Chapter 4: Basic functions

Beside Scilab functions, you can find in GROCER a few functions, which are not strictly speaking
econometric functions, but which can be useful either for the use of GROCER as a mere toolbox or, and this
is the majority of the functions presented in this chapter, to program new econometric functions: these
functions are indeed used extensively in GROCER functions.

In the first category, you find functions for importing data from or exporting data to EXCEL.: this is
the subject of the part 2 in this chapter. In the second category, you find functions transforming matrices or
vectors, most of them are gauss compatibility functions (very useful if you want to transform a Gauss
function into a Scilab one) and functions used in a VAR context: these functions need no further description
than the basic one, which you will find, as for every chapter, at the end of the chapter (part 4). In the
category of functions used in numerous GROCER functions, you will also find functions written to make the
interface between the user and the core of the econometric functions, which work only with vectors and
matrices: they are the subject of part 3 of this chapter.

There are also one basic econometrics tools: newey_ west, which provides the Newest-West variance
estimator, designed to estimate the variance of a series in the presence of autocorrelation and
heteroskedasticty and some miscellaneous functions, among which dblist, which returns the content of a
scilab database and joinstr which concatenates altogether strings and string vectors. Part 1 gives the list of all
basic functions, classed along these lines.

1. List of basic functions.

Interface with EXCEL: impexc2bd and expbd2exc;

Gauss compatibility functions: cols, dmult, findcoef, invpd, matmul, matdiv, meanc, miss, packr, polymult,
reshape gauss, rev, rows, seqa, shiftr, sortc, stcd, trimr, vech gauss and xpndl; these functions either mimic
gauss functions that do not exist in scilab or grocer or that exist but behave differently than in scilab (case of
the gauss function vech whose equivalent in grocer is vech_gauss)

Matlab compatibility functions: repmat and str2mat;

Matrix manipulation functions for VARs: commutation, dnplus, duplication, elimination and vech, invvech;
Other matrix manipulation functions: com_size, crlag, dtrend, extraptab, fusvect, is_scalar, lag, lagser, mlag,
mlagb, ptrend, transdif and vec;

Functions for the interface with the user: associate, explol, explots, explouniv, explovars, explon, explone
and vec2col;

Basic econometric tools: mak, newey_ west, undrift, spencer;

Miscellaneous: autocum, dblist, fuslist and joinstr.

2. Interface with EXCEL.

In the version available for download, Scilab does not contain functions to import data from EXCEL
or export data from Scilab to EXCEL. The Scilab group has kindly provided me the basic tools to do that,
and I have adapted them so that they can deal with timeseries and, as regards the importation, improved the
speed of the basic tool.

Grocer 1.2

2.1 The function impexc2bd

This interface remains limited with respect to the EXCEL formats it can deals: imported EXCEL file
must be in the csv format and files exported to EXCEL are in a text format. This feature imposes some easy
manipulations in EXCEL. If you want to import an EXCEL file, you must open your EXCEL file, then save
it in csv format. Take for example the file bdhendreric.xls in the sublibrary macros/grocer/bdexamples of
your scilab directory. Open it, in the menu « file », click on « save as », and select in the « file type » box
« CSV (separator: semi-column) », then on save. When you close the file, answer no when EXCEL asks you
if you want to save the file. Your file is ready to be imported. If you type the following instruction:

-->impexcel('macros/bdexamples/bdhenderic.csv',sep,'mylibrary/bdhenderic.dat')
where sep is the csv separator is (typically ';' or ',

For instance with the separator ';":
-->impexcel('macros/bdexamples/bdhenderic.csv',";",'mylibrary/bdhenderic.dat’)

Then the file bdhenderic will be saved in the file bdhenderic.dat under the sublibrary “mylibrary” of
your workspace library (provided that you have created it before; otherwise the function will return you the
following error:

I--error 240
File bdhenderic.dat already exists or directory write access denied).

The file 'mylibrary/bdhenderic.dat' can then be loaded in the workspace by the instruction (see scilab
manual for more details about the function load):
-->load('mylibrary/bdhenderic.dat")

When this is done, the 5 ts: cte, ly, Ip, Im1 and rnet are loaded and can be used in the workspace. To

check the content of the database, you can type:
-->dblist('mylibrary/bdhenderic.dat")

The result should be:
ans =
Icte !
Iret !

Im1 !

The function impexc2bd allows one importing either numerical data or timeseries. In any case, your
series can be stored in EXCEL in rows or columns, but the first cell of the row or the column must be the
name of the series. In the second case, the first series must be named « dates » (or « DATES »: since Scilab
makes a difference between lower and upper case letters, impexc2bd transforms « DATES » in « dates »)
and it must contain the dates of the series, in GROCER format: see again bdhenderic.xls for an example. If
you want, you can import from the same EXCEL file series with different date spans or even periodicities:
you just have to enter before each block of series a row (if your series are stored in rows in EXCEL) or a
column (if your series are stored in columns in EXCEL) beginning with « dates » and containing the new
dates (see the file « macros/bdexamples/doubledata.xls ») in your Scilab library.

(*) The function impexc2bd allows also the importation of panel data. Several constraints in the .csv
file must be respected: first, there must be a column or a row of dates whose name must be ‘dates’ and a

Grocer 1.2

column or a row that identifies the individuals, whose name must be ‘id’; second, and consequently, there
must be only one dataset in the file. (**)

2.2 The function expbd2exc.

The exportation of data from Scilab to Excel is easier. It is performed by the function expbd2exc.
This function calls the function sci2excel stored in the sub-library macros/grocer/basic of your Scilab library.
This function, written by the Scilab group, is not presented here.

To export data to Excel, you have 2 possibilities: either you export the whole content of a Scilab
database and it is then not necessary to load it; or you export a list of data called by their names between
quotes and these data must be present in the environment. Data that can be exported are either vectors or ts.

In the first case, the syntax is the following: expbd2exc(‘mydb’,’myexcelfile.txt’). For instance, if
you want to export the file bdhenderic.dat, then type the following command:
--> expbd2exc(‘macros/grocer/bdexamples/bdhenderic.dat’,’c:/mydb/mydata.txt’)

In this example, the five ts cte, ly, Ip, Im1 and rnet will be exported to the file ’c:/mydb/mydata.txt’
which Excel can read. This file will have 6 rows: the first one corresponding to the dates (in Scilab format)
of the series and the 5 following ones to the corresponding values. The first cell of each row will be the name
of the series or, as regards the first row, the name ‘dates’. If the data exported are not ts, then the row dates
will obviously not be present in the Excel file.

If you want to export only a subset of a database, or series coming from more than one database, then

the syntax will be the following: expbd2exc(list(‘namel’;’name?2’,...,’namen’), myexcelfile.txt”). For
instance, to export all the data in bdhenderic.dat except the constant, type:

--> load(‘macros/grocer/bdexamples/bdhenderic.dat’); expbd2exc(list(’rnet’,’ly’, ‘Ip’,'lm1°),
‘c:/mydb/mydata.txt’)

You should note than the decimal separator is by default supposed to be the dot .’. If you want to
change it, the you must enter the value of the decimal separator as third argument. For instance:
--> load(‘macros/grocer/bdexamples/bdhenderic.dat’); expbd2exc(list(rnet’,’ly’, ‘Ip’,'Im1’),
‘c:/mydb/mydata.txt’,’,’)

Lastly, note that the library in which you create your Excel file must already exist; that the file if it
exists is replaced. If the library does not exist or if it exists but is open, then Scilab returns the following

error:
l--error 9999
File u:/aarbre/eric/mydata.txt cannot be opened for writing

Grocer 1.2

3. Functions for the interface with the user. (*)

Although it will never attain the user-friendliness of a click and mouse software, GROCER intends to
ease the user’s life. In particular, GROCER allows the user to use the same econometric functions to deal
with a great variety of objects: timeseries, vectors, matrices... The interface with the matrix calculations is
done with explovars, explots, explolist, explol and explouniv, which are used intensively throughout
GROCER'. GROCER allows also, whenever there cannot be any ambiguity, the user entering vectors in
rows or in columns, even though the program uses only the column format: the -very easy!- transformation
of a row or column vector into a column vector is done with vec2col®>. Lastly there is a function str2vec
which allows the user to enter names of variables as ‘name=[namel,name2,..., namen]’ and to create the
matrix of names: [‘namel’;’name2’;...;namen’]’. Programming your own econometric functions should
involve these functions...

Let us first examine the functions explovars, explots and explolist in detail, then the functions explol
and explouinv.

3.1. The functions explovars, explots and explolist

The functions explovars and explots are the basic blocks that can be combined, for instance in
functions_explol and explouniv, that are directly used in high level econometric function such as ols, var,....

A call to explovars takes the form:
[namexos,listts,vect,indts,indvec,indcte,nvar|=explovars(names,defname)
or:

[namexos,listts,vect,indts,indvec,indcte,nvar]=explovars(names)

Explovars explodes a list of variables of any kind (ts, vectors, matrices, lists and strings representing
the name of such variables) into:

* avector namexos of strings, representing the names of all variables (if all variables have not been entered
between quotes, then a default name applies, either given by the user as the second input argument of the
function or endogenous if the user has not entered any second argument);

* a matrix vec representing the values of the matrices or vectors in the list and a vector indvec of indexes
collecting the indexes of the corresponding variables in the names;

* alist /istts containing all the ts in the list names and a vector indts of indexes collecting the indexes of the
corresponding variables in the names;

* avector indcte containing the indexes of all constant variables in the list names (there should be at most
one...);

* ascalar equal to the number of variables (equal to the sum of the sizes of indvec and indts).

Assume for instance that your variables are in a matrix x of size (15x3) generated by

grand(15,1,’nor’,0,1). Then the following calls of function explovars with values of x will always return:
nvar =

3.
indcte =

! There is also a function explox, that was used in the 1.0 version, but that is no more used in version 1.1; I have kept it in the
package for the users that were using it...

% This could also be done in scilab by the instruction x(:), but in that case it would also transform any matrix into a column, which
would not allow to detect errors stemming from the entry of a matrix instead of a vector.

* For the expert Scilab user: this allows mimicking Scilab capability of passing named arguments, but with extending it to the case
where there is a variable number of arguments.

Grocer 1.2

[]

vec =

1-0.8360876 -0.5535018 0.5134568!
1 0.3049811 -1.8070101 -1.3918619!
1-1.2272839 0.7840963 - 0.4279470 !
1-0.9114889 2.47202 -0.4206175!

1 0.2824555 0.2448657 1.1876406 !
1-1.7601598 - 1.278992 - 0.6492768 !
1 0.8148300 -0.3163533 -0.5971669 !
1 0.2065607 -0.7602869 - 0.6048548!
1-0.0791338 -1.0884885 1.6910222!
1 0.7153849 -1.5671516 1.1510432!
1 0.4467040 -2.857505 1.3220197 !
1-0.1176301 -0.7777774 0.7921972 !
1-1.6305629 0.0503151 -0.4962734!
1-1.6635418 1.013792 -0.7781436!
1 0.3631770 -0.9658108 0.8430475'!
listts =

()

But namexos will take values varying with the way x is entered:

--> [namexos, listts,vect,indts,indvec,indcte,nvar]=explovars(‘x’,'exogenous');namexos

will result in:

namexos =
Ix 11
Ix 2 |
Ix 3 !

--> [namexos,listts,vect,indts,indvec,indcte,nvar]=explovars(x,'exogenous');namexos
will result in:

namexos =

lexogenous # 1 !

lexogenous # 2 !

lexogenous # 3 !

-->dog=x(:,1);cat=x(:,2);mouse=x(:,3);[namexos,listts,vect,indts,indvec,indcte,nvar]=explovars(
['dog';'cat’;'mouse'], 'exogenous'); namexos

Grocer 1.2

will result in:

namexos =
ldog !

lcat !

Imouse !

-->[namexos, listts,vect,indts,indvec,indcte,nvar]=explovars(list('dog’,'cat’,'mouse’'),'exogenous'); namexos

will result in:

ldog !
lcat !
Imouse !

-->[namexos,listts,vect,indts,indvec,indcte,nvar]=explovars(list(dog,cat,mouse),'exogenous'); namexos

will result in:
namexos =
lexogenous # 1 !
lexogenous # 2 !
lexogenous # 3 !

-->[namexos,listts,vect,indts,indvec,indcte,nvar]=explovars(list('dog’,'cat',mouse),'exogenous'); namexos
will result in:

namexos =

ldog !

lcat !

lexogenous # 3 !

-->[namexos, listts,vect,indts,indvec,indcte,nvar]=explovars(['x(:,1:2)’;’mouse’],'exogenous'); namexos
will result in:

namexos =
Ix(:,1:2)_1

Ix(:,1:2)_2
Imouse !

Now take the variables Im1, ly, Ip and rnet in the database bdenderic.dat:

-->load(‘SCI\macros\grocer\db\bdhenderic.dat’);[namexos,listts,vect,indts,indvec,indcte,nvar]=
explovars([im1’ ‘ly’ “Ip’]

Then the result is:
nvar =

3.
indcte =

Grocer 1.2

[]

indvec =

[]

indts =

WN =~

vect =

[]

And listts contains the 3 ts Im1, ly and Ip.

If there is a variable named ‘const’ in the list of the input variables, then the vector indvec will be
filled with the index of the cte. For instance:

-->load('SCI\macros\grocer\db\bdhenderic.dat');[namexos, listts,vect,indts,indvec,indcte,nvar]=
explovars([Im1"'ly" 'Ip' 'cte'])

results in:

If the const is in the third place, then indcte and indts are modified: indvec becomes 3 and indts [1 ; 2; 4].
So:

-->|load('SCI\macros\grocer\db\bdhenderic.dat');[namexos,listts,vect,indts,indvec,indcte,nvar]=
explovars([Im1"'ly' 'cte’ 'Ip'])

results in:

nvar =

indcte =

Grocer 1.2

In function explouniv, explovars is for instance used twice: to explode the endogenous variable and to
explode the list of exogenous variables.

A call to explots takes the form:
[x,boundsvarb]=explots(listts)

The function explots determines the best range of bounds boundsvarb for the list of ts listts and the
corresponding matrix of values x: the best range is defined as the longest time period over which the ts in the
list listts are all simultaneously defined.

In function explouniv, explots is used if the function has detected the presence of ts and that there
were no active bounds.

The function explolist is an old and much less useful function but which is uses sometimes in
GROCER (for instance in ols). This function takes as input a first list of arguments and a list of commands,
expressed as strings, which represent a condition to check on the first arguments of the function. It returns 2
lists: the list of arguments of the first input list which verify and the list of arguments of the first input list
which does not verify those conditions.

For instance in ols, you will find the following command:
[grocer Ix,grocer Inp]=explolist(grocer Ix,list('grocer Ix(i)=="noprint™))

This command returns the initial list 1x less the element ‘noprint’ if such an element belongs to the
list Ix and otherwise the initial list Ix: in ols Ix contains after the command is executed only the list of
exogenous variables, whether the user has entered ‘noprint’ or not. The second argument is then either the
list with one element ‘noprint’ or an empty list.

(?)3.2. The functions explone, explouniv and explon

The functions epxlovars and explots are the basic bricks used to build three functions that transform
the data entered in any econometric function in grocer: the function explone is used when the econometric
function delas with only one type of data (a var model without exogenous variables for instance); explouniv
is used when you have two different types of data (endogenous and exogenous for instance as in an ols
estimation) and explon when you have more types of data (for instance lhs endogenous variables, rhs
endogenous variables, exogenous variables and instruments in an iv estimation). Since grocer allows
different types of data (matrices, vectors, ts, between quotes or not), these functions are needed to:

Grocer 1.2

transform these data into matrices and vectors that are necessary for any estimation;

recover the names of the variables for the printings;

if there are ts, recover the bounds of the estimation, knowing that they can have been provided
by the user of left to be determined by grocer program.

The function explone takes therefore as entry a unique list of variables.

A simple call to explol takes the form:
[y, namey, prests, b]=explol(ly)

ly can, in principle, be: a (nxk) matrix of real values; a (px1) matrix of names, each name being the
name of a (nx1) vector, a (nxq) matrix or a ts; a list mixing any of the preceding object. Provided that the
dimensions of the underlying vectors of values are compatible, then explone will return the y matrix of
values (in general for the purpose of an estimation), the corresponding names namey (one name per column
of matrix y), a boolean prests indicating if there were ts in the list of variables and a matrix b, equal to the
matrix of bounds if they were given before the call to explone, to the greatest time span over which the ts in
the entry were defined or to [] if they was no ts in the regression.

For instance:

-->load('SCl/macros/grocer/db/bdhenderic.dat'); bounds('1978q1','197894") ; [y, namey, prests,
bl=explone(['Im1"' 'ly" 'Ip'])

results in:
b =

11978ql !
! !

11978q4 !
prests =

10.147021 11.503844 - 0.6580086 !
10.171461 11.510934 - 0.6346614 !
10.206368 11.514813 -0.611669 !
10.238731 11.514245 - 0.5808162 !

You can enter 3 options to explone: the second argument can be a vector of bounds if you want to
impose the bounds inside the function without resorting to the function bounds ([] if you do not want to); the
third one is the name used to called variables not entered as strings (‘endogenous’ by default); the fourth one

Grocer 1.2

10

is a boolean that indicates whether the program will test the existence of na’s values in the matrix y (the
default is true, but it can be useful to overcome this test, for instance for drawing graphs).

For instance:

-->load('SCl/macros/grocer/db/bdhenderic.dat'); bounds() ; [y, namey, prests, b]=explol(list('Im1','ly",Ip)
197991 ; '"1979q4"],'prices")

results in:
b =

11979q1 !
Lo

11979g4 |
prests =

Iprices !
y =

10.268052 11.510363 - 0.5570325!
10.287929 11.569201 - 0.5256881 !
10.315017 11.552588 - 0.4745929 !
10.325176 11.55743 -0.4306380 !

Function explouniv® takes as first entries 2 lists of variables’ (typically a list of endogenous and of
exogenous variables). There are then 3 optional entries as in explone: the first one is a matrix of bounds; the
second one a (2x1) matrix of strings defining the default names for each of the list and the third one a
boolean that indicates whether the program will test the existence of na’s values in the 2 matrices of values
extracted from the 2 lists.

The output is also very similar. The only difference is that after the matrix y and the corresponding
vector of names, there is a matrix x and the corresponding vector of names.

Function explon works slightly differently. Because the number of different objects is undetermined,
the input and output take a somehow different form:

- the first argument is a list, where each element in the list collects all of object of one type; for
instance if you have endogenous, exogenous and instruments then the first element of the list will
gather (typically in a list) all endogenous elements, the second element of the list will similarly gather
all exogenous elements and the third element of the list all instruments;

* The name of the function dates from the previous version, where the function was less general and applied essentially to
univariate regressions. I have kept the name to maintain ascending compatibility.

> A more general function should have accepted an undefined number of lists. The programming would have been much more
complicated however, for a use which did not seem obvious to me....

Grocer 1.2

11

« the second argument the generic names for variables which will not have been entered
between quotes; these elements must be entered as a string vector (a list of strings would also work);
with a list of entries that are respectively endogenous, exogenous or instruments such a vector could
be ['endogenous';'exogenous';'instruments'] or ['endo';'exo';'inst'];

+ the third and fourth arguments are as in explon or explouniv (optional) vector of bounds and a
boolean indicating if the program must test the presence in na values and, if it is the case, provide an
error message;

- the first output argument takes also the form of a list; each elements of the list corresponds to
the matrix of values associated to each type of object; in the above example, the first element of this
matrix will collect the values of the endogenous variables, the second one the values of the
exogenous ones and the third one the values of the instruments;

- the first output argument takes also the form of a list; each elements of the list corresponds to
the vector of names associated to each type of object; in the above example, the first element of this
matrix will collect the names of the endogenous variables, the second one the names of the
exogenous ones and the third one the names of the instruments;

You can find examples of the use of this function in functions iv and ms_reg:
« [grocer mats,grocer names,grocer_prests,grocer b]=explon(list(grocer namey0,grocer endo,
grocer_exo,grocer_ivar),['endogenous' 'rhs endogenous' 'exogenous' 'instruments'])
in function iv;
+ [grocer mats,grocer names,grocer prests,grocer b]=explon(list(grocer endo,grocer exo co
m,grocer_exo_idio),['endogenous' 'swithing exog.' 'non swithing exog.'])
in function ms_reg;

Note that it thereafter necessary to recover each element of the lists grocer mats and grocer names.
In ms_reg for instance, this is done as follows:

grocer_y=grocer_mats(1)

grocer z=grocer mats(2)

grocer x=grocer mats(3)

grocer namey=grocer names(1)

grocer namez=grocer names(2)
grocer namex =grocer names(3)

Grocer 1.2

12

4. The basic functions and their specification.

autocum

AR(1) cumulation

CALLING SEQUENCE
[seriein]=autocum(seriein,rho)
PARAMETERS

INPUT:

* seriein =a (n x 1) or (1 x n) constant vector or a timeseries
* tho = a constant

OUTPUT:

* seriein = the vector (n x 1) or ts y such as:
* y(t) = rtho*y(t-1) + x(t)

* y(t0) = x(t0) for the first observation t0

DESCRIPTION

Provides the vector (n x 1) or ts y such as:
* y(t) = rho*y(t-1) + x(t)

* y(t0) = x(t0) for the first observation t0

Example:
y=autocum(x,0.9)

cols

CALLING SEQUENCE
[c]=cols(x)
PARAMETERS

INPUT:
X = input matrix

OUTPUT:
¢ = # of columns in x

DESCRIPTION

Returns the # of columns in a matrix x (a Gauss compatibility function).

Grocer 1.2

of columns in a matrix

13

com_size replaces values of matrix x

CALLING SEQUENCE
[ret,x,aout,bout]=com_size(x,a,b)
PARAMETERS

INPUT:

* X = a matrix or vector
* a = a scalar or matrix
* b = a scalar or matrix

OUTPUT:

* ret = an indicator 0 if common_size, 1 if not

* X = input matrix

*a = matrix size(x) or input matrix a if already size(x)
*b = matrix size(x) or input matrix b if already size(x)

DESCRIPTION
Makes a,b scalars equal to constant matrices size(x) or leaves them unchanged if they are already of common
size.

Examples:

1) [r,x,a0,bo]=com_size(ones(4,3),5,2)

2) [r,x,a0,bo]=com_size(ones(2,2),[3,2;1,0],[2,4;5,3])
3) [r,x,a0,bo]=com_size(ones(2,2),[3,2],[2,4;5,3])

Example 1 returns:

bo =
12, 2. 2.1
12, 2. 2.1
12, 2. 2.1
12, 2. 2.1
ao =
!5, 5 5.1
5. 5 5.1
!5, 5 5.1
5. 5 5.1
X =
1L 1. 1!
[D DR
1L 1. 1!
[D DR
r =

0.

Grocer 1.2

14

Example 2 returns:

bo =
1 2. 2. 2.1
1 2. 2. 2.1
1 2. 2. 2.1
1 2. 2. 2.1
ao =
1 5. 5 5.1
1 5. 5 5.1
1 5. 5 5.1
1 5. 5 51
X =
1. 1. 1.1
1. 1. 1.1
1. 1. 1.1
1. 1. 1.1
r =

0.
Example 3 returns:
bo =
1 2. 4.1
1 5 3.1
ao =
1 3. 2.1
X =
1. 1.1
1. 1.1
r =

1.
commutation
CALLING SEQUENCE

[K]=commutation(m,n)
PARAMETERS
INPUT:

* m = # of rows of matrix A.
* n =# of columns of matrix A.

Grocer 1.2

commutation of a matrix

15

OUTPUT:
K = commutation matrix

DESCRIPTION
Given any (m X n) matrix A, returns the (mn x mn) K matrix such that: vec(A')=K*vec(A).

Example:
Used for the impulse functions calculated from vars (see irf asy).

crlag circular lag function

CALLING SEQUENCE
[y]=crlag(x,n)
PARAMETERS
INPUT:

* x = input vector (tx1) or (1xt)
* n = # of values to return (optional; default=t)

OUTPUT:

y=a (nx1) (if x is (1xt)) or a (1xn) (if x is (1xt))
vector with:

*y(1) =x(n)

*y(2)=x(1)

* y(n) = x(n-1)

DESCRIPTION
Circular lag function.

Example:
y=crlag([1:5]) gives y=[5 1 2 3 4]

dblist gives the content of a database

CALLING SEQUENCE
[1]=dblist(filein)
PARAMETERS

INPUT:
filein = name of the database

OUTPUT:
1 = column vector containing the names of variables in the database

Grocer 1.2

16

DESCRIPTION
Gives the content of a database (simple but not elegant and, I presume, not efficient)

Example:
dblist("SCI/macros/grocer/db/bdhenderic.dat')

Gives the content of Hendry and Ericsson database. The results is:

Iret !
| !

Nml !
ro

ilp !
P

ily !

defaultcoef finds default coefficients in equations

CALLING SEQUENCE
coef=defaultcoef(defaultname,speccarb,speccara,argl,...,argn)
PARAMETERS

INPUT:

* defaultname = a string (default prefix of the coefficients)

* speccarb = the characters that must be before a coefficient to be sure that defaultname is not part of the
name of another object

* speccara = the characters that must be after a coefficient to be sure that defaultname is not part of the name
of another object

* argi = a string representing the text of an equation

OUTPUT:
coef=a (nx1) vector of coefficients names

DESCRIPTION
Determines the list of default coefs names in a set of equations

Example:
1) defaultcoef('co',['="; '+ ;'("; =" "*",['+' ;-5 ™' '/ 5)'],'y=col+co2*x1+(c03-c02)*x2")

2) grocer_namecoef=defaultcoef('a',grocer speccarb,grocer speccara,varargin(:))

In example 1, the coefficients are prefixed by co; they are asumed to be preceded by '=', '+, '(", -' or '*' and
followed by '+, '-', "', '/', or ')'; the equation is 'y=col+co2*x1+(co3-co2)*x2'.

Grocer 1.2

17

The result is:

lcol !
1

lco2 !
[N
lco3 !

Example 2 is taken from function sur.

detrend detrend a matrix

CALLING SEQUENCE
[resid]=detrend(y,p)
PARAMETERS

INPUT:
* y = input matrix (or vector) of time-series (nobs x nvar)
* p = trend degree

. p =0, subtracts mean

.p =1, constant plus trend model

. p > 1, higher order polynomial model

.p=-1, returns y

OUTPUT:
resid = residuals from the detrending regression

DESCRIPTION
Detrends a matrix y using regression of y against a polynomial time trend of order p.

Examples:

1) xdt=detrend(x,0)

2) xdt=detrend(x,1)

3) 10t = detrend(trimr(dx,grocer k,0),f) (see johansen.sci)

Example 1 simply demeans x, example 2 detrends it by a linear trend, example 3 taken from the function
johansen detrends variable trimr(dx,grocer k,0) by a trend of order f.

dmult gauss dmult function

CALLING SEQUENCE

[M]=dmult(A,B)

Grocer 1.2

18

PARAMETERS

INPUT:
* A = a matrix
* B = a matrix

OUTPUT:
m = diag(A) times B

DESCRIPTION
Computes the product of diag(A) and B (a Gauss compatibility function).

dnplus vec to vech function

CALLING SEQUENCE
B = dnplus(n)
PARAMETERS

INPUT:
n = a scalar, equal to the size of the symmetric matrix

OUTPUT:
B = a((n*(nt1)/2) x (n*n)) matrix

DESCRIPTION

Realize the passing from a vecctorized matrix by vec to a vectorized matrix by vech. Equivalent to
duplication()'.

duplication Magnus and Neudecker's duplication matrix

CALLING SEQUENCE
[d]=duplication(n)
PARAMETERS

INPUT:
* n = dimension of the underlying var-cov matrix

OUTPUT:
* d = (n*n x n*(n+1)/2) duplication matrix

DESCRIPTION
Returns Magnus and Neudecker's duplication matrix of size n.

Grocer 1.2

19

Example:
dup=duplication(N) (see irf_asy)

elimination Magnus and Neudecker's elimination matrix

CALLING SEQUENCE
[d]=elimination(n)
PARAMETERS

INPUT:
n = the size of the underlying var cov matrix

OUTPUT:
d = the elimination matrix

DESCRIPTION
Returns Magnus and Neudecker's elimination matrix of size n.

Example:
dup=duplication(N) (se irf asy.sci)

expbd2exc exportation to Excel

CALLING SEQUENCE
[]=expbd2exc(bd,output)
PARAMETERS

INPUT:

* bd = the name of a database or of a list of ts loaded in the environment
* output = the excel file where to save the data

OUTPUT:
nothing

DESCRIPTION
Exports the content of a data base or a list of variables bd to a file that Excel can read.

Examples:

1) expbd2exc(‘macros/grocer/bdexamples/bdhenderic.dat’,’c:/mydb/mydata.txt)

2) load(‘SCl/macros/grocer/bdexamples/bdhenderic.dat’); expbd2exc(list(‘cte’,’rnet’,’ly’, ‘Ip’,‘Im1’),
’c:/mydb/mydata.txt”)

Examples 1 and 2 do exactly the same thing: save on a file ’c:/mydb/mydata.txt’ the variables

b

‘cte’,’rnet’,’ly’, ‘Ip” and ‘Im1’ contained in the scilab file ‘SCI/macros/grocer/bdexamples/bdhenderic.dat’.

Grocer 1.2

20

explolist splitting of a list

CALLING SEQUENCE
[11,13]=explolist(11,12)
PARAMETERS

INPUT:

* 11 = the list to split
* 12 =the list of conditions

OUTPUT:
* 11 = the initial list without the elements verifying the conditions
* 13 = the initial list with the elements verifying the conditions

DESCRIPTION
Splits the list 11 in 2 lists containing the elements that do (13) or do not (11) verify the conditions contained in
list 12 (used in ols but not very interesting).

Example:

[grocer Ix,grocer InpJ=explolist(grocer Ix,list('grocer 1x(i)=="noprint"))
Taken from function ols.

explots explosion of a list of ts

CALLING SEQUENCE
[x,boundsvarb]=explots(listts)
PARAMETERS

INPUT:
listts = a list of ts

OUTPUT:
* x =a (T x k) real matrix
* boundsvarb = a (2 x 1) string matrix (of dates)

DESCRIPTION
From a list of ts find the greatest time span over which the series are simultaneously defined and non NA and
store in a vector the corresponding values.

Example:
load('SCI/macros/grocer/db/bdhenderic.dat');[x,boundsvarb]=explots(list(Im1,ly,lp,rnet))

Determines the admissible bounds for a regression involving the variables m1,ly,lp,rnet of the database
bdhenderic.dat: 1963q1 to 1989q2 and stores the values in the series on this period in matix x.

Grocer 1.2

21

explouniv explosion of a sequence of variables

CALLING SEQUENCE
[y,namey,x,namexos,prests,boundsvarb]=explouniv(ly,lx,b,named,presna)
PARAMETERS

INPUT:
* ly (Ix) = list of variables:

each element could be

- a timeseries, a real vector, a real matrix or a string (the name of a variable with one of the types cited
above, between quotes)

- a matrix of strings, each one being the name of a variable

- the string 'cte’ or 'const' if the user wants a constant to be included automatically
* b =a (px1) string vector (of dates) (optional: if not given the function either takes the existing bounds or
determines the bounds suitable to the given series)
* named = a (2x1) vector of strings representing the name of variables not entered between quotes (optional;
default = ['endogenous' ; 'exogenous'])
* testna = a booelan indicating whether the program will test the existence of na’s values in the matrices of
values y and x

OUTPUT:

*y=a (Txl) real vector or a ts

* namey = a string

* x =a (T x k) real matrix

* namexos = a (1 x k) string vector

* prests = a boolean indicating whether there is a ts in x
* boundsvarb = a (2 x 1) string matrix (of dates)

DESCRIPTION

From a series -that can be supposed to be an endogenous variable- and a list of series -that can be supposed
to be exogenous variables- retrieves their names or give them names if they don't have (when an element is
not string), store the values of these series in a vector and a matrix, and, if necessary, update the admissible
estimation bounds.

Example:
[y,namey,x,namexos,prests,boundsvarb]=explouniv('delts(Im1)',list('delts(ly)','delts(Ip)','const"))

Provides:
boundsvarb =
11963q2 !
' !

11989g2 !
prests =

Grocer 1.2

T
namexos =

Idelts(ly) !
P!
Idelts(lp) !
P!
Iconst !

X =

10.0390034 0.0047424 1.
10.0030870 0.0080163 1.
10.0209885 0.0138010 1.
10.0157089 0.0007787 1.
10.0137243 0.0135667 1.
- 0.0008068 0.0116560 1.
10.0229969 0.0083836 1. !
1-0.0128250 0.0142634 1.
10.0068007 0.0083169 1. !
10.0098162 0.0112869 1.!
10.0112467 0.0060656 1. !

!

!

!

10.0022278 0.0101358 1.
10.0016613 0.0131184 1.
10.0061426 0.0104237 1.

-0.0007133 0.0085061 1. !
10.0258513 - 0.0013986 1. !

10.0005722 0.0128876 1. !
10.0090065 0.0024707 1.!

1-0.0002298 0.0074279 1. !

10.0392895 0.0175068 1. !

1-0.0156918 0.0192279 1. !

10.0248690 0.0123366 1. !
10.0084429 0.0134938 1.!

1-0.0106325 0.0116452 1. !

10.0074253 0.0079896 1. !
namey =

delts(Im1)
y =

10.0219412 !
10.0050507 !
10.0304794 !

|
|

|

|

|

22

Grocer 1.2

23

explovars explosion of a sequence of variables

CALLING SEQUENCE
[namexos,listts,vecy,indts,ndvec,indcte,nvar|=explovars(names,defname)
PARAMETERS

INPUT:
* names = either
- a list of variables; each element could be a timeseries, a real vector, a real matrix or a string (the name of a
variable with one of the types cited above, between quotes)
- a matrix of strings, each one being the name of a variable
- the string 'cte' or 'const’
* defname = a string indicating the prefix used by default to name the variables (default = 'endogenous')

OUTPUT:

* namexos = a (k x 1) string vector

* listts = a list of ts

* vec = a (n x k) matrix of real values

* indts = a (k1 x 1) vector of integers that indicates the indexes of the ts in the original list

* indvec = a (k2 x 1) vector of integers that indicates the indexes of the real vectors in the original list

* indcte = a (k3 x 1) vector of integers that indicates the indexes of the terms 'cte' or 'const' in the original list
* nvar = # of variables in the list

DESCRIPTION

From a list of series retrieve their names or give them names if they don't have (when an element is not
string), store the ts in a list, store the values of the vectors and matrices in a unique matrix, store the index of
the ts, the index of the vectors and the index of the 'cte' or 'const' string.

Example:
[grocer namey,grocer listtsy,grocer y,grocer indtsy,grocer indvecy,grocer indctey]=explovars(grocer na
mey,'endogenous’)

Example taken from function explouniv. Grocer namey is here the name of an endogenous variable. If it has
not been entered between quotes, then the variable is simply called 'endogenous'. If it is a ts, then
grocer_listtsy is the list containing this ts, grocer y is empty, grocer indtsy is equal to 1, grocer indvecy is
empty, grocer indctey is empty. If it is a vector, then grocer listtsy is empty, grocer y is the corresponding
vector, grocer_indtsy is empty, grocer _indvecy is equal to 1, grocer indctey is empty and grocer indctey is
equal to 1. If it has been entered as 'cte', then grocer listtsy, grocer y, grocer indtsy and grocer indvecy are
all empty and grocer_indctey is equal to 1.

explox explosion of a sequence of variables

CALLING SEQUENCE

[x,namexos,boundsvar,prests]=explox(l,defname,boundsvar)

Grocer 1.2

24

PARAMETERS

INPUT:
*] = either

- a list of variables, each element could be a timeseries, a real vector, a real matrix or a string (the name of a
variable with one of the types cited above, between quotes)

- a matrix of strings, each one being the name of a variable

- the string 'cte' if the user wants a constant to be included automatically
* defname = default name of variables
* boundsvar = a (2x1) string matrix (of dates) equal to the maximum period over which to take the series
(optional)

OUTPUT:

* x =a (T x k) real matrix

* namexos = a (1 x k) string vector

*b=a(2x 1) string matrix (of dates)

* prests = a boolean indicating whether there is a ts in x

DESCRIPTION

From a list of series retrieve their names or give them names if they don't have (when an element is not
string), store the values of these series in a matrix, and, if necessary, update the admissible estimation
bounds.

Examples:

I)[grocer x,grocer namexos,grocer boundsvarb]=explox(grocer lx,'exogenous',grocer boundsvarb) (taken
from ols)

2)[grocer_y,grocer namey,grocer boundsvar,grocer prests]=explox(grocer endo,'endogenous') (taken from
var)

explol explosion of a sequence of variables

CALLING SEQUENCE
[y,namey,prests,b]=explol(ly,b,named,presna)
PARAMETERS

INPUT:
* ly = list of variables:

each element could be

- a timeseries, a real vector, a real matrix or a string (the name of a variable with one of the types cited
above, between quotes)

- a matrix of strings, each one being the name of a variable

- the string 'cte’ or 'const' if the user wants a constant to be included automatically
* b =a (px1) string vector (of dates) (optional: if not given the function either takes the existing bounds or
determines the bounds suitable to the given series)
* named = a (2x1) vector of strings representing the name of variable not entered between quotes (optional;
default = ['endogenous' ; 'exogenous'])

Grocer 1.2

25

* testna = a booelan indicating whether the program will test the existence of na’s values in the matrices of
values y and x

OUTPUT:

* y =a (Txl) real vector or a ts

* namey = a string

* prests = a boolean indicating if'y is or is not a ts
* b =a (2x1) string matrix (of dates)

DESCRIPTION
From a list of variables, store the values of the corresponding series in a matrix, their names in a vector and,
if necessary, define the admissible estimation bounds.

Example:
[grocer y,grocer namey,grocer prests,grocer boundsvarb]=explol(grocer namey) (taken from ols)

extraptab extrapolation of statistical tables

CALLING SEQUENCE
[critical]=extraptab(tab,n)
PARAMETERS

INPUT:
* tab = a (pxq) table where
- the first row is not used (it is supposed to be filled with the size levels
- each row has the form [n v1 ... vn] where n is a # of observations (filled from the lowest to the highest in
col 1, starting from row 2, since row 1 is not used)
* n = a scalar (the # of observations for which critical are calculated by extrapolation)

OUTPUT:
critical = a (1xq) vector of critical values for all sizes present in the table tab

DESCRIPTION
From a table (implicitly of stats...) filled for some values for the # of observations, calculates the
corresponding values for n observations.

Example:
critical 1=extraptab(tab1,T) (see schmiphi_tab)

findcoeff find coefficients in an equation

CALLING SEQUENCE

[coef]=findcoef{(str,car)

Grocer 1.2

26

PARAMETERS

INPUT:
* str = the equation analyzed
* car = the default car for the beginning of the coefficients

OUTPUT:
* coef = the names of the coefficients

DESCRIPTION
In an equation where the coefficients are given by default (carl,...,carn) find the last coefficient in this
equation and infer the names of the coefficients.

Example:
findcoef(‘al+a2*x1+(a3-a2)*x2+(a4-a3)*a5h’,’a’)

This example gives [‘al’;’a2’;’a3’;’a4’]. The main usage is in econometric functions where the user must
give the text of an equation (nls, twosls, threesls,...).

fuslist merge vectors of a list

CALLING SEQUENCE
[vecout]=fuslist(listin)
PARAMETERS

INPUT:
listin = the list of vectors to fusion

OUTPUT:
* yecout= the fusion

DESCRIPTION
Makes the fusion between the vectors of a list. Each component of the list must be a (n,1) vector.

Example:
numx3=fuslist(listx1_2)

This example, taken from automatic, realises the fusion of the vectors of indexes resulting from the search of
econometric specifications.

fusvect sorted fusion of vectors

CALLING SEQUENCE

[ind]=fusvect(argl,...,argn)

Grocer 1.2

27

PARAMETERS

INPUT:
argl,...,argn = (n x1) vectors

OUTPUT:
ind = a (n x1) vector

DESCRIPTION
Makes the fusion of (n x1) vectors and sort them in increasing order

Example:
fusvect([1 ;4 ; 51,[3 ; 2 ;4])

Returns:

i N e

impexc2bd importation of a csv excel file

CALLING SEQUENCE
impexc2bd(filein,sep,fileout)
PARAMETERS

INPUT:

* filein = name of the file to be imported (between quotes)

* sep = separator used in the filein (between quotes)

* fileout = name of the scilab file where to save the imported data (between quotes)

OUTPUT: nothing; the imported series are saved in the file named fileout

DESCRIPTION

Importation of an excel file saved under csv format.

* this is at the very beginning an original scilab function, but improved to be more efficient and extended to
deal with ts

* if one data is named dates or DATES (scilab distinguish capitals from small letters) then the data that
follow are saved as timeseries

* if a value is lacking or #N/A in a timeseries, it is given a NA value

Example:
impexcel('macros/bdexamples/bdhenderic.csv',’;’,'mylibrary/bdhenderic.dat")

Grocer 1.2

28

This example provides the importation of date in file macros/bdexamples/bdhenderic.csv into the Scilab file
mylibrary/bdhenderic.dat. The separator is here “ ;’.

invpd mimic Gauss function invpd

CALLING SEQUENCE
[xi]=invpd(x)
PARAMETERS

INPUT:
X = a square matrix

OUTPUT:
xi = inverse of mat

DESCRIPTION
A dummy function to mimic Gauss invpd simply returns the inverse, with no checking for positive
definiteness.

Example:
Y=invpd(x)

invvech reverses vech

CALLING SEQUENCE
[xi]=invvech(x)
PARAMETERS

INPUT:

* v =a (nrxl) vector
* nr = # of rows of the original matrix

OUTPUT:
* mat = the original -vectorized by vech- matrix

DESCRIPTION
Retrieves from a matrix vectorized by vech the original matrix.

Example:
a=grand(5,2,'nor',0,1);b=vech(a'*a);c=invvech(b,2)

C is equal to a'*a.

Grocer 1.2

29

is_scalar

check if a matrix is a scalar

CALLING SEQUENCE
[ret]=is_scalar(x)
PARAMETERS

INPUT:
X = a (nxm) matrix

OUTPUT:
ret0 = 1 if x is scalar, 0 in other cases

DESCRIPTION
Checks if a matrix is a scalar.

Examples:
1) is_scalar(5)
2) is_scalar(ones((4,1))

Example 1 returns 1, example 2 returns 0.

is_empty

check if an object is empty

CALLING SEQUENCE
answ=is_empty(m)
PARAMETERS

INPUT:
m = a matrix, a list or a ts

OUTPUT:
answ = a boolean: %t if the object is empty, %f if not

DESCRIPTION

Checks if an object is empty. This is Scilab function isempty extended to time series.

Examples:

1) is_empty(reshape([1:5],'1a"))
2) is_empty(reshape([],'1a"))

3) is_empty([])

Example 1 returns %f, example 2 and 3 return %t.

Grocer 1.2

30

joinstr concatenation of strings and strings vectors

CALLING SEQUENCE
car=joinstr(varargin)
PARAMETERS

INPUT:
* objects which can be strings or column vectors of strings; each vector must have the same size

OUTPUT:
* car = a string

DESCRIPTION

(similar to the one with the same name in portable troll) Concatenates elements which can be strings or
matrix of strings; when some arguments are vectors of string, then the function creates a string for each
element of the vector by concatenating it with the arguments of size 1 (the last one notwithstanding), in the
order they are given by the user; then the function concatenates these strings with the last element as a
separator. Very useful, but for experts!

Examples:
1) namex=['x1' 'x2']; namec=['al' '(a2-al)'];str=joinstr(‘namec’,”*’,’namex’,’+’)
2) joinstr('(',res('namex'),")*(',string(res('beta')),")+")+')’

Example 1 gives str="al*x1+(a2-al)*x2’. Example 2 (taken from prevstat) takes the names of variables
from, say, an ols regression, multiply each name by the value of the corresponding estimated coefficient and
them adds all.

lag creation of a lagged matrix

CALLING SEQUENCE

[z]=lag(x,n,v)
PARAMETERS

INPUT:

* X = input matrix or vector, (nobs x k)

* n = order of lag

* v = (optional) initial values (default=0)

OUTPUT:
z = matrix (or vector) of lags (nobs x k)

DESCRIPTION
Creates a matrix or vector of lagged values.
*1fn <=0, z=[] is returned. While you may find this perverse, it is sometimes useful.

Grocer 1.2

31

* for ts use lagts (see chapter 3)

Examples:

1)y =lag([1:8]",2)

2) x1=ones(7,1);x2=[1:7]";y = lag([x1 x2],1,4)
Example 1 gives the column matrix:

10
10
11

1 2.
1 3.
1 4
1 5
1 6

Example 2 gives the (7,2) matrix:
. 4.

I 4 !
1 !
I 1. !
1. !
1 !
1 !
1 !

Ok wN=

lagser

CALLING SEQUENCE
[ylys]=lagser(y,ll)
PARAMETERS

INPUT:

* y = (nxm) matrix
*11=a (nx1) or (1xn) vector of lags (>0 lags, <0 leads)

OUTPUT:

* yl = (n-ml)x(mxl) lagged and/or lead series, with ml=maxlag+abs(maxlead).

* ys = (n-ml)x(m) original series with the last ml observations suppressed.

DESCRIPTION
Generates lags and leads from a data matrix.

Examples:
1)y = lagser([1:8]°,2)
2) x1=ones(7,1);x2=[1:7]";y = lag([x1 x2],-2)

Example 1 gives the column matrix:
I 0.!
I 0.!

Grocer 1.2

creation of a lagged matrix

32

Example 2 gives the (7,2) matrix:
. 4.

I 4 !
1 !
I 1. !
I 1. !
1 !
1 !
' 1 !

OOk wN =

mak filters a series with a moving average

CALLING SEQUENCE
xma=mak(x,k)
PARAMETERS

INPUT:

* x = original time series
* k = size of the moving average fliter

OUTPUT:
xma = filtered timeseries

DESCRIPTION
Calculates a 2 sided k-period centered moving average with equal weights (k odd) or equal weights except

for the first and last term whose weight is half the others (k even).

Examples:
Im1_sp=mak(series(Im1),10)

Takes a 10 terms moving average of the values vector of series Im1 taken from the database bdhenderic.dat.

matdiv matrix quotient

CALLING SEQUENCE

[out]=matdiv(x,y)

Grocer 1.2

33

PARAMETERS

INPUT:
X,y = two matrices (not of the same dimension but that are row or column compatible)

OUTPUT:
out = X./y where x and y are row or column compatible

DESCRIPTION
Performs matrix quotient even if matrices are not of the same dimension, but are row or column compatible.

Examples:
1) x1=ones(7,1);x2=[1:7]";y = lag([x1 x2],1,4);z=0.5*ones(7,1);matdiv(x,z)
2) w = matdiv(x,resid);

Example 1 gives the matrix:
! 8 8.!
12 2
2. 4.
I 2. 6.
2. 8.1
2. 10.!
2. 12.1

Example 2 (taken from lad) makes the term by term division of each column of matrix x ((nxk) matrix of
exogenous variables) by the (nx1) vector of absolute residuals from the ols regression of y on x.

matmul matrix elementwise multiplication

CALLING SEQUENCE
[out]=matmul(x,y)
PARAMETERS

INPUT:
X,y = two matrices (not of the same dimension but are row or column compatible)

OUTPUT:
out = x.*y where x and y are row or column compatible

DESCRIPTION
Performs matrix multiplication even if matrices are not of the same dimension, but are row or column
compatible.

Examples:
1) x1=ones(7,1);x2=[1:7]";y = lag([x1 x2],1,4);z=0.5*ones(7,1);matmul(x,z)
2) xstar = matmul(x,sqrt(w));

Example 1 gives the matrix:

Grocer 1.2

34

oo

Example 2 (taken from robust) makes the term by term multiplication of each column of matrix x ((nxk)
matrix of exogenous variables) by the (nx1) vector of weights for the ongoing weighted least squares
estimation.

meanc mean of the rows of a matrix

CALLING SEQUENCE
v=meanc(mat)
PARAMETERS

INPUT:
mat = a (nxp) matrix

OUTPUT:
v =a (px1) vector

DESCRIPTION
Function that mimics gauss function meanc: takes the mean of each column of a matrix and stores it in a
column. Equivalent to Scilab instruction mean(mat,’r’).

Examples:
1) x1=ones(7,1);x2=[1:7]";y = meanc([x1 x2])

1ves the matrix:

>

e e e e e N N)

Example 1 g
! 4. 4
! 4. 1
! 1. 2
! 1. 3.
! 1. 4
! 1. 5
! 1. 6

ORWON= PR

Example 2 (taken from varl) takes the residuals from a regression and stores all lags from 1 to nobse/6 to
prepare the calculation of the Box-Pierce statistics.

Grocer 1.2

35

miss replace a specified value by %nan

CALLING SEQUENCE
v=miss(mat,val)
PARAMETERS

INPUT:

* mat = a (nxp) matrix
* val = a scalar

OUTPUT:
mat = a (nxp) vector

DESCRIPTION
Function that mimics gauss function miss: converts to NA prespecified values in a matrix

Example:
a =miss(eye(4,4),1)
returns:

Example 1 gives the matrix:
I
!
I
I
!
!
I

g
4. 4. 4
1. 4. 1
1. 1. 2.
1. 1. 3.
1. 1. 4
1. 1. 5
1. 1. 6

ORWON= RS

Example 2 (taken from varl) takes the residuals from a regression and stores all lags from 1 to nobse/6 to
prepare the calculation of the Box-Pierce statistics.

mlag lag of a matrix

CALLING SEQUENCE
[xlag]=mlag(x,n,init)
PARAMETERS

INPUT:

* x = a matrix (or vector), nobs x nvar

* n =# of contiguous lags for each vector in x
* init = (optional) scalar value to feed initial missing values (default = 0)

OUTPUT:
* xlag = a matrix of lags (nobs x nvar*nlag)

Grocer 1.2

36

* x1(t-1), x1(t-2), ... x1(t-nlag), x2(t-1), ... x2(t-nlag),...

DESCRIPTION
Generates a matrix of n lags from a matrix (or vector) containing a set of vectors (for use in var routines).

Examples:
1) x1=ones(7,1);x2=[1:7]";y = mlag([x1 x2],2,4)
2) elag = mlag(rols('resid'),nobse/6);

Example 1 gives the matrix:
I
!
I
I
!
!
I

g
4. 4. 4
1. 4. 1
1. 1. 2.
1. 1. 3.
1. 1. 4
1. 1. 5
1. 1. 6

ORWON= RS

Example 2 (taken from varl) takes the residuals from a regression and stores all lags from 1 to nobse/6 to
prepare the calculation of the Box-Pierce statistics.

mlagb lag a matrix

CALLING SEQUENCE
[xlag]=mlagb(x,n,init)
PARAMETERS

INPUT:

* x = a matrix (or vector), nobs x nvar

* nlag = # of contiguous lags for each vector in x
* init = (optional) scalar value to feed initial missing values (default = 0)

OUTPUT:
* xlag = a matrix of lags (nobs x nvar*nlag)
*x(t-1),x(t-1) ... ,x(t-nlag)

DESCRIPTION
Generates a matrix of n lags from a matrix (or vector) containing a set of vectors (For use in var routines).

Examples:
1) x1=ones(7,1);x2=[1:7]";y = mlagb([x1 x2],2,4)
2) xlag = mlagb(y,nlag);

gives the matrix:
4
4
1
1

4.1
4.1
1.1
2.1

Grocer 1.2

37

1. 4. 1. 3.!
1. 5. 1. 4.
1. 6. 1. 5.

Example 2 (taken from varl) takes all lags from 1 to nlag of endogenous variables in the var to form the
matrix of regressors.

mvblockboot multivariate block-bootstrap

CALLING SEQUENCE

[bsdata,a] = mvblockboot(data,sb,B)
PARAMETERS

INPUT:

* data = matrix of data

* sb = size ob blocks
* B = number of draws

OUTPUT:
* bsdata = resampled data
* a= corresponding columns

DESCRIPTION
Computes multivariate block-bootstrap.

newey_west Newey_West variance estimator

CALLING SEQUENCE
nw=newey west(resid,l)
PARAMETERS

INPUT:

* X = input matrix or vector, (nobs x k)
* 1= order of lag (optional)

OUTPUT:
nw = matrix (or vector) of lags (nobs x k)

DESCRIPTION

Performs the Newey West variance estimator; if no truncation lag (1) is provided by the user, then it is fixed
at floor(5*nobs”0.25).

*1f 1 <= 0, nw =[] is returned. While you may find this perverse, it is sometimes useful.

* should presumably be made more efficient

Grocer 1.2

38

Example:
sigma2=newey west(r('resid'),l)

This example (taken from kpss) calculates the Newey-West estimator for the residuals (r('resid')) of the
regression of the tested variable on a trend, with truncation lag 1.

packr delete rows containing Nas

CALLING SEQUENCE
mat=packr(mat)
PARAMETERS

INPUT:
mat = a (nxp) matrix

OUTPUT:
mat = a (mxp) vector with m <=n

DESCRIPTION
Function that mimics gauss function packr: Deletes the rows of a matrix that contain any missing values.

Example:
v=[ones(7,1) [1:7]"] ;v(3,2)=%nan;w= packr(v)

Example gives the matrix:
W —

!
!
!
!
!
!

—t e

Nownhkbbe=

polymult mimics gauss function polymult

CALLING SEQUENCE
vecout=polymult(vecl,vec2)
PARAMETERS

INPUT:

* vecl = a (nx1) vector of coefficients representing a polynom
* vec2 = a (mx1) vector of coefficients representing a polynom

Grocer 1.2

39

OUTPUT:
vecout = a ((n+tm)x1) vector of coefficients representing a polynom

DESCRIPTION
Function that mimics gauss function polymult: polymult = Scilab function convol ! (but with greater
precision).

Example:
polymult([1 2 1],[1 -2])

Example gives the matrix:

ans =

1. 0.-3.-2.!

repmat replicates and tiles an array
CALLING SEQUENCE

[B]=repmat(A,m,n)
PARAMETERS

INPUT:

* A = a matrix

* m = a scalar or a (1xk) vector

* n = a scalar (used only if m is a scalar)

OUTPUT:
B = the replication and tiling of A

DESCRIPTION
Function that mimics Matlab function repmat, that replicates and tiles an array.

Example:
A=[123;456];B=repmat(A,2,3)

Example gives the matrix:
B =

!
!
!
!

bl
AN
SR aWw
Pk
b wd
AN SN
bl
AN
SR aWw

Grocer 1.2

40

reshape_gauss replicates and tiles an array

CALLING SEQUENCE
[B]=reshape gauss(A,m,n)
PARAMETERS

INPUT:

* matin = a (pxq) matrix

* n =# of rows of the destination matrix
* m = # of cols of the destination matrix

OUTPUT:
matout = the (nxm) destinaion matrix

DESCRIPTION

Function that mimics gauss function reshape: replicates and tiles an array.

Note that:

1) function reshape exists in grocer, but it mimics troll, and not gauss, function reshape, that is performs the
transformation of a vector into a ts.

2) is equivalent to scilab function matrix only when the destination matrix has the same number of elements
that the original one.

Example:
A = 1:4;B=reshape gauss(A,3,5)

Example gives the matrix:

B =
120 30 40 1.
12 3. 4. 1. 2.
'3 4 1. 2. 3.!
Example:

A = 1:4;B=reshape gauss(A,3,5)

Example gives the matrix:

B =
1. 2.0 3. 4. 1.

1 2. 3. 4. 1. 2.

3. 4. 1. 2. 3.!

rev reverses the order of the rows of a matrix
CALLING SEQUENCE

[B]=rev(A)

Grocer 1.2

41

PARAMETERS

INPUT:
A = a (nxp) matrix

OUTPUT:
B = a (nxp) matrix

DESCRIPTION

Mimics gauss function rev: reverses the order of the rows of a matrix.

A=[12;3 4;56];B=rev(A)

Example gives the matrix:
B =

!
!
!

— W W
N kAo

seqa

CALLING SEQUENCE
[seq]=seqa(a,b,c)
PARAMETERS

INPUT:

a = initial value in sequence

b = increment
¢ = number of values in the sequence

OUTPUT:
a sequence, (a:b:(a+b*(c-1)))' in scilab notation

DESCRIPTION

Produces a sequence of values (a Gauss compatibility function).

Example:
seqa(2,5,3)

Example gives the matrix:
2.1
1 7.1
12,1

Grocer 1.2

sequence of values

42

search_cte finds the indexes of constant columns

CALLING SEQUENCE
indcte=search_cte(x)
PARAMETERS

INPUT:
x = a (n x k) real matrix

OUTPUT:
indcte= a (p x 1) vector of integers

DESCRIPTION
Finds the indexes of the constant columns in a matrix.

Example:

search_cte([grand(15,2,'nor",0,1) ones(15,1)])

Gives 3.

shiftr shifts rows of a matrix and replace with a prespecified value
CALLING SEQUENCE

[matout]=shiftr(matin,shifts,val)
PARAMETERS

INPUT:

* matin = input (mxn) matrix

* shifts = (mx1) vectors of shifting values
* val = value to fill the holes

OUTPUT:
matout = (mxn) transformed matrix

DESCRIPTION
Function that mimics gauss function shiftr: shifts rows of a matrix according to a vector of shifts and fills the

holes with a prespecified value.

Example:
A =matrix([1:15],3,5);B=shiftr(A,[2 3 -2],0)

Example gives the matrix:

0. 0. 1. 4 7.

Grocer 1.2

43

0. 0. 0. 2. 5.

9. 12. 15. 0. 0.!

sortc sorts a matrix according to the value of one of its columns
CALLING SEQUENCE

[matout]=sortc(matin,val)
PARAMETERS

INPUT:
* matin = input (nxp) matrix
* val = value to fill the holes

OUTPUT:
matout = (nxp) transformed matrix

DESCRIPTION
Mimics gauss function sortc: sorts a matrix according to the value of one of its columns.

Example:
A=[1324;5102;4212];B=sortc(A,3)

Example gives the matrix:

B =

s 1. 0.0 2!

4. 2. 1. 2!

130 2. 4.

spencer Filters a series using a 15-term two-sided Spencer filter
CALLING SEQUENCE

Xsp = spencer(x)
PARAMETERS

INPUT:
x =a (nx 1) real vector

OUTPUT:
xsp =a (n x 1) real vector

DESCRIPTION
Filters a series using a 15-term two-sided Spencer filter.

Grocer 1.2

44

Example:
Im1_sp=spencer(series(Iml))

str2mat fusion of string vectors

CALLING SEQUENCE
m=str2mat(argl,...,argn)
PARAMETERS

INPUT:
argi = a string or a vector of strings

OUTPUT:
m = a (px1) vector of strings

DESCRIPTION
Function that mimics matlab function str2mat: forms the column vector fusion of input string (row or
column) matrices.

Examples:
str2mat(['al' 'a2'],'b1',['c1";'c2";'c3"])

Example gives the vector:
str2mat(['al' 'a2'],'b1',['c1";'c2'";'c3"])
ans =

lal !
Pl
la2 !
Pl
'bl !
Pl
el !
Pl
Ic2 !
Pl
'c3 !

sted standard deviations of each column of a matrix

CALLING SEQUENCE

v=stcd(mat)

Grocer 1.2

45

PARAMETERS

INPUT:
mat = a (nxp) matrix

OUTPUT:
v =a (pxl) vector

DESCRIPTION
Function that mimics gauss function stcd: takes the standard deviations of each column of a matrix and stores
them in a column.

Examples:
load('SCI/macros/grocer/db/bdhenderic.dat') ;
mat=explox(['delts(Im1)','delts(Ip)','delts(ly)",'rnet'],",[]);v=stcd(mat)

Example gives the vector:
V =

0205913 !
0141534 !
0142649 !
0376221 !

str2vec string to vector of strings

CALLING SEQUENCE
[s]=str2vec(name)
PARAMETERS

INPUT:
name = a string

OUTPUT:
s=a(nx 1) vector of names

DESCRIPTION
Given a string 'xxx=[yyl1,...,yyn]', define the vector ['yyl';...;'yyn'].

Examples:
1) str2vec(‘a=b,c,d”)
2) grocer coef=str2vec(grocer coef)

Example 1 gives the string (3,1) vector:

b !
Ic !

Grocer 1.2

46

Id !

In example 2, taken from nls, str2vec is used to transform into a vector the list of coefficient names given by
the user.

studentize studentize a vector or columnwise a matrix

CALLING SEQUENCE
[t]=studentize(x)
PARAMETERS

INPUT:
X = a vector or matrix

OUTPUT:
t = transformed matrix

DESCRIPTION
If x is a vector, substract its mean and divide by its standard deviation. If x is a matrix, do the above for each
column.

Example:
y=studentize(x)

tdiff produce matrix differences

CALLING SEQUENCE
[dmat]=tdiff(x.k)
PARAMETERS
INPUT:

* X = input matrix (or vector) of length nobs
* k = lagged difference order

OUTPUT:
* dmat = matrix or vector, differenciated by k-periods, e.g. x(t) - x(t-k), of length nobs, (first k observations
are zero)

DESCRIPTION
Produces matrix differences.

Examples:

1) x1=ones(7,1);x2=[1:7]";y = tdiff([x] x2],2)
2) dep = tdiff(r,1);

Grocer 1.2

47

es]
e
(S

mple 1 gives the matrix:

coooooo

0.!
0.!
2.1
2.1
2.1
2.1
2.1

In example 2, taken from cadf, vector r is differenciated once.

transdif differenciation and Box-Cox transformation

CALLING SEQUENCE
[yt]=transdif(y,Jambda,d,ds,s)
PARAMETERS

INPUT:

* y = (nxk) data matrix

* lambda = a scalar, parameter of the Box-Cox transformation

* d = a scalar, the number of regular differences (1-B)"d

* ds = (Sx1) matrix containing the number of seasonal differences
* s = (rx1) matrix containing the seasonal periods

OUTPUT:
yt =(n-d-sum(ds*s))xk matrix of transformed data

DESCRIPTION
Takes the difference and the seasonal difference of the Box-Cox transformation of a vector.

Examples:

1. mtlb_load('SCl/scied/grocer/encours/e4sci/seriesa.dat'); elec_cons = transdif(seriesa,0,1,1,12);

2. mtlb_load('SCI/scied/grocer/encours/e4sci/seriesa.dat’); s = transdif{(seriesa,-1,0,0,12);

Example 1 taken from varma function varma_d1(). Elec_cons is equal to (1-L)(1-L"12)log(seriesa).

Example 2 gives simply the box-cox transformation of seriesa with lambda = -1 (that is 1-1/seriesa)

trend exponentiated time trend

CALLING SEQUENCE

[xmat]=trend(p,nobs)

Grocer 1.2

48

PARAMETERS

INPUT:
* p = exponent of the time-trend
* nobs = size of the matrix

OUTPUT:
xmat = (nobsx1) vector containing trend

DESCRIPTION

Produces a vector equal to a time-trend with exponentiation p.

Example:
ext=ptrend(2,10)

trimr

strip a matrix

CALLING SEQUENCE
[z]=trimr(x,n1,n2)

PARAMETERS

INPUT:

* X = input matrix (or vector) (n x k)

*nl = first nl rows to strip
* n2 = last n2 rows to strip

OUTPUT:
*z=x(nl+1:mn-n2,:)

DESCRIPTION

Returns a matrix (or vector) x stripped of the specified rows (modelled after Gauss trimr function).

Examples:

1) trimr([1:10]°,2,3)

This example gives the matrix:

Grocer 1.2

49

Nookw

undrift

CALLING SEQUENCE
[xun]=undrift(x)
PARAMETERS

INPUT:
X =

removes the drift or a linear time trend

- a data matrix x where columns represent different variables, x is (T x # variables).

-orats

OUTPUT:
Xun =

- if X is a matrix, then a data matrix of the same size as x with a different drift/trend

- a ts with drift/trend removed if x is a ts

DESCRIPTION
Function that removes the drift or a linear time trend.

Example:
undrift([1:15]")

Provides ones(15,1).

var2cor

covariance to correlation

CALLING SEQUENCE
[c]=var2cor(s)
PARAMETERS

INPUT:
s = (n x n) covariance matrix

OUTPUT:
¢ = (n x n) correlation matrix

DESCRIPTION
Transforms a covariance matrix in a correlation matrix.

Grocer 1.2

50

varcov(

covariance matrix

CALLING SEQUENCE
m=varcov((z)
PARAMETERS

INPUT:
z = a (nxk) matrix

OUTPUT:
m = the (kxk) variance-covariance

DESCRIPTION
Calculates the covariance matrix of z columns.

vec

CALLING SEQUENCE
[v]=vec(x)
PARAMETERS

INPUT:
X = an input matrix

OUTPUT:
v = output vector containing stacked columns of x

DESCRIPTION

stacks columns of a matrix

create a column vector by stacking columns of x. V=vec(x) is equivalent to scilab command v=x(:)

vec2col

vector into column vector

CALLING SEQUENCE
[x]=vec2col(x)
PARAMETERS

INPUT:
*x=(1xn)or(nx 1) vector

OUTPUT:
*x=(nx 1) vector

Grocer 1.2

51

DESCRIPTION
Transforms a row or col vector into a col vector.

Examples:
1) vec2col([3:7])
2) vec2col([3:7])

2) grocer init=vec2col(grocer init)

Examples 1 and 2 give the matrix:

I 3.
I 4.
I 5.
)
7.

Example 3, taken from nls, transforms into a column vector the vector of starting values for the optimisation
algorithm. This allows the user to give either a column or a row vector and therefore facilitates her life.

vec2row vector into row vector

CALLING SEQUENCE
[x]=vec2row(x)
PARAMETERS

INPUT:
x=(1xn)or (nx 1) vector

OUTPUT:
x = (1 x n) vector

DESCRIPTION
Transforms a row or col vector into a row vector.

Examples:

1) vec2row([3:7])

2) vec2row([3:7]")

Examples 1 and 2 give the matrix:

3. 4. 5 6. 7.1

vech stacks a symmetric matrix

CALLING SEQUENCE

[v]=vech(x)

Grocer 1.2

52

PARAMETERS

INPUT:
X = an input matrix

OUTPUT:
v = output vector containing stacked columns of x

DESCRIPTION
Creates a column vector by stacking columns of x on and below the diagonal.

Example:
vech([10.50.2;0.520.4;0.20.4 3])

This example gives the vector:
1.
0.5
0.2
2.
0.4
3.

vech_gauss stacks a symmetric matrix as in gauss

CALLING SEQUENCE
[v]=vech_gauss(x)
PARAMETERS

INPUT:
X = an input matrix

OUTPUT:
v = output vector containing stacked columns of x

DESCRIPTION
Creates a column vector by stacking columns of x on and below the diagonal.

Example:
vech gauss([10.50.2;0.520.4;0.20.4 3])

This example gives the vector:
1.
0.5
2.
0.2
0.4
3.

Grocer 1.2

53

vecr

stacks rowwise

CALLING SEQUENCE
[v]=vecr(x)
PARAMETERS

INPUT:
X = an input matrix

OUTPUT:
v = output vector containing stacked rows of x

DESCRIPTION
Creates a column vector by stacking rows of x.

xpnd1

CALLING SEQUENCE
mat=xpnd1(v,nr)
PARAMETERS

INPUT:

*v=a(nrx l)vector
* nr = # of rows of the original matrix

OUTPUT:
mat = the original -vectorized by vech gauss- matrix

DESCRIPTION

Retrieves from a matrix vectorized by vech gauss the original matrix.

Example:
xpnd1([1;0.5;2;0.2;0.4;3])

Provides the (3x3) matrix:

1. 05 02
05 2. 04
02 04 3.

Grocer 1.2

mimics gauss function xpnd

	CALLING SEQUENCE
	PARAMETERS
	PARAMETERS
	PARAMETERS
	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	Example:
	PARAMETERS
	PARAMETERS
	PARAMETERS
	PARAMETERS

	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	Example:
	PARAMETERS
	PARAMETERS

	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	Example:

	PARAMETERS
	DESCRIPTION
	PARAMETERS
	DESCRIPTION
	PARAMETERS
	DESCRIPTION
	PARAMETERS
	DESCRIPTION
	Examples:

	PARAMETERS
	DESCRIPTION
	PARAMETERS
	DESCRIPTION

