--- title: "Vignette on the usage of DBCVindex" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{DBCVindex} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` This vignette documents how to use the `DBCVindex` library in R. The [DBCV index](https://doi.org/10.7717/peerj-cs.3095) is a coefficient that assesses the results of clustering results, taking into account the density-based components of clustering. Let's suppos you have the `moons` data and that you want to apply the HDBSCAN algorithm with 5 minimal points to them: ``` if (!requireNamespace("pacman", quietly = TRUE)) { install.packages("pacman") } library("pacman") p_load("DBCVindex, dbscan") data("moons") these_minimal_points <- 5 clustering_results <- hdbscan(moons, minPts = these_minimal_points) ``` You can calculate the DBCV of HDBSCAN clusters this way: ``` cat("DBCV index = ", dbcv_index(moons, clustering_results$"cluster"), " in the [-1;+1] interval\n", sep="") ```