i.e., expansions is forced
to 0) if covariates are present in the detection function (i.e., right-hand side of
formula includes something other than 1).

series If expansions > 0, this string specifies the type of expansion to use. Valid
values at present are ’simple’, ’hermite’, and ’cosine’.

x.scl The x coordinate (a distance) at which the detection function will be scaled.
g.x.scl can be a distance or the string "max". When x.scl is specified (i.e., not
0 or "max"), it must have measurement units assigned. See help(unitHelpers)
for assistance assigning units.

g.x.scl Height of the distance function at coordinate x. The distance function will be
scaled so that g(x.scl) = g.x.scl. If g.x.scl is not a data frame, it must be a
numeric value (vector of length 1) between 0 and 1.

outputUnits A string specifying the symbolic measurement units for results. Valid units are
listed in units::valid_udunits(). The strings for common distance symbolic
units are: "m" - meters, "ft" - feet, "cm" - centimeters, "mm" - millimeters, "mi"
- miles, "nmile" - nautical miles ("nm" is nano meters), "in" - inches, "yd" -
yards, "km" - kilometers, "fathom" - fathoms, "chains" - chains, and "furlong" -
furlongs. If outputUnits is unspecified (NULL), output units will be the same
as those on distances in data.

asymptoticSE Logical variable for whether to calculate asymptotic standard errors. The de-
fault (TRUE) estimates an asymptotic variance-covariance matrix for parame-
ters based on the likelihood’s Hessian (2nd derivative). If maximization has
been performed by Nlminb or HookesJeeves, the asymptotic Hessian is esti-
mated using numeric second deriviatives of the likelihood at the maximum like-
lihood solution. If maximization was performed by Optim, the last Hessian
of the maximization is returned by Optim and used (see varcovarEstim and
secondDeriv). Asymptotic standard errors will not be estimated if asymptoticSE
= FALSE. If not estimated, bootstrap iterations will run faster because the nu-
meric Hessian, which is discarded during bootstrapping, will not be calculated
every iteration.

Value

An Rdistance model frame, which is an object of class "dfunc". Rdistance model frames are lists
containing distance model components but not estimates. Model frames contain everything neces-
sary to fit an Rdistance mode, such as covariates, minimum and maximum distances, the form of the
likelihood, number of expansions, etc. Rdistance model frames contain a subset of fitted Rdistance
model components.

102 perpDists

See Also

RdistDf, which returns an Rdistance data frame; dfuncEstim, which returns an Rdistance fitted
model.

Examples

data(sparrowDf)

ml <- Rdistance::parseModel(sparrowDf
, formula = dist ~ 1 + observer + groupsize(groupsize)
, likelihood = "halfnorm"
, w.lo = 0
, w.hi = NULL
, series = "cosine"
, x.scl = 0
, g.x.scl = 1
, outputUnits = "m"
)

class(ml) # 'dfunc', but no estimated coefficients
print(ml)
print.default(ml)

perpDists Compute off-transect distances from sighting distances and angles

Description

Computes off-transect (also called ’perpendicular’) distances from measures of sighting distance
and sighting angle.

Usage

perpDists(sightDist, sightAngle, data)

Arguments

sightDist Character, name of column in data that contains the observed or sighting dis-
tances from the observer to the detected objects.

sightAngle Character, name of column in data that contains the observed or sighting an-
gles from the line transect to the detected objects. Angles must be measured in
degrees.

data data.frame object containing sighting distance and sighting angle.

Details

If observers recorded sighting distance and sighting angle (as is often common in line transect sur-
veys), use this function to convert to off-transect distances, the required input data for dfunc.estim.

plot.dfunc 103

Value

A vector of off-transect (or perpendicular) distances. Units are the same as sightDist.

References

Buckland, S.T., Anderson, D.R., Burnham, K.P. and Laake, J.L. 1993. Distance Sampling: Esti-
mating Abundance of Biological Populations. Chapman and Hall, London.

See Also

dfuncEstim

Examples

Load the example dataset of sparrow detections from package
data(sparrowDetectionData)
Compute perpendicular, off-transect distances from the observer's sight distance and angle
sparrowDetectionData$perpDist <- perpDists(sightDist="sightdist", sightAngle="sightangle",

data=sparrowDetectionData)

plot.dfunc Plot method for distance (detection) functions

Description

Plot method for objects of class ’dfunc’. Objects of class ’dfunc’ are estimated distance functions
produced by dfuncEstim.

Usage

S3 method for class 'dfunc'
plot(x, ...)

Arguments

x An estimated detection function object, normally produced by calling dfuncEstim.

... Arguments passed on to plot.dfunc.para

include.zero Boolean value specifying whether to include 0 on the x-axis of
the plot. A value of TRUE will include 0 on the left hand end of the x-axis
regardless of the range of distances. A value of FALSE will plot only the
observation strip (w.lo to w.hi).

nbins Internally, this function uses hist to compute histogram bars for the
plot. This argument is the breaks argument to hist. This can be either a
vector giving the breakpoints between bars, the suggested number of bars
(a single number), a string naming an algorithm to compute the number of
bars, or a function to compute the number of bars. See hist for all options.

104 plot.dfunc

newdata Data frame (similar to newdata parameter of lm) containing new val-
ues for covariates in the distance function. One distance function is com-
puted and plotted for each row in the data frame. If newdata is NULL, a
single distance function is plotted for mean values of all numeric covariates
and mode values for all factor covariates.

legend Logical scalar for whether to include a legend. If TRUE, a legend will
be included on the plot detailing the covariate values used to generate the
plot.

plotBars Logical scalar for whether to plot the histogram of distances behind
the distance function. If FALSE, no histogram is plotted, only the distance
function line(s).

xlab Label for the x-axis
ylab Label for the y-axis
density If plotBars=TRUE, a vector giving the density of shading lines, in

lines per inch, for the bars underneath the distance function, repeated as
necessary to exceed the number of bars. Values of NULL or a number
strictly less than 0 mean solid fill using colors from parameter col. If
density = 0, bars are not filled and only the borders are rendered. If density
> 0, bars are shaded with colors and angles from parameters col and angle.

angle When density > 0, the slope of bar shading lines, given as an angle in
degrees (counter-clockwise), repeated as necessary to exceed the number
of bars.

col A vector of bar fill colors or line colors when bars are drawn and density
!= 0, repeated as necessary to exceed the number of bars. Also used for the
bar borders when border = TRUE.

border The color of bar borders when bars are plotted, repeated as necessary to
exceed the number of bars. A value of NA or FALSE means no borders. If
bars are shaded with lines (i.e., density>0), border = TRUE uses the same
color for the border as for the shading lines. Otherwise, fill color or shaded
line color are specified in col while border color is specified in border.

vertLines Logical scalar specifying whether to plot vertical lines at w.lo and
w.hi from 0 to the distance function.

col.dfunc Color of the distance function(s). If only one distance function (one
line) is being plotted, the default color is "red". If covariates or newdata
are present, the default value uses graphics::rainbow(n), where n is the
number of plotted distance functions. Otherwise, col.dfunc is replicated
to the required length. Plot all distance functions in the same color by
setting col.dfunc to a scalar. Plot blue-red pairs of distance functions by
setting col.dfunc = c("blue", "red"). Etc.

lty.dfunc Line type of the distance function(s). If covariates or newdata is
present, the default uses line types to 1:n, where n is the number of plot-
ted distance functions. Otherwise, lty.dfunc is replicated to the required
length. Plot solid lines by specifying lty.dfunc = 1. Plot solid-dashed line
pairs by specifying lty.dfunc = c(1,2). Etc.

lwd.dfunc Line width of the distance function(s), replicated to the required
length. Default is 2 for all lines.

plot.dfunc 105

Details

If plotBars is TRUE, a scaled histogram is plotted and the estimated distance function is plotted
over the top of it. When bars are plotted, this routine uses graphics::barplot for setting up the
initial plotting region and most parameters to graphics::barplot can be specified (exceptions
noted above in description of ’. . . ’).

The form of the likelihood and any series expansions is printed in the main title (overwrite this with
main="<my title>"). Convergence of the distance function is checked. If the distance function did
not converge, a warning is printed over the top of the histogram. If one or more parameter estimates
are at their limits (likely indicating non-convergence or poor fit), another warning is printed.

Value

The input distance function is returned, with two additional components than can be used to recon-
struct the plotted bars. (To obtain values of the plotted distance functions, use predict with type
= "distances".) The additional components are:

barHeights A vector containing the scaled bar heights drawn on the plot.

barWidths A vector or scalar of the bar widths drawn on the plot, with measurement units.

Re-plot the bars with barplot(return$barHeights, width = return$barWidths).

See Also

dfuncEstim, print.dfunc, print.abund

Examples

Simulated RdistDf
set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- setUnits(x, "ft")
Df <- data.frame(transectID = "A"

, distance = x
) |>

dplyr::nest_by(transectID
, .key = "detections") |>

dplyr::mutate(length = setUnits(1,"mi"))
attr(Df, "detectionColumn") <- "detections"
attr(Df, "obsType") <- "single"
attr(Df, "transType") <- "line"
attr(Df, "effortColumn") <- "length"
is.RdistDf(Df) # TRUE

dfunc <- Df |> dfuncEstim(distance ~ 1, likelihood="halfnorm")
plot(dfunc)
plot(dfunc, nbins=25)

showing effects of plot parameters
plot(dfunc

, col=c("red","blue","orange")

106 plot.dfunc

, border="black"
, xlab="Off-transect distance"
, ylab="Prob"
, vertLines = FALSE
, main="Showing plot params")

plot(dfunc
, col="purple"
, density=30
, angle=c(-45,0,45)
, cex.axis=1.5
, cex.lab=2
, ylab="Probability")

plot(dfunc
, col=c("grey","lightgrey")
, border=NA)

plot(dfunc
, col="grey"
, border=0
, col.dfunc="blue"
, lty.dfunc=2
, lwd.dfunc=4
, vertLines=FALSE)

plot(dfunc
, plotBars=FALSE
, cex.axis=1.5
, col.axis="blue")

rug(distances(dfunc))

un-equal bin widths, nbins must span distances
plot(dfunc

, nbins = c(0,2.5,5,7.5,10,15,25,50,70)
)

Plot showing f(0)
hist(distances(dfunc)

, n = 40
, border = NA
, prob = TRUE)

x <- seq(dfunc$w.lo, dfunc$w.hi, length=200)
g <- predict(dfunc, type="dfunc", distances = x, newdata = data.frame(a=1))
f <- g[,1] / ESW(dfunc)[1]

Check integration:
sum(diff(x)*(f[-1] + f[-length(f)]) / 2) # Trapazoid rule; should be 1.0
lines(x, f) # hence, 1/f(0) = ESW

Covariates: detection by observer
data(sparrowDfuncObserver) # pre-estimated model

plot.dfunc.para 107

obsLevs <- levels(sparrowDfuncObserver$data$observer)
plot(sparrowDfuncObserver

, newdata = data.frame(observer = obsLevs)
, vertLines = FALSE
, col.dfunc = heat.colors(length(obsLevs))
, col = c("grey","lightgrey")
, border=NA
, main="Detection by observer")

plot.dfunc.para Plot parametric distance functions

Description

Plot method for parametric line and point transect distance functions.

Usage

S3 method for class 'dfunc.para'
plot(
x,
include.zero = FALSE,
nbins = "Sturges",
newdata = NULL,
legend = TRUE,
vertLines = TRUE,
plotBars = TRUE,
circles = FALSE,
density = -1,
angle = 45,
xlab = NULL,
ylab = NULL,
border = TRUE,
col = "grey85",
col.dfunc = NULL,
lty.dfunc = NULL,
lwd.dfunc = NULL,
...

)

Arguments

x An estimated detection function object, normally produced by calling dfuncEstim.

include.zero Boolean value specifying whether to include 0 on the x-axis of the plot. A value
of TRUE will include 0 on the left hand end of the x-axis regardless of the range
of distances. A value of FALSE will plot only the observation strip (w.lo to
w.hi).

108 plot.dfunc.para

nbins Internally, this function uses hist to compute histogram bars for the plot. This
argument is the breaks argument to hist. This can be either a vector giving
the breakpoints between bars, the suggested number of bars (a single number),
a string naming an algorithm to compute the number of bars, or a function to
compute the number of bars. See hist for all options.

newdata Data frame (similar to newdata parameter of lm) containing new values for co-
variates in the distance function. One distance function is computed and plotted
for each row in the data frame. If newdata is NULL, a single distance function is
plotted for mean values of all numeric covariates and mode values for all factor
covariates.

legend Logical scalar for whether to include a legend. If TRUE, a legend will be in-
cluded on the plot detailing the covariate values used to generate the plot.

vertLines Logical scalar specifying whether to plot vertical lines at w.lo and w.hi from 0
to the distance function.

plotBars Logical scalar for whether to plot the histogram of distances behind the distance
function. If FALSE, no histogram is plotted, only the distance function line(s).

circles Logical scalar requesting the location of detection distances be plotted. If TRUE,
open circles are plotted at predicted distance function heights associated with all
detection distances. For computational simplicity, all distances are plotted for
EVERY covariate class even though observed distances belong to only one co-
variate class. If FALSE, circles are not plotted.

density If plotBars=TRUE, a vector giving the density of shading lines, in lines per inch,
for the bars underneath the distance function, repeated as necessary to exceed
the number of bars. Values of NULL or a number strictly less than 0 mean solid
fill using colors from parameter col. If density = 0, bars are not filled and only
the borders are rendered. If density > 0, bars are shaded with colors and angles
from parameters col and angle.

angle When density > 0, the slope of bar shading lines, given as an angle in degrees
(counter-clockwise), repeated as necessary to exceed the number of bars.

xlab Label for the x-axis
ylab Label for the y-axis
border The color of bar borders when bars are plotted, repeated as necessary to exceed

the number of bars. A value of NA or FALSE means no borders. If bars are
shaded with lines (i.e., density>0), border = TRUE uses the same color for the
border as for the shading lines. Otherwise, fill color or shaded line color are
specified in col while border color is specified in border.

col A vector of bar fill colors or line colors when bars are drawn and density !=
0, repeated as necessary to exceed the number of bars. Also used for the bar
borders when border = TRUE.

col.dfunc Color of the distance function(s). If only one distance function (one line) is
being plotted, the default color is "red". If covariates or newdata are present,
the default value uses graphics::rainbow(n), where n is the number of plotted
distance functions. Otherwise, col.dfunc is replicated to the required length.
Plot all distance functions in the same color by setting col.dfunc to a scalar.
Plot blue-red pairs of distance functions by setting col.dfunc = c("blue",
"red"). Etc.

plot.dfunc.para 109

lty.dfunc Line type of the distance function(s). If covariates or newdata is present, the
default uses line types to 1:n, where n is the number of plotted distance func-
tions. Otherwise, lty.dfunc is replicated to the required length. Plot solid
lines by specifying lty.dfunc = 1. Plot solid-dashed line pairs by specifying
lty.dfunc = c(1,2). Etc.

lwd.dfunc Line width of the distance function(s), replicated to the required length. Default
is 2 for all lines.

... When bars are plotted, this routine uses graphics::barplot to draw the plot-
ting region and bars. When bars are not plotted, this routine sets up the plot
with graphics::plot. . . . can be any argument to barplot or plot EXCEPT
width, ylim, xlim, density, angle, and space. For example, set the main title
with main = "Main Title".

Value

The input distance function is returned, with two additional components than can be used to recon-
struct the plotted bars. (To obtain values of the plotted distance functions, use predict with type
= "distances".) The additional components are:

barHeights A vector containing the scaled bar heights drawn on the plot.

barWidths A vector or scalar of the bar widths drawn on the plot, with measurement units.

Re-plot the bars with barplot(return$barHeights, width = return$barWidths).

See Also

plot.dfunc

Examples

Simulated data
set.seed(87654)
x <- rnorm(1000, mean=0, sd=20)
x <- x[x >= 0]
x <- setUnits(x, "ft")
Df <- data.frame(transectID = "A"

, distance = x
) |>

dplyr::nest_by(transectID
, .key = "detections") |>

dplyr::mutate(length = setUnits(1,"mi"))
attr(Df, "detectionColumn") <- "detections"
attr(Df, "obsType") <- "single"
attr(Df, "transType") <- "line"
attr(Df, "effortColumn") <- "length"
is.RdistDf(Df) # TRUE

Estimation
dfunc <- dfuncEstim(Df

, formula = distance~1
, likelihood="halfnorm")

110 predDensity

plot(dfunc)
plot(dfunc, nbins=25)

predDensity Density on transects

Description

An internal prediction method for computing density on the sampled transects.

Usage

predDensity(object, propUnitSurveyed = 1)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

Value

A data frame containing the original data used to fit the distance function, plus an additional column
containing the density of individuals on each transect.

Examples

data(sparrowDfuncObserver)
predict(sparrowDfuncObserver, type="density")

predDfuncs 111

predDfuncs Predict distance functions

Description

An internal prediction function to predict a distance function. This version allows for matrix inputs
and uses matrix operations, and is thus faster than earlier looping versions.

Usage

predDfuncs(object, params, distances, isSmooth)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

params A matrix of distance function parameters. Rows are observations, columns con-
tain the set of parameters (canonical and expansion) for each observation.

distances A vector or 1-column matrix of distances at which to evaluate distance functions,
when distance functions are requested. distances must have measurement
units. Any distances outside the observation strip (object$w.lo to object$w.hi)
are discarded. If distances is NULL, a sequence of getOption("Rdistance_intEvalPts")
(default 101) evenly spaced distances between object$w.lo and object$w.hi
(inclusive) is used.

isSmooth Logical. TRUE if the distance function is smoothed (and hence has no parame-
ters).

Value

A matrix of distance function values, of size length(distances) X nrow(params). Each row of params
is associated with a column, i.e., a different distance function. Distances are associated with rows,
i.e., use matplot(d,return) to plot values on separate distance functions specified by rows of params.

predict.dfunc Predict distance functions

Description

Predict either likelihood parameters, distance functions, site-specific density, or site-specific abun-
dance from estimated distance function objects.

112 predict.dfunc

Usage

S3 method for class 'dfunc'
predict(
object,
newdata = NULL,
type = c("parameters"),
distances = NULL,
propUnitSurveyed = 1,
area = NULL,
...

)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

newdata A data frame containing new values of the covariates at which to evaluate the
distance functions. If newdata is NULL, distance functions are evaluated at
values of the observed covariates and results in one prediction per distance or
transect (see parameter type). If newdata is not NULL and the model does not
contains covariates, this routine returns one prediction for each row in newdata,
but columns and values in newdata are ignored.

type The type of predictions desired.

• If type == "parameters": Returned value is a matrix of predicted (canon-
ical) parameters of the likelihood function. If newdata is NULL, return
contains one parameter value for every detection distance in object$mf
(distances in object$mf are between object$w.lo and object$w.hi and
non-missing). If newdata is not NULL, returned vector has one parameter
for every row in newdata. Parameter distances is ignored when type ==
"parameters". Canonical parameters (non-expansion terms) are returned on
the response (inverse-link) scale. Raw canonical parameters in object$par
are stored in the link scale. Expansion term parameters use the identity link,
so their value in the output equals their value in object$par.

• If type == "likelihood": Returned value is a matrix of unscaled likelihood
values for all observed distances in object$mf, i.e., raw distance functions
evaluated at the observed distances. Parameters newdata and distances
are ignored when type is "likelihood". The negative log likelihood of
the full data set is -sum(log(predict(object,type="likelihood") /
effectiveDistance(object))).

• If type == "dfuncs" or "dfunc": Returned value is a matrix whose columns
contain scaled distance functions. The distance functions in each column
are evaluated at distances in argument distances, not at the observed dis-
tances in object$mf. The number of distance functions returned (i.e., num-
ber of columns) depends on newdata as follows:

– If newdata is NULL, one distance function will be returned for every
detection in object$mf that has valid covariate values.

predict.dfunc 113

– If newdata is not NULL, one distance function will be returned for
each observation (row) in newdata.

• If type == "density" or "abundance": Returned object is a tibble con-
taining predicted density and abundance on the area surveyed by each tran-
sect.

If object is a smoothed distance function, it does not have parameters and this
routine will only return scaled distance functions, densities, or abundances. That
is, type = "parameters" when object is smoothed does not make sense and the
smoothed distance function estimate will be returned if type does not equal
"density" or "abundance".

distances A vector or 1-column matrix of distances at which to evaluate distance functions,
when distance functions are requested. distances must have measurement
units. Any distances outside the observation strip (object$w.lo to object$w.hi)
are discarded. If distances is NULL, a sequence of getOption("Rdistance_intEvalPts")
(default 101) evenly spaced distances between object$w.lo and object$w.hi
(inclusive) is used.

propUnitSurveyed

A scalar or vector of real numbers between 0 and 1. The proportion of the
default sampling unit that was surveyed. If both sides of line transects were
observed, propUnitSurveyed = 1. If only a single side of line transects were
observed, set propUnitSurveyed = 0.5. For point transects, this should be set
to the proportion of each circle that was observed. Length must either be 1 or
the total number of transects in x.

area A scalar containing the total area of inference. Usually, this is study area size.
If area is NULL (the default), area will be set to 1 square unit of the output
units and density estimates will be produced. If area is not NULL, it must have
measurement units assigned by the units package. The units on area must be
convertible to squared output units. Units on area must be two-dimensional. For
example, if output units are "foo", units on area must be convertible to "foo^2"
by the units package. Units of "km^2", "cm^2", "ha", "m^2", "acre", "mi^2",
and several others are acceptable.

... Included for compatibility with generic predict methods.

Value

A matrix containing predictions:

• If type is "parameters", the returned matrix contains likelihood parameters. The extent of
the first dimension (rows) in the returned matrix is equal to either the number of detection
distances in the observed strip or number of rows in newdata. The returned matrix’s second
dimension (columns) is the number of parameters in the likelihood plus the number of ex-
pansion terms. See the help for each likelihoods to interpret returned parameter values. All
parameters are returned on the inverse-link scale; i.e., exponential for canonical parameters
and identity for expansion terms.

• If type is "dfuncs" or "dfunc", columns of the returned matrix contains detection functions
(i.e., g(x)). The extent of the first dimension (number of rows) is either the number of distances
specified in distances or options()$Rdistance_intEvalPts if distances is not specified.
The extent of the second dimension (number of columns) is:

114 predict.dfunc

– the number of detections with non-missing distances: if newdata is NULL.
– the number of rows in newdata if newdata is specified.

All distance functions in columns of the return are scaled to object$g.x.scale at object$x.scl.
The returned matrix has the following additional attributes:

– attr(return, "distances") is the vector of distances used to predict the function in
return. Either the input distances object or the computed sequence of distances when
distances is NULL.

– attr(return, "x0") is the vector of distances at which each distance function in return
was scaled. i.e., the vector of x.scl.

– attr(return, "g.x.scl") is the height of g(x) (the distance function) at x0.

• If type is "density" or "abundance", the return is a tibble containing density and abundance
estimates by transect. All transects in the input data (i.e., object$data) are included, even
those with missing lengths. Columns in the tibble are:

– transect ID: the grouping factor of the original RdistDf object.
– individualsSeen: sum of non-missing group sizes on that transect.
– avgPdetect: average probability of detection over groups sighted on that transect.
– effort: size of the area surveyed by that transect.
– density: density of individuals in the area surveyed by the transect.
– abundance: abundance of individuals in the area surveyed by the transect.

See Also

halfnorm.like, negexp.like, hazrate.like

Examples

data("sparrowDf")

For dimension checks:
nd <- getOption("Rdistance_intEvalPts")

No covariates
dfuncObs <- sparrowDf |> dfuncEstim(formula = dist ~ 1

, w.hi = units::as_units(100, "m"))

n <- nrow(dfuncObs$mf)
p <- predict(dfuncObs) # parameters
all(dim(p) == c(n, 1))

values in newdata ignored because no covariates
p <- predict(dfuncObs, newdata = data.frame(x = 1:5))
all(dim(p) == c(5, 1))

Distance functions in columns, one per observation
p <- predict(dfuncObs, type = "dfunc")
all(dim(p) == c(nd, n))

d <- setUnits(c(0, 20, 40), "ft")

predLikelihood 115

p <- predict(dfuncObs, distances = d, type = "dfunc")
all(dim(p) == c(3, n))

p <- predict(dfuncObs
, newdata = data.frame(x = 1:5)
, distances = d
, type = "dfunc")

all(dim(p) == c(3, 5))

Covariates
data(sparrowDfuncObserver) # pre-estimated object
Not run:
Command to generate 'sparrowDfuncObserver'
sparrowDfuncObserver <- sparrowDf |>

dfuncEstim(formula = dist ~ observer
, likelihood = "hazrate")

End(Not run)

predict(sparrowDfuncObserver) # n X 2

Observers <- data.frame(observer = levels(sparrowDf$observer))
predict(sparrowDfuncObserver, newdata = Observers) # 5 X 2

predict(sparrowDfuncObserver, type = "dfunc") # nd X n
predict(sparrowDfuncObserver, newdata = Observers, type = "dfunc") # nd X 5
d <- setUnits(c(0, 150, 400), "ft")
predict(sparrowDfuncObserver

, newdata = Observers
, distances = d
, type = "dfunc") # 3 X 5

Density and abundance by transect
predict(sparrowDfuncObserver

, type = "density")

predLikelihood Distance function values at observations

Description

An internal prediction function to predict (compute) the values of distance functions at a set of ob-
served values. Unlike predDfuncs, which evaluates distance functions at EVERY input distance,
this routine evaluates distance functions at only ONE distance. This is what’s appropriate for like-
lihood computation. This version allows for matrix inputs and uses matrix operations, and is thus
faster than earlier looping versions.

Usage

predLikelihood(object, params)

116 print.abund

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

params A matrix of distance function parameters. Rows are observations, columns con-
tain the set of parameters (canonical and expansion) for each observation.

Details

Assuming L is the vector returned by this function, the negative log likelihood is -sum(log(L / I),
na.rm=T), where I is the integration constant, or area under the likelihood between w.lo and w.hi.
Note that returned likelihood values for distances less than w.lo or greater than w.hi are NA; hence,
na.rm=TRUE in the sum.

Value

A vector of distance function values, of length n = number of observed distances = length(distances(x)).
Elements in distances(x) correspond, in order, to values in the returned vector.

print.abund Print abundance estimates

Description

Print an object of class c("abund","dfunc") produced by abundEstim.

Usage

S3 method for class 'abund'
print(x, ...)

Arguments

x An object output by abundEstim. This is a distance function object augmented
with abundance estimates, and has class c("abund", "dfunc").

... Included for compatibility to other print methods. Ignored here.

Value

0 is invisibly returned

See Also

dfuncEstim, abundEstim, summary.dfunc, print.dfunc, summary.abund

print.dfunc 117

Examples

Load example sparrow data (line transect survey type)
data(sparrowDf)

Fit half-normal detection function
dfunc <- sparrowDf |> dfuncEstim(formula=dist~groupsize(groupsize))

Estimate abundance given a detection function
fit <- abundEstim(object = dfunc

, area = setUnits(4105, "km^2")
, ci = NULL)

print(fit)
summary(fit)

Not run:
Bootstrap confidence intervals (500 iterations)
Requires ~4 min
fit <- abundEstim(object = dfunc

, area = setUnits(4105, "km^2")
, ci = 0.95
, plot.bs = TRUE
, showProgress = TRUE)

print(fit)
summary(fit)

End(Not run)

print.dfunc Print method for distance function object

Description

Print method for distance function objects produced by dfuncEstim.

Usage

S3 method for class 'dfunc'
print(x, ...)

Arguments

x An estimated detection function object, normally produced by calling dfuncEstim.

... Included for compatibility with other print methods. Ignored here.

Value

The input distance function (x) is returned invisibly.

118 RdistanceControls

See Also

dfuncEstim, plot.dfunc, print.abund, summary.dfunc

Examples

Load example sparrow data (line transect survey type)
data(sparrowSiteData)
data(sparrowDetectionData)

Fit half-normal detection function
sparrowDf <- RdistDf(sparrowSiteData, sparrowDetectionData)
dfunc <- sparrowDf |> dfuncEstim(formula=dist~1)

dfunc

RdistanceControls Rdistance optimization control parameters.

Description

Optimization control parameters are set by calls to options() (see examples). Optimization pa-
rameters used in Rdistance are the following:

• Rdistance_maxIters: The maximum number of optimization iterations allowed.

• Rdistance_evalMax: The maximum number of objective function evaluations allowed.

• Rdistance_likeTol: Minimum change in the likelihood between iterations required opti-
mization to continue. If the likelihood changes by less than this amount, optimization stops
and a solution is declared. Iteration continues when likelihood changes exceed this value.

• Rdistance_coefTol: Minimum change in model coefficients between iterations for opti-
mization to continue. If the sum of squared coefficient differences changes by less than this
amount between iterations, optimization stops and a solution is declared.

• Rdistance_optimizer: A string specifying the optimizer to use. Results can vary among
optimizers, so switching algorithms sometimes makes a poorly behaved distance function
converge, particularly when parameters are near their boundaries. Valid values are:

– "optim": Uses optim::optim, method "L-BFGS-B", a finite-difference gradient based
approach.

– "nlminb": Uses stats:nlminb, a finite-difference gradient based approach.
– "hookeJeeves": Uses dfoptim::hjkb, a derivative-free approach for continuous and dis-

continuous likelihoods.

The authors have had better luck with "nlminb" when likelihoods are differentiable (i.e. smooth).
"optim" seems to perform better when solutions are near, but not on,parameter boundaries.
"hookeJeeves" works well in all cases but is slightly slower than "nlminb".

RdistDf 119

• Rdistance_hessEps: A vector of parameter distances used during computation of numeric
second derivatives. These distances control and determine variance estimates, and they may
need revision when the maximum likelihood solution is near a parameter boundary. Should
have length 1 or the number of parameters in the model. See function secondDeriv for further
details.

• Rdistance_trace: Integer scalar for the level of information printed to the console by the
optimization routine during maximization of the likelihood. All optimizer routines interpret a
value of 0 as ’do not print any information’ or silent. Higher values produce more information.
The information produced varies among optimization routines.

• Rdistance_requireUnits: A logical specifying whether measurement units are required
on distances and areas. If TRUE, measurement units are required on off-transect and radial
distances in the input data frame. Likewise, measurement units are required on truncation
distances, scale location, transect lengths, and study area size. If FALSE, no units are required
and input values are used as is. The FALSE options is provided for rare cases when Rdistance
functions are called from other functions and the calling functions do not accommodate units.
Assign units with statement like units(detectionDf$dist) <- "m" or setUnits(w.hi, "km")
or w.hi <- 150 %#% "m" or w.hi <- 150 %m%.. Measurement units of the various physical
quantities need not be equal because appropriate conversions occur internally. An error is
thrown if differing units are not compatible. For example, "m" (meters) cannot be converted
into "ha" (hectares), but "acres" can be converted into "ha". Rdistance recognizes units listed
in units::valid_udunits.

• Rdistance_maxBSFailPropForWarning: The proportion of bootstrap iterations that can fail
without a warning. If the proportion of non-convergent bootstrap iterations exceeds this pa-
rameter, a warning about the validity of CI’s is issued in the abundance print method.

Examples

increase number of iterations
options(Rdistance_maxIters=2000)

change optimizer and decrease tolerance
options(list(Rdistance_optimizer="optim", Rdistance_likeTol=1e-6))

RdistDf Construct Rdistance nested data frames

Description

Makes an Rdistance data frame from separate transect and detection data frames. Rdistance data
frames are nested data frames with one row per transect. Detection information for each transect
appears in a list-based column that itself contains a data frame. See Rdistance Data Frames.

Rdistance data frames can be constructed using calls to dplyr::nest_by and dplyr::right_jion,
with subsequent attribute assignment (see Examples). This routine is a convenient wrapper for
those calls.

120 RdistDf

Usage

RdistDf(
transectDf,
detectionDf,
by = NULL,
pointSurvey = FALSE,
observer = "single",
.detectionCol = "detections",
.effortCol = NULL

)

Arguments

transectDf A data frame with one row per transect and columns containing information
about the entire transect. At a minimum, this data frame must contain the tran-
sect’s ID so it can be merged with detectionDf, (see parameter by) and the
amount of effort the transect represents (see parameter .effortCol). All de-
tections are made on a transect, but not all transects require detections. That is,
transectDf should contain rows, and hence ID’s and lengths, of all surveyed
transects, even those on which no targets were detected (so-called "zero tran-
sects"). Transect-level covariates, such as habitat type, elevation, or observer
IDs, should appear as variables in this data frame.

detectionDf A data frame containing detection information associated with each transect. At
a minimum, each row of this data frame must contain the following:

• Transect IDs: The ID of the transect on which a target group was de-
tected so that the detection data frame can be merged with transectDf
(see parameter by). Multiple detections on the same transect are possible
and hence multiple rows in detectonDf can contain the same transect ID.

• Detection Distances: The distance at which each detection was made.
The distance column will eventually be specified on the left-hand side of
formula in a call to dfuncEstim. As of Rdistance version 3.0.0, detection
distances must have physical measurement units assigned. See Measure-
ment Units.

Optional columns in ‘detectionDf‘:

• Group sizes:If sighted targets vary in size, or group sizes are not all 1,
detectionDf must also contain a column specifying group sizes. Non-
unity group sizes are specified using +groupsize(columnName) on the
right-hand-side of formula in an eventual call to dfuncEstim.

• Detection Level Covariates: Such as sex, color, habitat, etc.

by A character vector of variables to use in the join. The right-hand side of this join
identifies unique transects (unique rows) in both transectDf and the output
(see warning in Details). If NULL, the join will be ’natural’, using all com-
mon variables in transectDf and detectionDf. To join on specific variables,
specify a character vector of the variables. For example, by = c("a", "b") joins
transectDf$a to detectionDf$a and transectDf$b to detectionDf$b. If
join variable names differ between transectDf and detectionDf, use a named

RdistDf 121

character vector like by = c("a" = "b", "c" = "d") which joins transectDf$a to
detectionDf$b and transectDf$c to detectionDf$d.

pointSurvey If TRUE, observations were made from discrete points (i.e., during a point-
transect survey) and distances are radial from observation point to target. If
FALSE, observations were made along a continuous transect (i.e., during a line-
transect survey) and distances are from target to nearest point on the transect
(i.e., perpendicular to transect).

observer Type of observer system. Legal values are "single" for single observer systems,
"1given2" for a double observer system wherein observations made by observer
1 are tested against observations made by observer 2, "2given1" for a double
observer system wherein observations made by observer 2 are tested against
observations made by observer 1, and "both" for a double observer system
wherein observations made by both observers are tested against the other and
combined.

.detectionCol Name of the list column that will contain detection data frames. Default name
is "detections". Detection distances (LHS of ‘dfuncEstim‘ formula) and group
sizes are normally columns in the nested detection data frames embedded in
‘.detectionCol‘.

.effortCol For continuous line transects, this specifies the name of a column in transectDf
containing transect lengths, which must have measurement units. For point tran-
sects, this specifies the name of a column containing the number of points on
each transect. The effort column for point transects cannot contain measurement
units. Default is "length" for line-transects, "numPoints" for point-transects. If
those names are not found, the first column in the merged data frame whose
name contains ’point’ (for point transects) or ’length’ (for line transects) is used
and a message is printed. Matching is case insensitive, so for example, ’nPoints’
and ’N_point’ and ’numberOfPoints’ will all be matched. If two or more column
names match the effort column search terms, a warning is issued. See Transect
Lengths for a description of point and line transects.

Details

For valid bootstrap estimates of confidence intervals (computed in abundEstim), each row of the
nested data frame must represent one transect (more generally, one sampling unit), and none should
be duplicated. The combination of transect columns in by (i.e., the LHS of the merge, or "a" and "b"
of by = c("a" = "d", "b" = "c") for example) should specify unique transects and unique rows of
transectDf. Warning: If by does not specify unique rows of transectDf, dplyr::left_join,
which is called internally, will perform a many-to-many merge without warning, and this normally
duplicates both transects and detections.

Value

A nested tibble (a generalization of base data frames) with one row per transect, and detection
information in a list column. Technically, the return is a grouped tibble from the tibble pack-
age with one row per group, and a list column containing detection information. Survey type,
observer system, and name of the effort column are recorded as attributes (transType, obsType,
and effortColumn, respectfully). The return prints nicely using methods in package tibble. If

122 RdistDf

returned objects print strangely, attach library tibble. A summary method tailored to distance
sampling is available (i.e., summary(return)).

Rdistance Data Frames

RdistDf data frames contain the following information:

• Transect Information: Each row of the data frame contains transect id and effort. Effort
is transect length for line-transects, and number of points for point-transects. Optionally,
transect-level covariates (such as habitat or observer id) appear on each row.

• Detection Information: Observation distances (either perpendicular off-transect or radial off-
point) appear in a data frame stored in a list column. If detected groups occasionally included
more than one target, a group size column must be present in the list-column data frame.
Optionally, detection-level covariates (such as sex or size) can appear in the data frame of the
list column.

• Distance Type: The type of observation distances, either perpendicular off-transect (for line-
transects studies) or radial off-point (for point-transect studies) must appear as an attribute of
RdistDf’s.

• Observer Type: The type of observation system used, either single observer or one of three
types of multiple observer systems, must appear as an attribute of RdistDf’s.

Transect Lengths

Line-transects are continuous paths with targets detectable at any point. Point transects consist of
one or more discrete points along a path from which observers search for targets. The length of a
line-transect is it’s physical length (e.g., km or miles). The ’length’ of a point transect is the number
of points along the transect. Single points are considered transects of length one. The length of line-
transects must have a physical measurement unit (e.g., ’m’ or ’ft’). The length of point-transects
must be a unit-less integers (i.e., number of points).

Measurement Units

As of Rdistance version 3.0.0, measurement units are require on all physical distances. Requiring
units ensures that internal calculations and results (e.g., ESW and abundance) are correct and that
output units are clear. Physical distances are required on off-transect distances, radial distances,
truncation distances (w.lo, unless it is zero; and w.hi, unless it is NULL), scale locations (x.scl,
unless it is zero), line-transect lengths, and study area size. All units are 1-dimensional except those
on study area, which are 2-dimensional.

Physical measurement units can vary. For example, off-transect distances can be meters ("m"), w.hi
can be inches ("in"), and w.lo can be kilometers ("km"). Internally, all distances are converted to
the units specified by outputUnits (or the units of input distances if outputUnits is NULL), and
all output is reported in units of outputUnits. Valid conversions must exist between units or an
error is thrown. For example, meters cannot be converted into hectares.

Measurement units can be assigned using one of Rdistance’s unit helper routines (see help(unitHelpers)),
or from routines in the units package (e.g., x <- units::set_units(x, "<units>")). See units::valid_udunits
for a list of valid symbolic units.

RdistDf 123

If measurements are truly unit-less, or measurement units are unknown, set options(Rdist_requireUnits
= FALSE). This suppresses all unit checks and conversions. Users are on their own to make sure in-
puts are scaled correctly and that output units are known.

See Also

is.RdistDf: check validity of RdistDf data frames; dfuncEstim: estimate distance function.

Examples

data(sparrowSiteData)
data(sparrowDetectionData)

sparrowDf <- RdistDf(sparrowSiteData, sparrowDetectionData)
is.RdistDf(sparrowDf, verbose = T)
summary(sparrowDf)
summary(sparrowDf

, formula = dist ~ groupsize(groupsize)
, w.hi = 100 %m%.)

Equivalent to above:
sparrowDf <- sparrowDetectionData |>

dplyr::nest_by(siteID
, .key = "detections") |>

dplyr::right_join(sparrowSiteData, by = "siteID")
attr(sparrowDf, "detectionColumn") <- "detections"
attr(sparrowDf, "effortColumn") <- "length"
attr(sparrowDf, "obsType") <- "single"
attr(sparrowDf, "transType") <- "line"
is.RdistDf(sparrowDf, verbose = T)
summary(sparrowDf, formula = dist ~ groupsize(groupsize))

Condensed view: 1 row per transect (make sure tibble is attached)
sparrowDf

Expansion methods:
(1) use Rdistance::unnest (includes zero transects)
df1 <- unnest(sparrowDf)
any(df1$siteID == "B2") # TRUE

Use tidyr::unnest(); but, no zero transects
df2 <- tidyr::unnest(sparrowDf, cols = "detections")
any(df2$siteID == "B2") # FALSE

Use dplyr::reframe for specific transects (e.g., for transect "B3")
sparrowDf |>

dplyr::filter(siteID == "B3") |>
dplyr::reframe(detections)

Count detections per transect (can't use dplyr::if_else)
df3 <- sparrowDf |>

dplyr::reframe(nDetections = ifelse(is.null(detections), 0, nrow(detections)))

124 secondDeriv

sum(df3$nDetections) # Number of detections
sum(df3$nDetections == 0) # Number of zero transects

Point transects
data(thrasherDetectionData)
data(thrasherSiteData)
thrasherDf <- RdistDf(thrasherSiteData

, thrasherDetectionData
, pointSurvey = TRUE
, by = "siteID"
, .detectionCol = "detections")

summary(thrasherDf, formula = dist ~ groupsize(groupsize))

secondDeriv Numeric second derivatives

Description

Computes numeric second derivatives (hessian) of an arbitrary multidimensional function at a par-
ticular location.

Usage

secondDeriv(x, FUN, eps = 1e-08, ...)

Arguments

x The location (a vector) where the second derivatives of FUN are desired.

FUN An R function for which the second derivatives are sought. This must be a
function of the form FUN <- function(x, ...){...} where x is a vector of variable
parameters to FUN at which to evaluate the 2nd derivative, and ... are additional
parameters needed to evaluate the function. FUN must return a single value
(scalar), the height of the surface above x, i.e., FUN evaluated at x.

eps A vector of small relative distances to add to x when evaluating derivatives.
This determines the ’dx’ of the numerical derivatives. That is, the function is
evaluated at x, x+dx, and x+2*dx, where dx = x*eps^0.25, in order to compute
the second derivative. eps defaults to 1e-8 for all dimensions which equates to
setting dx to one percent of each x (i.e., by default the function is evaluate at x,
1.01*x and 1.02*x to compute the second derivative).
One might want to change eps if the scale of dimensions in x varies wildly (e.g.,
kilometers and millimeters), or if changes between FUN(x) and FUN(x*1.01)
are below machine precision. If length of eps is less than length of x, eps is
replicated to the length of x.

... Any arguments passed to FUN.

simple.expansion 125

Details

This function uses the "5-point" numeric second derivative method advocated in numerous numeri-
cal recipe texts. During computation of the 2nd derivative, FUN must be capable of being evaluated
at numerous locations within a hyper-ellipsoid with cardinal radii 2*x*(eps)^0.25 = 0.02*x at the
default value of eps.

A handy way to use this function is to call an optimization routine like nlminb with FUN, then
call this function with the optimized values (solution) and FUN. This will yield the hessian at the
solution and this is can produce a better estimate of the variance-covariance matrix than using the
hessian returned by some optimization routines. Some optimization routines return the hessian
evaluated at the next-to-last step of optimization.

An estimate of the variance-covariance matrix, which is used in Rdistance, is solve(hessian)
where hessian is secondDeriv(<parameter estimates>, <likelihood>).

Examples

func <- function(x){-x*x} # second derivative should be -2
secondDeriv(0,func)
secondDeriv(3,func)

func <- function(x){3 + 5*x^2 + 2*x^3} # second derivative should be 10+12x
secondDeriv(0,func)
secondDeriv(2,func)

func <- function(x){x[1]^2 + 5*x[2]^2} # should be rbind(c(2,0),c(0,10))
secondDeriv(c(1,1),func)

simple.expansion Simple polynomial expansion factors

Description

Computes simple polynomial expansion terms for use in distance analysis. The Simple (and other
expansions) allow "wiggle" in estimated distance functions.

Usage

simple.expansion(x, expansions)

Arguments

x A numeric matrix of distances at which to evaluate the expansion series. For
distance analysis, x should be the proportion of the maximum sighting distance
at which a group was sighted, i.e., x = d/w, where d is sighting distance and w
is maximum sighting distance.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

126 simpsonCoefs

Details

The polynomials computed here are:

• First term:
h1(x) = x4,

• Second term:
h2(x) = x6,

• Third term:
h3(x) = x8,

• Fourth term:
h4(x) = x10,

The maximum number of expansion terms computed is 4.

Value

A 3D array of size nrow(x) X ncol(x) X expansions. The ’pages’ (3rd dimension) of this array
are the cosine expansions of x. i.e., page 1 is the first expansion term of x, page 2 is the second
expansion term of x, etc.

See Also

dfuncEstim , cosine.expansion , sine.expansion , hermite.expansion.

Examples

x <- matrix(seq(0, 1, length = 200), ncol = 1)
simp.expn <- simple.expansion(x, 4)
plot(range(x), range(simp.expn), type="n")
matlines(x, simp.expn[,1,1:4], col=rainbow(4), lty = 1)

simpsonCoefs Simpson numerical integration coefficients

Description

Return a vector of Simpson’s Composite numerical integration coefficients.

Usage

simpsonCoefs(n)

Arguments

n Number of coefficients, which is the number of points at which the function of
interest is evaluated. The number of intervals is (n-1)/2. This number must be
odd.

sine.expansion 127

Details

Let x be an vector of equally spaced points in the domain of a function f (equally spaced is critical).
Let y = f(x). The numeric integral of f from min(x) to max(x) is sum(simpsonCoefs(length(y))
* y) * (x[2] - x[1]) / 3.

Value

A vector of Simpson Composite rule coefficients suitable for numeric integration. The return is a
vector of integers alternating between 4 and 2, with 1’s on each end.

Examples

x <- seq(0, 9, length=13)
y <- x^2

scoefs <- simpsonCoefs(length(x))

exact integral is 9^3/3 = 243
sum(scoefs*y) * (x[2] - x[1]) / 3

sine.expansion Sine expansion terms

Description

Computes the sine expansion terms that modify the shape of distance likelihood functions.

Usage

sine.expansion(x, expansions)

Arguments

x A numeric matrix of distances at which to evaluate the expansion series. For
distance analysis, x should be the proportion of the maximum sighting distance
at which a group was sighted, i.e., x = d/w, where d is sighting distance and w
is maximum sighting distance.

expansions A scalar specifying the number of expansion terms to compute. Must be one of
the integers 1, 2, 3, 4, or 5.

Details

The sine expansion used here is:

• First term:
h1(x) = sin(2πx)/2,

128 sparrowDetectionData

• Second term:
h2(x) = sin(3πx)/2,

• Third term:
h3(x) = sin(4πx)/2,

• Fourth term:
h4(x) = sin(5πx)/2,

• Fifth term:
h5(x) = sin(6πx)/2,

The maximum number of expansion terms is 5.

The sine expansion frequency in Rdistance is pi. Each term is one pi more than the previous. The
cosine expansion frequency in Rdistance is 2*pi. Consequently, the sine and cosine expansions fit
different models.

Value

A 3D array of size nrow(x) X ncol(x) X expansions. The ’pages’ (3rd dimension) of this array
are the cosine expansions of x. i.e., page 1 is the first expansion term of x, page 2 is the second
expansion term of x, etc.

See Also

dfuncEstim, cosine.expansion

Examples

x <- matrix(seq(0, 1, length = 200), ncol = 1)
sin.expn <- sine.expansion(x, 5)
plot(range(x), range(sin.expn), type="n")
matlines(x, sin.expn[,1,1:5], col=rainbow(5), lty = 1)

sparrowDetectionData Brewer’s Sparrow detection data

Description

Detection data from line transect surveys for Brewer’s sparrow on 72 transects located on a 4105
km^2 study area in central Wyoming. Data were collected by Dr. Jason Carlisle of the Wyoming
Cooperative Fish & Wildlife Research Unit in 2012. Each transect was 500 meters long.

sparrowDf 129

Format

A data.frame containing 356 rows and 5 columns. Each row represents a detected group of sparrows.
Column descriptions:

1. siteID: Factor (72 levels), the site or transect where the detection was made.

2. groupsize: Number, the number of individuals within the detected group.

3. sightdist: Number, distance (m) from the observer to the detected group.

4. sightangle: Number, the angle (degrees) from the transect line to the detected group.

5. dist: Number, the perpendicular, off-transect distance (m) from the transect to the detected
group. This is the distance used in analysis. Calculated using perpDists.

Source

The Brewer’s sparrow data are a subset of the data collected by Jason Carlisle and various field
technicians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This
portion of Jason’s work was funded by the Wyoming Game and Fish Department through agree-
ments with the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., and A. D. Chalfoun. 2020. The abundance of Greater Sage-Grouse as a proxy for the
abundance of sagebrush-associated songbirds in Wyoming, USA. Avian Conservation and Ecology
15(2):16. doi:10.5751/ACE01702150216

See Also

sparrowSiteData

sparrowDf Brewer’s Sparrow detection data frame in Rdistance >4.0.0 format.

Description

Detection data from line transect surveys for Brewer’s sparrow on 72 transects located on a 4105
km^2 study area in central Wyoming collected by Dr. Jason Carlisle as part of his graduate work
in the Wyoming Cooperative Fish & Wildlife Research Unit in 2012. Each transect was 500 meters
long.

https://doi.org/10.5751/ACE-01702-150216

130 sparrowDf

Format

A rowwise tibble containing 72 rows and 9 columns, one of which is nested data frame of detections.
Each row represents one transect. The embedded data frame in column detections contains the
detections made on the transect represented on that row.

Column descriptions:

1. siteID: Factor (72 levels), the transect identifier for that row of the data frame.

2. length: The length, in meters [m], of each transect.

3. observer: Identity of the observer who surveyed the transect.

4. bare: The mean bare ground cover (%) within 100 [m] of the transect.

5. herb: The mean herbaceous cover (%) within 100 [m] of the transect.

6. shrub: The mean shrub cover (%) within 100 [m] of the transect.

7. height: The mean shrub height [cm] within 100 [m] of the transect.

8. shrubclass: Shrub class factor. Either "Low"" when shrub cover is < 10%, or "High" if cover
>= 10%.

The embedded data frame in column detections contains the following variables:

1. groupsize: The number of individuals in the detected group.

2. sightdist: Distance [m] from observer to the detected group.

3. sightangle: Angle [degrees] from the transect line to the detected group. Not bearing. Range
0 [degrees] to 90 [degrees].

4. dist: Perpendicular, off-transect distance [m], from the transect to the detected group. This
is the distance used in analysis. Calculated using perpDists.

Source

The Brewer’s sparrow data are a subset of data collected by Jason Carlisle and various field techni-
cians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion
of Jason’s work was funded by the Wyoming Game and Fish Department through agreements with
the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., and A. D. Chalfoun. 2020. The abundance of Greater Sage-Grouse as a proxy for the
abundance of sagebrush-associated songbirds in Wyoming, USA. Avian Conservation and Ecology
15(2):16. doi:10.5751/ACE01702150216

See Also

sparrowSiteData, sparrowDetectionData, RdistDf

https://doi.org/10.5751/ACE-01702-150216

sparrowDfuncObserver 131

Examples

Not run:
The following code generated 'sparrowDf'
data(sparrowDetectionData)
data(sparrowSiteData)
sparrowDf <- RdistDf(transectDf = sparrowSiteData

, detectionDf = sparrowDetectionData
, by = "siteID"
, pointSurvey = FALSE
, .effortCol = "length"
)

End(Not run)

data(sparrowDf)
tidyr::unnest(sparrowDf, detections) # only non-zero transects
Rdistance::unnest(sparrowDf) # with zero transects at the bottom
summary(sparrowDf,

formula = dist ~ groupsize(groupsize)
)

sparrowDfuncObserver Brewer’s Sparrow detection function

Description

Pre-estimated Brewer’s sparrow detection function that includes an ’observer’ effect. Included to
speed up example execution times. See ’Examples’.

Format

An estimated distance function object with class ’dfunc’. See ’Value’ section of dfuncEstim for
description of components.

See Also

sparrowSiteData and sparrowDetectionData for description of the data

Examples

Not run:
the following code generated 'sparrowDfuncObserver'
data(sparrowDf)
sparrowDfuncObserver <- sparrowDf |>

dfuncEstim(formula = dist ~ observer
, likelihood = "hazrate")

End(Not run)

132 sparrowSiteData

sparrowSiteData Brewer’s Sparrow site data

Description

Site data from line transect surveys for Brewer’s sparrow on 72 transects located on a 4105 km^2
study area in central Wyoming. Data were collected by Dr. Jason Carlisle of the Wyoming Cooper-
ative Fish & Wildlife Research Unit in 2012. Each transect was 500 meters long.

Format

A data.frame containing 72 rows and 8 columns. Each row represents a site (transect) surveyed.
Column descriptions:

1. siteID: Factor (72 levels), the site or transect surveyed.

2. length: Number, the length (m) of each transect.

3. observer: Factor (five levels), identity of the observer who surveyed the transect.

4. bare: Number, the mean bare ground cover (%) within 100 m of each transect.

5. herb: Number, the mean herbaceous cover (%) within 100 m of each transect.

6. shrub: Number, the mean shrub cover (%) within 100 m of each transect.

7. height: Number, the mean shrub height (cm) within 100 m of each transect.

8. shrubclass: Factor (two levels), shrub class is "Low"" when shrub cover is < 10%, "High"
otherwise.

Source

The Brewer’s sparrow data are a subset of the data collected by Jason Carlisle and various field
technicians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This
portion of Jason’s work was funded by the Wyoming Game and Fish Department through agree-
ments with the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: Implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., and A. D. Chalfoun. 2020. The abundance of Greater Sage-Grouse as a proxy for the
abundance of sagebrush-associated songbirds in Wyoming, USA. Avian Conservation and Ecology
15(2):16. doi:10.5751/ACE01702150216

See Also

sparrowDetectionData

https://doi.org/10.5751/ACE-01702-150216

startLimits 133

startLimits Distance function starting values and limits

Description

Returns starting values and limits (boundaries) for the parameters of distance functions. This func-
tion is called by other routines in Rdistance, and is not intended to be called by the user. Replace
this function in the global environment to change boundaries and starting values.

Usage

startLimits(ml)

Arguments

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Value

A list containing the following components

start Vector of starting values for parameters of the likelihood and expansion terms.

lowlimit Vector of lower limits for the likelihood parameters and expansion terms.

uplimit Vector of upper limits for the likelihood parameters and expansion terms.

names Vector of names for the likelihood parameters and expansion terms.

The length of each vector in the return is: (Num expansions) + 1 + 1*(like %in% c("hazrate"))
+ (Num Covars).

See Also

dfuncEstim

Examples

data(sparrowDf)

Half-normal start limits
modList <- parseModel(

data = sparrowDf
, formula = dist ~ 1

134 summary.abund

, likelihood = "halfnorm"
)
startLimits(modList)

Half-normal with expansions
modList <- parseModel(

data = sparrowDf
, formula = dist ~ 1
, likelihood = "halfnorm"
, expansions = 3

)
startLimits(modList)

Hazard rate start limits
modList$likelihood <- "hazrate"
startLimits(modList)

Neg exp start limits
modList$likelihood <- "negexp"
startLimits(modList)

summary.abund Summarize abundance estimates

Description

Summarize an object of class c("abund","dfunc") that is output by abundEstim.

Usage

S3 method for class 'abund'
summary(object, criterion = "AICc", ...)

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

criterion A string specifying the model fit criterion to print. Must be one of "AICc" (the
default), "AIC", or "BIC". See AIC.dfunc for formulas.

... Included for compatibility to other print methods. Ignored here.

Details

If the proportion of bootstrap iterations that failed is greater than getOption("Rdistance_maxBSFailPropForWarning"),
a warning about the validity of CI’s is issued and a diagnostic message printed. Increasing this op-
tion to a number greater than 1 will kill the warning (e.g., options(Rdistance_maxBSFailPropForWarning

summary.dfunc 135

= 1.3)), but ignoring a large number of non-convergent bootstrap iterations may be a bad idea (i.e.,
validity of the CI is questionable). The default value for Rdistance_maxBSFailPropForWarning
is 0.2.

Value

0 is invisibly returned.

See Also

dfuncEstim, abundEstim, summary.dfunc, print.dfunc, print.abund

Examples

Load example sparrow data (line transect survey type)
data(sparrowDf)

Fit half-normal detection function
dfunc <- sparrowDf |> dfuncEstim(formula=dist ~ 1 + offset(groupsize))

Estimate abundance given the detection function
fit <- abundEstim(dfunc

, area = setUnits(4105, "km^2")
, ci=NULL)

summary(fit) # No confidence intervals

Not run:
With bootstrap confidence intervals
Requires ~3 min to complete
fit <- abundEstim(dfunc

, area = setUnits(4105, "km^2")
, ci=0.95)

summary(fit)

End(Not run)

summary.dfunc Summarize a distance function object

Description

A summary method for distance functions. Distance functions are produced by dfuncEstim (class
dfunc).

Usage

S3 method for class 'dfunc'
summary(object, criterion = "AICc", ...)

136 summary.dfunc

Arguments

object An Rdistance model frame or fitted distance function, normally produced by a
call to dfuncEstim.

criterion A string specifying the model fit criterion to print. Must be one of "AICc" (the
default), "AIC", or "BIC". See AIC.dfunc for formulas.

... Included for compatibility with other print methods. Ignored here.

Details

This function prints the following quantities:

• ‘Call’ : The original function call.

• ‘Coefficients’ : A matrix of estimated coefficients, their standard errors, and Wald Z tests.

• ‘Strip’ : The left (w.lo) and right (w.hi) truncation values.

• ‘Effective strip width or detection radius’ : ESW or EDR as computed by effectiveDistance.

• ‘Probability of Detection’ : Probability of detecting a single target in the strip.

• ‘Scaling’ : The horizontal and vertical coordinates used to scale the distance function. Usu-
ally, the horizontal coordinate is 0 and the vertical coordinate is 1 (i.e., g(0) = 1).

• ‘Log likelihood’ : Value of the maximized log likelihood.

• ‘Criterion’ : Value of the specified fit criterion (AIC, AICc, or BIC).

The number of digits used in the printout is controlled by options()$digits.

Value

The input distance function object (object), invisibly, with the following additional components:

• convMessage: The convergence message. If the distance function is smoothed, the conver-
gence message is NULL.

• effDistance: The ESW or EDR.

• pDetect: Probability of detection in the strip.

• AIC: AICc, AIC, or BIC of the fit, whichever was requested.

• coefficients: If the distance function has coefficients, this is the coefficient matrix with
standard errors, Wald Z values, and p values. If the distance function is smoothed, it has no
coefficients and this component is NULL.

See Also

dfuncEstim, plot.dfunc, print.abund, print.abund

summary.rowwise_df 137

Examples

Load example sparrow data (line transect survey type)
data(sparrowDf)

Fit half-normal detection function
dfunc <- sparrowDf |> dfuncEstim(formula=dist~1)

Print results
summary(dfunc)
summary(dfunc, criterion="BIC")

summary.rowwise_df Summary method for Rdistance data frames

Description

Summary method for distance sampling data frames. Rdistance data frames are rowwise tibbles.
This routine is a replacement summary method for rowwise_df’s that provides useful distance sam-
pling descriptive statistics.

Usage

S3 method for class 'rowwise_df'
summary(object, formula = NULL, w.lo = 0, w.hi = NULL, ...)

Arguments

object An RdistDf data frame.

formula A standard formula object. For example, dist ~ 1, dist ~ covar1 + covar2).
The left-hand side (before ~) is the name of the vector containing off-transect or
radial detection distances. The right-hand side contains the names of covariate
vectors to fit in the detection function, and potentially group sizes. Group sizes
are specified by including + groupsize(<variable>) in the RHS (see ’Group
Sizes’ section). Covariates can be either detection level or transect level and can
appear in data or exist in the global working environment. Regular R scoping
rules apply.

w.lo Lower or left-truncation limit of the distances in distance data. This is the min-
imum possible off-transect distance. Default is 0. If w.lo is greater than 0, it
must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

w.hi Upper or right-truncation limit of the distances in dist. This is the maximum
off-transect distance that could be observed. If unspecified (i.e., NULL), right-
truncation is set to the maximum of the observed distances. If w.hi is specified,
it must have measurement units. See help(unitHelpers) for assistance assign-
ing units.

... Other arguments for summary methods.

138 thrasherDetectionData

Value

If object is an RdistDf, a data frame containing summary statistics relevant to distance sampling
is returned invisibly. If formula is not specified, the number of distance observations and target
detections is not returned because the distances, group sizes, and covariates are not known. If
object is not an Rdistance data frame, return is the result of the next summary method.

Examples

data(thrasherDf)
summary(thrasherDf)
summary(thrasherDf

, formula = dist ~ groupsize(groupsize)
, w.hi = setUnits(100,"m")
)

thrasherDetectionData Sage Thrasher detection data

Description

Point transect data collected in central Wyoming from 120 points surveyed for Sage Thrashers by
the Wyoming Cooperative Fish & Wildlife Research Unit in 2013.

Format

A data.frame containing 193 rows and 3 columns. Each row represents a detected group of thrash-
ers. Column descriptions:

1. siteID: Factor (120 levels), the site or point where the detection was made.
2. groupsize: Number, the number of individuals within the detected group.
3. dist: Number, the radial distance (m) from the transect to the detected group. This is the

distance used in analysis.

Source

The Sage Thrasher data are a subset of the data collected by Jason Carlisle and various field techni-
cians for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion
of Jason’s work was funded by the Wyoming Game and Fish Department through agreements with
the University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., A. D. Chalfoun, K. T. Smith, and J. L. Beck. 2018. Nontarget effects on songbirds
from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept.
The Condor: Ornithological Applications 120:439–455. doi:10.1650/CONDOR17200.1

https://doi.org/10.1650/CONDOR-17-200.1

thrasherDf 139

See Also

thrasherSiteData

thrasherDf Sage Thrasher detection data frame in Rdistance >4.0.0 format

Description

Point transect data collected in central Wyoming on 120 points surveyed for Sage Thrashers by the
Wyoming Cooperative Fish & Wildlife Research Unit in 2013.

Format

A rowwise tibble containing 120 rows and 8 columns, one of which (i.e., ’detections’) contains
nested data frames of detections. Each row represents one transect of one point.

A data.frame containing 120 rows and 6 columns. Each row represents a surveyed site. Each
surveyed site is considered one transect of one point. Column descriptions:

1. siteID: Factor (120 levels), the site or point surveyed.

2. detections: An embedded (nested) data frame containing detections made at that point.
Columns in the embedded data frame contain:

(a) groupsize: The number of individuals in the detected group.
(b) dist: The radial distance (m) from the transect to the detected group.

3. observer: Factor (six levels), identity of the observer who surveyed the point.

4. bare: Number, the mean bare ground cover (%) within 100 m of each point.

5. herb: Number, the mean herbaceous cover (%) within 100 m of each point.

6. shrub: Number, the mean shrub cover (%) within 100 m of each point.

7. height: Number, the mean shrub height (cm) within 100 m of each point.

8. npoints: The number of point counts on the transect.

Source

The sage thrasher data are a subset of data collected by Jason Carlisle and various field technicians
for his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion of
Jason’s work was funded by the Wyoming Game and Fish Department through agreements with the
University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.

Carlisle, J. D., A. D. Chalfoun, K. T. Smith, and J. L. Beck. 2018. Nontarget effects on songbirds
from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept.
The Condor: Ornithological Applications 120:439–455. doi:10.1650/CONDOR17200.1

https://doi.org/10.1650/CONDOR-17-200.1

140 thrasherSiteData

See Also

thrasherSiteData, thrasherDetectionData, RdistDf

Examples

data(thrasherDf)

is.RdistDf(thrasherDf)

summary(thrasherDf,
formula = dist ~ groupsize(groupsize)

)

thrasherSiteData Sage Thrasher site data.

Description

Point transect data collected in central Wyoming from 120 points surveyed for Sage Thrashers by
the Wyoming Cooperative Fish & Wildlife Research Unit in 2013.

Format

A data.frame containing 120 rows and 6 columns. Each row represents a surveyed site (point).
Column descriptions:

1. siteID: Factor (120 levels), the site or point surveyed.
2. observer: Factor (six levels), identity of the observer who surveyed the point.
3. bare: Number, the mean bare ground cover (%) within 100 m of each point.
4. herb: Number, the mean herbaceous cover (%) within 100 m of each point.
5. shrub: Number, the mean shrub cover (%) within 100 m of each point.
6. height: Number, the mean shrub height (cm) within 100 m of each point.

Source

The Sage Thrasher data are a subset of data collected by Jason Carlisle and field technicians for
his Ph.D. from the Department of Ecology, University of Wyoming, in 2017. This portion of Ja-
son’s work was funded by the Wyoming Game and Fish Department through agreements with the
University of Wyoming’s Cooperative Fish & Wildlife Research Unit (2012).

References

Carlisle, J.D. 2017. The effect of sage-grouse conservation on wildlife species of concern: implica-
tions for the umbrella species concept. Dissertation. University of Wyoming, Laramie, Wyoming,
USA.
Carlisle, J. D., A. D. Chalfoun, K. T. Smith, and J. L. Beck. 2018. Nontarget effects on songbirds
from habitat manipulation for Greater Sage-Grouse: Implications for the umbrella species concept.
The Condor: Ornithological Applications 120:439–455. doi:10.1650/CONDOR17200.1

https://doi.org/10.1650/CONDOR-17-200.1

transectType 141

See Also

thrasherDetectionData

transectType Type of transects

Description

Return the type of transects represented in either a fitted distance function or Rdistance data frame.

Usage

transectType(x)

Arguments

x Either an estimated distance function, output by dfuncEstim, or an Rdistance
nested data frame, output by RdistDf.

Details

This function is a simple helper function. If x is an estimated distance object, it polls the transType
attribute of x’s Rdistance nested data frame. If x is an Rdistance nested data frame, it polls the
transType attribute.

Value

A scalar. Either ’line’ if x contains continuous line-transect detections, or ’point’ if x contains
point-transects detections. If transect type has not been assigned, return is NULL.

unnest Unnest an RdistDf data frame

Description

Unnest an RdistDf data frame by expanding the embedded ’detections’ column. This unnest in-
cludes the so-called zero transects (transects without detections).

Usage

unnest(data, ...)

142 varcovarEstim

Arguments

data An RdistDf data frame. RdistDf data frames contain one line per transect and
a list-based column. The list-based column contains a data frame with detection
information. The detection information data frame on each row contains (at
least) distances and group sizes of all targets detected on the transect. Function
RdistDf creates RdistDf data frames from separate transect and detection data
frames. is.RdistDf checks whether data frames are RdistDf’s.

... Additional arguments passed to tidyr::unnest if data is not an RdistDf.

Value

An expanded data frame, without embedded data frames. Rows in the return represent with one
detection or one transect. If multiple detections were made on one transect, the transect will appear
on multiple rows. If no detections were made on a transect, it will appear on one row with NA
detection distance.

Examples

data('sparrowDf')

tidyr::unnest() does not include zero transects
detectionDf <- tidyr::unnest(sparrowDf, detections)
nrow(detectionDf)
any(detectionDf$siteID == "B2")

Rdistance::unnest() includes zero transects
fullDf <- unnest(sparrowDf)
nrow(fullDf)
any(fullDf$siteID == "B2")

varcovarEstim Estimate variance-covariance

Description

Estimate the variance-covariance matrix of parameters in the distance function. If the likelihood is
differentiable, the variance-covariance matrix is estimated from the second derivative of the likeli-
hood (i.e., the hessian). If the likelihood is not differentiable, the variance-covariance matrix is a
matrix of 0’s that are interpreted as "pending" (i.e., pending bootstrapping).

Usage

varcovarEstim(x, ml)

%#% 143

Arguments

x An estimated detection function object, normally produced by calling dfuncEstim.

ml Either a Rdistance ’model frame’ or an Rdistance ’fitted object’. Both are of
class "dfunc". Rdistance ’model frames’ are lists containing components neces-
sary to estimate a distance function, but no estimates. Rdistance ’model frames’
are typically produced by calls to parseModel. Rdistance ’fitted objects’ are
typically produced by calls to dfuncEstim. ’Fitted objects’ are ’model frames’
with additional components such as the parameters estimates, log likelihood
value, convergence information, and the variance- covariance matrix of the pa-
rameters.

Value

A square symmetric matrix estimating the variance-covariance matrix of parameters in x. Dimen-
sion of return is p X p, where p = length(x$par).

%#% Unit assignment helpers

Description

Helper functions for assigning physical measurement units in Rdistance. All are convenience wrap-
pers for units::set_units.

Usage

x %#% u

x %acre% .

x %cm% .

x %ft% .

x %ha% .

x %inches% .

x %km% .

x %km^2% .

x %m% .

x %m^2% .

144 %#%

x %mi% .

x %mi^2% .

x %yd% .

dropUnits(x)

setUnits(x, u)

Arguments

x A numeric vector or matrix.

u A string representing physical measurement units to assign to x, e.g., "m", "km",
"m^2". Valid units are listed in columns "(symbol|name)" of valid_udunits.

. Placeholder for the fixed unit assignment operators. Ignored. See Details.

Details

The fixed unit assignment operators are designed to behave somewhat like unary operators (i.e.,
1 argument); but, R does not allow user defined unary operators. Technically, the fixed unit as-
signment operators are instances of R’s user-defined infix operator, and as such they require two
arguments. Their syntax must be x %<units>% <something>; but, the second argument is ignored
and ’.’ is suggested. See Examples.

Value

For %#% and setUnits, argument x with units u attached.

For all the fixed unit assignment operators (i.e., %<units>%), argument x with the respective units
assigned.

For dropUnits, argument x with no units. If input x has no units, x is returned unchanged.

Examples

2 %#% "m"
setUnits(2,"km")
x <- 2 %#% "km^2"
10 %#% units(x)
2 %#% "km^2" %#% "acres" # Convert km^2 to acres
x %#% "acres" # Same
x %#% NULL # Drop units
dropUnits(x) # Same

%#%'s precedence is below "^" but above "+" and "*"
The following fails:
2 %#% "m" / (2 %#% "ha") %#% "in/acre"
The following succeeds:
(2 %#% "m" / (2 %#% "ha")) %#% "in/acre"
1 %m%. ^ 2 # [m]

%#% 145

(1 %m%.) ^ 2 # [m^2]

For fixed unit assignment, 2nd argument does not matter
All of the following are equivalent
2 %m%.
2 %m% x
2 %m% 3
2 %m% NULL
2 %m% NA

Conversion:
x <- 10 %#% "ft"
x %m%.

Index

∗ control optimization
RdistanceControls, 118

∗ package
Rdistance-package, 4

%acre% (%#%), 143
%cm% (%#%), 143
%ft% (%#%), 143
%ha% (%#%), 143
%inches% (%#%), 143
%km% (%#%), 143
%km^2% (%#%), 143
%m% (%#%), 143
%m^2% (%#%), 143
%mi% (%#%), 143
%mi^2% (%#%), 143
%yd% (%#%), 143
%#%, 143

abundEstim, 4, 6, 15, 17, 29, 34, 41, 45, 53,
55, 90, 95, 97, 116, 121, 135

AIC, 19
AIC.dfunc, 10, 14, 134, 136
autoDistSamp, 5, 9, 11, 29, 34

bcCI, 15
bootstrap, 16, 95
bspline.expansion, 17

checkNEvalPts, 18
checkUnits, 18
coef, 11
coef.dfunc, 19
colorize, 20
contrasts, 29, 33
control (RdistanceControls), 118
controls (RdistanceControls), 118
cosine.expansion, 5, 17, 21, 57, 92, 126, 128

dE.multi, 22, 30
dE.single, 25, 30

dfuncEstim, 4, 7–12, 14–17, 19, 22, 30,
36–38, 40–42, 45, 46, 49, 51, 53–61,
63, 65, 67, 69, 71, 73, 75, 77, 79,
81–83, 85, 87, 88, 90–94, 97–99,
102, 103, 105, 107, 110–112,
116–118, 123, 126, 128, 131,
133–136, 143

dfuncEstimErrMessage, 34
differentiableLikelihoods, 35
distance (Rdistance-package), 4
distances, 35
dropUnits (%#%), 143

EDR, 36, 38, 41, 42
effectiveDistance, 37, 37, 42, 60, 62, 64,

66, 68, 70, 72, 74, 76, 78, 80
effort, 38
errDataUnk, 39
estimateN, 39
ESW, 36–38, 41
expansionTerms, 42

Gamma.like, 44, 48, 62
Gamma.start.limits, 46
gammainc, 68
GammaModes, 47
GammaReparam, 45, 47
getNCores, 48
groupSizes, 49
gxEstim, 50

halfnorm.like, 5, 29, 34, 52, 92, 114
halfnorm.start.limits, 53
hazrate.like, 5, 54, 114
hazrate.start.limits, 56
hermite.expansion, 5, 17, 22, 57, 126
hist, 103, 108
HookeJeeves, 58

insertOneStepBreaks, 59

146

INDEX 147

integrateDfuncs, 59
integrateGammaLines, 61
integrateHalfnormLines, 63, 76
integrateHalfnormPoints, 65
integrateHazrateLines, 67
integrateKey, 68
integrateNegexpLines, 38, 62, 64, 68, 69,

72, 76
integrateNegexpPoints, 66, 70, 71
integrateNumeric, 38, 62, 64, 66, 68, 70, 72,

73, 76, 78, 80
integrateOneStepLines, 62, 64, 68, 70, 75,

78, 80
integrateOneStepNumeric, 77, 80
integrateOneStepPoints, 66, 78, 79
intercept.only, 81
is.points, 81
is.RdistDf, 12, 22, 26, 30, 82, 100, 123, 142
is.smoothed, 83
is.Unitless, 83

likeParamNames, 84
line-transect (Rdistance-package), 4
lines.dfunc, 85
lm, 104, 108

maximize.g, 86
mlEstimates, 87
model.matrix, 29, 33
model.matrix.dfunc, 88

nCovars, 88
negexp.like, 5, 89, 114
negexp.start.limits, 90
nLL, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80,

91
Nlminb, 92

observationType, 93
oneBsIter, 17, 94
oneStep.like, 78, 95, 98
oneStep.start.limits, 97
Optim, 99

parseModel, 18, 36, 46, 49, 54, 56, 58, 60, 87,
90, 91, 93, 97, 99, 100, 133, 143

perpDists, 5, 102, 129, 130
plot.dfunc, 85, 103, 109, 118, 136
plot.dfunc.para, 103, 107

point-transect (Rdistance-package), 4
predDensity, 110
predDfuncs, 111
predict.dfunc, 9, 111
predict.lm, 38, 41, 61, 63, 65, 67, 69, 71, 73,

75, 77, 79
predLikelihood, 115
print.abund, 85, 105, 116, 118, 135, 136
print.dfunc, 105, 116, 117, 135

Rdistance (Rdistance-package), 4
Rdistance-package, 4
RdistanceControls, 27, 31, 118
RdistDf, 8, 12, 22, 26, 29, 30, 100, 102, 119,

130, 140, 142

secondDeriv, 24, 27, 32, 95, 101, 119, 124
set_units, 143
setUnits (%#%), 143
simple.expansion, 5, 17, 22, 57, 125
simpsonCoefs, 126
sine.expansion, 57, 126, 127
sparrowDetectionData, 5, 128, 130–132
sparrowDf, 129
sparrowDfuncObserver, 131
sparrowSiteData, 5, 129–131, 132
startLimits, 58, 87, 93, 99, 133
summary.abund, 116, 134
summary.dfunc, 116, 118, 135, 135
summary.rowwise_df, 137

thrasherDetectionData, 5, 138, 140, 141
thrasherDf, 139
thrasherSiteData, 5, 139, 140, 140
transectType, 141

unitHelpers (%#%), 143
unnest, 141

valid_udunits, 29, 33, 119, 122, 144
varcovarEstim, 27, 95, 101, 142

	Rdistance-package
	abundEstim
	AIC.dfunc
	autoDistSamp
	bcCI
	bootstrap
	bspline.expansion
	checkNEvalPts
	checkUnits
	coef.dfunc
	colorize
	cosine.expansion
	dE.multi
	dE.single
	dfuncEstim
	dfuncEstimErrMessage
	differentiableLikelihoods
	distances
	EDR
	effectiveDistance
	effort
	errDataUnk
	estimateN
	ESW
	expansionTerms
	Gamma.like
	Gamma.start.limits
	GammaModes
	GammaReparam
	getNCores
	groupSizes
	gxEstim
	halfnorm.like
	halfnorm.start.limits
	hazrate.like
	hazrate.start.limits
	hermite.expansion
	HookeJeeves
	insertOneStepBreaks
	integrateDfuncs
	integrateGammaLines
	integrateHalfnormLines
	integrateHalfnormPoints
	integrateHazrateLines
	integrateKey
	integrateNegexpLines
	integrateNegexpPoints
	integrateNumeric
	integrateOneStepLines
	integrateOneStepNumeric
	integrateOneStepPoints
	intercept.only
	is.points
	is.RdistDf
	is.smoothed
	is.Unitless
	likeParamNames
	lines.dfunc
	maximize.g
	mlEstimates
	model.matrix.dfunc
	nCovars
	negexp.like
	negexp.start.limits
	nLL
	Nlminb
	observationType
	oneBsIter
	oneStep.like
	oneStep.start.limits
	Optim
	parseModel
	perpDists
	plot.dfunc
	plot.dfunc.para
	predDensity
	predDfuncs
	predict.dfunc
	predLikelihood
	print.abund
	print.dfunc
	RdistanceControls
	RdistDf
	secondDeriv
	simple.expansion
	simpsonCoefs
	sine.expansion
	sparrowDetectionData
	sparrowDf
	sparrowDfuncObserver
	sparrowSiteData
	startLimits
	summary.abund
	summary.dfunc
	summary.rowwise_df
	thrasherDetectionData
	thrasherDf
	thrasherSiteData
	transectType
	unnest
	varcovarEstim
	#
	Index

