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Preface
Scilab is a software for numerical mathematics and scientific visualization. It is capable of 

interactive calculations as well as automation of computations through programming. It provides 
all basic operations on matrices through built-in functions so that the trouble of developing and 
testing code for basic operations are completely avoided. Its ability to plot 2D and 3D graphs 
helps in visualizing the data we work with. All these make Scilab an excellent tool for teaching, 
especially those subjects that involve matrix operations. Further, the numerous toolboxes that are 
available  for  various  specialized  applications  make it  an  important  tool  for  research.  Being 
compatible with Matlab®, all available Matlab® M-files can be directly used in Scilab. Scicos, a 
hybrid dynamic systems modeler and simulator for Scilab, simplifies simulations. The greatest 
features of Scilab are that it  is multi-platform and is free. It is available for many operating 
systems  including  Windows,  Linux and MacOS X.  More  information  about  the  features  of 
Scilab are given in the Introduction.

Scilab can help a student  understand all  intermediate steps in  solving even complicated 
problems, as easily as using a calculator.  In fact,  it  is  a calculator that is capable of matrix 
algebra  computations.  Once  the  student  is  sure  of  having  mastered  the  steps,  they can  be 
converted into functions and whole problems can be solved by simply calling a few functions. 
Scilab is an invaluable tool as solved problems need not be restricted to simple examples to suit 
hand calculations.

The first part of this tutorial gives a hands on introduction to a beginner and is available at 
http://www.lulu.com/content/419922. This second part continues from where the first left 
off and demonstrates how to use Scilab to develop a simple program for the Matrix Structural 
Analysis of Plane Frames using the Direct Stiffness Method (DSM). The DSM is the method 
used in  the  computer  analysis  of  structures  and  is  the  precursor  to  the  more  general  Finite 
Element Method. Developing the program in Scilab is straight forward since matrix operations 
are built into Scilab. Attention can thus be focused on the DSM rather than on developing and 
debugging an entire set of functions for matrix operations.

The tutorial presumes that the reader is familiar with the direct stiffness method (DSM) of 
structural analysis and the associated terminology. No effort is made in this tutorial to explain 
the DSM in depth, instead the focus is on writing the functions to implement it.

This is the first version of this document and will certainly contain errors, typographical as 
well as factual. You can help improve this document by reporting all errors you find and by 
suggesting modifications and additions. Your views are always welcome. I can be reached at the 
email address given on the cover page.
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Introduction
Scilab is a scientific software package for numerical computations providing a powerful 

open computing environment for engineering and scientific applications. Developed since 1990 
by researchers from  INRIA (French National Institute for Research in Computer Science and 
Control,  http://www.inria.fr/index.en.html) and ENPC (National School of Bridges and 
Roads,  http://www.enpc.fr/english/int_index.htm), it is now maintained and developed 
by  Scilab Consortium (http://scilabsoft.inria.fr/consortium/consortium.html) since 
its creation in May 2003.

Distributed freely and open source through the Internet since 1994, Scilab is currently being 
used in educational and industrial environments around the world.

Scilab includes hundreds of mathematical functions with the possibility to add interactively 
programs from various languages (C, Fortran...). It has sophisticated data structures (including 
lists,  polynomials,  rational  functions,  linear  systems...),  an  interpreter  and  a  high  level 
programming language.

Scilab has been designed to be an open system where the user can define new data types and 
operations on these data types by using overloading.

A number of toolboxes are available with the system:
• 2-D and 3-D graphics, animation
• Linear algebra, sparse matrices
• Polynomials and rational functions
• Simulation: ODE solver and DAE solver
• Scicos  : a hybrid dynamic systems modeler and simulator
• Classic and robust control, LMI optimization
• Differentiable and non-differentiable optimization
• Signal processing
• Metanet: graphs and networks
• Parallel Scilab using PVM
• Statistics
• Interface with Computer Algebra (Maple, MuPAD)
• Interface with Tck/Tk
• And a large number of contributions for various domains.

Scilab  works  on  most  Unix  systems  including  GNU/Linux  and  on  Windows 
9X/NT/2000/XP.  It comes with source code,  on-line help and English user manuals.  Binary 
versions are available.
Some of its features are listed below:

• Basic data type is a matrix, and all matrix operations are available as built-in operations.
• Has a built-in interpreted high-level programming language.
• Graphics such as 2D and 3D graphs can be generated and exported to various formats so 

that they can be included into documents.
To the left is a 3D graph generated in Scilab and exported 
to GIF format and included in the document for 
presentation. Scilab can export to Postscript and GIF 
formats as well as to Xfig (popular free software for 
drawing figures) and LaTeX (free scientific document 
preparation system) file formats.
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Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames
We shall  design,  implement  and  test  a  series  of  functions  that,  when put  together,  can 

analyze plane frames using the matrix method of structural analysis. Although it is possible to 
generalize the program so as to be able to analyze all kinds of skeletal structures, both 2D and 
3D, the set of functions described here is targeted only at analyzing plane frames.

The first task in developing such a program is to clearly define the way data is organized 
within the program. The input data for a plane frame shall be organized as follows:

xy

Coordinates matrix. Size nx2 , where 'n' is the number of nodes in the frame. It is 
assumed that row number corresponds to the node number. Thus row 'i' stores the 
coordinates  of  node  number  'i'.  Columns  1  and  2  correspond  to  the  x and  y 
coordinates of the node, respectively.

conn

Connectivity matrix. Size mx3, where 'm' is the number of members in the frame. 
Row number corresponds to the member number. Columns 1 and 2 correspond to 
the start and end node numbers of the member, respectively. Column 3 corresponds 
to Member Property ID, referring to the row nuber of the material property stored 
in the matrix 'mprop'.

bc

Boundary Constraint  matrix.  Size  nsx3,  where  'ns' is  the number  of  supports 
(nodes with constrained degrees of freedom). Columns 1, 2 and 3 correspond to the 
constraint code for displacement along x-axis (ux), displacement along y-axis (uy) 
and  rotation  about  z-axis  (rz) respectively.  Constraint  code  1  indicates  that  the 
degree of freedom (dof) is constrained and 0 indicates unconstrained.

mprop

Member  Property  matrix.  Size  npx3,  where  'np' is  the  number  of  member 
properties required, one for each type. Columns 1, 2 and 3 represent Modulus of 
elasticity (E), Area of cross section (A) and Second moment of area with reference 
to the neutral axis of the section (I) respectively.

jtloads

Joint Loads matrix. Size njlx4, where 'njl' is the number of joint loads. Column 
1 corresponds to the node number where the joint load is applied. Columns 2, 3 
and 4 correspond to component of load along x-axis (Fx), component of load along 
y-axis  (Fy)  and  Moment  about  z-axis  (Mz)  respectively.  Joint  load  components 
must be in defined in global axes.

memloads

Member Load matrix.  Size nmlx7, where 'nml'  is the number of member loads. 
Column 1 corresponds to the member number on which member loads are applied. 
Columns 2 to 7 correspond to Fx, Fy and Mz with reference to the global axes, at the 
start and end nodes of the member. The loads are calculated as the fixed end forces 
due to the applied member loads and are defined in member axes. Sign convention 
follows the right-hand rule.

Let us consider the example frame shown in Fig. 3 (Weaver & Gere, p. 243).

Fig. 3 Example plane frame (Weaver & Gere, p. 243)
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The input data for the example in Fig. 3 is given below. The numbers 
within the tables constitute the data and are shown shaded. The rest are labels 
to help you interpret the data.

xy x y
1 100 75
2 0 75
3 200 0

conn Node i Node j Member Property ID
1 2 1 1
2 1 3 1

bc Node ux uy rz

1 2 1 1
2 3 1 1

1
1

mprop E A I
1 1x104 10 1x103

jtloads Node Fx Fy Mz

1 1 0 -10 -1000

memloads Member Fx Fy Mz Fx Fy Mz

1 1 0 12 200 0 12 -200
2 2 -6 8 250 -6 8 -250

Note that the units for the above data are kips (kilo pounds) and inches, as a result, E is in 
ksi (kilo pounds per square inch) and I is in in4. The units used must be consistent and it is the 
responsibility of the user to ensure this. The functions work well for any consistent system of 
units.

One thing that must be clearly understood is the definition of the local axis of the member. 
The local axis is defined with its origin at the start node of the member and the positive direction 
of the local x-axis is defined by the end node of the member. For example, member 1 in the 
above example has its x-axis starting from 1 and going towards 2, that is from right to left. The 
local y-axis is taken perpendicular to the x-axis and the local z-axis is kept the same as the 
global z-axis in the case of a plane frame.

The sign convention for the member fixed end forces is dependent on the member local 
x-axis, and the right-hand rule is used in deciding the positive sign convention for the forces and 
moments at the ends of the member.
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Tutorial 2 – Location Matrix for a Plane Frame
In a plane frame, the number of degrees of freedom (dof) per node is 3, namely ux, uy and rz, 

and therefore the total  number  of  degrees of  freedom is  3  times the number  of  nodes ('n'). 
However, every structure has supports with certain degrees of freedom constrained (otherwise 
the structure would be a free body capable of undergoing rigid-body motion). These constrained 
dof have zero displacements or non-zero prescribed displacements (such as support settlement 
problems). As a result, the number of unknown degrees of freedom ('ndof') is smaller than 3xn.

In the direct stiffness matrix method, the portion of the stiffness matrix corresponding to 
zero  displacements  is  not  assembled  as  it  does  not  affect  the  calculation  of  the  nodal 
displacements. In case of non-zero prescribed displacements, the stiffness matrix must include 
the rows and columns corresponding to non-zero prescribed displacements, but before solving 
the  stiffness  equation,  a  rearrangement  of  the  matrices  is  necessary.  This  however  is  not 
attempted here and is left as an exercise for the student.

A generalized representation of the dof numbering is called the location matrix. It has a size 
nx3, where 'n' is the number of nodes in the plane frame. Columns 1 to 3 store the constraint 
code for displacements along the 3 possible dof, namely, ux, uy and rz for each node. The code is 
0 for unconstrained dof and 1 for constrained dof.

The location matrix 'lm' is compiled in 2 stages. In the first stage, 'lm' is initialized to a zero 
matrix, implying that all dof are unconstrained. The number of nodes with constrained dof is 
available in column 1 of matrix 'bc'. For each of these nodes, the zeros in the corresponding rows 
of the location matrix are replaced by the constraint codes from 'bc'.

In the second stage, the variable representing the number of dof of the plane frame ('ndof') 
is initialized to 0 and 'lm' is processed row by row, For each constraint code 0 (unconstrained 
dof), 'ndof'  is incremented by 1 and stored in the place of the 0. If the constraint  code is 1 
(constrained dof), it is set to 0 indicating the corresponding displacement to be 0.

At the end of this stage, 'ndof' will be the total number of dof of the plane frame and 'lm' 
will have zeros for a dof with zero displacement or a unique dof number for an unconstrained 
dof. The size of structure stiffness matrix must therefore be  ndof x ndof. The interface for a 
function to compute the location matrix is given below:
Interface: [lm, nd]=pf_calclm(n, bc)
Input Parameters: n=number of nodes in the plane frame, bc=Boundary constraint matrix.

Output Parameter: lm=Location matrix of a plane frame, nd=number of dof of the plane frame.
The function to carry out this computation is given below:

function [lm, nd]=pf_calclm(n, bc)
  lm=zeros(n,3);
  [ns dummy]=size(bc); // ns=number of supports
  for i=1:ns
    nn=bc(i,1); // node number of ith support
    lm(nn, 1:3) = bc(i, 2:4); // constraint codes of ith support
  end;
  nd=0; // initialize number of dof to zero
  for i=1:n
    for j=1:3
      if lm(i,j) == 1 then // constrained dof
        lm(i,j) = 0;
      else // unconstrained dof
        nd = nd + 1;
        lm(i,j) = nd;
      end
    end
  end
endfunction
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This function must be loaded into Scilab and tested with the following commands:
-->[nodes dummy]=size(xy)
-->[lm, ndof]=pf_calclm(nodes, bc)

The first command determines the size of 'xy' matrix and puts the number of rows in 'nodes' 
and  number  of  columns  in  'dummy'  (which  is  subsequently  ignored).  The  second  command 
invokes the function which returns the location matrix in 'lm'  and the total number of dof is 
'ndof'. The input to the function is the boundary condition matrix  'bc', which for the given 
structure is:

[ 2 1 1 1
3 1 1 1

The location matrix is initialized to all zeros implying that the nodes are unconstrained. The 
rows corresponding to the supports, nodes 2 and 3 in this case, are then altered as defined in the 
matrix 'bc'. At this, the location matrix looks as shown below:

[ 0 0 0
1 1 1
1 1 1 ]

Before commencing the second pass,  'ndof' is initialized to zero and as each element is 
processed  row  by  row,  zeros  are  counted  as  permitted  degrees  of  freedom  ('ndof' is 
incremented and the incremented value is put in the place of the element) and a constrained dof 
(indicated by 1) is replaced by 0 (implying zero displacement at that dof). The output after the 
second pass, for our example problem is ndof=3 and lm as follows:

[ 1 2 3
0 0 0
0 0 0 ]
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Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element
The stiffness matrix  of 

a plane frame member with 
reference to its local axes is 
of size 6x6 and is given as 
shown on the left.

This  can  be  generated 
by  first  defining  a  zero 
matrix  of  size  6x6,  then 
defining the elements of the 
upper triangular matrix and 
finally  copying  the  upper 
triangle  into  the  lower 
triangle.  The description of 
the  function  that  will  be 
developed  for  this  purpose 
is as follows:

Interface: [k]=pf_stiff(E, A, I, L)
Input  Parameters: E = Modulus  of  elasticity,  A = Cross  sectional  area  of  the  member, 
I = Second moment of area of the cross section about the neutral axis and  L = Length of the 
member.

Output Parameter: k = Local stiffness matrix of a plane frame element of size 6x6.
The code for the function is as follows:

function [k] = pf_stiff(E, A, I, L)
  k = zeros(6,6);
  k(1,1) = E*A/L; k(1,4) = -k(1,1);
  k(2,2) = (12*E*I)/L^3; k(2,3) = (6*E*I)/L^2;
  k(2,5) = -k(2,2); k(2,6) = k(2,3);
  k(3,3) = (4*E*I)/L;
  k(3,5) = -k(2,3); k(3,6) = k(3,3)/2;
  k(4,4) = k(1,1);
  k(5,5) = k(2,2); k(5,6) = -k(2,3);
  k(6,6) = k(3,3);
  for i = 2:6
    for j = 1:i-1
      k(i,j) = k(j,i);
    end
  end
endfunction

Load this function into Scilab and test it with the following input:
-->k = pf_stiff(1,1,1,1)

The output is given on the next page. Another test is the following input, which gives the 
local stiffness matrix of member 2:
-->k = pf_stiff(1e4,10,1e3,125)

The output of this second command is also shown on the next page.
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k=[
EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3

−6EI
L2 0 12EI

L3
−6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L

4EI
L

]



k=[
1 0 0 −1 0 0
0 12 6 0 −12 6
0 6 4 0 −6 2
−1 0 0 1 0 0
0 −12 −6 0 12 −6
0 6 2 0 −6 4

]
This is the stiffness matrix generated by the first 
command where E, A, I and L are all set to 1.

k=[
800 0 0 −800 0 0
0 61.44 3840 0 −61.44 3840
0 3840 320000 0 −3840 160000

−800 0 0 800 0 0
0 −61.44 −3840 0 61.44 −3840
0 3840 160000 0 −3840 320000

]
This is the stiffness matrix 
generated by the second 
command where E=1x104, 
A=10, I=1x103 and L=125.

You will note that this function takes the length of the member as one of the input. We 
therefore need a function to calculate the length of a member. Later on, we will also need to do a 
related calculation, the direction cosines of the member. We will write a function that can do 
both these things. Its interface is as follows:
Interface: [l, cx, cy]=pf_calclen(imem, xy, conn)
Input Parameters: imem = number of the member whose length and direction cosines are to be 
calculated, xy = Coordinates matrix, conn = Connectivity matrix.

Output  Parameters: l = Length  of  the  member,  cx = x  direction  cosine,  cy = y  direction 
cosine.

The code for the function is given below and the comments (which need not be typed when 
you try out the function yourself) are self-explanatory.
function [l, cx, cy]=pf_calclen(imem, xy, conn)
  n=conn(imem,:); // start and end nodes of member number i
  p1 = xy(n(1),:); // x,y coordinates of start node
  p2 = xy(n(2),:); // x,y coordinates of end node
  dxdy=p2-p1; // x,y projections of member
  dxdy2=dxdy.^2; // square of the projections
  l=sqrt(sum(dxdy2)); // length of member
  cx = dxdy(1) / l; // x-direction direction cosine of member
  cy = dxdy(2) / l; // y-direction direction cosine of member
endfunction

With this function available, we can compute the local stiffness matrix of any member by 
first calculating its length, extracting its material properties from 'mprop' and then computing its 
local stiffness matrix. For member 1, the commands would be:
-->[L cx cy]=pf_calclen(1,xy,conn)
-->iprop=conn(1,3)
-->E=mprop(iprop,1);A=mprop(iprop,2);I=mprop(iprop,3);
-->k=pf_stiff(E,A,I,L)
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Tutorial 4 – Rotation Matrix of a Plane Frame Member
The local stiffness matrix is computed with reference to the local axis of a member, which 

may or may not be parallel to the global axes. Therefore it is necessary to transform the member 
stiffness matrix from local axes to global axes before it is superposed with stiffness matrices of 
other members in order to assemble the structure stiffness matrix. This transformation requires 
the rotation matrix  of the member and is  expressed in terms of the direction cosines of the 
member. The rotation matrix for a plane frame member is as given below:

r=[
Cx C y 0 0 0 0
−C y Cx 0 0 0 0

0 0 1 0 0 0
0 0 0 C x C y 0
0 0 0 −C y C x 0
0 0 0 0 0 1

]
where Cx and Cy are the direction cosines of the member 

and are calculated as C x=
dx
l
=

x2− x1

l
 and 

C y=
dy
l
=

y2− y1

l
where l=dx2dy2 .

The interface for the function is as follows:
Interface: [r]=pf_calcrot(cx, cy)
Input Parameters: cx = x direction cosine, cy = y direction cosine.

Output Parameters: r = Rotation matrix.
The code for the function is as follows:

function [r] = pf_calcrot(cx, cy)
  r = zeros(6,6); // initialize rotation matrix to zero
  r(1,1) = cx;
  r(1,2) = cy;
  r(2,1) = -r(1,2);
  r(2,2) = r(1,1);
  r(3,3) = 1;
  r(4:6, 4:6) = r(1:3, 1:3); // copy rows and columns 1:3, 1:3 into 4:6, 4:6
endfunction

Note  that  the  direction  cosines  of  the  member  must  first  be  calculated  using  the 
pf_calclen() function and only then should the function to calculate the rotation matrix must 
be called. The commands to calculate the rotation matrix for member 2 are as follows:
-->[l cx cy]=pf_calclen(2,xy,conn)
-->r=pf_calcrot(cx,cy)

The output of these commands must be as follows:

r=[
0.8 −0.6 0 0 0 0
−0.6 0.8 0 0 0 0

0 0 1 0 0 0
0 0 0 0.8 −0.6 0
0 0 0 0.6 0.8 0
0 0 0 0 0 1

]
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Tutorial 5 – Global Stiffness Matrix of a Plane Frame Member
The global stiffness matrix of a plane frame member is calculated as k=r ' k e r  where ke is 

local stiffness matrix and  r is the rotation matrix of the member. Thus writing a function to 
calculate  the  global  stiffness  matrix  of  a  plane  frame  member  is  straight  forward  once  the 
functions to calculate the local stiffness matrix and rotation matrix are available. The interface 
for such a function is given below:
Interface: [K]=pf_gstiff(imem, xy, conn, mprop)
Input Parameters: imem = number of member whose global stiffness matrix is to be calculated, 
xy = coordinates matrix, conn=connectivity matrix and mprop = material property matrix.

Output Parameters: K = global stiffness matrix.
The code for the function is as follows:

function [K] = pf_gstiff(imem, xy, conn, mprop)
  [L cx cy] = pf_calclen(imem, xy, conn); // length and direction cosines
  r = pf_calcrot(cx, cy); // calculate rotation matrix
  iprop = conn(imem,3); // property id of imem th member
  E = mprop(iprop,1);   // Modulus of elasticity
  A = mprop(iprop,2);   // Area of cross section
  I = mprop(iprop,3);   // Second moment of area of cross section about NA
  k = pf_stiff(E, A, I, L); // local stiffness matrix of ith member
  K = r' * k * r; // global stiffness matrix of imem th member
endfunction

The comments make the function self explanatory. To calculate the global stiffness matrices 
of the 1st and 2nd members, the function is used as follows:
-->k1=pf_gstiff(1,xy,conn,mprop)
-->k2=pf_gstiff(2,xy,conn,mprop)

The global stiffness matrix of member 2 must be as given below:

r=[
534.1184 −354.5088 2304 −534.1184 354.5088 2304

−354.5088 327.3216 3072 354.5088 −327.3216 3072
2304 3072.0000 320000 −2304 −3072 160000

−534.1184 354.5088 −2304 534.1184 −354.5088 −2304
354.5088 −327.3216 −3072 −354.5088 327.3216 −3072

2304 3072 160000 −2304 −3072 320000
]
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Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix
The structure stiffness matrix of a plane frame is obtained by computing the global stiffness 

matrix  for  an  individual  member  of  the  plane  frame  and  superposing  it  with  the  structure 
stiffness matrix.  To be able to so, one needs to determine a mapping between the rows and 
columns of the global stiffness matrix of a member and those of the structure stiffness matrix. 
This is done by writing the dof numbers for the rows and columns of the member global stiffness 
matrix and superposing the elements with the corresponding elements of the structure stiffness 
matrix. Thus, we need to know the numbers of the start and end nodes of a member and the 
corresponding dof numbers from the location matrix 'lm'.
Interface: [ssm]=pf_assemssm(imem, xy, conn, mprop, lm, ssm)
Input Parameters: imem = number of member whose global stiffness matrix is to be calculated, 
xy = coordinates  matrix,  conn = connectivity  matrix  and  mprop = material  property  matrix, 
lm = location matrix of the member and ssm = structure stiffness matrix of the plane frame.

Output Parameters: ssm=structure stiffness matrix of the plane frame.
The code for the function is as follows:

function [ssm] = pf_assemssm(imem, xy, conn, mprop, lm, ssm)
  K = pf_gstiff(imem, xy, conn, mprop);
  nj = conn(imem,1); nk = conn(imem,2);
  dof(1:3) = lm(nj,1:3);
  dof(4:6) = lm(nk,1:3);
  for i=1:6
    ii = dof(i);
    if ii == 0 then
    else
      for j=1:6
        jj = dof(j);
        if jj == 0 then
        else
          tmp = ssm(ii,jj) + K(i,j);
          ssm(ii,jj) = tmp;
        end
      end
    end
  end
endfunction

Note that  ssm appears both as an input as well  as an output parameter, as this  function 
superposes the global stiffness matrix of one member onto the existing structure stiffness matrix, 
which is initialized to zero to start with. To compute the structure stiffness matrix considering all 
members, we need to call this function inside a for loop. The interface to the function that does 
this is shown below:
Interface: [K]=pf_ssm(xy, conn, mprop, lm, ndof)
Input Parameters: xy = coordinates matrix, conn = connectivity matrix and mprop = material 
property matrix, lm = location matrix of the member and nd = number of degrees of freedom of 
the plane frame.

Output Parameters: K = structure stiffness matrix of the plane frame.
The code for the function is given below:

function [K]=pf_ssm(xy, conn, mprop, lm, ndof)
  K=zeros(ndof,ndof);
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  [nmem dummy]=size(conn);
  for imem = 1:nmem
    K = pf_assemssm(imem, xy, conn, mprop, lm, K);
  end
endfunction

The  input  data  xy,  conn,  mprop must  first  be  read  and  the  number  of  degrees  of 
freedom (ndof)  and location matrix (lm)  must  be computed before the function  pf_ssm() is 
called. This function returns the structure stiffness matrix (K) of the plane frame.

To illustrate the steps for member 1, the start end end nodes are 2 and 1 respectively, as can 
be seen from the 'conn' matrix. The dof numbers for these nodes are obtained from the location 
matrix  'lm',  and are seen to be  [0 0 0] and  [1 2 3] for nodes 2 and 1 respectively. This 
implies that rows and columns of the global stiffness matrix of member 1 correspond to rows 
[0 0 0 1 2 3] of  the global  stiffness matrix  of the structure.  Rows and columns with dof 
number  zero correspond to  zero displacement  and therefore need not  be assembled into the 
structure stiffness matrix. The elements of the member global stiffness matrix where both the 
row and column dof numbers are non-zero are superposed on the elements in the corresponding 
row and column of the structure stiffness matrix.
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Tutorial 7 – Assembling the Load Vector
The load vector has the same number of rows as the number of degrees of freedom (dof) of 

the  structure  ('ndof').  Each  element  of  the  load  vector  represents  the  load  applied 
corresponding to a dof number. Loads applied on a plane frame can be either loads applied at the 
nodes of the frame or loads applied on the members. The two different types of loads have to be 
processed differently before assembling the load vector.

Joint  loads are an input  data to  the program and are specified as components in global 
coordinate system (components along x, y axes and moment about z axis). Knowing the node 
number at which the load is applied, it is easy to identify the dof numbers corresponding to the 
node from the location matrix. The components of the load at a node are then superposed with 
the corresponding element in the load vector.

The interface to the function that assembles the load vector for loads applied at the joints is 
given below:
Interface: [P]=pf_assemloadvec_jl(lm, jtloads, P)
Input Parameters: lm = location matrix of the member and  jtloads =matrix of joint loads, 
P = load vector.

Output Parameters: P = load vector.
This function assembles the load vector for a plane frame from the loads applied directly on 

the nodes.
function [P]=pf_assemloadvec_jl(lm, jtloads, P)
  [nloads dummy] = size(jtloads);
  printf('Loads = %d\n', nloads);
  for i=1:nloads
    n=jtloads(i,1);
    printf('Load applied at joint %d', n);
    dof=lm(n,:);
    disp(dof, ' with dof = ');
    for j=1:3
      jj = dof(j);
      if jj == 0 then
      else
        tmp = P(jj) + jtloads(i, j+1);
        P(jj) = tmp;
      end
    end
  end
endfunction

This function returns a 1x6 vector containing the dof numbers of the start and end nodes of 
member number  imem. The degree of freedom (dof) numbers in the first 3 rows correspond to 
the start node and the last 3 to the end node.
function [dof]=pf_getdof(imem, conn, lm)
  dof=zeros(1,6);
  n1 = conn(imem,1);
  dof(1:3) = lm(n1,:);
  n2 = conn(imem,2);
  dof(4:6) = lm(n2,:);
endfunction

This interface to the function that assembles the load vector for a plane frame from the loads 
applied on the members is given below:
Interface: [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P)
Input  Parameters: iload = number  of  the  member  load  being processed,  xy = coordinates 
matrix, conn = connectivity matrix, lm = location matrix of the member and memloads = matrix 
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of member loads, P = load vector.

Output Parameters: P = load vector.
Since member loads are in member axes,  they are transformed to global axes using the 

rotation matrix. This function calculates the load vector due to one of the member loads and 
superposes it on to the previous load vector.
function [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P)
  imem = memloads(iload,1);
  [L cx cy]=pf_calclen(imem,xy,conn);
  r = pf_calcrot(cx, cy);
  am=-r' * memloads(iload,2:7)';
  dof=pf_getdof(imem, conn, lm);
  for i=1:6
    ii = dof(i);
    if ii ~= 0 then
      P(ii) = P(ii) + am(i);
    end
  end
endfunction

To assemble the load vector due to all member loads, this function has to be called once for 
each member load, within a for loop, as follows:
[nmemlds dummy]=size(memloads);
for iload=1:nmemlds
  [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P);
end

The number of member loads  nmemlds is the number of rows in the member load matrix 
memloads. The load vector P has to be initialized to zero at the start. The contribution to the load 
vector  due  to  joint  loads  may first  be  assembled  and after  that  the  contribution  due to  the 
member loads may be assembled.
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Tutorial 8 – The Super Function
The functions developed until now accomplish the task of assembling the structure stiffness 

matrix  of a  plane frame and assembling the load vector.  The next  task is  to write  a single 
function that calls these functions in the right sequence and solves the stiffness equation for the 
nodal displacements.

The interface to such a function is given below:
Interface: [P]=pf(xy, conn, bc, mprop, jtloads, memloads)
Input  Parameters: xy = coordinates  matrix,  conn = connectivity  matrix,  bc = boundary 
condition  matrix,  mprop = member  property  matrix,  jtloads = joint  load  matrix,  and 
memloads = member load matrix.

Output  Parameters: ssm = structure  stiffness  matrix,  x = nodal  displacements  and  P = load 
vector.

This  is  the  super  function  that  performs  the  complete  task  of  assembling  the  structure 
stiffness matrix, assembling the load vector and solving the stiffness equation to obtain the nodal 
displacements.
function [ssm,x,P]=pf(xy,conn,bc,mprop,jtloads,memloads)
  [nodes dummy]=size(xy);
  [lm ndof]=pf_calclm(nodes,bc);
  ssm=pf_ssm(xy,conn,mprop,lm,ndof);
  P=zeros(ndof,1);
  x=zeros(ndof,1);
  P=pf_assemloadvec_jl(lm, jtloads, P);
  [nmemlds dummy]=size(memloads);
  for iload=1:nmemlds
    [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P);
  end
  x=zeros(ndof,1);
  x=inv(ssm)*P;
endfunction

All the input data must be gathered before calling this function. After this function is called, 
the nodal displacements are known and the task that remains is to extract the member end forces 
from the calculated nodal displacements.
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Tutorial 9 – Extracting Member End Forces
Once the nodal displacements are available, calculating the member end forces in global 

axes is possible if we know the displacements pertaining to the nodes of the member concerned. 
This information is available in the location matrix and can easily be obtained. To express the 
member end forces in local axes, the member end forces are transformed from global to local 
axes. The interface to the function that computes the member end forces in local axes for a 
member with number imem is given below:
Interface: [P]=pf_memendforces(imem, xy, conn, mprop, lm, x, memloads)
Input  Parameters: imem = number  of  member  for  which  member  end  forces  are  to  be 
calculated, xy = coordinates  matrix,  conn = connectivity  matrix,  mprop = member  property 
matrix, lm = location matrix, and x = nodal displacement vector.

Output Parameters: f = member end force vector of size 6x1.
This function computes the end forces for member number 'imem' in local axes.

function [f] = pf_memendforces(imem, xy, conn, mprop, lm, x)
  iprop=conn(imem,3); // Property ID for member imem
  E=mprop(iprop,1); A=mprop(iprop,2); I=mprop(iprop,3);
  [L cx cy]=pf_calclen(imem,xy,conn); // Length and direction cosines
  r=pf_calcrot(cx,cy); // Rotation matrix
  k = pf_stiff(E,A,I,L); // Local stiffness matrix
  u = zeros(6,1); // Initialize member end displacements
  dof = pf_getdof(imem, conn, lm); // Get DOF numbers for the ends of member
  for i = 1:6
    idof = dof(i);
    if idof ~= 0 then
      u(i) = x(idof); // Copy global displacement into u
    end
  end
  uu=r*u; // Displacements in local axes
  f = zeros(6,1);
  f = k * uu; // Member end forces in local axes
  [nmemloads,dummy] = size(memloads);
  for i = 1:nmemloads
    if memloads(i,1) == imem
      f = f + memloads(i,2:$)';
    end
  end
endfunction

This function has to be called once for each member and the results stored. This can be done 
at the Scilab command prompt.
-->[k,x,P]=pf(xy,conn,bc,mprop,jtloads,memloads)
-->[nodes dummy]=size(xy);
-->lm=pf_calclm(nodes,bc);
-->f1=pf_memendforces(1,xy,conn,mprop,lm,x,memloads)
-->f2=pf_memendforces(2,xy,conn,mprop,lm,x,memlodas)

Data for the problem shown has been stored in a file called pf.bin, and you can load it with 
the command:
-->load('pf.bin')

Ensure that pf.bin is located in your working directory. The output of the Scilab functions 
is compared with the results from the book:

Scilab Tutorial Tutorial 9 – Extracting Member End Forces | 15



Displacements

Node
ux uy rz

Scilab Book Scilab Book Scilab Book
1 -0.0202608 -0.02026 -0.0993600 -0.09936 -0.0017976 -0.001797

Member End Forces
Member Fx1 Fy1 Mz1 Fx2 Fy2 Mz2

1
Scilab 20.260769 13.137825 436.64755 -20.260769 10.862175 -322.86504
Book 20.26 13.14 436.6 -20.26 10.86 -322.9

2
Scilab 28.72592 -4.5332787 -677.13496 -40.72592 20.533279 -889.52488
Book 28.72 -4.53 -677.1 -40.73 20.53 -889.5

There is another data file hall.bin containing the input data to Example 15.1 from Hall & 
Kabaila (Hall & Kabaila, p. 300) which you can try. You could try working backwards from the 
input data and determine its geometry in case you can't get hold of the book.
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