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Chapter 9: Multiple equations regressions

GROCER contains the old simultaneous equations estimation methods (Seemingly Unrelated 
Regressions, two and three stages least squares) as well as the more recent VAR ones. As regards the 
VAR  methodology,  the  following  procedures  are  currently  available:  VAR  estimation,  impulse 
response calculation, ecm estimation, bayesian VAR and its ecm form, VAR forecasting.

1. Simultaneous equations methods

Seemingly Unrelated Regressions, two and three stages least squares are implemented 
in GROCER through functions sur, twosls and threesls.

In sur, the text of each equation must be entered in function sur between quotes and 
function sur estimates the coefficient that these equations contain. The names of the coefficients can 
be given through the option ‘coef=[name1,…, namen]’. They can be omitted, provided that their 
name is of the form ai, with i being a number, starting from 1 to n without any discontinuity.

The Function sur is rather general: it can be applied to any system of equations, provided it is 
linear in its coefficients. So, you can impose constraints to the coefficients in the system, provided 
they remain linear. This possibility is achieved through function explosys, that retrieves the matrix of 
exogenous variables by the mean of differentiating numerically the vector of stacked equations with 
respect to the coefficients at any value (since the system is linear in its coefficients).

(°)  The  Function  sur can  be  applied  to  a  model  with  equal  or  unequal  numbers  of 
observations. The default is that the number of observations is equal. In particular, if the regressions 
contain ts and the time bounds has not been specified, the function chooses the time bounds as the 
ones that cover the greatest time span for all the ts in the regressions. 

If  the  user  wants  to  estimate  the  system with  unequal  numbers  of  observations,  she  has 
therefore to make 2 things:

• first, provide the maximum time bounds over which the equations must be estimated;
• second, enter the option 'unequal' in the function sur. (°°)

Take as an example the results of the sur estimation presented in Green’s book1, which is 
provided by function sur_d:

eq1='igm=a1*fgm+a2*cgm+a3'
eq2='ich=a4*fch+a5*cch+a6'
eq3='ige=a7*fge+a8*cge+a9'
eq4='iwest=a10*fwest+a11*cwest+a12'
eq5='iuss=a13*fuss+a14*cuss+a15'

r=sur(eq1,eq2,eq3,eq4,eq5)

1 See Green (1997): Econometric Analysis, Third Edition, Prentice Hall, New Jersey
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This example provides the simplest way of performing a sur estimation: the 5 corresponding 
equations are written such as the coefficients are a1, a2, … until a15. If you want to impose for 
instance the constraint that all constants are equal (for sure, a meaningless constraint on economic 
grounds…), then you should write:

eq1='igm=a1*fgm+a2*cgm+a3'
eq2='ich=a4*fch+a5*cch+a3'
eq3='ige=a6*fge+a7*cge+a3'
eq4='iwest=a8*fwest+a9*cwest+a3'
eq5='iuss=a10*fuss+a11*cuss+a3'

r=sur(eq1,eq2,eq3,eq4,eq5)

Note that since we have not given the names of the coefficients and since we have imposed 4 
constraints,  the  coefficients  are  now  named  a1,  a2,  …  until  a11.  Except  from  the  first  three 
coefficients all coefficients have now a different name from the one they are before. 

So the user may find convenient to impose its own names. This is done through the option 
coef=[‘name1’,…,’namek’]. For instance, with the same constraints as with the previous example, 
you could write:

eq1='igm=f1*fgm+c1*cgm+c0'
eq2='ich=f2*fch+c2*cch+ c0'
eq3='ige=f3*fge+c3*cge+ c0'
eq4='iwest=f4*fwest+c4*cwest+ c0'
eq5='iuss=f5*fuss+c5*cuss+ c0'

r=sur(eq1,eq2,eq3,eq4,eq5, 'coef=[f1,f2,f3,f4,f5,c0,c1,c2,c3,c4,c5]’)

The function displays on screen: the correlation matrix and the estimation results for each 
equation. As with other estimation functions, the results of the estimation can be saved in a tlist, as is 
done above, by typing name_of_tlist = sur(...).

Note that the coefficients can be given in the option ‘coef=…’ in a different order than in the 
equations.  As an example,  taken from function sur_d,  here are the results  from a sur estimation 
performed on the grun (matlab) database which you can find in siclab library macros/grocer/db :  

-->ige  = grun(:,1);
-->fge = grun(:,2);
-->cge = grun(:,3);
// general electric

-->iwest  = grun(:,4)
-->fwest = grun(:,5);
-->cwest = grun(:,6);
// westinghouse

-->igm  = grun(:,7); 
-->fgm = grun(:,8);
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-->cgm = grun(:,9);
// general motors

-->ich  = grun(:,10); 
-->fch = grun(:,11);
-->cch = grun(:,12);
// chrysler

-->iuss  = grun(:,13); 
-->fuss = grun(:,14);
-->cuss = grun(:,15);
// us steel

(order follows that in Green, 1997)

-->eq1='igm=a1*fgm+a2*cgm+a3;'
-->eq2='ich=a4*fch+a5*cch+a6'
-->eq3='ige=a7*fge+a8*cge+a9'
-->eq4='iwest=a10*fwest+a11*cwest+a12'
-->eq5='iuss=a13*fuss+a14*cuss+a15'

-->r=sur(eq1,eq2,eq3,eq4,eq5)

sur estimation results
 
correlation matrix of residuals
 
eq 1          2          3         4         5
1  1           -.3107024  .2351589  .1359552  -.3427850
2   -.3107024 1           .0342116  .1485078  .3777833
3   .2351589   .0342116  1          .7973658  .5270897
4   .1359552   .1485078   .7973658 1          .7370832
5   -.3427850  .3777833   .5270897  .7370832 1
 
results for equation # 1:
igm=a1*fgm+a2*cgm+a3
 
number of observations: 20
number of variables: 3
standard error of the regression: 92.740765
sum of squared residuals: 146214.44
DW(0) = .9367137
 
variable coeff      t-statistic p value
a1        .1219526  5.5542618   2.788E-08
a2        .3894513  11.272557   0
a3       -173.03757 -1.892899    .0583713
 
                         *
                      *     *
 
results for equation # 2:
ich=a4*fch+a5*cch+a6
 
number of observations: 20
number of variables: 3
standard error of the regression: 13.508073
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sum of squared residuals: 3101.9567
DW(0) =1.8851097
 
variable coeff     t-statistic p value
a4        .0674506 3.6361868    .0002767
a5        .3050661 10.789811   0
a6       2.3783076  .1885154    .8504726
 
                         *
                      *     *
 
results for equation # 3:
ige=a7*fge+a8*cge+a9
 
number of observations: 20
number of variables: 3
standard error of the regression: 29.549511
sum of squared residuals: 14843.951
DW(0) = .8980277
 
variable coeff      t-statistic p value
a7        .0370190  2.899646     .0037358
a8        .1169537  4.9618774   6.982E-07
a9       -16.376032  -.6048658   .5452681
 
                         *
                      *     *
 
results for equation # 4:
iwest=a10*fwest+a11*cwest+a12
 
number of observations: 20
number of variables: 3
standard error of the regression: 11.03339
sum of squared residuals: 2069.5068
DW(0) =1.1247319
 
variable coeff     t-statistic p value
a10       .0538605 4.8239174    .0000014
a11       .0264688  .6588708    .5099787
a12      4.4891321  .687268     .4919139
 
                         *
                      *     *
 
results for equation # 5:
iuss=a13*fuss+a14*cuss+a15
 
number of observations: 20
number of variables: 3
standard error of the regression: 106.77545
sum of squared residuals: 193816.96
DW(0) = .9673477
 
variable coeff     t-statistic p value
a13       .0886000 1.8040818    .0712185
a14       .3092972 2.4200821    .0155170
a15      138.01198 1.3449313    .1786474
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                         *
                      *     *

 An example of a sur estimation with an unequal number of observations is also provided in 
function sur_d:

--> load('SCI/macros/grocer/db/suruneq_d.dat')
// load the database 
-->  bounds('1a','32a')
// set bounds 
--> rsur=sur('vkbus=a1*pob+a2*pibloc+a3*bus','vkpar=a4*pob+a5*pibloc+a6*par',...
--> 'vktax=a7*pob+a8*pibloc+a9*tax','vkcam=a10*pob+a11*pibloc+a12*cam',...
--> 'vkcom=a13*pob+a14*pibloc+a15*com','vkmot=a16*pob+a17*pibloc+a18*mot',...
'unequal')
// perform estimation with the option 'unequal' to indicate that the numbers of observations are 
// unequal

And the results are the following (note that the time bounds reported differ across the equations: 1a-
32a for equations 1 to 3, 1a-22a for equations 4 and 5, 3a-29a for equation 6; these correspond to the 
non NA values for each equations):

sur estimation results

correlation matrix of residuals

eq 1 2         3          4          5          6
1  1 0.5980398 -0.2295625 0.6755263  0.6824408  0.1823176
2    1         -0.5819938 0.9157323  0.7775527  0.4271621
3              1          -0.7050460 -0.1334909 0.0657512
4                         1          0.7692916  0.1426075
5                                    1          0.2108701
6                                               1

results for equation # 1:
vkbus=a1*pob+a2*pibloc+a3*bus

estimation period: 1a-32a
number of observations: 32
number of variables: 3
standard error of the regression: 91871209
sum of squared residuals: 2.448D+17
DW(0) =1.0787468

variable coeff      t-statistic p value
a1       -63.404432 -0.0299042  0.9761435
a2       -25.235514 -0.0317227  0.9746932
a3       -26876.372 -0.2138026  0.8307010

                         *
                      *     *

results for equation # 2:
vkpar=a4*pob+a5*pibloc+a6*par

estimation period: 1a-32a
number of observations: 32
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number of variables: 3
standard error of the regression: 4.201D+08
sum of squared residuals: 5.119D+18
DW(0) =2.1419855

variable coeff      t-statistic p value
a4       465.76502  0.1135805   0.9095704
a5       -388.14262 -0.2485644  0.8036977
a6       -9468.4379 -0.6541410  0.5130210

                         *
                      *     *

results for equation # 3:
vktax=a7*pob+a8*pibloc+a9*tax

estimation period: 1a-32a
number of observations: 32
number of variables: 3
standard error of the regression: 3.026D+08
sum of squared residuals: 2.655D+18
DW(0) =1.4838448

variable coeff      t-statistic p value
a7       -514.68819 -1.8209688  0.0686116
a8       -9.2421202 -0.0911927  0.9273395
a9       12752.947  0.5809327   0.5612858

                         *
                      *     *

results for equation # 4:
vkcam=a10*pob+a11*pibloc+a12*cam

estimation period: 1a-22a
number of observations: 22
number of variables: 3
standard error of the regression: 71590952
sum of squared residuals: 9.738D+16
DW(0) =1.9720603

variable coeff      t-statistic p value
a10      277.43581  0.1984202   0.8427163
a11      -161.65381 -0.3044544  0.7607818
a12      -12911.187 -0.4730693  0.6361638

                         *
                      *     *

results for equation # 5:
vkcom=a13*pob+a14*pibloc+a15*com

estimation period: 1a-22a
number of observations: 22
number of variables: 3
standard error of the regression: 1.697D+08
sum of squared residuals: 5.472D+17
DW(0) =1.5761791
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variable coeff      t-statistic p value
a13      472.4618   2.3748738   0.0175550
a14      -293.06275 -3.8976692  0.0000971
a15      -12284.748 -12.211848  0

                         *
                      *     *

results for equation # 6:
vkmot=a16*pob+a17*pibloc+a18*mot

estimation period: 3a-29a
number of observations: 27
number of variables: 3
standard error of the regression: 2404689.8
sum of squared residuals: 1.388D+14
DW(0) =0.7715770

variable coeff      t-statistic p value
a16      9.9587431  1.3977433   0.1621902
a17      -0.4770413 -0.1414008  0.8875533
a18      -12620.854 -3.4921133  0.0004792

                         *
                      *     *

Functions performing two stage (twosls) and three stage (threesls) least squares have the same 
syntax. So, only twosls is presented here. Note that the function twosls is here reserved to two stage 
least  squares  in  a  system of  equations:  two stage  least  squares  applied  on  a  single  equation  is 
performed through function iv (see chapter 7). As with sur, the only compulsory arguments are the 
texts of the equations in the system. In that case, the program determines what are the coefficients 
and what are, in each equation, the endogenous variables. This imposes however constraints on the 
way equations are written: as with sur, the coefficients must be named a1, a2,... until an without any 
discontinuity ; and the names of the endogenous variables must be exactly equal to the left hand side 
of the equations.

If you take the example which is performed in function twosls_d (which belongs to Scilab 
library  macros/grocer/multi), you can see the simplest way of performing a Two Stage Least Squares 
estimation:
--> rt=twosls('y1=a+b*x1','y2=d+e*(y1-x2)+f*x2','coef=a;b;d;e;f')
 
iv estimation results for dependent variable: y2
 
endogenous variable(s) in this equation is(are):
y1
 
instruments for this equation are:
iota,x1,x2
 
number of observations: 200
number of variables: 3
R² =  .8105257      ajusted R² = .8086021
generalized R² =  .2762786 (*)
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standard error of the regression: 1.0431856
sum of squared residuals: 214.38254
DW(0) =2.1064743
Belsley, Kuh, Welsch Condition index: 2
 
variable coeff     t-statistic p value
y1        .9766612 12.965309   0
iota     1.0645033 9.9609201   0
x2        .9213350 12.326011   0
 
* warning, R² and ajusted R² are shown here to conform to commun practice, but 
only the generalized R² should be interpreted
 
                         *
                      *     *
 
 
iv estimation results for dependent variable: y1
 
there is no endogenous variable in the equation: iv=ols
 
number of observations: 200
number of variables: 2
R² =  .4840523      ajusted R² = .4814465
generalized R² =  .4840523 (*)
standard error of the regression: 1.0197048
sum of squared residuals: 205.88
DW(0) =2.091244
Belsley, Kuh, Welsch Condition index: 1
 
variable coeff     t-statistic p value
un       1.0469045 1.0469045   0
x1        .9800141  .9800141   0
 
* warning, R² and ajusted R² are shown here to conform to commun practice, but 
only the generalized R² should be interpreted
 
                         *
                      *     *
 
 
iv estimation results for dependent variable: y2
 
endogenous variable(s) in this equation is(are):
(y1-x2)
 
instruments for this equation are:
un,x1,x2
 
number of observations: 200
number of variables: 3
R² =  .8105257      ajusted R² = .8086021
generalized R² =  .2762786 (*)
standard error of the regression: 1.0431856
sum of squared residuals: 214.38254
DW(0) =2.1064743
Belsley, Kuh, Welsch Condition index: 3
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variable coeff     t-statistic p value
un       1.0645033 1.0645033   0
(y1-x2)   .9766612  .9766612   0
x2       1.8979962 1.8979962   0
 
* warning, R² and ajusted R² are shown here to conform to commun practice, but 
only the generalized R² should be interpreted
 
                         *
                      *     *

Note that these functions call the subroutines exploeqs and syslist, whose syntax is given in 
this chapter, but which should note have many other uses than in twosls and threesls. Note also that 
function sur uses the subroutine explosys that retrieves among others from the system of equations 
the matrix of exogenous variables, vector of endogenous variables, the list of coefficients ... (see the 
exact syntax in part 3 of this chapter).

2. VAR estimation.

GROCER provides several tools to perform VAR estimations:
•VAR estimation itself: function var and its low level counterpart var1;
•Impulse response functions: irf and its subroutines: irf0, irf_asy and irf_mc1;
•Bayesian VARs:  bvar and its low level counterpart  bvar1 (which uses the subroutine  scstd that 
determines the standard deviations from univariate regressions in order to scale the coefficients in the 
bvar estimation and theilbv that estimate the coefficients for an individual equation);
•Error Correction estimation: ecm and a bayesian one version, becm;
•Forecasting with a VAR model: varf

An ordinary VAR estimation involves function var. The function has two compulsory inputs: 
in the first place, the VAR order; and, at whatever place after, a string beginning with 'endo='. This 
string should then be completed by the list of endogenous variables separated by commas. See for 
example the example in function var_d1(), the command:
results=var(2,'endo=del(log(rfa_inv)),del(log(rfa_inc)),del(log(rfa_cons))')

The lag order is 2 and the endogenous variables are del(log(rfa_inv)), del(log(rfa_inc)) and 
del(log(rfa_cons)). You can also add two other optional arguments: the usual argument 'noprint' if 
you do not want to print the results of the regression and a string beginning with 'exo=' if you want to 
add exogenous variables (other than the constant which is automatically included) to the VAR. This 
string  should  then  be  completed  by  the  list  of  exogenous  variables  separated  by  commas.  For 
example, if you want to add an exogenous variable called z and a time trend called temps2, then you 
should type:
-->  results=var(2,'endo=del(log(rfa_inv)),del(log(rfa_inc)),del(log(rfa_cons))', 
'exo=z,t')

As usual, the results are printed, unless the user enters 'noprint' as an input. As usual too, the 
results can be stored in a tlist by giving the name of this tlist as an output of the function (as it is done 
in the example, the output being results).

2 French world for "time"
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As an example, here is the result displayed on screen of the above example:

var estimation results for variables
del(log(rfa_inv)), del(log(rfa_inc)) and del(log(rfa_cons))
 
AIC criterion: -24.549439
BIC criterion: -22.656297
Hannan-Quinn criterion: -24.286856
 
estimation results for dependant variable del(log(rfa_inv))
estimation period: 1960q4-1978q4  
number of observations: 73
number of variables: 7
R² =  .1285615      ajusted R² = .0493398
Overall F test: F(6,66) = 1.6228074       p-value =  .1547471
standard error of the regression:  .0461479
sum of squared residuals:  .0019254
DW(0) =1.962689
Belsley, Kuh, Welsch Condition index: 165
 
variable               coeff      t de student p value
del(log(rfa_inv))(-1)   -.3196310 -2.5477448    .0108422
del(log(rfa_inc))(-1)   .1459888   .2675425     .7890515
del(log(rfa_cons))(-1)  .9612190  1.4469428     .1479129
del(log(rfa_inv))(-2)   -.1605511 -1.2853682    .1986636
del(log(rfa_inc))(-2)   .1146050   .2143873     .8302451
del(log(rfa_cons))(-2)  .9343938  1.4049004     .1600509
cte                     -.0167220  -.9707203    .3316876
 
                         *
                      *     *
 
estimation results for dependant variable del(log(rfa_inc))
estimation period: 1960q4-1978q4  
number of observations: 73
number of variables: 7
R² =  .1141941      ajusted R² = .0336663
Overall F test: F(6,66) = 1.4180703       p-value =  .2209957
standard error of the regression:  .0117191
sum of squared residuals:  .0001242
DW(0) =1.9814536
Belsley, Kuh, Welsch Condition index: 165
 
variable               coeff      t de student p value
del(log(rfa_inv))(-1)   .0439311  1.3789096     .1679226
del(log(rfa_inc))(-1)   -.1527319 -1.1021991    .2703751
del(log(rfa_cons))(-1)  .2885016  1.7101505     .0872381
del(log(rfa_inv))(-2)   .0500308  1.5772812     .1147308
del(log(rfa_inc))(-2)   .0191658   .1411818     .8877264
del(log(rfa_cons))(-2)  -.0102049  -.0604199    .9518212
cte                     .0157672  3.6042716     .0003130
 
                         *
                      *     *
 
estimation results for dependant variable del(log(rfa_cons))
estimation period: 1960q4-1978q4  
number of observations: 73
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number of variables: 7
R² =  .2512819      ajusted R² = .1832166
Overall F test: F(6,66) = 3.6917783       p-value =  .0031839
standard error of the regression:  .0094448
sum of squared residuals:  .0000806
DW(0) =2.1458326
Belsley, Kuh, Welsch Condition index: 165
 
variable               coeff      t de student p value
del(log(rfa_inv))(-1)   -.0024227  -.0943543    .9248277
del(log(rfa_inc))(-1)   .2248127  2.0130521     .0441092
del(log(rfa_cons))(-1)  -.2639675 -1.9415137    .0521960
del(log(rfa_inv))(-2)   .0338804  1.3253298     .1850618
del(log(rfa_inc))(-2)   .3549124  3.2439759     .0011787
del(log(rfa_cons))(-2)  -.0222301  -.1633121    .8702727
cte                     .0129259  3.6662873     .0002461
 
                         *
                      *     *

Impulse  response  functions  can  then  be  calculated  provided  that  the  results  have  been 
properly  saved in  a  results  tlist.  This  calculation  implies  the  call  to  function  irf.  As  with  most 
GROCER functions, there are many default input, so that the user has only to enter a few compulsory 
parameters. These are: in first place, the results tlist from the VAR estimation; in second place, the 
number of periods until which the response is calculated. By default, irf calculates then the impulse 
function using a Choleski decomposition and the asymptotic estimate of the variance to calculate the 
confidence bands. These confidence bands are calculated by default with a 5% size. These default 
options can be modified the following way:
• if you want to calculate the impulse response from the original residuals (note that because these 
residuals are not orthogonal, the impulse functions are altogether not consistent...), then enter the 
option 'mres=original';
•if you want to calculate the confidence bands by the mean of Monte-Carlo simulations from the 
estimated coefficients, then enter the option 'meth=mc1';
•in that case, you can use the default value for the number of draws, that is 1000, or enter the option 
'niter=x', where x is the number of draws you want to use; for instance, if you want to use 500 draws, 
the enter 'niter=500';
•lastly, if you want to use another size level for the confidence band, then enter 'size=x' where x is 
the size you want to use.

•The result of the irf function can be saved in a tlist by giving the name of the tlist as output. Results 
are graphed on the graphic screens, the response of one variable to all shocks are gathered in one 
scilab graphic widow. You can also, if you want so, graph all responses on the same graphic window 
by using function pltirf2.

As an example here is the simplest command to estimate the impulse function of the VAR 
model estimated above with the resulting graphs:
-->irf(results,10);
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With GROCER, you can also estimate a bayesian VAR à la Doan, Litterman, Sims3. Doan, 
Litterman and Sims propose to let each coefficient of the VAR to depend on a small number of 
“hyperparameters”,  that  govern  the  prior  distribution  of  these  parameters.  Concretely,  lag  k  of 
variable j in equation i is assumed to have a coefficient β kij following the law: 

β kij ~ N( mkij , 
σ
σθ φ−

ˆ
ˆ

k)j,i(w
ui

uj )

where φθ and are  parameters  (called  respectively  the  tightness  and  decay  parameters), 
W=(w(i,j))  is  a  weighting  matrix  and  σ̂ uj is  the  estimated  standard  error  from  a  univariate 
autoregression  involving  variable  j.  mkij  is  equal  to  1  for  the  first  lagged  coefficient  of  the 
endogenous variables and to 0 for all other coefficients.

The estimation is done through function bvar. This function takes as inputs: first, lag order of 
the VAR ;  second, the tightness parameter  θ ;  third the weighting matrix W ;  fourth,  the decay 
parameter  φ .  The following parameters are, as with an ordinary VAR, the string ‘endo=…’ and 
optionally the string ‘exo=…’ or the string ‘noprint’. Note that you can enter the whole matrix W or 
you can enter a scalar w as third parameter. In that case, the matrix W is taken as:

3 see Doan,  T.,   R.  B.  Litterman,  and C.A.  Sims  (1984):  « Forecasting and conditional  projections  using realistic  prior  distributions »,  Econometric  Reviews,  Vol.  3,  pp.  1-100 or  James  Le  Sage’s 

book « Applied Econometrics using MATLAB », available at http://www.econ.utoledo.edu.
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Function bvar_d reproduces the estimations provided by Lesage in his book (cf. footnote 3). 
You can reproduce these results by simply typing (only the results of the first equation are here 
presented):

-->  load('SCI/macros/grocer/db/datajpl.dat');  results  =  bvar(2,0.1,0.5,1, 
'endo=illinos,indiana,kentucky,michigan,ohio,pennsyvlania,tennesse,westvirginia]'
);
 
bvar estimation results for variables
illinos,  indiana,  kentucky,  michigan,  ohio,  pennsyvlania,  tennesse  and 
westvirginia
 
PRIOR hyperparameters
tightness =  .1
decay = 1
symetric weights based on  .5
 
estimation results for dependant variable illinos
number of observations: 171
number of variables: 17
R² =  .9941671      ajusted R² = .9935611
standard error of the regression: 3.5865609
sum of squared residuals: 14.199878
DW(0) =2.0441636
 
variable         coeff      t de student p value
illinos(-1)      1.1348549  11.535932    0
indiana(-1)       .3904291  1.8808339     .0617045
kentucky(-1)      .0494292   .8983469     .3702712
michigan(-1)      -.0373268  -.4975042    .6194764
ohio(-1)          -.1596690 -1.6738632    .0959964
pennsyvlania(-1)  .1796105  3.5247189     .0005448
tennesse(-1)      .1563444   .7733333     .4403991
westvirginia(-1)  -.0468081 -2.0727694    .0397027
illinos(-2)       -.1612580 -1.6770889    .0953629
indiana(-2)       -.5038721 -2.5969371    .0102301
kentucky(-2)      -.0264363  -.5156394    .6067762
michigan(-2)      -.0263910  -.3770580    .7066008
ohio(-2)          .1914249  2.0634981     .0405853
pennsyvlania(-2)  -.1226781 -2.5205383    .0126385
tennesse(-2)      -.2883580 -1.4377959    .1523302
westvirginia(-2)  .0147535   .6811260     .4967185
cte              9.4546996  2.2751029     .0241487
 
                         *
                      *     *

The user can also perform ecm and becm estimations, on the same model as var and bvar 
estimations, but with another step: the Johansen cointegration estimation.  This step can be made 
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before calling functions ecm and becm or inside them. 

The basic arguments of functions  ecm and  becm are however the same as those of there 
counterparts var and bvar. The first argument of function ecm must then be the lag order of the ecm 
model and the first arguments of function becm must then be the lag order of the becm model, the 
tightness parameter, the weighting matrix W and the decay parameter. The next parameters can be 
given in any order. The only compulsory one is the string ‘endo=…’.

The user can let  the program determine the cointegration regressions to  add to  the VAR 
model. In that case, she has no other input to give to the function. The program calls the program 
johansen and chooses the number of cointegration regressions by applying the log-likelihood test 
with size 5%. The user can however impose the size level to be 1% or 10%, by giving the option 
‘plevel=0.01’ or ‘plevel=0.1’. She can alternatively choose to impose the number of cointegration 
regressions by giving the option ‘nbr=n’ where n is chosen number of cointegration regressions. 
Finally, if a johansen estimation has already been made, the user can impose the program to use the 
corresponding results by giving the option ‘jres=res’ where res is the name of the result tlist resulting 
from the johansen call.

As an example, here is the result of the ecm estimation applied to James Le Sage database 
(estimation results are reported only for the first equation):

-->load('SCI/macros/grocer/db/datajpl.dat')  ;  ecm(2,'illinos','indiana', 
'kentucky','michigan','ohio','pennsyvlania','tennesse','westvirginia', 
’plevel=0.05)

Johansen estimation results for variables:
illinos, indiana, kentucky, michigan, ohio, pennsyvlania, tennesse, westvirginia
time order: 0
# of lags: 2
 
NULL:    Trace Statistic Crit 90% Crit 95%  Crit 99%
r <= 0   214.38998       153.6341 159.529   171.0905
r <= 1   141.48161       120.3673 125.6185  135.9825
r <= 2   90.363179       91.109   95.7542   104.9637
r <= 3   61.554975       65.8202  69.8189   77.8202
r <= 4   37.103415       44.4929  47.8545   54.6815
r <= 5   21.069871       27.0669  29.7961   35.4628
r <= 6   10.605086       13.4294  15.4943   19.9349
r <= 7   3.1924592       2.7055   3.8415    6.6349
 
conclusions from the trace statistics:
at a 10% level, there are 8 cointegration relation(s)
at a 5% level, there are 2 cointegration relation(s)
at a 1% level, there are 2 cointegration relation(s)
 
NULL:    Max Eigenvalues Statistic  Crit 90%  Crit 95%  Crit 99%
l <= 0   72.908372                  49.2855   52.3622   58.6634
l <= 1   51.118434                  43.2947   46.2299   52.3069
l <= 2   28.808204                  37.2786   40.0763   45.8662
l <= 3   24.45156                   31.2379   33.8777   39.3693
l <= 4   16.033544                  25.1236   27.5858   32.7172
l <= 5   10.464785                  18.8928   21.1314   25.865
l <= 6   7.4126267                  12.2971   14.2639   18.52
l <= 7   3.1924592                  2.7055    3.8415    6.6349
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conclusions from the maximal eigenvalues statistics:
at a 10% level, there are 8 cointegration relation(s)
at a 5% level, there are 2 cointegration relation(s)
at a 1% level, there are 1 cointegration relation(s)
 
                         *
                      *     *
 
 
*** cointregrating vectors from johansen estimation ***
 
variable     vector # 1  vector # 2
illinos       .0131635    -.0099366
indiana       -.3050443   .0399855
kentucky      .0525625    -.0273951
michigan      -.0417678   .1871467
ohio          .0176776    .0199591
pennsyvlania  -.0526335   .0250484
tennesse      .0823386    -.2737890
westvirginia  .0201478    .0216022
 
 
                         *
                      *     *
 
 
ecm estimation results for variables
del(illinos),  del(indiana),  del(kentucky),  del(michigan),  del(ohio), 
del(pennsyvlania), del(tennesse) and del(westvirginia)
 
AIC criterion: 21.375681
BIC criterion: 28.771462
Hannan-Quinn criterion: 22.51342
 
estimation results for dependant variable del(illinos)
number of observations: 170
number of variables: 19
R² =  .3012112      ajusted R² = .2179119
Overall F test: F(18,151) = 3.6160106       p-value =  .0000065
standard error of the regression: 3.8478095
sum of squared residuals: 13.15089
DW(0) =2.0112372
Belsley, Kuh, Welsch Condition index: 305
 
variable                coeff      t de student p value
del(illinos)(-1)         .1283714  1.1426411     .2531876
del(indiana)(-1)         .5099155  2.2799889     .0226083
del(kentucky)(-1)        .0375484   .6432906     .5200355
del(michigan)(-1)        .0155465   .1993254     .8420082
del(ohio)(-1)            -.2129544 -1.828733     .0674396
del(pennsyvlania)(-1)    .1963464  3.4065628     .0006579
del(tennesse)(-1)        .1227843   .5412941     .5883049
del(westvirginia)(-1)    -.0383854 -1.4744336    .1403649
del(illinos)(-2)         -.0549987  -.5019892    .6156751
del(indiana)(-2)         .0251240   .1066415     .9150734
del(kentucky)(-2)        .0457999   .7878064     .4308100
del(michigan)(-2)        .0300744   .3836735     .7012205
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del(ohio)(-2)            -.1197645 -1.0935508    .2741520
del(pennsyvlania)(-2)    .0738467  1.1793163     .2382722
del(tennesse)(-2)        -.0801044  -.3566330    .7213666
del(westvirginia)(-2)    -.0096337  -.3781445    .7053233
lag 1 of coint. vec. #1  .1057021   .3581742     .7202129
lag 1 of coint. vec. #2  -.2967561 -1.005566     .3146244
cte                     3.4340101   .8938760     .3713882
 
                         *
                      *     *

The same results should have been obtained by typing:

-->load('SCI/macros/grocer/db/datajpl.dat')  ;  ecm(2,'illinos','indiana', 
'kentucky','michigan','ohio','pennsyvlania','tennesse','westvirginia', 'nbr=2')

or:
-->load('SCI/macros/grocer/db/datajpl.dat')  ;resjoh=  johansen(0,2, 
'illinos','indiana','kentucky','michigan','ohio','pennsyvlania','tennesse','westv
irginia');  ecm(2,'illinos','indiana','kentucky','michigan','ohio', 
'pennsyvlania','tennesse','westvirginia', 'jres=resjoh', 'plevel=0.05')

Lastly, you can make a forecast with any of the four above VAR methods (var, bvar, ecm, 
becm), with function varf. The first input is the name of the result tlist from the VAR estimation: to 
use varf, it is necessary to have saved before the results of the estimation. The second input is the 
forecasting sample. For the forecasting sample, you can either choose the beginning and the ending 
period and give a (2x1) vector, or only the ending period and in that case the program assumes that 
the beginning period is the period next after the end of the estimation period. If your regression 
involves times series, you can choose to enter the forecasting period as a real vector (the compulsory 
choice if your VAR involves only real vectors) or as a dates vector. For instance if you want to make 
a forecast on period 2003a-2010a with a var estimation performed on period 1970a-2002a, then the 
second argument can be [1;8], or 8, or ['2003a'; '2010a'], or '2010a'. 

There  are  two  other  arguments  that  can  be  given  to  function  varf.  The  first  one  is  the 
traditional ‘noprint’. The second one is ‘xx=mymat’, where mymat is a matrix with a number of rows 
equal  to  the  number  of  forecasting  periods  and  a  number  of  columns  equal  to  the  number  of 
exogenous variables in the VAR model: such an input is compulsory if there are exogenous variables 
and these variables are not all timeseries. 

Function  varf_d provides an example, with James Le Sage data transformed into timeseries 
(database datajplts.dat): 

-->load('SCI/macros/grocer/db/datajplts.dat');bounds('1982m7','1994m12'); 
varjls=var(2,'endo=illinos,indiana,kentucky,michigan,ohio,pennsyvlania,tennesse,w
estvirginia','noprint');rf=varf(varjls,'1995m12');

forecasting results for the VAR  over the period 1995m1-1995m12
***************************************************************
 
obs\variable illinos   indiana   kentucky  michigan  ohio      pennsyvlania 
tennesse  westvirginia
1995m1        142.64411  67.452595  274.26197  84.533449  144.7345   204.78406 
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45.064243 284.22777
1995m2        142.42276  67.422959  273.8345   84.71155   144.13083  204.97743 
44.912297 282.51181
1995m3        142.85986  67.755563  273.96736  84.973191  144.36529  206.24513 
44.958798 283.16639
1995m4        143.59306  68.150474  274.47086  85.287951  144.80037  207.34555 
45.075311 283.47151
1995m5        144.35492  68.517613  275.12682  85.489829  145.40222  208.36631 
45.215349 284.00646
1995m6        145.03503  68.797829  275.77349  85.54111   146.02265  209.18658 
45.334048 284.54313
1995m7        145.59638  68.98995   276.34218  85.467011  146.60536  209.83262 
45.424522 285.10155
1995m8        146.05528  69.114296  276.81728  85.317768  147.13048  210.35387 
45.491398 285.65858
1995m9        146.44798  69.1988    277.22028  85.144766  147.60617  210.80872 
45.545782 286.20725
1995m10       146.81183  69.267958  277.58552  84.986117  148.05205  211.24656 
45.598326 286.74669
1995m11       147.1753   69.338582  277.94626  84.862964  148.4883   211.69976 
45.656729 287.27951
1995m12       147.5552   69.419474  278.32695  84.781708  148.93007  212.18434 
45.72507  287.81067

 
                         *
                      *     *

3. The multiple equtions functions and their specifications.

becm________________________________________bayesian error correction model estimation

CALLING SEQUENCE
[rbecm]=becm(nlag,tight,weight,decay,arg1,...,argn)
 
PARAMETERS
  
INPUT:
* nlag = the lag length
* tight = Litterman's tightness hyperparameter
* weight = Litterman's weight (matrix or scalar)
* decay = Litterman's lag decay = lag^(-decay) 
* argi = arguments which can be:
  . a time series
  . a real (nx1) vector 
  . a string equal to the name of a time series or a (nx1) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
  . 'jres=xx' where xx is the name of a johansen results tlist (optional: if not given, is estimated by the 
function)
  . 'nbr=xx' where xx is the # of cointegration vectors to keep from the johansen estimation (optional: 
if not given, is calculated by the function with a level equal to plevel)
  .  'plevel=xx'  where xx=0.01,  0.05 or  0.1  is  the significance level  for the cointegrating vectors 
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(optional: if not given, is set to 0.05; useless if the option 'nbr=xx' is used)
----------------------------------------------------------- 
OUTPUT:
rbecm = a results tlist with:
  . rbecm('meth')  = 'becm'
  . rbecm('y')     = y data vector
  . rbecm('x')     = x data matrix
  . rbecm('nobs')  = # observations
  . rbecm('nvar')  = # exogenous variables
  . rbecm('neqs')  = # endogenous variables
  . rbecm('tight')  = Litterman's tightness hyperparameter
  . rbecm('weight')  = Litterman's weight (matrix or scalar)
  . rbecm('decay')  = Litterman's lag decay = lag^(-decay) 
  . rbecm('resid') = residuals, with rbecm('resid')(:,i): residuals for equation # i
  . rbecm('beta')  = bhat, with rbecm('beta')(:,i): coefficients for equation # i
  . rbecm('rsqr')  = rsquared, with rbecm('rsqr')(i) rsquared for equation # i
  . rbecm('f')     = F-stat for the nullity of other than the constant rbecm('f')(i): F-stat for equation # i
  . rbecm('pvaluef') = their significance level rbecm('pvaluef')(i): significance for equation # i
  . rbecm('rbar')  = rbar-squared with rbecm('rbar')(i) r-bar-squared for equation # i
  . rbecm('sigu')  = sums of squared residuals with rbecm('sigu')(:,i): sum of residuals for equation # i
  . rbecm('ser')   = standard errors of the regression rbecm('ser')(i): standard error equation # i
  . rbecm('tstat') = t-stats, with rbecm('tstat')(:,i): t-stat for equation # i
  . rbecm('pvalue')= pvalue of the betas, rbecm('pvalue')(:,i): p-value equation # i
  . rbecm('dw')    = Durbin-Watson Statistic, rbecm('dw')(i): DW for equation # i
  . rbecm('boxq') = Box Q-stat, with rbecm('boxq')(i): Box Q-stat for equation # i
  . rbecm('sigma') = (neqs x neqs) var-covar matrix of the regression
  . rbecm('prests') = boolean indicating the presence or absence of a time series in the regression
  . rbecm('namey') = name of the y variable
  . rbecm('nx') = # of x variables 
  . rbecm('nb_coint_relat') = # of cointegration relations
  . rbecm('namex') = name of the cointegrating variables (if any)
  . rbecm('bounds') = if there is a timeseries in the regression, the bounds of the regression
  . rbecm('jres') = the result tlist from the johansen step
  
DESCRIPTION
Performs error bayesian correction model estimation. The user can specify the names of the tlist 
resulting from  johansen estimation, the number of cointegration relations to take into account or the 
significance level  to use to select the number of cointegration relations, but if these parameters are 
not provided, the  function takes default values and, if necessary, performs johansen estimation. The 
lags of the var models are  estimated  with bayesian prior given by the parameters tight, weight and 
decay. 
  
Examples:
results = becm(2,0.1,1,0.5,'illinos','indiana','kentucky','michigan'...
 ,'ohio','pennsyvlania','tennesse','westvirginia');
 
Example  taken  from  function  becm_d();  endogenous  variables  are 
'illinos','indiana','kentucky','michigan', 'ohio','pennsyvlania','tennesse','westvirginia'; # of lags set to 2; 
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tight, weight and decay are set to 0.1,1 and 0.5.
 

bvar ______________________________________________________bayesian VAR Estimation
  
CALLING SEQUENCE
rbvar=bvar1(nlag,tight,weight,decay,y,x)
 
PARAMETERS
  
INPUT:
* nlag = the lag length
* tight = Litterman's tightness hyperparameter
* weight = Litterman's weight (matrix or scalar)
* decay = Litterman's lag decay = lag^(-decay) 
* varargin = arguments which can be:
  . 'endo=[var1 var2 ... varn]' with vari: the ith endogenous variable in the var
  . 'exo=[var1 var2 ... varn]' with vari: the ith exogenous variable in the var
  . the string 'noprint' if the user doesn't want to print the results of the regression
----------------------------------------------------------- 
OUTPUT:
rbvar = a results tlist with:
  . rbvar('meth')  = 'bvar'
  . rbvar('y')     = y data vector
  . rbvar('x')     = x data matrix
  . rbvar('nobs')  = # observations
  . rbvar('nvar')  = # exogenous variables
  . rbvar('tight')  = Litterman's tightness hyperparameter
  . rbvar('weight')  = Litterman's weight (matrix or scalar)
  . rbvar('decay')  = Litterman's lag decay = lag^(-decay) 
  . rbvar('neqs')  = # endogenous variables
  . rbvar('resid') = residuals, with rbvar('resid')(:,i): residuals for equation # i
  . rbvar('beta')  = bhat, with rbvar('beta')(:,i): coefficients for equation # i
  . rbvar('rsqr')  = rsquared, with rbvar('rsqr')(i) : rsquared for equation # i
  . rbvar('overallf')     = F-stat for the nullity of coefficients other than the constant with: rbvar('f')(i): 
F-stat for equation # i
  . rbvar('pvaluef') = their significance level with: rbvar('pvaluef')(i): significance level for equation # 
i
  . rbvar('rbar')  = rbar-squared
  .  rbvar('sigu')   = sums of squared residuals with rbvar('sigu')(:,i):  sum of squared residuals for 
equation # i
  . rbvar('ser')   = standard errors of the regression with rbvar('ser')(i): standard error for equation # i
  . rbvar('tstat') = t-stats, with rbvar('tstat')(:,i): t-stat for equation # i
  . rbvar('pvalue')= pvalue of the betas, with rbvar('pvalue')(:,i): p-value for equation # i
  . rbvar('dw')    = Durbin-Watson Statistic, with: rbvar('dw')(i): DW for equation # i
  . rbvar('sigma') = (neqs x neqs) var-covar matrix of the regression
  . rbvar('nx') = # of x variables 
  . rbvar('namey') = name of the y variable
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  . rbvar('namex') = name of the x variables (if any)
  . rbvar('prests') = boolean indicating the presence or absence of a time series in the regression
  . rbvar('bounds') = if there is a timeseries in the regression, the bounds of the regression
  
DESCRIPTION
Performs error bayesian VAR estimation. The lags of the var models are estimated  with bayesian 
prior given by the parameters tight, weight and decay. 
  
Example:
results = bvar(2,0.1,1,0.5,'illinos','indiana','kentucky','michigan'...,'ohio','pennsyvlania'
'tennesse','westvirginia');
 
Example  taken  from  function  bvar_d();  endogenous  variables  are 
'illinos','indiana','kentucky','michigan', 'ohio','pennsyvlania','tennesse','westvirginia'; # of lags set to 2; 
tight, weight and decay are set to 0.1,1 and 0.5.

bvar1 _____________________________________________________bayesian VAR Estimation
  
CALLING SEQUENCE
[rbvar]=bvar1(nlag,tight,weight,decay,y,x)
 
PARAMETERS
  
INPUT:
* nlag = the lag length
* tight = Litterman's tightness hyperparameter
* weight = Litterman's weight (matrix or scalar)
* decay = Litterman's lag decay = lag^(-decay) 
* y = (nobs x neqs) matrix of endogenous variables
* x = (nobs x nx) matrix of exogenous variables (optional)
----------------------------------------------------------- 
OUTPUT:
rbvar = a results tlist with:
  . rbvar('meth')  = 'bvar'
  . rbvar('y')     = y data vector
  . rbvar('x')     = x data matrix
  . rbvar('nvar')  = # exogenous variables
  . rbvar('nobs')  = # observations
  . rbvar('neqs')  = # endogenous variables
  . rbvar('nlag')  = # lags
  . rbvar('tight')  = Litterman's tightness hyperparameter
  . rbvar('weight')  = Litterman's weight (matrix or scalar)
  . rbvar('decay')  = Litterman's lag decay = lag^(-decay) 
  . rbvar('beta')  = bhat, with rbvar('beta')(:,i): coefficients for equation # i
  . rbvar('tstat') = t-stats, with rbvar('tstat')(:,i): t-stat for equation # i
  . rbvar('pvalue')= pvalue of the betas, with rbvar('pvalue')(:,i): p-value for equation # i
  . rbvar('resid') = residuals, with rbvar('resid')(:,i): residuals for equation # i
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  . rbvar('yhat') = yhat, with rbvar('yhat')(:,i): residuals for equation # i
  . rbvar('sige')  = estimated variances rbvar('sige')(i): variance for equation # i
  . rbvar('ser')   = standard errors of the regression with rbvar('ser')(i): standard error equation # i
  . rbvar('dw')    = Durbin-Watson Statistic, with: rbvar('dw')(i): DW for equation # i
  . rbvar('rsqr')  = rsquared, with rbvar('rsqr')(i): rsquared for equation # i
  . rbvar('rbar')  = rbar-squared
  . rbvar('sigma') = (neqs x neqs) var-covar matrix of the  regression
  . rbvar('nx') = # exogenous variables
  . rbvar('prescte') = boolean indicating the presence or absence of a constant in the regression
------------------------------------------------------------
NOTE:  constant vector automatically included
------------------------------------------------------------
  
DESCRIPTION
Estimates a bayesian VAR of order p. Applies when the variables are already in matrix form. Does 
note display any result on screen (see bvar for a more complete function)  

Examples:
1) rbvar = bvar1(nlag,tight,weight,decay,y)
2) rbecm=bvar1(nlag,tight,weight,decay,dy,x)
 
Examples taken from functions bvar and becm: these functions should be mainly be used in other 
functions.
 

ecm____________________________________________________Error Correction Regression
  
CALLING SEQUENCE
recm=ecm(p,arg1,...,argn)
 
PARAMETERS
  
INPUT:
* p = # of lags 
* argi = an argument which can be:
    - the name of an endogenous variable 
    - 'jres=xx' where xx is the name of a johansen results tlist (optional: if not given, is estimated by 
the function)
    -  'nbr=xx'  where  xx  is  the # of  cointegration vectors  to  keep  from the  johansen estimation 
(optional: if not  given, is calculated by the function with a level equal to plevel)
    - 'plevel=xx' where xx=0.01, 0.05 or 0.1 is the significance level for the cointegrating vectors 
optional: if not given, is set to 0.05; useless if the option 'nbr=xx' is used) 
----------------------------------------------------------- 
OUTPUT:
recm = a results tlist with:
      . recm('meth')  = 'var'  
      . recm('y')     = y data vector  
      . recm('x')     = x data matrix  
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      . recm('nobs')  = # observations  
      . recm('nvar')  = # exogenous variables  
      . recm('neqs')  = # endogenous variables  
      . recm('resid') = residuals, with recm('resid')(:,i): residuals for equation # i  
      . recm('beta')  = bhat, with recm('beta')(:,i): coefficients for equation # i  
      . recm('rsqr')  = rsquared, with recm('rsqr')(i) : rsquared for equation # i
      .  recm('overallf')  =  F-stat  for  the  nullity  of  coefficients  other  than  the  constant  with: 
recm('overallf')(i): F-stat for equation # i
      . recm('pvaluef') = their significance level with: recm('pvaluef')(i): significance level  for equation 
# i
      . recm('rbar')  = rbar-squared  
      . recm('sigu')  = sums of squared residuals with recm('sigu')(:,i): sum of squared error for equation 
# i
      . recm('tstat') = t-stats, with recm('tstat')(:,i): t-stat for equation # i
      . recm('pvalue')= pvalue of the betas, with recm('pvalue')(:,i): p-value for equation # i
      . recm('dw')    = Durbin-Watson Statistic, with: recm('dw')(i): DW for equation # i
      . recm('condindex') = multicolinearity cond index, with recm('condindex')(i): cond index for 
equation # i
      . recm('boxq') = Box Q-stat, with recm('boxq')(i): Box Q-stat for  equation # i
      . recm('aic') = Akaïke information criterion
      . recm('bic') = Schwartz information criterion
      . recm('hq') = Hannan-Quinn information criterion
      . recm('namey') = name of the y variable
      . recm('nx') = # of x variables 
      . recm('namex') = name of the cointegration relations (if any)
      . recm('prests') = boolean indicating the presence or absence of a
  time series in the regression
      . recm('nb_coint_relat') = # of cointegration relations
      . recm('jres') = results of johansen estimation
      . recm('bounds') = if there is a timeseries in the regression, the
  bounds of the regression
          
DESCRIPTION
  Performs error correction model estimation. The user can specify the names of the tlist resulting 
from   johansen  estimation,  the  number  of  cointegration  relations  to  take  into  account  or  the 
significance level to use to select the number of cointegration relations, but if these parameters are 
not provided, the  function takes default values and, if necessary, performs johansen estimation.
  
Example
 1) result = ecm(2,'illinos','indiana','kentucky','michigan','ohio','pennsyvlania','tennesse','westvirginia')
 2) result = ecm(2,'illinos','indiana','kentucky','michigan','ohio','pennsyvlania','tennesse','westvirginia', 
'plevel=0 05')
 3) result = ecm(2,'illinos','indiana','kentucky','michigan','ohio','pennsyvlania','tennesse','westvirginia',
'nbr=2)
 
 First  example  is  taken  from  function  ecm_d();  endogenous  variables  are 
'illinos','indiana','kentucky','michigan', 'ohio','pennsyvlania','tennesse','westvirginia'; example 1 let the 
function set the number of cointegration relations to the one chosen by a Johansen estimation at a 5% 
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level; since there are 2 cointegration relations at a 5% level, all 3 examples give the same result.

eq2xcol ______________________Transformation of a system of equations into a matrix vector
  
CALLING SEQUENCE

[x,boundsvarb,prests]=eq2xcol(grocer_a,listeq)
 
PARAMETERS
  
INPUT:
* grocer_a = the vector of coefficients where the equations must be evaluated
* listeq = the list of equations in string form
------------------------------------------------------------ 
OUTPUT:
* x = the X matrix in the regression represented by the system of equations embedded in listeq
* boundsvarb = the bounds of the regressions (if any)
* prests = a boolean indicating whether there is a ts in the equations
  
DESCRIPTION

Transforms a list of strings into the column vector equal to the evaluation of the list of equations 
contained  in  grocer_listeq  at  point  grocer_a.  The  coefficients  must  be  named grocer_a(i)  in  the 
equations. Used in function explosys.
  
Examples
1) [grocer_x,grocer_boundsvarb,grocer_prests]=eq2xcol(ones(grocer_ncoef,1),grocer_listeq)
 2) x=-numz0(eq2xcol,ones(grocer_ncoef,1),grocer_ncoef,ones(grocer_ncoef,grocer_totalnobs),1,
grocer_listeq)'
 
These two examples are taken from explosys. The main interest is in example 2: eq2xcol is given as 
an entry in function numz0 in order to calculate the x matrix as the first derivative of the vector of 
equations with respect to the coefficients: it is evaluated at vector ones(grocer_ncoef,1).

exploeqs _______________________________________Transformation of 2sls or 3sls equations 
  
CALLING SEQUENCE
[xall,lx1,ly1,endoeq,nameinst,lindx1,lindy1]=exploeqs(neqs,lexo,endo,z,namez)
 
PARAMETERS
  
INPUT:
* neqs = # of equations
* lexo = list of independent variables in each equation
* endo = list of dependent variables in each equation
* z = matrix of values of the dependent variables
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* namez = matrix of names of the dependent variables
------------------------------------------------------------ 
OUTPUT:
* xall = matrix of the values of the instruments
* lx1 = list of the exogenous variables for each equation
* ly1 = list of the endogenous variables for each equation
* endoeq = list of he names of the endogenous variables for each equation
* nameinst = matrix of the names of the instruments
* lindx1 = list of the indexes of exogenous variables for each equation
* lindy1 = list of the indexes of endogenous variables for each equation
  
DESCRIPTION
Retrieves from the equations the list of endogenous, exogenous and instruments for a Two-Stage or 
Three-Stage Least-squares Regression.
  
Example
[xall,lx1,ly1,endoeq,nameinst,lindx1,lindy1]=exploeqs(grocer_neqs,grocer_lexo,grocer_endo,grocer
_z,grocer_namez)
 
This examples is taken from twosls.

explosys ______________________________________________Transformation of sur equations
  
CALLING SEQUENCE
[x,y,boundsvarb,prests,listcoef,namey,ncoefeqs]= explosys(namecoef,specara,speccarb,arg1,...,argn)
 
PARAMETERS
  
INPUT:
* namecoef = column vector of coefficients name
* speccara = column vector of characters that must be found after the name of a coefficient 
* speccarb = column vector of characters that must be found before the name of a coefficient
* argi = an equation containing the coefficients named in namecoef 
------------------------------------------------------------ 
OUTPUT:
* x = (nobs x k) matrix of exogenous variable in the complete model
* y = (nobs x 1) vector of endogenous variable in the complete model
* boundsvarb = bounds (if any) of the regression
* prests = a boolean indicating the presence or absence of ts in the regressions
* listcoef = list of indexes of the coefficients in each equation
* namey = column vector of the names of the endogenous variables
* ncoefeqs = column vector of the # of coefficients in each equation
  
DESCRIPTION
From  a  series  of  equations  retrieve  the  matrix  of  exogenous  variables,  taking  into  acount  the 
constraints (if any) imposed on the coefficients; the equations must be linear in the coefficients
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Example
[x,y,grocer_boundsvarb,grocer_prests,listcoef,namey,ncoefeqs]= 
explosys(grocer_namecoef,grocer_speccara,grocer_speccarb,varargin(:))
 
This example is taken from sur.

irf _______________________________________________________Impulse Response Function
  
CALLING SEQUENCE

res=irf(results,S,arg1,..,argn)
 
PARAMETERS
  
INPUT:
* results = results tlist returned by VAR
* S = scalar for number of periods in IRF
* argi = optional argument which can be:
    - 'mres=x' where:
      x = chol1 (cholesky decomposition)
      x = chol2 (triangular factorisation)
      x = original (original residuals)
          (default = chol1)
    - 'meth=x' where:
      x = asym (asymptotic formula)
      x = mc1 (Monte-Carlo simulations using draws from the coefficients) 
         (default = asym)
    - 'niter=x' where x= # iterations for the Monte-Carlo simulations (if any; default=1000)
    - 'size=x' where x = significance level for the confidence band (default =0.05) 
      ------------------------------------------------------------ 
OUTPUT:
res = a results tlist with:
      - res('meth') = 'irf'
      - res('mres') = decomposition method
      - res('T') = # of periods represented
      - res('IRF') = ((S+1) x T) impulse response functions
      - res('IRF_LOW') = ((S+1) x T) lower range of impulse response confidence band
      - res('IRF_UPP') = ((S+1) x T) upper range of impulse response confidence band
      - res('PHI') = (N*p x T) matrix of coefficients
      - res('resvar') = results tlist of the originating VAR
      - res('msg') = message inidicating the nature of the decomposition
      - res('size') = size of the confidence band 
    
DESCRIPTION

Calculates Impulse Response Function for VAR 
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Examples
1) results=var(2,'endo=del(log(rfa_inv)),del(log(rfa_inc)),del(log(rfa_cons))'); 
[resirf]=irf(results,10,'mres=chol1','meth=asym')
 2) [resirf]=irf(results,10,'mres=original','meth=mc1','niter=1000')
 
Examples taken from function var_d(). In the first one, impulse response is calulated for 10 periods, 
with shcoks calculated from a Choleski decomposition, with the asymptotic formula. In the second 
one, impulse response is calulated for 10 periods, with original  unorthogonalized shocks, using 1000 
draws from the coefficients estimated law. 

irf0______________________________________________________Impulse Response Function
  
CALLING SEQUENCE

[IRF,PHI]=irf0(beta,S,N,p,P))
 
PARAMETERS
  
INPUT:
* beta = estimated parameters from a VAR
* S = # of periods
* N = dimension of the VAR
* p = # of lags
* P = matrix such that P*e = u
      where u is the residual from the VAR regression; e is the residual to be shocked
------------------------------------------------------------ 
OUTPUT:
* IRF = ((S+1) x T) impulse response functions
* PHI = (N*p x T) matrix of coefficients
    
DESCRIPTION

Calculates Impulse Response Function for VAR (low level function). 

Example
m=irf0(sbeta,S,N,p,P)
 
Example taken from function irf_mc1(). Used here because of its greater speed.
  

irf_asy____________________________________________________Impulse Response Function
  
CALLING SEQUENCE

[irf_low,irf_upp]=irf_asy(results,mres,P,IRF,PHI,S,siz)
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PARAMETERS
  
INPUT:
* results = results tlist returned by VAR
* mres = decomposition method
* P = matrix such that P*e = u
      where u is the residual from the VAR regression e is the residual to be shocked
* IRF = ((S+1) x T) impulse response functions
* PHI = (N*p x T) matrix of coefficients
* S = # of periods
* siz = size of the confidence band
------------------------------------------------------------ 
OUTPUT:
* irf_low = ((S+1) x T) lower range of impulse response confidence band
* irf_upp = ((S+1) x T) upper range of impulse response confidence band
    
DESCRIPTION

Calculates  standard  error  of  Impulse  Response  Function  for  VAR  by  means  of  the  asymptotic 
formula. Note: a much simpler method is to use irf with option 'meth=asym'  

Example
[irf_low,irf_upp]=irf_asy(results,mres,P,IRF,PHI,S,siz)
 
Example taken from function irf(). This is equivalent to the simpler call: irf(results,S,'meth= 
asym','mres=name of mres','size=siz')

 
irf_mc1___________________________________________________Impulse Response Function
  
CALLING SEQUENCE

[irf_low,irf_upp]=irf_mc1(res,mres,S,N,p,niter,siz)
 
PARAMETERS
  
INPUT:
* res = results tlist returned by VAR
* mres = decomposition method
* N = # of endogenous variables in the VAR
* S = # of periods
* p = # of lags in the VAR
* niter = # of draws in the simulation
* siz = size of the confidence band
------------------------------------------------------------ 
OUTPUT:
* irf_low = ((S+1) x T) lower range of impulse response confidence band
* irf_upp = ((S+1) x T) upper range of impulse response confidence band
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DESCRIPTION

Calculates  standard  error  of  Impulse  Response  Function  for  VAR  by  means  of  Monte-Carlo 
simulations on the coefficient matrix.  

Example
[irf_low,irf_upp]=irf_mc1(results,mres,S,N,p,niter,siz)

Example taken from function irf(). This is equivalent to the simpler call: irf(results,S,'mres=name of 
mres','size=siz','meth=mc1','niter=value of niter'))
   

scstd ____________________________________________________________bvar scaling factor 

CALLING SEQUENCE
scale=scstd(y,nobs,nlag)
 
PARAMETERS
  
INPUT:
* y = an (nobs x neqs) matrix of y-vectors in levels.
* nobs = # of observations in y
* nlag = the lag length                        

OUTPUT:
scale = std deviation of the residuals 
      
DESCRIPTION
 Determines bvar() function scaling factor using a univariate AR model (called by bvar1() only)

Example
scale(j,1) = scstd(ytmp,nobs,nlag); 

 Example taken from function bvar1 (!)

sur __________________________________________Zellner Seemingly Unrelated Regressions 

CALLING SEQUENCE
rsur=sur(arg1,...,argn)
 
PARAMETERS
  
INPUT:
argi : an argument which can be:
   . equations written 'vary=coef1*varx1+...+coefi*varxi' 
   where:
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     - coefi = the name of a coefficient   
     - varxi = the name of a variable
   . 'coef=xx' where xx is a vector of coefficients names
   . 'niter=x' where x is the max # iterations authorized (optional; default =100)
   . 'crit=x' where x is the convergence criterion
   . the string 'noprint' if the user doesn't want to print the results of the regression
  . 'unequal' if the equations do not all cover the entered the time span given by the bounds (so, the 
user must have bounds by the use of the function bounds) and the user wants to estimate all equations 
over the largest time span included in the one covered by the bounds.
 ------------------------------------------------------------ 
OUTPUT:
rsur =a results tlist with:
  - rsur('meth') = 'sur'
  - rsur('nobs') = # of observations
  - rsur('neqs') = # of estimated equations
  - rsur('ncoef') = # of estimated coefficients
  - rsur('beta') = bhat
  - rsur('tstat') = t-stats
  - rsur('pvalue') = pvalue of the betas
  - rsur('sigma') = covariance matrix of the residuals
  - rsur('sigu') = (1 x neqs) sum of squared residuals
  - rsur('sigu') = (1 x neqs) sum of squared residuals
  - rsur('dw') = (1 x neqs) Durbin-Watson
  - rsur('prests') = boolean indicating the presence or absence of a time series in the regression
  - rsur('namecoef') = (ncoef x 1) mame of the coeffcients
  - rsur('namey') = name of endogenous variables
  - rsur('eqs') = list of the neqs equations
  - rsur('coefs') = list of the coefs names in each equation
        
DESCRIPTION
Computes Zellner Seemingly Unrelated Regression. Some coefficients can be common to several 
equations. There can be spaces in the text of the equations. If you want to introduce a constant in 
your equation, you can omit the '*varxi' in the text of the equation. The exogenous variable can be 
expressed anyway. The only constraint is that the model must be linear in its coefficients
  
EXAMPLE
1) eq1='igm=a1*fgm+a2*cgm+a3'; eq2='ich=a4*fch+a5*cch+a6'; eq3='ige=a7*fge+a8*cge+a9'; 
eq4='iwest=a10*fwest+a11*cwest+a12'; eq5='iuss=a13*fuss+a14*cuss+a15'; 
r=sur(eq1,eq2,eq3,eq4,eq5)
2) sur('y1=c1*x1+c2*x2','y2=c1*x1+c3*log(x4)','coeff=[c1,c2,c3]','itmax=20','noprint')
 
Example 1 is taken from function sur_d. Here coefficients names are a1 to a15 and are not given as 
input of the function. # of iterations is set to default. Results are printed. Example 2 makes use of all 
options. Note that the coefficient c1 is imposed to be the same in equations for y1 and y2.
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syslist ___________________________________recovers objects names in a system of equations

CALLING SEQUENCE
[lx,listcoef,ncoefeqs,xx,namexos,boundsvarb]=syslist(l,coef,boundsvarb)
 
PARAMETERS
  
INPUT:
* eq = a string of the form :  
* 'varendo=coefi*varex1+...+coefj*varexk' with varexi possibly lacking
* coef = a string vector of the form coef=['coef1';...;'coefn']
------------------------------------------------------------ 
OUTPUT:
* namey = the name of the rhs variable
* ncoefeqi = a (nx1) vector of the indexes of coefi,...,coefj in coef
* lexo = a (nx1) vector of names of the exogenous variables
      
DESCRIPTION
Recovers from an equation the name of the endogenous variable, the indexes of the coefficients (in a 
vector) and the names of the exogenous variables (also in a vector)
  
Example
1) [nyi,ncoefi,lexoi]=eqlist('y1=c1*x1+c2*x2',['c1';'c2'])
2) [grocer_nyi,grocer_ncoefi,grocer_lexoi]=eqlist(varargin(grocer_i),grocer_coef)
 
Example 1 extracts in nyi y1, in ncoefi [1;2] and in lexoi ['x1';'x2']. Example 2 is taken from function 
twosls.

theilbv ______________________________________________Theil-Goldberger for bvar model

CALLING SEQUENCE
results=theilbv(nlag,tight,weight,decay,arg1,...,argn)
 
PARAMETERS
  
INPUT:
* y = nobs
* x 1 input vector
* x = nobs x nvar input explanatory variables matrix 
* nobs = # of observations                           
* neqs = # of equations                              
* eqn  = # equation number
* nlag = the lag
* length of the VAR
* theta = Litterman's tightness hyperparameter
* weight = Litterman's weight (matrix or scalar)
* decay = Litterman's lag decay = lag^(-decay) 
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* scale  = scaling vector (determined in bvar)                         
* scale2 = scaling vector (determined in bvar)  
* nx = # of deterministic variables excluding constant term 

OUTPUT:
results = a results tlist with:
      . results('meth')  = 'bvar' 
      . results('beta')  = bhat 
      . results('tstat') = t-statistics
      . results('tprob') = t-probabilities 
      . results('yhat')  = yhat 
      . results('resid') = residuals 
      . results('sige')  = e'*e/(n-k)
      . results('rsqr')  = rsquared 
      . results('rbar')  = rbar-squared 
      . results('nobs')  = nobs 
      . results('nvar')  = nvar    
          
DESCRIPTION
Performs Theil-Goldberger for bvar model. Used in function bvar1. 
  
Example
bresult = theilbv(yvec,ymat,nlag,neqs,i,tight,weight,decay,scale2,scale,nx)
  
Example taken from function bvar1. Should not have many other uses!

threesls _________________________________________Three-Stage Least-squares Regression
  
CALLING SEQUENCE
[results]=threesls(arg1,...,argn)
 
PARAMETERS
  
INPUT:
argi: an argument which can be:
* an equation of the following form:
   'vary=coef1*varx1+...+coefi*varxi' 
    where:
       - coefi = the name of a coefficient   
       - varxi = the name of a variable
* 'coef=coef1;coef2;...coefn' where coef1,...,coefn are the names of the coefficients in the system
(optional; default: 'coef=a1;...,an')
* 'endo =[endo1;...;endon]' where endo1,...,endon are the names of the endogenous variables
(optional; necessary if the names of the endogenous variables in the rhs of the equations are not the 
same as  those of the lhs; default: the names of all the lhs sides of the equations)
* 'noprint' if you do not want to print the results
------------------------------------------------------------ 
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OUTPUT:
results =a results tlist with:
   - results('meth')  = 'threesls'
   - results('namecoef')  = the matrix of the names of the coefficients
   - results('riv1'),...,results('rivn) = the results of the iv estimation for each equation (see iv for more 
details)
        
DESCRIPTION
Computes Three-Stage Least-squares Regression
  
Example
r=threesls('y1=a1+b1*x1','y2=a2+b2*x2+c2*y1','y3=a3+b3*x3+c3*y2+d3*x2','coef=a1;a2;a3;b1;b2;
b3;c1;c2;c3;d3')
 
Example taken from function threesls_d. The equations are 'y1=a1+b1*x1','y2=a2+b2*x2+c2*y1' and 
'y3=a3+b3*x3+c3*y2+d3*x2'.Coefficients are a1, a2, a3, b1, b2, b3, c1, c2, c3, d3. Their name is 
given to the function through the input 'coef=a1;a2;a3;b1;b2;b3;c1;c2;c3;d3'.

twosls ___________________________________________ Two--Stage Least-squares Regression
  
CALLING SEQUENCE
[results]=twosls(arg1,...,argn)
 
PARAMETERS
  
INPUT:
argi : an argument which can be:
  *  an equation of the following form:
       'vary=coef1*varx1+...+coefi*varxi' 
        where:
          - coefi = the name of a coefficient   
          - varxi = the name of a variable
  *  'coef=coef1;coef2;...coefn' where coef1,...,coefn are the names of the coefficients in the system
     (optional; default: 'coef=a1;...,an')
  *  'endo =[endo1;...;endon]' where enod1,...,endon are the names of the endogenous variables
     (optional; necessary if the names of the endogenous variables in the rhs of the equations are not 
the same as those of the lhs; default: the names of all the lhs sides of the equations)
  *  'noprint' if you do not want to print the results
------------------------------------------------------------ 
OUTPUT:
results =a results tlist with:
     - results('meth')  = 'tsls'
     - results('namecoef')  = the matrix of the names of the coefficients
     - results('riv1'),...,results('rivn) = the results of the iv estimation for each equation (see iv for more 
details)
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DESCRIPTION
Computes Two-Stage Least-squares Regression.
  
Example
rt=twosls('y1=a+b*x1','y2=d+e*(y1-x2)+f*x2','coef=a;b;d;e;f')
 
Example taken from function twosls_d. The equations are 'y1=a+b*x1' and 'y2=d+e*(y1-x2)+f*x2'. 
Coefficients are a, b, d, e and f. Their name is given to the function through the input 'coef=a;b;d;e;f'.

var________________________________________________________________VAR Regression
  
CALLING SEQUENCE
rvar=var(p,arg1,...argn)
 
PARAMETERS
  
INPUT:
* p = the lag length of the VAR
* argi = an argument which can be:
    - 'endo=[var1 var2 ... varn]' with vari: the ith endogenous variable in the var
    - 'exo=[var1 var2 ... varn]' with vari: the ith exogenous variable in the var
    - the string 'noprint' if the user doesn't want to print the results of the regression
------------------------------------------------------------ 
OUTPUT:
rvar = a results tlist with:
      . rvar('meth')  = 'var'  
      . rvar('y')     = y data vector  
      . rvar('x')     = x data matrix  
      . rvar('nobs')  = # observations  
      . rvar('nvar')  = # exogenous variables  
      . rvar('neqs')  = # endogenous variables  
      . rvar('resid') = residuals, with rvar('resid')(:,i): residuals for equation # i  
      . rvar('beta')  = bhat, with rvar('beta')(:,i): coefficients for equation # i  
      . rvar('rsqr')  = rsquared, with rvar('rsqr')(i) : rsquared for equation # i
      .  rvar('overallf')  =  F-stat  for  the  nullity  of  coefficients  other  than  the  constant  with: 
rvar('overallf')(i): F-stat for equation # i
      . rvar('pvaluef') = their significance level with: rvar('pvaluef')(i): significance level  for equation # 
i
      . rvar('rbar')  = rbar-squared  
      . rvar('sigu')  = sums of squared residuals with rvar('sigu')(:,i): sum of squared error for equation # 
i
      . rvar('tstat') = t-stats, with rvar('tstat')(:,i): t-stat for equation # i
      . rvar('pvalue')= pvalue of the betas, with rvar('pvalue')(:,i): p-value for equation # i
      . rvar('dw')    = Durbin-Watson Statistic, with: rvar('dw')(i): DW for equation # i
      .  rvar('condindex')  = multicolinearity  cond index, with rvar('condindex')(i):  cond index for 
equation # i
      . rvar('boxq') = Box Q-stat, with rvar('boxq')(i): Box Q-stat for  equation # i
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      . rvar('aic') = Akaïke information criterion
      . rvar('bic') = Schwartz information criterion
      . rvar('hq') = Hannan-Quinn information criterion
      . rvar('prests') = boolean indicating the presence or absence of a timeseries in the regression
      . rvar('namey') = name of the y variable
      . rvar('nx') = # of x variables   
      . rvar('namex') = name of the x variables (if any)
      . rvar('bounds') = if there is a timeseries in the regression, the bounds of the regression
          
DESCRIPTION
Estimates a  VAR of  order p on endogenous variables,  with the eventual  presence of exogenous 
variables and, by default, displays on screen the estimation results.
  
Example
results=var(2,'endo=del(log(rfa_inv)),del(log(rfa_inc)),del(log(rfa_cons))')
 
Example  taken  from  function  var_d1()  estimate  a  var  model,  taken  from  Lütkepohl's  book 
"Introduction to multiple time series analysis", with three endogenous variables (the differentiated 
logarithm of investment, GDP and consumption) with 2 lags and no exogenous variables. 

var1_______________________________________________________________VAR Regression
  
CALLING SEQUENCE
rvar=var1(y,p,x)
 
PARAMETERS
  
INPUT:
      y = an (nobs x neqs) matrix of y-vectors
     nlag = the lag length
     x = optional matrix of variables (nobs x nx) (NOTE: constant vector automatically included)
------------------------------------------------------------ 
OUTPUT:
 rvar = a results tlist with:
      . rvar('meth')  = 'var'  
      . rvar('y')     = y data vector  
      . rvar('x')     = x data matrix  
      . rvar('nobs')  = # observations  
      . rvar('nvar')  = # exogenous variables  
      . rvar('neqs')  = # endogenous variables  
      . rvar('resid') = residuals, with rvar('resid')(:,i): residuals for equation # i  
      . rvar('beta')  = bhat, with rvar('beta')(:,i): coefficients for equation # i  
      . rvar('rsqr')  = rsquared, with rvar('rsqr')(i) : rsquared for equation # i
      .  rvar('overallf')  =  F-stat  for  the  nullity  of  coefficients  other  than  the  constant  with: 
rvar('overallf')(i): F-stat for equation # i
      . rvar('pvaluef') = their significance level with: rvar('pvaluef')(i): significance level  for equation # 
i
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      . rvar('rbar')  = rbar-squared  
      . rvar('sigu')  = sums of squared residuals with rvar('sigu')(:,i): sum of squared error for equation # 
i
      . rvar('tstat') = t-stats, with rvar('tstat')(:,i): t-stat for equation # i
      . rvar('pvalue')= pvalue of the betas, with rvar('pvalue')(:,i): p-value for equation # i
      . rvar('dw')    = Durbin-Watson Statistic, with: rvar('dw')(i): DW for equation # i
      .  rvar('condindex')  = multicolinearity  cond index, with rvar('condindex')(i):  cond index for 
equation # i
      . rvar('boxq') = Box Q-stat, with rvar('boxq')(i): Box Q-stat for  equation # i
      . rvar('aic') = Akaïke information criterion
      . rvar('bic') = Schwartz information criterion
      . rvar('hq') = Hannan-Quinn information criterion
          
DESCRIPTION
Estimates a  VAR of  order p on endogenous variables,  with the eventual  presence of exogenous 
variables.  Contrary  to  var,  do  not  display  on  screen  the  estimation  results.  Endogenous  and 
exogenous variables must already be in a matrix form.

Examples
1) rvar=var1(grocer_y,grocer_p,x)
2) recm=var1(dy,grocer_nlag,x)
 
These examples are taken from functions var and ecm; endogenous variables are in matrices grocer_y 
and dy respectively; the number of lags are grocer_p and grocer_nlag respectively; and exogenous 
variables are in matrix x. 
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