
Chapter 1: An overview of Scilab

Since GROCER is basically a toolbox for Scilab, it is necessary to have a basic knowledge of Scilab:
the aim of this chapter is thus to provide this minimum knowledge, and perhaps a little more. The
presentation will be succinct and will not cover the subjects that are part of Scilab but not a priori useful for
an econometrician. The interested reader will find some documentation at
http://scilabsoft.inria.fr/product/index_product.php?page=overview.html. There are also introductions to
Scilab in English, French, German, Portuguese and Spanish, as long as an English introduction to Scilab
« from a Matlab point of view », all available at
http://scilabsoft.inria.fr/contrib/index_contrib.php?page=download.php&category=MANUALS. The French
one, by Bruno Pinçon, is very good and has proved very useful to us when we started using Scilab.

Part 1 of this chapter presents Scilab main characteristics. Part 2 indicates how to get Scilab. Part 3
explains how to start with Scilab. Part 4 presents Scilab main objects. Part 5 is devoted to the specific objects
that are functions, part 6 to input/output and part 7 presents how to customize Scilab. Graphics are rejected to
chapter 15, since GROCER contains itself its own graphic procedures, based obviously on Scilab ones.

1. Scilab main characteristics

Scilab is a matrix oriented software, similar to Gauss, and much more still, to Matlab: a user
accustomed to one of these two applications should have no difficulties with Scilab. Scilab even contains a
tool for translating Matlab functions into Scilab ones: although this tool is not perfect (in particular, it does
not translate correctly Matlab structures), it does a good job at translating the greatest part of Matlab
functions and I have used it intensively to build GROCER.

 Scilab has therefore the advantages and drawbacks of these applications: on the positive side, because
econometric tools rely heavily on matrices formulas, the implementation in scilab of econometric methods is
very easy and not very time-consuming; on the negative side, functions written in scilab will be slower than
functions written in fortran or C.

Scilab, which makes heavy use of fortran and C routines, allows also the user to incorporate (« link »)
her own fortran and C routines: the use of this capability in GROCER could be envisaged for further
developments.

Scilab contains a rich menu of types: besides usual types such as, « constant » (that is real or complex
numbers), string, boolean, list, function, Scilab contains more exotic types, such as polynomial rational. All
data types exist also in sparse forms. Lastly, Scilab contains a very useful type, not existing in Gauss and
Matlab: the typed-list type (tlist). This last type allows one to create new data structures, that are similar to
new types of variable. When a data structure has been defined as a tlist, Scilab indeed considers it represents
a new type and allows you to define very easily for this new data structure the usual operations, such as
addition, multiplication… This capability is used by GROCER to create a structure that does not exist in
Scilab, but is very useful to an econometrician: the structure timeseries.

Scilab runs as well on unix, linux or windows (from windows 95 to XP at least !) and, apart from
small differences as regards the appearance and the input/output, behaves identically in all 3 operating
systems. This should be the same as regard GROCER. However, for the time being, GROCER has been

Grocer 1.2

1

tested only on Windows. So, although there should not be any problem with Unix or Linux OS, do not
hesitate to signal them to us if it were not the case.

2. How to get Scilab

Scilab can be downloaded from the following address:
http://scilabsoft.inria.fr/download/index_download.php?page=release.html. The user should download the
version adapted to her operating system and needs. The current version is the 4.0 one, but for some OS
(Windows NT), you should download the 3.0 version: grocer works also on this version, although grocer
graphs are not totally up-to-date in the version available for Scilab 3.0.

3. Getting started with Scilab

Once you have installed Scilab, running scilab (by run scilab on unix and by clicking on the Scilab
4.0 on the desk) creates a window, that contains the following message:

 scilab-4.0

 Copyright (c) 1989-2006
 Consortium Scilab (INRIA, ENPC)

Startup execution:
 loading initial environment

-->

You are now ready to use Scilab, and, once you have downloaded and installed it, to use GROCER.
This implies typing a command at the prompt (see below for the first examples and the whole manual for
many others):
-->

At the top of the window, a menu with 7 items appears: file; edit; preferences; control; editor;
application; ? (help). Menu file contains a few commands used in Scilab and the command exit to terminate
Scilab session. Menu edit contains mainly a Copy / paste capability. Menu Preferences can be used to change
default settings (language, font,…) and to clear Scilab window. Menu Control contains notably the resume
command to restart a function that has stopped at a pause and an abort command that aborts the running
function. Menu Editor launches Scilab editor if you want to create a script or a Scilab function. Applications
is a menu that collects various Scilab applications, in particular m2sci, that allows the translation from
Matlab to scilab and browsevar that allows to know the type of the variables loaded in Scilab. Menu ?
contaisn in particular Scilab help, and notably the description of Scilab –and, once the toolbox has been
installed, grocer– functions. Note (see part 7 in this chapter) that you can add your own items in the menu
toolbar.

4. Scilab objects

Grocer 1.2

2

This part reviews main scilab objects. Functions are dealt in part 5 and sparse objects, mlist (very
similar to tlist), polynomial and rational objects are ignored (see the « Introduction to Scilab » or Scilab
manual for a presentation of these types). We therefore review successively constant type, string type, list
type and briefly (since chapter 3 deals in detail with an application which is part of GROCER) tlist type
boolean type.

4.1 Creating Objects

When working on the working space, you can simply perform calculations without keeping the result,
or save the result for later calculations: the saved result will then be available until you leave Scilab or until
you clear it, if you decide so.

For instance, creating a constant equal to 2+2 and storing it into variable v involves writing on screen:
-->v=2+2

And you obtain on screen:
v =

4.

This example, as all examples contained in this manual, has been processed by Scilab and is typed
with Courier New font whereas the main text is written with Times New Roman font. Here the result of the
command is displayed. If you do not want to display the results of a command, then end it with a ‘;’. Several
commands can be typed on the same line if they are separated by a ‘;’.

For instance:
-->v=[1 2 3 5]; a=2
 a =

2

If you do no want to keep the result of the calculation, then you simply type:
-->2+2

and you obtain on screen:
ans =

4.

Scilab then creates a variable called ans, which can be used immediately for other calculations:
-->ans+2

and you obtain on screen:
ans =

6.
The result has again been saved in ans, which is no longer equal to 4.

4.2 Constant types.

Creating constant typed objects

Grocer 1.2

3

The constant type recovers all types of numbers. The most simple ones are real constants, such as 2
(already encountered in part 4.1), 3.456 or 1.234E6. Scilab contains also specific constants, prefixed by %:
%pi (π), %e (the trigonometric constant e), %inf (infinity), %eps (Scilab precision, that is the small value
used by Scilab for rounding results down). The constant %nan is used for a non definite number.

Scilab also handles complex numbers. The complex 1− is defined as %i; a complex number will
then be written as a + %i*b. This capability has, alas, from GROCER point of view some drawbacks: the
inverse of a badly-defined variance matrix can for instance be a complex matrix!

The constant type covers also vectors or matrices made up with any of all the constants defined
above. The creation of a row vector involves the following command: v= [v1 v2 … vn] or v=[v1, v2,…,vn]
where each vi is one of the constants defined above.

For instance, here is the result of the following instruction on Scilab screen:

-->v=[1 2 3 5]
 v =

! 1. 2. 3. 5. !

Only the result of the last instruction has been displayed on screen. Vector v has nevertheless been
created in the working space and can be recovered at any moment.

The creation of a column vector involves the command: v=[v1; v2;…; vn]. Coordinates of a column
are therefore separated y a semi-column, coordinates of a row vector by a blank or a column.

Lines of a matrix are separated by the character “;”. For instance, here is a command creating a (2x3)
matrix:

-->a=[4 5 1 ; -2 0.5 1.4E2]
which results in:

 a =

! 4. 5. 1. !
! - 2. .5 140. !

There are some predefined matrices: zeros(m,n) creates a (mxn) null matrix; ones(m,n) creates a
(mxn) matrix of ones; eye (m,n) creates a matrix with ones on the main diagonal, 0 otherwise (eye(n,n) is
then the identity matrix); [] creates the empty matrix; toeplitz(c,r) creates a Toeplitz matrix… (see Scilab
manual for more details).

You can also create linearly spaced vectors with the instruction:
v=n1:step:n2

or with the instruction:
v=linspace(n1,n2,nnumb)

with nnumb=1+(n2-n1)/step

In the first case, the increment “step” can be omitted: it is then assumed to be equal to 1.

Grocer 1.2

4

For instance, here are two equivalent commands to produce a sequence starting from Π/2 and going
to Π with a Π/4 step (at least on my computer: Bruno Pinçon signals that it can be different according to the
O/S):

-->%pi/2:%pi/4:%pi
-->linspace(%pi/2,%pi,3)

which both give the following result:

ans =

! 1.5707963 2.3561945 3.1415927 !

Operations on constant matrices

Scilab authorizes all classical operations on matrices: addition, subtraction, multiplication (see table 1, taken
from the “Introduction to Scilab”, for a recapitulation), Kronecker product… It authorizes also element-wise
operations, provided that the formats of the objects are conformable: in that case, the operation symbol is preceded by
the dot.

For instance, assuming that A is the matrix [1:3;4:6] and B the matrix ones(2,3), then compare the results of the
2 following instructions:

-->A*B'
-->A.*B

whose results are respectively:
ans =

! 6. 6. !
! 15. 15. !

and:
ans =

! 1. 2. 3. !
! 4. 5. 6. !

In the first case, what you have obtained is the product of matrix A by the transposition of matrix B; in the
second one, you have the result of the product of A and B elementwise: the first coordinate of the result is the product
of the first element of A by the first element of B, the (1,2) coordinate of the result is the product of the (1,2) coordinate
of A by (1,2) coordinate of B,…

Grocer 1.2

5

Table 1: Basic matrix operations in Scilab

SYMBOL OPERATION
[] matrix definition, concatenation
; row separator
() extraction: m=a(k)
() insertion: a(k)=m
’ transpose
+ addition
- subtraction
* multiplication
\ left division
/ right division
ˆ exponent
.* elementwise multiplication
.\ elementwise left division
./ elementwise right division
.ˆ elementwise exponent
.*. kronecker product
./. kronecker right division
.\. kronecker left division

There can be some ambiguity with the dot, when it applies to numbers, since real numbers can end with a dot.
So, the best way is to write the second command with blanks between the operator .* and the operands A and B, like
this1:

-->A .* B

Note also there is one case where Scilab allows adding or subtracting matrices of different sizes: this
is when one matrix is in fact a constant (a (1x1) matrix) or empty. In the first case, Scilab adds the constant to
each element of the other matrix. In the second case, it leaves the matrix unchanged.

For instance, with the already defined matrix A:

-->A+1.5
 ans =

! 2.5 3.5 4.5 !
! 5.5 6.5 7.5 !

-->A+[]
 ans =

! 1. 2. 3. !
! 4. 5. 6. !

Scilab contains also numerous functions, such as sqrt, log, exp, trigonometric functions,… (see Scilab

manual for a complete description). All these functions apply to numbers as well to matrices: in that case, the
function is simply applied to each element of the matrix.

1 I must confess that I have not adopted this principle in GROCER functions (mainly because I have applied the element-wise
operations to named vectors), but I should have….

Grocer 1.2

6

4.3 String objects.

Creating string objects

A string in Scilab is a text between quotes. For instance, to create the string ‘this is a string’, type the following
command:

-->s='this is a string'
with the following result:

 s =

 this is a string

You can create vectors and matrices of strings exactly in the same way you create a vector or matrix of real
values. For instance:

-->m=['a' 'b' ; 'c' 'd']
results in:

 m =

!a b !
! !
!c d !

Note that Scilab presentation on screen introduces a blank line between each line of the matrix… Note also that
m will have the type ‘string’ exactly as the string s.

If you want to create a string which contains quotes, then you have to double the quote. For instance:

-->s='let''s go!'
results in:

 s =

 let's go!

Operations on strings

 Scilab contains a lot of useful tools for the manipulation of strings: length (to know the length of a
string); part (to compute a substring); strsubst (to replace in a string all occurrences of a specified text)… (see
scilab manual for details).

The concatenation of 2 strings is made very simply with the + operator:

st='no'+'thing'
results in:

 st =

 nothing

Grocer 1.2

7

Two Scilab tools play a great role in GROCER: the functions evstr and execstr. These functions
evaluate and execute respectively the string which is given to them as input. For instance, with then same A
and B matrix as before:

-->M=evstr('B ./ A')
or:

--> execstr(' M=B ./ A')
results in:

 M =

! 1. .5 .3333333 !
! .25 .2 .1666667 !

GROCER adds one function, which can be useful: function joinstr (see chapter 4), which
concatenates altogether vectors of strings elementwise and simple strings into a unique simple string.

4.4 Lists

Lists in Scilab are ordered and finite2 collections of objects of any type, eventually mixed in the same
list. The creation of a list involves the command list: mylist=list(object1,…,objectn). For instance:
chap1_list=list(A,B,v,M,s) will collect most objects created so far in this chapter, which have constant and
string types (but an element of a list can also be a boolean, a function or even a list,…).
-->chap1_list=list(A,B,v,M,s)

chap1_list(1)

! 1. 2. 3. !
! 4. 5. 6. !

 chap1_list(2)

! 1. 1. 1. !
! 1. 1. 1. !

 chap1_list(3)

! 1. 0. 3. !

 chap1_list(4)

! 1. .5 .3333333 !
! .25 .2 .1666667 !

 chap1_list(5)

 this is a string

4.5 Typed lists

2 Contrary to programming languages such as Haskell or Caml, you cannot therefore not create infinite lists.

Grocer 1.2

8

Typed lists are specific and very useful lists. The corresponding keyword is tlist instead of list and the
first element must be a string column vector, say v. The first coordinate of v is the type of the list and the
following ones are the fields of the list. For instance:

-->T=tlist(['portfolio';'bonds';'shares'],25000,12234)
results in:

 T =

 T(1)

!portfolio !
! !
!bonds !
! !
!shares !

 T(2)

 25000.

 T(3)

 12234.

Typed lists have two advantages. The first is that you can extract an element of the list by its name.
For instance:

-->T('bonds')
results in:

 ans =

 25000.

This feature allows in particular one to mimic Matlab structures: most of Lesage’s Matlab programs
that have been translated into Scilab, contains results structures, which have been translated into Scilab
results tlists. But the greatest advantage is that you can define on typed lists the usual operators and functions.
You could for instance define the addition of two portfolios T1 and T2: this involves writing a function
%portfolio_a_porfolio3… And once this function exists, the addition of portfolios T1 and T2 will be made
simply by typing T1+T2. This is the feature I have used to define timeseries in Scilab (see chapter 3).

4.6 Updating vectors, matrices and lists

Extracting an element from a matrix is done by writing: mat[i;j]. For instance:
-->A=[1:3;4:6];A(2,3)
results in:
ans =

6.

Replacing an element in a matrix is done by the instruction: mat[i;j]=new_value. For instance:
3 Function that has not been implemented in GROCER…

Grocer 1.2

9

-->A(2,3)=18
results in:

 A =

! 1. 2. 3. !
! 4. 5. 18. !

For a vector, the index of the row (for a column vector) or of the column (for a row vector) can be
omitted. For instance:

-->v=[1 2 3 5];v(3)=%e
results in:

 v =

! 1. 2. 2.7182818 5. !

Adding an element at the end of a vector can be done in two ways: first by specifying
mat(newi,newj)=new_value; second, by writing vec=[vec new_value] (for a row vector) or vec=[vec ;
new_value] (for a column vector). For instance:

-->v(5)=0
which results in:

 v =

! 1. 2. 2.7182818 5. 0. !
or:

-->v=[v 0]
which gives the same result:

v =

! 1. 2. 2.7182818 5. 0. !

The second way should be preferred, because it is more efficient in Scilab. If you know in advance
the size of the final vector, then it is still better to define in advance the vector in the following way:
-->v=ones(1,5);v(1:4)=[1 2 %e 5];v(5)=0
Which gives also the same result (recall that 1:4=[1 2 3 4]).

The same principles apply to add a vector to a matrix.

Deleting elements in a matrix is done by the command: vec(i:j)=[]. For instance:

-->v(2:4)=[]
results in the (2,1) vector4:

 v =

! 1. 0. !

In that context, a very useful tool in Scilab is the character $. This character refers to the end of a
vector or matrix. For instance:

4 Technically, this can be seen as a sort of dynamic array.

Grocer 1.2

10

-->v($)
results in

 ans =

 0.

and:
-->v($+1)=3

results in:
 v =

! 1. 0. 3. !

Extracting an element of a list is done as with matrices:

-->chap1_list(3)
results in:

 ans =

! 1. 0. 3. !

-->chap1_list($)
results in:

 ans =

 this is a string

You can also extract in one step a coordinate of a matrix stored in a list:

-->chap1_list(4)($,$)
results in:

 ans =

 .1666667

Lastly, you can add an element to a list by typing L(place)=new_element. For instance:

-->chap1_list(7)=part(chap1_list(5),10:16)
results in:

 chap1_list =

 chap1_list(1)

! 1. 2. 3. !
! 4. 5. 6. !

 chap1_list(2)

! 1. 1. 1. !
! 1. 1. 1. !

 chap1_list(3)

! 1. 0. 3. !

Grocer 1.2

11

 chap1_list(4)

! 1. .5 .3333333 !
! .25 .2 .1666667 !

 chap1_list(5)

 this is a string

 chap1_list(6)

 Undefined

 chap1_list(7)

 string

Note that the sixth element appears now as “undefined”: to avoid creating such lists with “holes” (and
except you intend to do so explicitly), it is always better to use the $ symbol. The last example could for
instance be rewritten as:

-->chap1_list($+1)=part(chap1_list(5),10:16)

4.7 Booleans

Boolean constants are named %t and %f (although Scilab is generally case-sensitive, %T and %F are
also authorized). You can also build Boolean vectors or matrices in the same way you create constant or
string matrices. For instance:

-->a=[%t %f %t ;%t %f %f]
results in:

 a =

! T F T !
! T F F !

Extracting, modifying, deleting or adding elements from a matrix is done exactly as with constant or

string matrix.

Note that the representation of booleans on screen is different from the way they are been entered.

The most common way of creating boolean vectors or matrices is however by writing conditions that
apply elementwise on constant matrices. The conditions are the following ones: = = (is equal to); ~= (is
different from) ; > (is greater than); >= (is greater than or equal); < (is lower than); <= (is lower than or
equal). For instance:

-->[1:3;4:6]==ones(2,3)
results in:

 ans =

Grocer 1.2

12

! T F F !
! F F F !

-->[1:3;4:6] >3
results in:

 ans =

! F F F !
! T T T !

The operators “or” and “and” take respectively the form: | and &.

Booelans are also used in loops and conditionals: loops and conditional are mostly used in functions
(see below) but can also be used interactively on screen.

Loops

Loops begin by the keyword for and end with the keyword end. The syntax is the following:
for var = <expression1>:<step>: <expression2>
….
end

<expression1>, <step>, <expression2> are expressions that result in integers. The text between the
line for <expression1>:<step>: <expression2> and the line end is executed with var= <expression1>, var=
<expression1>+step, var= <expression1>+2*<step> … until var is strictly greater than <expression2> (the
text is then not executed). If <step> is equal to 1 (the most common case), then it can be omitted. If <step> is
>0 (resp. <0) and <expression2> is strictly lower (resp. >0) than <expression1>, then the loop is not
executed.

Assuming that you have a vector of residuals called resid, of length 50, then the well known Newey-
West formula with a truncation lag equal to 10 can be implemented as:
-->for j=1:10; nw=nw+2*(1-j/11)*(resid(1:50-j)'*resid(j+1:50)); end

And if you want to eliminate from a list of strings ls all elements beginning with ‘a’:
-->l=lengh(ls); for i=l:-1:1; if part(ls(i),1)==a then; ls(i)=null(); end

Note that the step –1 is used here, because it is the simplest way to eliminate (by the instruction ls(i) =
null(): see in Scilab or through on-line help the entry deletion) in a list elements fulfilling certain conditions.

The while form of a loop also exists in Scilab. It takes the form
while <expression> then
 …
end

Where <expression> is a logical expression, e.g lhs cond rhs, where cond is = = , > (greater than), >
=, (greater than or equal), < (lower than), < =, (lower than or equal). <expression> can also be a boolean
variable.

For instance, to calculate 50!:
-->f=50; j=49 ; while j>0 then ; f=f*j; j=j-1; end

Grocer 1.2

13

 Conditionals

Scilab allows the traditional if… then…else… The syntax is the following:
if <expression> then
 text1
else
 text2
end

where <expression> can have the same form than in a while loop. The else branch is optional.

For instance:
-->a=1;b=5;c=6;delta=b^2-4*a*c;
-->if delta >= 0 then v=’the roots of a*x^2+b*x+c=0 are: ‘+string((b-
sqrt(delta))/2/a)+’ and ‘+string((b+sqrt(delta))/2/a);
-->else v=’there is no real root to a*x^2+b*x+c=0’;
-->end
-->v
v=

the roots of a*x^2+b*x+c=0 are: 2 and 3

Scilab allows another traditional conditional: the select…case one, whose syntax is the following:
select <expression>
case <value1> then
 <text1>
case <value2> then
 <text2>
…
case <valuen> then
 <textn>
else
 <text0>
end

Where <expression> is a constant, string… expression, <value1> until <valuen> are possible values for
<expression> and <tetx1>,… <textn>, <text0> are instructions that are executed whenever <expression> has
the corresponding value. Note that the else branch is not compulsory, but highly recommended: when it is
lacking and the program encounters a case not foreseen in <value1> to <valuen>, it does not terminate.

For instance:
-->traffic_light=’green’;
-->select traffic_light;
-->case ‘green’ then v=’you may go on‘ ;
-->case ‘yellow’ then v=’you must stop unless you are too close to the crossroad’;
-->case ‘red’ then ‘v= you must stop’;
-->else v=’ error: this is not the color for a traffic light’; end;

There is lastly a variant of the if then else form. This is the form elseif which means literally else if:
 if <expression1> then

Grocer 1.2

14

<text1>
elseif <expression2> then
<text2>
…
elseif <expressionn> then
<textn>
else <text0>
end

This formulation avoids multiplying indentations and writing a cascade of ends: contrary to the form
else if, the formulation elseif does not call an end; there must be only one end when the cascade of elseif
terminates. For instance, in the example above, if you want to deal with the case when delta is 0, you should
have written:
-->if delta > 0 then v=’the roots of a*x^2+b*x+c=0 are: ‘+string((b-sqrt(delta))/2/a)+’
and ‘+string((b+sqrt(delta))/2/a);
-->elseif delta == 0 then v=’the only root of a*x^2+b*x+c=0 is: ‘+string(b/2/a) ;
-->else v=’there is no real root to a*x^2+b*x+c=0’ ;
-->end

5. Functions

Although you can use Scilab and GROCER without writing any function, using the whole power of
Scilab and GROCER should involve writing functions. GROCER itself is a collection of more than 300
functions …

In the simplest form (see part 5.3 for a more complex form), a function is a parameterized collection
of Scilab commands, stored in a text file (and created with a text editor5) suffixed by .sci. It is highly
recommended to have exactly one function per file and to give the same name to the function itself and to the
text file where this function is created6.

Once they have been compiled, either permanently (such as GROCER functions) or temporarily (see
below part 5.4), functions become Scilab objects that share many characteristics with other Scilab objects.
They can for instance be used as parameters of other functions. For instance, minimization of a function f can
be done with the functions maxlik (GROCER function) or optim (Scilab function). Each of these functions
then takes f as parameter (see chapter 5 for details).

5.1. Syntax of functions

Each function should begin with a line which has the form7:
function [output1, output2,…,outputn]=name(input1,…inputn)

A function may return 0, 1 or several results whose name and number have been defined or not.

If there is no result, then you can replace [] by nothing: GROCER uses mainly the last form. For
instance, GROCER function drawx begins with the line:

5 Since the release of Scilab 2.7 version, you can use the one embodied in Scilab.
6 If you later create a compiled version of your function, then it is necessary that the function name and the fil
7 In the rest of this part, texts of functions are signalled by garamond 11 font.

Grocer 1.2

15

function drawx(xscale0,ref_nbinter,font_axis,y0)

If there is only one result, say output, then instead of [output]=name(…) you can write output=name(…).
GROCER uses the 2 forms. For instance, GROCER function ols (see chapter 6) begins with the line:

function [rols]=ols(grocer_namey,varargin)
and GROCER function values (see chapter 3) with the line:
function val=values(ts,dat)

A function may also have several results. For instance, GROCER function auto_test (see chapter 13)
begins with the line:

function [test_func,name_test]=auto_test(auto_names,auto_ltest,nobs)

Lastly, functions can have an undetermined number of results. In that case, you must write
varargout=name(…). In that case varargout must be defined in the function as a list and the user will recover
the results of the function as usual by writing [output1, output2,…,outputn]=name(input1,…inputn), where
output1 until outputn are the expected results, provided that there are at least n elements in the varargout list.
There is no function in GROCER that uses this possibility.

Similarly, a function can have as input 0,1 or several arguments.

If the function has no argument, then the term between brackets is empty. Most demo functions in
GROCER have no input argument. For instance, function robust_d, which is demo of the function robust (see
chapter 6) begins with the following line:

function [bsave]=robust_d()
(Note that this function has 1 output argument called bsave)

If the function has one input argument, then the term between brackets is simply this argument. For
instance GROCER function date2num (see chapter 3) begins with the following line:

function num=date2num(dat)

A function can also have a variable number of input arguments. In that case, the text between brackets
is varargin. For instance, GROCER function bounds (see chapter 6) begins with the following line:

function []=bounds(varargin)

The unspecified arguments can be entered along with other defined input arguments, say arg1,…
,argn. In that case, the is arg1,…,argn, varargin. Varargin must then be in the last place. For instance,
GROCER function tvp (see chapter 12) begins with the following line:

function [rtvp]=tvp(grocer_namey,varargin)
Note that varargin is considered as a list and that it can be passed to another function as varargin(:).

5.2 Special function commands

The main special function commands are the following: argn, error, warning, pause, break, resume.

Command argn returns the number of arguments of the function: it is useful for functions with a
variable number of arguments or for a function with a fixed number of arguments called with less arguments
(the other have then often default values). The call is the following (see for instance function archz, described
in chapter 7):

Grocer 1.2

16

[nargout, nargin]=argn(0)
where nargout is the number of output arguments and nargin the number of input arguments.

Command error can be used in a function to make the program interrupt when it encounters an
invalid case, apart from the ones already coded in Scilab (such as a division by 0, trying to add matrices that
do not have conformable sizes,…). The syntax is the following error(msg), where msg is any string
expression. When the function encounters this command, it stops and displays on screen the message msg.
Examples have already been encountered above (in the select case example).

Note that when a function displays an error message, then it can be an error foreseen in the function
or a Scilab error. In the first case, the message should be found in the text of the function, not in the second
case.

Command warning has a similar syntax. Contrary to the command error, it does not stop the
execution of the program. It signals that the program has encountered something curious, but that this oddity
does not justify stopping the program. For instance, in function explox, you will find the following piece of
text:

if size(grocer_indcte,2) > 1 then
 warning('only one among the '+string(size(grocer_indcte,2))+...
 ' constants you have entered has been taken into consideration')
end

Command break, not used in GROCER, forces the end of a loop. Command pause is used to
temporarily suspend the execution of a function, which resumes when the user types “return” or “resume”. It
is a very useful function for debugging: when a program pauses, you can display on screen all objects that
exist in that program and therefore check easily if the program has done what it was intended to do.

Command resume can be used in a function to stop its execution and transmit a variable to the calling
environment (working space or calling function). The syntax is [varout1,…, varoutn] = resume(varin1,…
,varinn), where varout1,…,varoutn are the names that the variables will have in the calling environment and
varin1,…,varinn are the names that they have in the function. This capability, although not very clean on an
pure computing point of view, is useful when you want to impose the name of the object in the calling
environment. For instance, you will find in function bounds (see chapter 6) the following line:

grocer_boundsvar=resume(boundsvar)

In that case, the variable boundsvar will be transferred to the calling environment (that is the working
space or another function) under the name grocer_boundsvar: this variable will then be used by any
econometric program that will be called in the environment.

5.3. Defining functions directly in the environment.

You can also define directly a function in any environment (that is in the working space as well as in
another function) by using the instruction deff. This is a little bit more complicated than through a file, so this
capability is mainly useful in functions and not in Scilab working space. The syntax is indeed the following:

deff(‘[varout1,…, varoutn]=namefunc(varin1,…,varinp)’,’line1,…,linek’)
where varout1 to varoutn are the output arguments of the function, varin1 to varinp are the input

arguments to the function and line1 to linek are the instructions of the function separated by commas.

Grocer 1.2

17

For instance, you find in GROCER function garch the following line:
deff('[f,g,ind]=cost(p,ind)','f=garch_like(p,nar,nma,y,x),g=garch_grad2(p,nar,nma,y,x)')

Here the function cost is defined in function garch, to be used later in this function as an argument of
Scilab function optim. Function cost has f,g,ind as output arguments, p,nar,nma,y,x as input arguments and
the instructions are:

f=garch_like(p,nar,nma,y,x)
g=garch_grad2(p,nar,nma,y,x)'
These instructions define f and g (garch_like and garch_grad2 are GROCER functions)

5.4 Loading functions

Once a function has been written, it must be loaded in Scilab environment. This is done by the
following command: getf(‘filename’) where filename is the name of the file. Assume that your function has
been written in a file named myfunc.sci in the library SCI/Mylib. Then you load it by typing:

-->getf(‘SCI/Mylib/myfunc.sci’)

You can load all functions contained in a library by the command getd, which has the same syntax as
getf. For instance, if you want to load your library SCI/Mylib, then type:

-->getd(‘SCI/Mylib’)

Note that it can be convenient to define SCI/Mylib as your working space. This is done with the
instruction:

-->chdir(‘SCI/Mylib’)

In that case, loading all functions contained in this library involves simply the following instruction:
-->getd()

while loading all functions contained in the library SCI/Mylib/Lib1 involves the following
instruction:
-->getd(‘Lib1’)

The beginner must be aware that a modification to a function made in the corresponding text file is
not taken into account by Scilab until the function has been loaded in Scilab by a getf or getd instruction. If
you wonder why a bug you think to have fixed still occurs, check first that you have really loaded the
corrected text!

5.5. Interruption of the execution of a function

When you execute a function in the working space, it may be interrupted (if it does not terminate, for
instance) by using the menu items abort or interrupt.

Grocer 1.2

18

6. Input/output

During a session, objects are stored in the working space. To see what objects are currently in the
working space, simply type:

-->who

Data are destroyed when you leave Scilab. Saving and loading data (in binary format) can be made by
the commands save and load. For instance saving matrices A and B in file SCI/Examples/mat.dat involves
the following command:

-->save('SCI/Examples/mat.dat',A,B)

The data can be then retrieved during another session by typing:

-->load('SCI/Examples/mat.dat', 'A', 'B ')
or simply, if you want to retrieve all the data base:

-->load('SCI/Examples/mat.dat')

Data can also be destroyed when working. It is done by the command clear. For instance:

-->clear A; A
results in:

!--error 4
undefined variable : A

But:
-->load(‘SCI/Examples/mat.dat '); A

results in:
A =

! 1. 2. 3. !
! 4. 5. 6. !

The commands load and save can of course also be used in functions (see for instance the text of
GROCER functions impexc2bd.sci or expbd2exc.sci, that will be stored in subdirectory macros/grocer/basic
of your scilab directory once you will have installed GROCER).

Saving the content of a session, that is the commands executed and their results, involves the
command:

-->diary(‘name_of_a_file’)

Once the results that interest you have been produced, close the file ‘name_of_a_file’ by typing:

-->diary(0)

The file ‘name_of_a_file’ can then be edited. Note that the file must not exist when you type the first
diary; if this is not the case, then Scilab will generate an error.

Grocer 1.2

19

7. Customizing Scilab

Since Scilab code is freely available, you can obviously customize Scilab along all directions you
want, a task which assumes modifying Scilab code. This is so not the topic of this part, but there are however
a few very useful things that can be made very simply.

* stacksize

The first of these regards the stacksize. If you type the following command:

-->x=ones(5000,5000);

Then you may obtain:
 !--error 17
stack size exceeded! (Use stacksize function to increase it)
Memory used for variables : 29380
Intermediate memory needed: 2250002
Total memory available : 1000001

So the first thing to do is to increase the stacksize. It is highly dependent on the power of your
computer:

-->stacksize(75000000);8

This option can be rendered permanent by modifying the startup file (scilab.star): open this file;
search ‘stacksize’ and modify the corresponding command.

* lines

By default, display of results and the command or program being executed are halted after a page of
results has been filled. Scilab then displays:
[More (y or n) ?]

The display and the execution of the command or program underway resume when you type anything
but N. When you type N, the display is interrupted, but the function ends normally.

If you prefer that the display goes on without interruption, you can change it by typing:
-->lines(0);

You can even make this option permanent by introducing it in the startup file…

* menus

When you enter Scilab, a host of menus appears at the head of Scilab Window (File, Edit, Control,…)
. You can add your own menus, by modifying the file wscilabf.mnu in directory bin. A convenient
modification is to enter in a menu a command modifying the default working space and commands storing all
functions contained in subdirectories. This should be done by adding after the bloc:

8 The figures here (5000 and 75000000) can differ from one Scilab version and from one computer to another…

Grocer 1.2

20

&A propos
[ABOUT]

[EndMenu]

the following bloc:

[Menu]
&access
&myworkingspace
chdir(‘SCI/myworkingspace’);getd();
&work1
getd(‘work1’)
&work2
getd(‘work2’)
…
&workn
getd(‘workn’)
[EndMenu]

(Everything except the keywords [Menu] and [EndMenu] and the & at the beginning of each menu
definition can and must be customized by the user).

Grocer 1.2

21

