
Matrix Structural Analysis of Plane Frames
using Scilab

by
Satish Annigeri Ph.D.

Professor of Civil Engineering
B.V. Bhoomaraddi College of Engineering & Technology, Hubli

satish@bvb.edu

Department of Civil Engineering
B.V. Bhoomaraddi College of Engineering & Technology, Hubli

www.bvb.edu

Table of Contents
Preface...ii
Introduction... 1
Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames.. 2
Tutorial 2 – Location Matrix for a Plane Frame... 4
Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element...6
Tutorial 4 – Rotation Matrix of a Plane Frame Member...8
Tutorial 5 – Global Stiffness Matrix of a Plane Frame Member.. 9
Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix.. 10
Tutorial 7 – Assembling the Load Vector... 12
Tutorial 8 – The Super Function... 14
Tutorial 9 – Extracting Member End Forces...15
References... 16

Matrix Structural Analysis of Plane Frames using Scilab i

Preface
Scilab is a software for numerical mathematics and scientific visualization. It is capable of

interactive calculations as well as automation of computations through programming. It provides
all basic operations on matrices through built-in functions so that the trouble of developing and
testing code for basic operations are completely avoided. Its ability to plot 2D and 3D graphs
helps in visualizing the data we work with. All these make Scilab an excellent tool for teaching,
especially those subjects that involve matrix operations. Further, the numerous toolboxes that are
available for various specialized applications make it an important tool for research. Being
compatible with Matlab®, all available Matlab® M-files can be directly used in Scilab. Scicos, a
hybrid dynamic systems modeler and simulator for Scilab, simplifies simulations. The greatest
features of Scilab are that it is multi-platform and is free. It is available for many operating
systems including Windows, Linux and MacOS X. More information about the features of
Scilab are given in the Introduction.

Scilab can help a student understand all intermediate steps in solving even complicated
problems, as easily as using a calculator. In fact, it is a calculator that is capable of matrix
algebra computations. Once the student is sure of having mastered the steps, they can be
converted into functions and whole problems can be solved by simply calling a few functions.
Scilab is an invaluable tool as solved problems need not be restricted to simple examples to suit
hand calculations.

The first part of this tutorial gives a hands on introduction to a beginner and is available at
http://www.lulu.com/content/419922. This second part continues from where the first left
off and demonstrates how to use Scilab to develop a simple program for the Matrix Structural
Analysis of Plane Frames using the Direct Stiffness Method (DSM). The DSM is the method
used in the computer analysis of structures and is the precursor to the more general Finite
Element Method. Developing the program in Scilab is straight forward since matrix operations
are built into Scilab. Attention can thus be focused on the DSM rather than on developing and
debugging an entire set of functions for matrix operations.

The tutorial presumes that the reader is familiar with the direct stiffness method (DSM) of
structural analysis and the associated terminology. No effort is made in this tutorial to explain
the DSM in depth, instead the focus is on writing the functions to implement it.

This is the first version of this document and will certainly contain errors, typographical as
well as factual. You can help improve this document by reporting all errors you find and by
suggesting modifications and additions. Your views are always welcome. I can be reached at the
email address given on the cover page.

Acknowledgments
It goes without saying that my first indebtedness is to the developers of Scilab and the

consortium that continues to develop it. I must also thank Mr. A.B. Raju, Assistant Professor,
E&EE Department, BVBCET who first introduced me to Scilab and forever freed me from using
Matlab®.

Finally, I would like to thank my wife Uma, daughter Deepti and son Prajwal for letting me
take so much time away that I should in fact be spending with them. Their forbearance is
gratefully acknowledged.

Satish Annigeri

Matrix Structural Analysis of Plane Frames using Scilab ii

Introduction
Scilab is a scientific software package for numerical computations providing a powerful

open computing environment for engineering and scientific applications. Developed since 1990
by researchers from INRIA (French National Institute for Research in Computer Science and
Control, http://www.inria.fr/index.en.html) and ENPC (National School of Bridges and
Roads, http://www.enpc.fr/english/int_index.htm), it is now maintained and developed
by Scilab Consortium (http://scilabsoft.inria.fr/consortium/consortium.html) since
its creation in May 2003.

Distributed freely and open source through the Internet since 1994, Scilab is currently being
used in educational and industrial environments around the world.

Scilab includes hundreds of mathematical functions with the possibility to add interactively
programs from various languages (C, Fortran...). It has sophisticated data structures (including
lists, polynomials, rational functions, linear systems...), an interpreter and a high level
programming language.

Scilab has been designed to be an open system where the user can define new data types and
operations on these data types by using overloading.

A number of toolboxes are available with the system:
• 2-D and 3-D graphics, animation
• Linear algebra, sparse matrices
• Polynomials and rational functions
• Simulation: ODE solver and DAE solver
• Scicos : a hybrid dynamic systems modeler and simulator
• Classic and robust control, LMI optimization
• Differentiable and non-differentiable optimization
• Signal processing
• Metanet: graphs and networks
• Parallel Scilab using PVM
• Statistics
• Interface with Computer Algebra (Maple, MuPAD)
• Interface with Tck/Tk
• And a large number of contributions for various domains.

Scilab works on most Unix systems including GNU/Linux and on Windows
9X/NT/2000/XP. It comes with source code, on-line help and English user manuals. Binary
versions are available.
Some of its features are listed below:

• Basic data type is a matrix, and all matrix operations are available as built-in operations.
• Has a built-in interpreted high-level programming language.
• Graphics such as 2D and 3D graphs can be generated and exported to various formats so

that they can be included into documents.
To the left is a 3D graph generated in Scilab and exported
to GIF format and included in the document for
presentation. Scilab can export to Postscript and GIF
formats as well as to Xfig (popular free software for
drawing figures) and LaTeX (free scientific document
preparation system) file formats.

Scilab Tutorial Introduction | 1

http://www.scicos.org/
http://scilabsoft.inria.fr/consortium/consortium.html
http://www.enpc.fr/
http://www.inria.fr/

Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames
We shall design, implement and test a series of functions that, when put together, can

analyze plane frames using the matrix method of structural analysis. Although it is possible to
generalize the program so as to be able to analyze all kinds of skeletal structures, both 2D and
3D, the set of functions described here is targeted only at analyzing plane frames.

The first task in developing such a program is to clearly define the way data is organized
within the program. The input data for a plane frame shall be organized as follows:

xy

Coordinates matrix. Size nx2 , where 'n' is the number of nodes in the frame. It is
assumed that row number corresponds to the node number. Thus row 'i' stores the
coordinates of node number 'i'. Columns 1 and 2 correspond to the x and y
coordinates of the node, respectively.

conn

Connectivity matrix. Size mx3, where 'm' is the number of members in the frame.
Row number corresponds to the member number. Columns 1 and 2 correspond to
the start and end node numbers of the member, respectively. Column 3 corresponds
to Member Property ID, referring to the row nuber of the material property stored
in the matrix 'mprop'.

bc

Boundary Constraint matrix. Size nsx3, where 'ns' is the number of supports
(nodes with constrained degrees of freedom). Columns 1, 2 and 3 correspond to the
constraint code for displacement along x-axis (ux), displacement along y-axis (uy)
and rotation about z-axis (rz) respectively. Constraint code 1 indicates that the
degree of freedom (dof) is constrained and 0 indicates unconstrained.

mprop

Member Property matrix. Size npx3, where 'np' is the number of member
properties required, one for each type. Columns 1, 2 and 3 represent Modulus of
elasticity (E), Area of cross section (A) and Second moment of area with reference
to the neutral axis of the section (I) respectively.

jtloads

Joint Loads matrix. Size njlx4, where 'njl' is the number of joint loads. Column
1 corresponds to the node number where the joint load is applied. Columns 2, 3
and 4 correspond to component of load along x-axis (Fx), component of load along
y-axis (Fy) and Moment about z-axis (Mz) respectively. Joint load components
must be in defined in global axes.

memloads

Member Load matrix. Size nmlx7, where 'nml' is the number of member loads.
Column 1 corresponds to the member number on which member loads are applied.
Columns 2 to 7 correspond to Fx, Fy and Mz with reference to the global axes, at the
start and end nodes of the member. The loads are calculated as the fixed end forces
due to the applied member loads and are defined in member axes. Sign convention
follows the right-hand rule.

Let us consider the example frame shown in Fig. 3 (Weaver & Gere, p. 243).

Fig. 3 Example plane frame (Weaver & Gere, p. 243)

Scilab Tutorial Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames | 2

0.75L

3

2 2P

L 0.5P 0.5P

1

2

P
y

x

w=2.4P/L

1

M=PL

The input data for the example in Fig. 3 is given below. The numbers
within the tables constitute the data and are shown shaded. The rest are labels
to help you interpret the data.

xy x y
1 100 75
2 0 75
3 200 0

conn Node i Node j Member Property ID
1 2 1 1
2 1 3 1

bc Node ux uy rz

1 2 1 1
2 3 1 1

1
1

mprop E A I
1 1x104 10 1x103

jtloads Node Fx Fy Mz

1 1 0 -10 -1000

memloads Member Fx Fy Mz Fx Fy Mz

1 1 0 12 200 0 12 -200
2 2 -6 8 250 -6 8 -250

Note that the units for the above data are kips (kilo pounds) and inches, as a result, E is in
ksi (kilo pounds per square inch) and I is in in4. The units used must be consistent and it is the
responsibility of the user to ensure this. The functions work well for any consistent system of
units.

One thing that must be clearly understood is the definition of the local axis of the member.
The local axis is defined with its origin at the start node of the member and the positive direction
of the local x-axis is defined by the end node of the member. For example, member 1 in the
above example has its x-axis starting from 1 and going towards 2, that is from right to left. The
local y-axis is taken perpendicular to the x-axis and the local z-axis is kept the same as the
global z-axis in the case of a plane frame.

The sign convention for the member fixed end forces is dependent on the member local
x-axis, and the right-hand rule is used in deciding the positive sign convention for the forces and
moments at the ends of the member.

Scilab Tutorial Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames | 3

L=100 in

P=10 kips

E=10,000 ksi

A=10 in2

I=1000 in4

Tutorial 2 – Location Matrix for a Plane Frame
In a plane frame, the number of degrees of freedom (dof) per node is 3, namely ux, uy and rz,

and therefore the total number of degrees of freedom is 3 times the number of nodes ('n').
However, every structure has supports with certain degrees of freedom constrained (otherwise
the structure would be a free body capable of undergoing rigid-body motion). These constrained
dof have zero displacements or non-zero prescribed displacements (such as support settlement
problems). As a result, the number of unknown degrees of freedom ('ndof') is smaller than 3xn.

In the direct stiffness matrix method, the portion of the stiffness matrix corresponding to
zero displacements is not assembled as it does not affect the calculation of the nodal
displacements. In case of non-zero prescribed displacements, the stiffness matrix must include
the rows and columns corresponding to non-zero prescribed displacements, but before solving
the stiffness equation, a rearrangement of the matrices is necessary. This however is not
attempted here and is left as an exercise for the student.

A generalized representation of the dof numbering is called the location matrix. It has a size
nx3, where 'n' is the number of nodes in the plane frame. Columns 1 to 3 store the constraint
code for displacements along the 3 possible dof, namely, ux, uy and rz for each node. The code is
0 for unconstrained dof and 1 for constrained dof.

The location matrix 'lm' is compiled in 2 stages. In the first stage, 'lm' is initialized to a zero
matrix, implying that all dof are unconstrained. The number of nodes with constrained dof is
available in column 1 of matrix 'bc'. For each of these nodes, the zeros in the corresponding rows
of the location matrix are replaced by the constraint codes from 'bc'.

In the second stage, the variable representing the number of dof of the plane frame ('ndof')
is initialized to 0 and 'lm' is processed row by row, For each constraint code 0 (unconstrained
dof), 'ndof' is incremented by 1 and stored in the place of the 0. If the constraint code is 1
(constrained dof), it is set to 0 indicating the corresponding displacement to be 0.

At the end of this stage, 'ndof' will be the total number of dof of the plane frame and 'lm'
will have zeros for a dof with zero displacement or a unique dof number for an unconstrained
dof. The size of structure stiffness matrix must therefore be ndof x ndof. The interface for a
function to compute the location matrix is given below:
Interface: [lm, nd]=pf_calclm(n, bc)
Input Parameters: n=number of nodes in the plane frame, bc=Boundary constraint matrix.

Output Parameter: lm=Location matrix of a plane frame, nd=number of dof of the plane frame.
The function to carry out this computation is given below:

function [lm, nd]=pf_calclm(n, bc)
 lm=zeros(n,3);
 [ns dummy]=size(bc); // ns=number of supports
 for i=1:ns
 nn=bc(i,1); // node number of ith support
 lm(nn, 1:3) = bc(i, 2:4); // constraint codes of ith support
 end;
 nd=0; // initialize number of dof to zero
 for i=1:n
 for j=1:3
 if lm(i,j) == 1 then // constrained dof
 lm(i,j) = 0;
 else // unconstrained dof
 nd = nd + 1;
 lm(i,j) = nd;
 end
 end
 end
endfunction

Scilab Tutorial Tutorial 2 – Location Matrix for a Plane Frame | 4

This function must be loaded into Scilab and tested with the following commands:
-->[nodes dummy]=size(xy)
-->[lm, ndof]=pf_calclm(nodes, bc)

The first command determines the size of 'xy' matrix and puts the number of rows in 'nodes'
and number of columns in 'dummy' (which is subsequently ignored). The second command
invokes the function which returns the location matrix in 'lm' and the total number of dof is
'ndof'. The input to the function is the boundary condition matrix 'bc', which for the given
structure is:

[2 1 1 1
3 1 1 1

The location matrix is initialized to all zeros implying that the nodes are unconstrained. The
rows corresponding to the supports, nodes 2 and 3 in this case, are then altered as defined in the
matrix 'bc'. At this, the location matrix looks as shown below:

[0 0 0
1 1 1
1 1 1]

Before commencing the second pass, 'ndof' is initialized to zero and as each element is
processed row by row, zeros are counted as permitted degrees of freedom ('ndof' is
incremented and the incremented value is put in the place of the element) and a constrained dof
(indicated by 1) is replaced by 0 (implying zero displacement at that dof). The output after the
second pass, for our example problem is ndof=3 and lm as follows:

[1 2 3
0 0 0
0 0 0]

Scilab Tutorial Tutorial 2 – Location Matrix for a Plane Frame | 5

Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element
The stiffness matrix of

a plane frame member with
reference to its local axes is
of size 6x6 and is given as
shown on the left.

This can be generated
by first defining a zero
matrix of size 6x6, then
defining the elements of the
upper triangular matrix and
finally copying the upper
triangle into the lower
triangle. The description of
the function that will be
developed for this purpose
is as follows:

Interface: [k]=pf_stiff(E, A, I, L)
Input Parameters: E = Modulus of elasticity, A = Cross sectional area of the member,
I = Second moment of area of the cross section about the neutral axis and L = Length of the
member.

Output Parameter: k = Local stiffness matrix of a plane frame element of size 6x6.
The code for the function is as follows:

function [k] = pf_stiff(E, A, I, L)
 k = zeros(6,6);
 k(1,1) = E*A/L; k(1,4) = -k(1,1);
 k(2,2) = (12*E*I)/L^3; k(2,3) = (6*E*I)/L^2;
 k(2,5) = -k(2,2); k(2,6) = k(2,3);
 k(3,3) = (4*E*I)/L;
 k(3,5) = -k(2,3); k(3,6) = k(3,3)/2;
 k(4,4) = k(1,1);
 k(5,5) = k(2,2); k(5,6) = -k(2,3);
 k(6,6) = k(3,3);
 for i = 2:6
 for j = 1:i-1
 k(i,j) = k(j,i);
 end
 end
endfunction

Load this function into Scilab and test it with the following input:
-->k = pf_stiff(1,1,1,1)

The output is given on the next page. Another test is the following input, which gives the
local stiffness matrix of member 2:
-->k = pf_stiff(1e4,10,1e3,125)

The output of this second command is also shown on the next page.

Scilab Tutorial Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element | 6

k=[
EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3

−6EI
L2 0 12EI

L3
−6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L

4EI
L

]

k=[
1 0 0 −1 0 0
0 12 6 0 −12 6
0 6 4 0 −6 2
−1 0 0 1 0 0
0 −12 −6 0 12 −6
0 6 2 0 −6 4

]
This is the stiffness matrix generated by the first
command where E, A, I and L are all set to 1.

k=[
800 0 0 −800 0 0
0 61.44 3840 0 −61.44 3840
0 3840 320000 0 −3840 160000

−800 0 0 800 0 0
0 −61.44 −3840 0 61.44 −3840
0 3840 160000 0 −3840 320000

]
This is the stiffness matrix
generated by the second
command where E=1x104,
A=10, I=1x103 and L=125.

You will note that this function takes the length of the member as one of the input. We
therefore need a function to calculate the length of a member. Later on, we will also need to do a
related calculation, the direction cosines of the member. We will write a function that can do
both these things. Its interface is as follows:
Interface: [l, cx, cy]=pf_calclen(imem, xy, conn)
Input Parameters: imem = number of the member whose length and direction cosines are to be
calculated, xy = Coordinates matrix, conn = Connectivity matrix.

Output Parameters: l = Length of the member, cx = x direction cosine, cy = y direction
cosine.

The code for the function is given below and the comments (which need not be typed when
you try out the function yourself) are self-explanatory.
function [l, cx, cy]=pf_calclen(imem, xy, conn)
 n=conn(imem,:); // start and end nodes of member number i
 p1 = xy(n(1),:); // x,y coordinates of start node
 p2 = xy(n(2),:); // x,y coordinates of end node
 dxdy=p2-p1; // x,y projections of member
 dxdy2=dxdy.^2; // square of the projections
 l=sqrt(sum(dxdy2)); // length of member
 cx = dxdy(1) / l; // x-direction direction cosine of member
 cy = dxdy(2) / l; // y-direction direction cosine of member
endfunction

With this function available, we can compute the local stiffness matrix of any member by
first calculating its length, extracting its material properties from 'mprop' and then computing its
local stiffness matrix. For member 1, the commands would be:
-->[L cx cy]=pf_calclen(1,xy,conn)
-->iprop=conn(1,3)
-->E=mprop(iprop,1);A=mprop(iprop,2);I=mprop(iprop,3);
-->k=pf_stiff(E,A,I,L)

Scilab Tutorial Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element | 7

Tutorial 4 – Rotation Matrix of a Plane Frame Member
The local stiffness matrix is computed with reference to the local axis of a member, which

may or may not be parallel to the global axes. Therefore it is necessary to transform the member
stiffness matrix from local axes to global axes before it is superposed with stiffness matrices of
other members in order to assemble the structure stiffness matrix. This transformation requires
the rotation matrix of the member and is expressed in terms of the direction cosines of the
member. The rotation matrix for a plane frame member is as given below:

r=[
Cx C y 0 0 0 0
−C y Cx 0 0 0 0

0 0 1 0 0 0
0 0 0 C x C y 0
0 0 0 −C y C x 0
0 0 0 0 0 1

]
where Cx and Cy are the direction cosines of the member

and are calculated as C x=
dx
l
=

x2− x1

l
 and

C y=
dy
l
=

y2− y1

l
where l=dx2dy2 .

The interface for the function is as follows:
Interface: [r]=pf_calcrot(cx, cy)
Input Parameters: cx = x direction cosine, cy = y direction cosine.

Output Parameters: r = Rotation matrix.
The code for the function is as follows:

function [r] = pf_calcrot(cx, cy)
 r = zeros(6,6); // initialize rotation matrix to zero
 r(1,1) = cx;
 r(1,2) = cy;
 r(2,1) = -r(1,2);
 r(2,2) = r(1,1);
 r(3,3) = 1;
 r(4:6, 4:6) = r(1:3, 1:3); // copy rows and columns 1:3, 1:3 into 4:6, 4:6
endfunction

Note that the direction cosines of the member must first be calculated using the
pf_calclen() function and only then should the function to calculate the rotation matrix must
be called. The commands to calculate the rotation matrix for member 2 are as follows:
-->[l cx cy]=pf_calclen(2,xy,conn)
-->r=pf_calcrot(cx,cy)

The output of these commands must be as follows:

r=[
0.8 −0.6 0 0 0 0
−0.6 0.8 0 0 0 0

0 0 1 0 0 0
0 0 0 0.8 −0.6 0
0 0 0 0.6 0.8 0
0 0 0 0 0 1

]
Scilab Tutorial Tutorial 4 – Rotation Matrix of a Plane Frame Member | 8

Tutorial 5 – Global Stiffness Matrix of a Plane Frame Member
The global stiffness matrix of a plane frame member is calculated as k=r ' k e r where ke is

local stiffness matrix and r is the rotation matrix of the member. Thus writing a function to
calculate the global stiffness matrix of a plane frame member is straight forward once the
functions to calculate the local stiffness matrix and rotation matrix are available. The interface
for such a function is given below:
Interface: [K]=pf_gstiff(imem, xy, conn, mprop)
Input Parameters: imem = number of member whose global stiffness matrix is to be calculated,
xy = coordinates matrix, conn=connectivity matrix and mprop = material property matrix.

Output Parameters: K = global stiffness matrix.
The code for the function is as follows:

function [K] = pf_gstiff(imem, xy, conn, mprop)
 [L cx cy] = pf_calclen(imem, xy, conn); // length and direction cosines
 r = pf_calcrot(cx, cy); // calculate rotation matrix
 iprop = conn(imem,3); // property id of imem th member
 E = mprop(iprop,1); // Modulus of elasticity
 A = mprop(iprop,2); // Area of cross section
 I = mprop(iprop,3); // Second moment of area of cross section about NA
 k = pf_stiff(E, A, I, L); // local stiffness matrix of ith member
 K = r' * k * r; // global stiffness matrix of imem th member
endfunction

The comments make the function self explanatory. To calculate the global stiffness matrices
of the 1st and 2nd members, the function is used as follows:
-->k1=pf_gstiff(1,xy,conn,mprop)
-->k2=pf_gstiff(2,xy,conn,mprop)

The global stiffness matrix of member 2 must be as given below:

r=[
534.1184 −354.5088 2304 −534.1184 354.5088 2304

−354.5088 327.3216 3072 354.5088 −327.3216 3072
2304 3072.0000 320000 −2304 −3072 160000

−534.1184 354.5088 −2304 534.1184 −354.5088 −2304
354.5088 −327.3216 −3072 −354.5088 327.3216 −3072

2304 3072 160000 −2304 −3072 320000
]

Scilab Tutorial Tutorial 5 – Global Stiffness Matrix of a Plane Frame Member | 9

Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix
The structure stiffness matrix of a plane frame is obtained by computing the global stiffness

matrix for an individual member of the plane frame and superposing it with the structure
stiffness matrix. To be able to so, one needs to determine a mapping between the rows and
columns of the global stiffness matrix of a member and those of the structure stiffness matrix.
This is done by writing the dof numbers for the rows and columns of the member global stiffness
matrix and superposing the elements with the corresponding elements of the structure stiffness
matrix. Thus, we need to know the numbers of the start and end nodes of a member and the
corresponding dof numbers from the location matrix 'lm'.
Interface: [ssm]=pf_assemssm(imem, xy, conn, mprop, lm, ssm)
Input Parameters: imem = number of member whose global stiffness matrix is to be calculated,
xy = coordinates matrix, conn = connectivity matrix and mprop = material property matrix,
lm = location matrix of the member and ssm = structure stiffness matrix of the plane frame.

Output Parameters: ssm=structure stiffness matrix of the plane frame.
The code for the function is as follows:

function [ssm] = pf_assemssm(imem, xy, conn, mprop, lm, ssm)
 K = pf_gstiff(imem, xy, conn, mprop);
 nj = conn(imem,1); nk = conn(imem,2);
 dof(1:3) = lm(nj,1:3);
 dof(4:6) = lm(nk,1:3);
 for i=1:6
 ii = dof(i);
 if ii == 0 then
 else
 for j=1:6
 jj = dof(j);
 if jj == 0 then
 else
 tmp = ssm(ii,jj) + K(i,j);
 ssm(ii,jj) = tmp;
 end
 end
 end
 end
endfunction

Note that ssm appears both as an input as well as an output parameter, as this function
superposes the global stiffness matrix of one member onto the existing structure stiffness matrix,
which is initialized to zero to start with. To compute the structure stiffness matrix considering all
members, we need to call this function inside a for loop. The interface to the function that does
this is shown below:
Interface: [K]=pf_ssm(xy, conn, mprop, lm, ndof)
Input Parameters: xy = coordinates matrix, conn = connectivity matrix and mprop = material
property matrix, lm = location matrix of the member and nd = number of degrees of freedom of
the plane frame.

Output Parameters: K = structure stiffness matrix of the plane frame.
The code for the function is given below:

function [K]=pf_ssm(xy, conn, mprop, lm, ndof)
 K=zeros(ndof,ndof);

Scilab Tutorial Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix | 10

 [nmem dummy]=size(conn);
 for imem = 1:nmem
 K = pf_assemssm(imem, xy, conn, mprop, lm, K);
 end
endfunction

The input data xy, conn, mprop must first be read and the number of degrees of
freedom (ndof) and location matrix (lm) must be computed before the function pf_ssm() is
called. This function returns the structure stiffness matrix (K) of the plane frame.

To illustrate the steps for member 1, the start end end nodes are 2 and 1 respectively, as can
be seen from the 'conn' matrix. The dof numbers for these nodes are obtained from the location
matrix 'lm', and are seen to be [0 0 0] and [1 2 3] for nodes 2 and 1 respectively. This
implies that rows and columns of the global stiffness matrix of member 1 correspond to rows
[0 0 0 1 2 3] of the global stiffness matrix of the structure. Rows and columns with dof
number zero correspond to zero displacement and therefore need not be assembled into the
structure stiffness matrix. The elements of the member global stiffness matrix where both the
row and column dof numbers are non-zero are superposed on the elements in the corresponding
row and column of the structure stiffness matrix.

Scilab Tutorial Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix | 11

Tutorial 7 – Assembling the Load Vector
The load vector has the same number of rows as the number of degrees of freedom (dof) of

the structure ('ndof'). Each element of the load vector represents the load applied
corresponding to a dof number. Loads applied on a plane frame can be either loads applied at the
nodes of the frame or loads applied on the members. The two different types of loads have to be
processed differently before assembling the load vector.

Joint loads are an input data to the program and are specified as components in global
coordinate system (components along x, y axes and moment about z axis). Knowing the node
number at which the load is applied, it is easy to identify the dof numbers corresponding to the
node from the location matrix. The components of the load at a node are then superposed with
the corresponding element in the load vector.

The interface to the function that assembles the load vector for loads applied at the joints is
given below:
Interface: [P]=pf_assemloadvec_jl(lm, jtloads, P)
Input Parameters: lm = location matrix of the member and jtloads =matrix of joint loads,
P = load vector.

Output Parameters: P = load vector.
This function assembles the load vector for a plane frame from the loads applied directly on

the nodes.
function [P]=pf_assemloadvec_jl(lm, jtloads, P)
 [nloads dummy] = size(jtloads);
 printf('Loads = %d\n', nloads);
 for i=1:nloads
 n=jtloads(i,1);
 printf('Load applied at joint %d', n);
 dof=lm(n,:);
 disp(dof, ' with dof = ');
 for j=1:3
 jj = dof(j);
 if jj == 0 then
 else
 tmp = P(jj) + jtloads(i, j+1);
 P(jj) = tmp;
 end
 end
 end
endfunction

This function returns a 1x6 vector containing the dof numbers of the start and end nodes of
member number imem. The degree of freedom (dof) numbers in the first 3 rows correspond to
the start node and the last 3 to the end node.
function [dof]=pf_getdof(imem, conn, lm)
 dof=zeros(1,6);
 n1 = conn(imem,1);
 dof(1:3) = lm(n1,:);
 n2 = conn(imem,2);
 dof(4:6) = lm(n2,:);
endfunction

This interface to the function that assembles the load vector for a plane frame from the loads
applied on the members is given below:
Interface: [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P)
Input Parameters: iload = number of the member load being processed, xy = coordinates
matrix, conn = connectivity matrix, lm = location matrix of the member and memloads = matrix

Scilab Tutorial Tutorial 7 – Assembling the Load Vector | 12

of member loads, P = load vector.

Output Parameters: P = load vector.
Since member loads are in member axes, they are transformed to global axes using the

rotation matrix. This function calculates the load vector due to one of the member loads and
superposes it on to the previous load vector.
function [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P)
 imem = memloads(iload,1);
 [L cx cy]=pf_calclen(imem,xy,conn);
 r = pf_calcrot(cx, cy);
 am=-r' * memloads(iload,2:7)';
 dof=pf_getdof(imem, conn, lm);
 for i=1:6
 ii = dof(i);
 if ii ~= 0 then
 P(ii) = P(ii) + am(i);
 end
 end
endfunction

To assemble the load vector due to all member loads, this function has to be called once for
each member load, within a for loop, as follows:
[nmemlds dummy]=size(memloads);
for iload=1:nmemlds
 [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P);
end

The number of member loads nmemlds is the number of rows in the member load matrix
memloads. The load vector P has to be initialized to zero at the start. The contribution to the load
vector due to joint loads may first be assembled and after that the contribution due to the
member loads may be assembled.

Scilab Tutorial Tutorial 7 – Assembling the Load Vector | 13

Tutorial 8 – The Super Function
The functions developed until now accomplish the task of assembling the structure stiffness

matrix of a plane frame and assembling the load vector. The next task is to write a single
function that calls these functions in the right sequence and solves the stiffness equation for the
nodal displacements.

The interface to such a function is given below:
Interface: [P]=pf(xy, conn, bc, mprop, jtloads, memloads)
Input Parameters: xy = coordinates matrix, conn = connectivity matrix, bc = boundary
condition matrix, mprop = member property matrix, jtloads = joint load matrix, and
memloads = member load matrix.

Output Parameters: ssm = structure stiffness matrix, x = nodal displacements and P = load
vector.

This is the super function that performs the complete task of assembling the structure
stiffness matrix, assembling the load vector and solving the stiffness equation to obtain the nodal
displacements.
function [ssm,x,P]=pf(xy,conn,bc,mprop,jtloads,memloads)
 [nodes dummy]=size(xy);
 [lm ndof]=pf_calclm(nodes,bc);
 ssm=pf_ssm(xy,conn,mprop,lm,ndof);
 P=zeros(ndof,1);
 x=zeros(ndof,1);
 P=pf_assemloadvec_jl(lm, jtloads, P);
 [nmemlds dummy]=size(memloads);
 for iload=1:nmemlds
 [P]=pf_assemloadvec_ml(iload, xy, conn, lm, memloads, P);
 end
 x=zeros(ndof,1);
 x=inv(ssm)*P;
endfunction

All the input data must be gathered before calling this function. After this function is called,
the nodal displacements are known and the task that remains is to extract the member end forces
from the calculated nodal displacements.

Scilab Tutorial Tutorial 8 – The Super Function | 14

Tutorial 9 – Extracting Member End Forces
Once the nodal displacements are available, calculating the member end forces in global

axes is possible if we know the displacements pertaining to the nodes of the member concerned.
This information is available in the location matrix and can easily be obtained. To express the
member end forces in local axes, the member end forces are transformed from global to local
axes. The interface to the function that computes the member end forces in local axes for a
member with number imem is given below:
Interface: [P]=pf_memendforces(imem, xy, conn, mprop, lm, x, memloads)
Input Parameters: imem = number of member for which member end forces are to be
calculated, xy = coordinates matrix, conn = connectivity matrix, mprop = member property
matrix, lm = location matrix, and x = nodal displacement vector.

Output Parameters: f = member end force vector of size 6x1.
This function computes the end forces for member number 'imem' in local axes.

function [f] = pf_memendforces(imem, xy, conn, mprop, lm, x)
 iprop=conn(imem,3); // Property ID for member imem
 E=mprop(iprop,1); A=mprop(iprop,2); I=mprop(iprop,3);
 [L cx cy]=pf_calclen(imem,xy,conn); // Length and direction cosines
 r=pf_calcrot(cx,cy); // Rotation matrix
 k = pf_stiff(E,A,I,L); // Local stiffness matrix
 u = zeros(6,1); // Initialize member end displacements
 dof = pf_getdof(imem, conn, lm); // Get DOF numbers for the ends of member
 for i = 1:6
 idof = dof(i);
 if idof ~= 0 then
 u(i) = x(idof); // Copy global displacement into u
 end
 end
 uu=r*u; // Displacements in local axes
 f = zeros(6,1);
 f = k * uu; // Member end forces in local axes
 [nmemloads,dummy] = size(memloads);
 for i = 1:nmemloads
 if memloads(i,1) == imem
 f = f + memloads(i,2:$)';
 end
 end
endfunction

This function has to be called once for each member and the results stored. This can be done
at the Scilab command prompt.
-->[k,x,P]=pf(xy,conn,bc,mprop,jtloads,memloads)
-->[nodes dummy]=size(xy);
-->lm=pf_calclm(nodes,bc);
-->f1=pf_memendforces(1,xy,conn,mprop,lm,x,memloads)
-->f2=pf_memendforces(2,xy,conn,mprop,lm,x,memlodas)

Data for the problem shown has been stored in a file called pf.bin, and you can load it with
the command:
-->load('pf.bin')

Ensure that pf.bin is located in your working directory. The output of the Scilab functions
is compared with the results from the book:

Scilab Tutorial Tutorial 9 – Extracting Member End Forces | 15

Displacements

Node
ux uy rz

Scilab Book Scilab Book Scilab Book
1 -0.0202608 -0.02026 -0.0993600 -0.09936 -0.0017976 -0.001797

Member End Forces
Member Fx1 Fy1 Mz1 Fx2 Fy2 Mz2

1
Scilab 20.260769 13.137825 436.64755 -20.260769 10.862175 -322.86504
Book 20.26 13.14 436.6 -20.26 10.86 -322.9

2
Scilab 28.72592 -4.5332787 -677.13496 -40.72592 20.533279 -889.52488
Book 28.72 -4.53 -677.1 -40.73 20.53 -889.5

There is another data file hall.bin containing the input data to Example 15.1 from Hall &
Kabaila (Hall & Kabaila, p. 300) which you can try. You could try working backwards from the
input data and determine its geometry in case you can't get hold of the book.

Scilab Tutorial Tutorial 9 – Extracting Member End Forces | 16

References
1. Hall, A. and Kabaila, A.P., Basic Concepts of Structural Analysis, Pitman Publishing,

London, 1977.
2. Kassimali, A., Matrix Analysis of Structures, Brooks/Cole Publishing Company, Pacific

Grove, 1999.
3. Weaver Jr., W. and Gere, J.M., Matrix Analysis of Framed Structures, 2ed., CBS Publishers

and Distributors, New Delhi, 1986.

Scilab Tutorial References | 17

Notes

Scilab Tutorial

	Preface
	Introduction
	Tutorial 1 – Data Organization for Matrix Analysis of Plane Frames
	Tutorial 2 – Location Matrix for a Plane Frame
	Tutorial 3 – Local Stiffness Matrix of a Plane Frame Element
	Tutorial 4 – Rotation Matrix of a Plane Frame Member
	Tutorial 5 – Global Stiffness Matrix of a Plane Frame Member
	Tutorial 6 – Assembling the Plane Frame Structure Stiffness Matrix
	Tutorial 7 – Assembling the Load Vector
	Tutorial 8 – The Super Function
	Tutorial 9 – Extracting Member End Forces
	References

