
Chapter 6: Single equation regressions

GROCER contains most of the usual methods for single equation regression, from the inescapable
ordinary least squares to the less used Theil-Goldberger mixed estimator through Cochrane-Orcutt,
instrumental variables, non linear least squares,… As explained in chapter 4, these methods can be applied to
a great variety of objects, among which timeseries. In that last case, the user will often want to choose her
estimation bounds: this is done through the GROCER command bounds, which is presented in part 1 of this
chapter. Ordinary least squares are the object of part 2. Part 3 of this chapter deals with the estimation of
models with autocorrelated residuals, part 4 with instrumental variables estimations, part 5 with non linear
least squares, part 6 with limited dependent variables, part 7 with various other single variable regression
methods and part 8 with forecasting. Part 9 is devoted to the precise description of the functions and their
specifications.

1. Setting estimation bounds

Performing regressions with timeseries often involves the choice of a time range over which
endogenous and exogenous variables are considered. This is done in GROCER by the function bounds. This
function takes an even number of string arguments, each pair of arguments corresponding to a time interval.
The simplest call to the function bounds is then:

-->bounds(date1,date2)

For instance, in the demo hendryericsson, you will find the following call to bounds:

-->bounds('1964q3','1989q2')

It can sometimes be useful to exclude a time period from the estimation bounds. For instance, if you
want to exclude the word wars from a yearly estimation over the 20th century, you can type1:

-->bounds('1901a','1913a', '1919a','1939a', '1946a','2000a')

Note that the function bounds creates a variable called grocer_boundsvar in the calling environment.
The bounds will then apply to all following regressions performed in the environment, and only in that
environment, until a new call to function bounds is made or until the command clear(grocer_boundsvar) is
executed in the environment. For instance, a unique call to function bounds in a function or a script will
apply all over the function and its subroutines, if any, but not to the current working space.

2. Ordinary least squares (*)

There are no less than 4 functions performing ordinary least squares in GROCER: ols0, ols1, ols2 and
ols. The most versatile one is ols, this is the one an applied econometrician should usually use. The 3 other
functions are useful mainly for programming. For instance ols0 is used by lad, robust … or ols1 ! Ols1 is
used by kpss (see chapter 7). Ols2 is used by var1 … and by ols !

The usual call to ols is the following one: ols(endo,exo1,…exon). The type of endo can be: a ts, a
(nx1) vector or a string, equal to the name of a ts or a vector between quotes. The type of exoi can be the

1 Note that this method is not strictly equivalent to that consisting in adding one dummy for each world war year: the
coefficients will be the same, but others statistics (such as the Student T) will be different.

Grocer 1.2

1

same or even a (nxp) matrix or a list of such elements. If ols applies to ts, then it is highly recommended,
although not compulsory, to set bounds before.

You can mix different types of data in ols: vectors and ts; strings and vectors… This is practical for
“quick and dirty” uses, but it should be better to limit yourself to 3 uses:

1) ols(‘ts0’,’ts1’,…,’tsn’) where ts0,ts1,… tsn are obviously ts and are entered between quotes in
order to record their names.

2) ols(‘y’,’x1’,…,’xn’) where y,x1,…,xn are all (nx1) vectors and are entered between quotes in
order to record their names.

3) ols(‘y’,’x’) where y si a (nx1) vector and x a (nxp) matrix (also between quotes in order to record
its name).

There are two specific arguments which can be entered in the list of exogenous arguments. The first
one is ‘cte’ if you want to add a constant term to your regression (whatever type your other exogenous
variables have). The second one is ‘noprint’ if you do not want to display on screen the results of the
regression. In that case, you should record your result by typing:
-->myresults=ols(…);

The results tlist myresults will then contain all your regression results. You can display on screen the
regression results later, by typing prtres(myresults) or prtuniv(myresults) (see chapter 21). You can also
retrieve one of these results by typing myresults(‘name’) where name is one of myresults fields. Note lastly
that, if you do not end your command by ‘;’, the content of the tlist will not be displayed on screen, but
instead the message:

myresults =

ols estimation results

As with ts, this feature results from scilab capability of replacing the display of a whole tlist by what
the user wants by the mean of a function %type_of_tlist_p where type_of_tlist is here ‘results’: the function,
which can be found in sublibrary ‘basic’, is then %results_p. If you prefer to display the whole tlist, then
destroy the corresponding function in the zip file Grocer_v1.2.zip and unzip it again in your Scilab library. If
you want another display, then change accordingly the text of function %results_p in the zip file and unzip it
again in your Scilab library.

Now:
-->b=myresults(‘beta’)

will store in b the estimated parameter of your regression (and it will display it on screen, since you
have not ended the instruction by ;). For a list of all arguments, see description in part 9 of this chapter.

If the user has not given the argument ‘noprint’, the results displayed on the screen will look like this
(here are the results from equation # (6) in D.F Hendry et N.R Ericsson (1991): "Modeling the demand for
narrow money in the United Kingdom and the United States", European Economic Review, p833-886; see
hendryericsson() for GROCER implementation; comments are added for this chapter and do not appear on
screen):

ols estimation results for dependent variable: del(lm1-lp)
// del(lm1-lp) is the name of the endogenous variable
estimation period: 1964q3-1989q2
// the estimation period is reported if there are ts in the regression, whether the user has
// given explicit bounds or not
number of observations: 100

Grocer 1.2

2

number of variables: 5
R² = .7616185 ajusted R² = .7515814
Overall F test: F(4,95) = 75.880204 p-value = 0
// Overall F test is the test that all the non constant variables in the
// regression are 0
standard error of the regression: .0131293
sum of squared residuals: .0163761
DW(0) =2.1774376
// DW stands for Durbin and Watson
Belsley, Kuh, Welsch Condition index: 114

variable coeff t-statistic p value
del(lp) -.6870384 -5.4783422 3.509E-07
del(lagts(1,lm1-lp-ly)) -.1746071 -3.0101342 .0033444
rnet -.6296264 -10.46405 0
lagts(1,lm1-lp-ly) -.0928556 -10.873398 0
cte .0234367 5.818553 7.987E-08

// for each variable (whose name has been here kept by the program), the estimated
// coefficient, its Student t and the significance level under which it will be considered as
// 0 is given.

 *
 * *
// the 3 stars are added at the end of the printings to add clarity. If this device does not
// appeal to you, just change it in function printsep (see chapter 19).

All functions call, directly or indirectly, the function invxpx. This function uses the QR
decomposition of a matrix x to calculate the inverse of matrix (x’x): this method is the one which produces
the most precise estimates (see James LeSage’s book, chapter 1). Since the 3.0 Scilab 3.0, there is an option
in QR that allows to calculate only the k (where k is the number of columns of the matrix x), first columns of
the matrix q and the k first rows of r: this device allows the qr decomposition to be almost as fast as the
standard inversion.

Note that you can use alternatively the function hwhite (see for an example hwhite_d): this function
has the same calling syntax and does the same thing as ols, except that the variance-covariance matrix is
calculated using White's consistent covariance matrix estimator2. There is a companion function, called
nwest, that estimates the variance-covariance matrix by the Newey and West formula.

(°)Constrained ordinary least squares are performed by function ols_cons: you can with this function
estimate an ordinary least squares estimation Y= X b +U with the constraint that R b= r. The difference with
function ols is that you have to enter in the list of arguments after y an argument 'R=m1' and an argument
'r=m2' where m1 and m2 are respectively a matrix or a vector. The results are stored in a tlist which contains
the same fields as with ols, and fields 'R' and 'r'.

As an example, if you want to impose the constraints that b2=-b3 and b2=-b4 in the regression of
'delts(lm1-lp)' on 'delts(lp)', 'delts(lagts(1,lm1))', 'delts(lagts(1,lp))', 'delts(lagts(1,ly))', 'rnet','lagts(1,lm1-lp-
ly)' and the 'cte', then run:

-->rols=ols_cons('delts(lm1-lp)','delts(lp)','delts(lagts(1,lm1))',...
-->'delts(lagts(1,lp))', 'delts(lagts(1,ly))','rnet', 'lagts(1,lm1-lp-ly)','cte',...
2 H.E White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity,
Econometrica, vol 48, n°4, pp. 817-838.

Grocer 1.2

3

-->'R=[0 1 1 0 0 0 0 ; 0 1 0 1 0 0 0]','r=[0;0]')

You can perform an ordinary least squares regression on a rolling or expanding (also called
recursive) window with function rolreg: in the first case the size of the estimation window remains the same
and it is equal to the size given by the bounds of the regression; in the second case, data are added at the end
of the sample, which expands for each regression. Such a regression can be made as an ols regression, with
some differences. Fisst, you must add to the list of arguments the option 'dates=d' where d is a vector of dates
between double quotes corresponding to the end date of the first regression and of the end date of the last
regression (case of ts) or a vector of observations (case of vectors or matrices).

There are also numerous new options:
• you can perform expanding regression (default) or rolling regression; in that case you have to

enter the option 'simu=''roll''';
• you can use the Newey-West method of estimation of the variances instead of the ols one; in

that case, you have to enter the option 'meth=nwest' and you may enter the length of the Barlett
window used by the Newey-West estimator (option 'wind=i' where i the length of the window; the
default value is floor(5*nobs^0.25) with nobs the number of observations);

• you can make h-step forecats with each successive regression; in that case you have to enter
the option 'hstep=h' with h the chosen forecasting horizon; in that case, you can also choose to keep
all 1 to h-step forecasts (default) or only the h-step forecasts, with the option 'mul=0'; you can also
choose to make forecasts beyond the last date of the endogenous variable, by entering the option
'xsmpl=1' (this option works with ts only);

Results are stored in a tlist, which contains the main results for the rolling estimations: the estimated
beta (field 'beta'), the associated tstats and p-values (fields 'tstat' and 'pvalue'), the corresponding R-squared
and adjusted R-square (fields 'rsqr' and 'rbar'), the matrix of forecasts (field 'yfor') if any, forecasts at a given
horizon i being stored in row i. If there are ts, bounds are stored and the matrix of forecasts is transformed
into the corresponding time series (the field 'yfor_h1' is for instance the forecast at a 1 period horizon).

As an example, take the data on the French manufacturing production (y), the past trend (ypast) of
production and future trend (yfut) of production in the business survey that you can fin in the database
industrial.dat in your Scilab library macros/grocer/db:
-->load('SCI\macros\grocer\db\industrial.dat')

Then estimate recursive regressions (option 'simu=''recu''') of delts(log(y)) on ypast, delts(yfut) and a
constant with ending dates starting from 1991q1 to 2002q4 (option 'dates=[''1991q1'' ''2002q4'']') at a 4
quarter horizon (option 'hstep=4') while keeping only the 4-step forecast (opyion 'mul=0'). Note that the
stored forecast will go from 1992q1 until 2003q4.

-->ri = rolreg('delts(log(y))','ypast','delts(yfut)','const','dates=[''1992q1''
''2003q4'']','hstep=4','mul=0','simu=''recu''')

And if you want to recover the forecast at the 4th quarter horizon:
-->fct = ri('yfor_h4') ;

If you want to recover the coefficients:
-->fct = ri('beta') ;

(°°)

Grocer 1.2

4

3. Estimation of linear models with autocorrelated residuals.

GROCER provides two popular methods for the estimation of linear models with autocorrelated
residuals. The first one is Cochrane and Orcutt’s method, implemented in function olsc: the calling sequence
is exactly the same as with ols and so needs no more presentation. The second method, implemented in
function olsar1, is the maximum likehood method: the calling sequence is also the same as ols. Note that this
function uses a very convenient device of Scilab function optim, that is the possibility to impose bound
constraints on an estimated parameter: since an autocorrelation coefficient is in absolute value bounded by 1,
it is desirable that the estimated coefficient verifies this constraint. This is done in the call to optim by the
keyword ‘b’, followed by the vectors of lower and upper constraints. Note also that, since only the
autocorrelation coefficient is constrained, the bounds on the other parameters are set to -∞ and +∞, which are
named -%inf and %inf in scilab. The call to optim in function olsar1 is then the following:

binf=[-1+%eps ; -%inf*ones(nvar,1)]
[like,beta] = optim(grocer_cost,'b',binf,-binf,parm);

where grocer_cost is the function to maximise and parm the starting values for all the parameters which are
estimated.

The presentation of the results is almost exactly the same as with ols, except that the estimated first
order autocorrelation of residuals is also given. Here is for instance the result of the estimation of a money
demand function very similar to the one estimated before by ols:

-->load('grocer/bdexamples/bdhenderic.dat') ;
// set the estimation bounds
-->bounds('1964q3','1989q2')

// show the results of cochrane-Orcutt estimation
-->rolsc=olsc('del(lm1-lp)','del(lp)','rnet','lagts(1,lm1-lp-ly)','cte')

Cochrane-Orcutt estimation results for dependent variable: del(lm1-lp)
estimation period: 1964q3-1989q2
number of observations: 99
number of variables: 4
R² = .8236925 ajusted R² = .8181249
Overall F test: F(3,95) = 147.94377 p-value = 0
standard error of the regression: .0131803
sum of squared residuals: .0165033
DW(0) =2.0153408
Belsley, Kuh, Welsch Condition index: 119

variable coeff t-statistic p value
del(lp) -.5843923 -5.7310684 1.173E-07
rnet -.5562022 -12.66214 0
lagts(1,lm1-lp-ly) -.0807630 -12.966793 0
cte .0218459 6.9046054 5.649E-10

 *
 * *

estimated rho: -.2872218
(Student t: -2.9684277)

// then show the result of olsar1
-->rolsar1=olsar1('del(lm1-lp)','del(lp)','rnet','lagts(1,lm1-lp-ly)','cte')

ar(1) maximum likelihood estimation results for dependent variable: del(lm1-lp)

Grocer 1.2

5

estimation period: 1964q3-1989q2
number of observations: 100
number of variables: 4
standard error of the regression: .0131120
sum of squared residuals: .0165048
DW(0) =2.0240002
Belsley, Kuh, Welsch Condition index: 119

variable coeff t-statistic p value
del(lp) -.5843882 -5.7608732 1.007E-07
rnet -.5561977 -12.727983 0
lagts(1,lm1-lp-ly) -.0807022 -13.099482 0
cte .0218866 7.0234996 3.105E-10

 *
 * *

rho -.2872249
t-stat -2.9684632

 *
 * *

4. Instrumental variables estimation.

Instrumental variables can be performed with two functions: iv and iv1. As with ols, the non
numbered function is the most versatile one and is very flexible while the numbered function looks much
more to the textbook. Because there are 4 types of object, namely the endogenous variable, the exogenous
variables uncorrelated with the residuals, the exogenous variables correlated with the residuals, and the
instruments, the syntax is however a little more constrained than with ols. To be more precise, the call to iv
must have the following form: iv(endoy, 'exo=[var1;var2;...,vark]', 'endo=[var1;var2;...,varl]',
'ivar=[var1;var2;...,varm]'), where exo stands for exogenous variables uncorrelated with the residuals, endo
for exogenous variables correlated with the residuals and ivar for instruments. The keywords exo, endo and
ivar are compulsory, but the order in which they are given does not matter. For endoy, the choices are
exactly the same as with ols. Each of the names vari can represent, a usual, a ts, a (nx1) vector or a (nxk)
matrix. Note lastly that, as with ols, you can switch off the printings of the results with the argument
‘noprint’, given anywhere after the first argument…

Compared to the results of function ols, the results produced by iv present a few differences: first, the
list of variables supposed to be correlated with the residuals are presented, along with the list of instruments;
second, beside the traditional R² and R ², the program gives the generalized R², calculated by replacing the
instrumented variables by the results of their regression on the instruments: this is the correct way to
calculate it3.

As an example, here is a call to iv and the corresponding results, taken from function iv_d:

-->x1 = rand(200,1,'n');
-->x2 = rand(200,1,'n');
-->iota = ones(200,1);
-->1 = zeros(200,1);
-->y2 = zeros(200,1);

3 see Pesaran and Smith (1994): “A Generalized R² Criterion for Regression Models Using Instrumental
Variables”, Econometrica, vol.62, pp. 705-710.

Grocer 1.2

6

-->evec = rand(200,1,'n');
// create simultaneously determined variables y1,y2
-->y1 = iota+x1+evec(i,1);
-->y2 = iota+y1+x2+evec(i,1);
// do iv regression
result2 = iv('y2','endo=y1','exo=iota;x2','iv=iota;x1;x2');

-->iv estimation results for dependent variable: y2

endogenous variable(s) in this equation is(are):
y1
// list of independent variables correlated with the residuals; here only y1 belongs to this category

instruments for this equation are:
iota,x1,x2
// list of instruments

number of observations: 200
number of variables: 3
R² = .8741958 ajusted R² = .8729186
generalized R² = .4167750 (*)
standard error of the regression: .9091582
sum of squared residuals: 162.83401
DW(0) =2.1448555
Belsley, Kuh, Welsch Condition index: 2

variable coeff t-statistic p value
y1 1.0711203 18.888354 0
iota .9867467 11.765988 0
x2 1.1021831 17.026645 0

* warning, R² and ajusted R² are shown here to conform to commun practice, but only the
generalized R² should be interpreted

 *
 * *
The function iv1 is much more restricted (and therefore more efficient…). The call to iv1 is the

following: iv1(y,endo,exo,ivar). Here y is a (nx1) vector, endo is the (nxk) matrix of dependent variables
uncorrelated with the residuals, exo the (nxl) matrix of exogenous variables correlated with the residuals, and
ivar the (nxp) matrix of instruments. The order of the sequence is here compulsory. This function should be
used only for programming and it is used for instance by the functions twosls and, naturally, iv.

5. Non linear least squares.

Non linear least squares are programmed in GROCER in a function called -without originality!- nls.
The calling syntax is still different from the ones of ols or iv. It involves the entry of the equation that the
user wants to estimate, which must have the following form ‘lhs = rhs(x1,…xn,a1,…,an)’ where the xi are
exogenous variables, constants and the ai coefficients. The simplest call to nls is then the following one:
nls(‘lhs = rhs(x1,…xn,a1,…,an)’). Behind this simplicity hide the following conventions. First, the
coefficients are named from a1 to an, starting from a1 and going to an without discontinuity. If, for instance,
you have 4 coefficients in your regression, then they must be called a1,a2,a3,a4. Second, nls involves a
maximisation program (optim or maxlik, see chapter 5) and therefore needs starting values: these are drawn
from a normal law. These conventions can be overruled: if you want to give other names to your coefficients,
then you will have to enter the option ‘coef=[myname1;myname2;…;mynamen]’; if you want to provide

Grocer 1.2

7

starting values to the maximisation program, then you will have to enter the option ‘init=[v1;…;vn]’ where
v1,…,vn are the starting values. There must be exactly the same number of starting values as the number of
parameters to estimate.

As regard the estimation, you have 2 choices: ‘optim’ or ‘maxlik’. The default one is maxlik and you
can give any option to maxlik that you want as with maxlik (see chapter 5 for more precision).

Lastly, the option ‘noprint’ is also available.

The output is very similar to the one provided by ols. The main differences are that the name of the
endogenous variable is replaced by the text of the estimated equation and that the names of the exogenous
variables are replaced by the names of the coefficients. Here is an example:

-->load(‘SCI/macros/grocer/db/smpt.dat’); r=nls('smptr/lagts(smptr)-
1=a+b*(lagts(smptr)/lagts(2,smptr)-1-a)', 'coef=a;b','init=[0;0.5]')

 CONVERGENCE CRITERIA MET: Change in Objective Function

nls estimation results for equation:
smptr/lagts(smptr)-1=a+b*(lagts(smptr)/lagts(2,smptr)-1-a)
estimation period: 1980a-1999a
number of observations: 20
number of variables: 2
standard error of the regression: .0070050
sum of squared residuals: .0008833
DW(0) =1.5300827

variable coeff t-statistic p value
a .0074947 2.6870741 .0150592
b .4382498 2.096523 .0504327

 *
 * *

6. Limited dependent variables.

GROCER contains also the basic estimation functions for limited dependent variables. The first two
are the logit and probit models, which apply to endogenous variables that take only a 0 or 1 value. Each
model assumes that the dependency between the endogenous variable and the exogenous ones takes the
following form:

Prob(y=1)=Φ(X,β)
where Φ is the cumulative distribution function of respectively a logistic law and a normal one.

The third model is the tobit model, where the endogenous variable can take either a 0 value with
positive probability or a continuum of positive values. The underlying model is then:

yi* = xi*b+ui
yi = 0 if yi *≤0
yi = yi * if yi *>0

Grocer 1.2

8

The call to logit and probit is very similar to the call to ols. The only difference is that the user can set
values others that the default ones for the authorized number of iterations by entering ‘maxit=myvalue’
where myvalue is the desired maximum number of iterations or the convergence criterion by entering
‘tol=myvalue’ where myvalue is the desired convergence criterion: the two functions use built-in numerical
optimization algorithms, which need exit conditions. The call to tobit is also similar to the call to ols. The
program uses maxlik, so all options to maxlik can be entered. There is two other options: if the truncation
condition above applies to positive instead of negative values (that is if yi = 0 if yi *≥0), then the user has to
enter the option ‘trunc=right’; if the user wants to use another truncation value than 0, she has to enter the
option ‘vtrunc=value’.

The output is also somehow different than the one of ols: numerous statictics, such as the standard
error of the regression or the Durbin and Watson have not much sense and are not given. The goodness of fit
is provided by the mean of two statistics: MacFadden R² and Estrella R². The log-likelihood of the model is
also provided.

As an example, here is the result of the probit estimation taken from function probit_d:

probit estimation results for dependent variable: grade
number of observations: 32
number of variables: 4
McFadden R² = .3774780
Estrella R² = .9984098
log-likelihood = -12.818804
LR-ratio = 2*(Lu-Lr) = 15.545851
LR p-value = .0014049

variable coeff t-statistic p value
cte -7.4523196 -2.9311311 .0066560
psi 1.4263323 2.3970445 .0234450
tuce .0517289 .6166263 .5424628
gpa 1.62581 2.3430625 .0264591

 *
 * *

7. Various other single variable methods

GROCER contains numerous other single variable methods, mostly translated and adapted from
James LeSage ‘regress’ library. These methods are the following ones:

• Least absolute deviation regression: function lad.
• Ordinary least squares with Student-distributed errors: function olst.
• Ridge regression: function ridge.
• Robust regression: function robust.
• Theil-Goldbeger mixed estimator: function theil.

For all these functions, the general principles applying to ols apply: these functions always involve as
an argument the name of the endogenous variable and the following arguments are either exogenous
variables or the string ‘noprint’; the authorized types for these variables are the same as with ols.

There are some variants however (see part 9 for a more precise dexription). Function ridge allows
also another argument in the list of arguments after the endogenous one: this argument is ‘theta=value’
where value is the value given to the parameter used as a perturbation to the matrix (X’X). This argument is

Grocer 1.2

9

optional: if it is not given, the default value is the one recommended by Hoerl and Kennard. Function robust
has 2 compulsory arguments before the name of the endogenous variable: the name of the robust method and
the corresponding weighting parameter. Lastly, function theil has 3 compulsory arguments before the name
of the endogenous variable: the vector of prior mean values, the matrix transforming the vector of parameters
into the prior value and the assumed variance of the prior mean values.

8. Forecasting

Forecasting is for the moment very limited in GROCER4. As regards single equations, the only
available forecasting tool is the function statfore, which provides static forecasts, the word static meaning
that all lags of the endogenous variable that appear in the list of exogenous variables are taken at their
historical value and not at their forecasted values, if any. This function applies only to linear regressions: it
cannot be used with results stemming from a nls estimation.

The function statfore always applies to a results tlist (let us call it res) from which it extracts the
estimated coefficients. It can be called in two ways according as the results come for a regression with ts (in
that case, res(‘prests’) should be true and the names of the variables should have been given in the estimation
function between quotes, so that they can be retrieved by statfore) or without ts.

In the first case, statfore must have as other arguments than the results tlist an even number of dates.
The function searches in the environment for variables with the same names as those saved in the results tlist
and calculates the forecast by applying the vector of coefficients to the vector of ts found in the environment.
If the function does not find a variable, say var, it displays the following message :
undefined variable : var

The results is a ts.

In the second case, the user must give as second argument a matrix whose number of rows is equal to
the number of forecasts and the number of columns is equal to the number of exogenous variables in the
regression. The result is a vector.

As en example, let us take again hendryericsson estimation. Suppose that the estimation has been
saved in tlist he (by the command he=hendryericsson_d()). Since this estimation applies to ts, a forecast must
involve dates. For instance:
-->he_prev=statfore(r, '1985q1', '1989q3 ')

If you want to make a forecast with peculiar values of the exogenous variables a solution should be to
enter the following command:
-->r2=ols(he('y'),he('x'));statfore(r2,[0.02 0.01 0.03 0.015 1])

4 More sophisticated functions are left for further releases

Grocer 1.2

10

9. The single equation functions and their specifications.

ar1_grad__gradient for ols model with AR1 errors

CALLING SEQUENCE

[grad]=ar1_grad(param,y,x)

PARAMETERS

INPUT:
* param = parameter vector (k x 1)
* y = dependent variable vector (n x 1)
* x = explanatory variables matrix (n x m)
--
OUTPUT:
grad = the gradient

DESCRIPTION

Evaluates minus the gradient of the log-likelihood for ols model with AR1 errors. Param(1,1) contains rho
parameter.

Example:
g=ar1_grad(parm,grocer_y,grocer_x)

This example is taken from olsar1.

ar1_like__log-likelihood for ols model with AR1 errors

CALLING SEQUENCE

[mlike]=ar1_like(,y,x)

PARAMETERS

INPUT:
* param = parameter vector (k x 1)
* y = dependent variable vector (n x 1)
* x = explanatory variables matrix (n x m)
--
OUTPUT:
mlike = a scalar equal to -log(likelihood)

DESCRIPTION

Evaluates ols model with AR1 errors (minus) log-likelihood.

Grocer 1.2

11

Example:
f=ar1_like(parm,grocer_y,grocer_x)

This example is taken from olsar1.

bounds___setting estimation bounds

CALLING SEQUENCE

[]=bounds(b1,b2,…, b2n-1,b2n)

PARAMETERS

INPUT:
a series of dates strings
--
OUTPUT:
Nothing: the bounds are transferred to the upper level in a (p x 1) vector by the argument resume

DESCRIPTION

Sets the bounds for a regression. The bounds remain valid until the user leaves the environment (a working
space or a function). This choice can be discussed: it is not without danger, since bounds used by a program
can be different from the ones the user intended to use; it mimics the Portable Troll choice and is very
convenient...

Examples:
1) bounds('1964q3','1989q2')
2) bounds('1990f52p1','1999f52d26')
3) bounds('1901a','1913a', '1919a','1939a', '1946a','2000a')

In example 1 (taken from hendryericsson_d), bounds range from the first quarter of 1963 to the third quarter
of 1989. In example 2, they range from the first week (‘f52’ indicates that the frequency is set to 52) of 1990
until the 26th week of 1999. In example 3, bounds cover all the 20th century years, the period of the first
(years 1914 to 1918) and second (years 1940 to 1945) world wars being excluded.

hwhite__White's adjusted heteroscedastic estimation

CALLING SEQUENCE

[rhwhite]=hwhite(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* arg1 to argn = arguments which can be:

Grocer 1.2

12

 . a time series
 . a real (nx1) vector
 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
--
OUTPUT:
rhwhite = a tlist with
 . rhwhite('meth') = 'White''s heteroskedasticity
 consistent'
 . rhwhite('y') = y data vector
 . rhwhite('x') = x data matrix
 . rhwhite('nobs') = nobs
 . rhwhite('nvar') = nvars
 . rhwhite('beta') = bhat
 . rhwhite('yhat') = yhat
 . rhwhite('resid') = residuals
 . rhwhite('vcovar') = estimated variance-covariance matrix of beta
 . rhwhite('sige') = estimated variance of the residuals
 . rhwhite('sige') = estimated variance of the residuals
 . rhwhite('ser') = standard error of the regression
 . rhwhite('tstat') = t-stats
 . rhwhite('pvalue') = pvalue of the betas
 . rhwhite('dw') = Durbin-Watson Statistic
 . rhwhite('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rhwhite('rsqr') = rsquared
 . rhwhite('rbar') = rbar-squared
 . rhwhite('f') = F-stat for the nullity of coefficients other than the constant
 . rhwhite('pvaluef') = its significance level
 . rhwhite('prescte') = boolean indicating the presence or absence of a time series in the regression
 . rhwhite('namey') = name of the y variable
 . rhwhite('namex') = name of the x variables
 . rhwhite('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

Computes White's adjusted heteroscedastic consistent Least-squares Regression. If the user has not given the
argument 'noprint', displays on screen the results of the regression and various diagnostics
--
References: H. White 1980, Econometrica Vol. 48 pp. 818-838.

Example:
hwhite('del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')

This example, taken from hwhite_d, provides White's adjusted heteroscedastic consistent Least-squares
Regression for Hendry and Ericsson (1991) equation n° 6 (results not presented by the authors).

Grocer 1.2

13

invxpx__nversion of X’X

CALLING SEQUENCE

[xpxi]=invxpx(x)

PARAMETERS

INPUT:
x = a (nxk) real matrix
--
OUTPUT:
xpxi = the (k x k) matrix equal to inv(x'x)

DESCRIPTION

Provides inversion of the matrix (X'X) using the QR decomposition

Example:
beta = invxpx(x)*(x'*y)

This example, taken from ols0, provides the ordinary least squares estimate of parameters, using the QR
decomposition of x.

iv__instrumental variables

CALLING SEQUENCE

[riv]=iv(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = dependent variable vector (nobs x 1)
* argi is either
 - the string 'exo=[var1;var2;...,vark]' where var1, var2,..., vark are exogenous variables which are therefore
not instrumented
 - the string 'endo=[var1;var2;...,varl]' where var1, var2,..., varl are endogenous variables which are
therefore instrumented
 - the string 'ivar=[var1;var2;...,varm]' where var1, var2,..., varm are the instruments
 - the string 'noprint' if the user doesn't want to display the results of the regression
 --
OUTPUT:
results = a structure tlist with
 - riv('meth') = 'iv'
 - riv('nobs') = nobs
 - riv('nendog') = # of endogenous
 - riv('nexog') = # of exogenous
 - riv('nvar') = # of endogenous + # of exogenous

Grocer 1.2

14

 - riv('y') = y data vector
 - riv('beta') = bhat estimates
 - riv('tstat') = t-statistics
 - riv('yhat') = yhat predicted values
 - riv('resid') = residuals
 - riv('residtsls') = residuals calculated with the endogenous variables replaced by their regression from first
stage estimation
 - riv('sigu') = e'*e
 - riv('sige') = e'*e/(n-k)
 - riv('dw') = Durbin-Watson Statistic
 - riv('prescte') = boolean indicating the presence or absence of a constant in the regression
 - riv('rsqr') = rsquared
 - riv('rbar') = rbar-squared
 - riv('f') = F-stat for the nullity of coefficients other than the constant
 - riv('pvaluef') = its significance level
 - riv('grsqr') = generalized rsquared (that is which takes into account the endogeneity of some explicative
variables)
 - riv('prests') = boolean indicating the presence or absence of a time series in the regression
 - riv('namey') = name of the y variable
 - riv('namex') = name of the x variables
 - riv('nameinst') = name of the instruments
 - riv('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

Computes instrumental variables estimation for a single equation. Variables can be ts, vectors or even
matrices. Explicative variables enter either the “list” of instrumented variables ('endo=[var1;var2;...,varl]') or
the list of exogenous variables ('exo=[var1;var2;...,vark]').

Example:
iv('y2','endo=y1','exo=iota;x2','iv=iota;x1;x2');

This example, taken from iv_d, provides the instrumental variables estimation for the regression of
endogenous variable y2 on y1, iota and x2: y1 being endogenous, it is instrumented by iota, x2 and an
exogenous variable not in the regression, x1.

iv1___instrumental variables

CALLING SEQUENCE

[rtsls]=iv1(y,y1,x1,xall)

PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* y1 = endogenous variables matrix (nobs x g) for this equation
* xexog = exogenous variables matrix for this equation
* xall = instruments for variables y1

Grocer 1.2

15

--
OUTPUT:
results = a structure tlist with
- rtsls('meth') = 'tsls'
- rtsls('nobs') = nobs
- rtsls('nendog') = # of endogenous
- rtsls('nexog') = # of exogenous
- rtsls('nvar') = # of endogenous + # of exogenous
- rtsls('y') = y data vector
- rtsls('beta') = bhat estimates
- rtsls('tstat') = t-statistics
- rtsls('yhat') = yhat predicted values
- rtsls('resid') = residuals
- rtsls('residtsls') = residuals calculated with the endogenous variables replaced by their regression from
 first stage estimation
- rtsls('sigu') = e'*e
- rtsls('sige') = e'*e/(n-k)
- rtsls('dw') = Durbin-Watson Statistic
- rtsls('prescte') = boolean indicating the presence or
 absence of a constant in the regression
- rtsls('rsqr') = rsquared
- rtsls('rbar') = rbar-squared
- rtsls('f') = F-stat for the nullity of coefficients
 other than the constant
- rtsls('pvaluef') = its significance level
- rtsls('grsqr') = generalized rsquared (that is which takes into account the endogeneity of some explicative
variables)

DESCRIPTION

Produces instrumental variables estimation when all variables are in vector or matrix form.

Example:
riv=iv1(grocer_y,grocer_endo,grocer_exo,grocer_ivar));

This example, taken from iv, provides the instrumental variables estimation for the regression of endogenous
variable grocer_y on the matrix of variables supposed to be correlated with the residuals, grocer_endo, and
the matrix of variables supposed to be uncorrelated with the residuals, grocer_exo: grocer_endo being
endogenous, it is instrumented by grocer_ivar. This is a low level function: for empirical uses, the user can
perform the same, and much more, with iv.

lad__least absolute deviations regression

CALLING SEQUENCE

[rlad]=lad(namey,arg1,…,argn)

Grocer 1.2

16

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nx1) vector
 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
 . the string 'itmax=n' where n is the maximum # of iterations (for example 'itmax=10'; default=500)
 . the string 'crit=n' where n is the convergence criterion (for example 'crit=1e-5'; default = 1e-15)
--
OUTPUT:
rlad = a tlist with
 . rlad('meth') = 'lad'
 . rlad('y') = y data vector
 . rlad('x') = x data matrix
 . rlad('nobs') = nobs
 . rlad('nvar') = nvars
 . rlad('b_new') = bhat
 . rlad('yhat') = yhat
 . rlad('resid') = residuals
 . rlad('vcovar') = estimated variance-covariance matrix of
 b_new
 . rlad('sige') = estimated variance of the residuals
 . rlad('sige') = estimated variance of the residuals
 . rlad('ser') = standard error of the regression
 . rlad('tstat') = t-stats
 . rlad('pvalue') = pvalue of the b_news
 . rlad('dw') = Durbin-Watson Statistic
 . rlad('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rlad('namey') = name of the y variable
 . rlad('namex') = name of the x variables
 . rlad('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . rlad('iter') = # of iterations
 . rlad('conv') = convergence max(abs(bnew-bold))
 . rlad('weight') = weight used to do the last ols regression

DESCRIPTION

Least absolute deviations regression. Minimizes sum(abs(y - x*b)) using re-iterated weighted least-squares
where the weights are the inverse of the absolute values of the residuals. If the user has not given the
argument 'noprint', the results of the regression and various diagnostics are displayed on the working space.

Grocer 1.2

17

Examples:
1) lad(y,x)
2) lad(‘y’,’x1’,’x2’,’cte’,’maxit=200’,’noprint’)

Example 1, taken from lad_d, provides the least absolute deviation regression of vector y on matrix x.
Example 2 provides the least absolute deviation regression of y (which can be a ts or a vector) on x1, x2,
which can be ts, vectors or matrices and on a constant; the maximum number of iteration is set to 200 and the
results are not displayed.

lagbounds__lag bounds in a regression

CALLING SEQUENCE

[bounds_out]=lagbounds(bounds_in,l)

PARAMETERS

INPUT:
* bounds_in = the original bounds
* l = the lag (positive or negative, if you want to extend bounds in the past)
--
OUTPUT:
bounds_out = the lagged bounds

DESCRIPTION

Cuts the bounds at the start of the period. If the lag is negative, then bounds are extended in the past for a
number of peridos equal to the absolute value of the lag.

Examples:
1) lagbounds(['1985q2';'1997q4'],3)
2) grocer_boundsvar=lagbounds(grocer_boundsvarb,-grocer_l-1)

Example 1 leads to the (2x1) vector:
['1986q1'
 '1997q4']
Example 2 is taken from function cadf.

logit__logit regression

CALLING SEQUENCE

[rlogit]=logit(namey,arg1,…,argn)

Grocer 1.2

18

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nx1) vector
 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
 . the string 'maxit=xx' if the user wants to set the maximum # of iterations to xx (default=100)
 . the string 'tol=xx' if the user wants to set the convergence criterion to xx (default=1e-6)
--
OUTPUT:
rlogit = a results tlist with
 . rlogit('meth') = 'logit'
 . rlogit('y') = y data vector
 . rlogit('x') = x data matrix
 . rlogit('nobs') = # observations
 . rlogit('nvar') = # variables
 . rlogit('beta') = bhat
 . rlogit('yhat') = yhat
 . rlogit('resid') = residuals
 . rlogit('vcovar') = estimated variance-covariance matrix of beta
 . rlogit('tstat') = t-stats
 . rlogit('pvalue') = pvalue of the betas
 . rlogit('r2mf') = = McFadden pseudo-R²
 . rlogit('rsqr') = = Estrella R²
 . rlogit('lratio') = LR-ratio test against intercept model
 . rlogit('lik') = unrestricted Likelihood
 . rlogit('zip') = # of 0's
 . rlogit('one) = # of 1's
 . rlogit('iter') = # of iterations
 . rlogit('crit') = convergence criterion
 . rlogit('namey') = name of the y variable
 . rlogit('namex') = name of the x variables
 . rlogit('prests') = boolean indicating the presence or absence of a time series in the regression
 . rlogit('prescte') = %f (for printings)
 . rlogit('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

Computes Logit Regression. If the user has not given the argument 'noprint', displays on screen the results of
the regression and various diagnostics.
--
References: Arturo Estrella (1998) 'A new measure of fit for equations with dichotomous dependent
variable', JBES, Vol. 16, #2, April, 1998.

Grocer 1.2

19

Example:
1) logit('grade','cte','psi','tuce','gpa');
2) logit('grade','cte','psi','tuce','gpa',’maxit=200’,’crit=sqrt(%eps)’,’noprint’);

Example 1, taken from logit_d, provides the logit regression of vector grade on a constant and the vectors
psi, tuce, gpa. Example 2 does the same, except that the maximum number of iterations is set to 200 (instead
of 100), the convergence criterion to sqrt(%eps) (instead of 0.000001) and the results are not displayed on
screen.

mcov__White’s X’ΩX

CALLING SEQUENCE

[xuux]=mcov(x,u)

PARAMETERS

INPUT:
* x = nobs x nvar explanatory variables matrix
* u = nobs x 1 residuals
--
OUTPUT:
xuux such that xpx-inverse*xuux*xpx-inverse represents a heteroscedasticity consistent variance-covariance
matrix.

DESCRIPTION

Computes x'*u*u'*x.
--
References: H. White 1980, Econometrica Vol. 48 pp. 818-838.

Example:
xuux = mcov(x,resid);

Example taken from hwhite. Should not have many other uses.

nls__non linear least squares

CALLING SEQUENCE

[rnls]=nls(eq [,option_1,…,option_n])

PARAMETERS

INPUT:
* eq = a string representing the equation to estimate
* option_i =
 . 'coef=[namecoef1;namecoef2;...;namecoefn]' with namecoefi = name of the coefficient # i in

Grocer 1.2

20

 (default coef=['a1';'a2';...;'an'])
 . 'init=[init1;init2;...;intin] if the user wants to give starting values
 . any option of maxlik (see maxlik() for a list)
--
OUTPUT:
rnsls= a tlist with
 . rnls('meth') = 'nls'
 . rnls('beta') = bhat
 . rnls('nobs') = nobs
 . rnls('nvar') = nvars
 . rnls('beta') = bhat
 . rnls('resid') = residuals
 . rnls('vcovar') = estimated variance-covariance matrix of beta
 . rnls('sige') = estimated variance of the residuals
 . rnls('sigu') = sum of squared residuals
 . rnls('ser') = standard error of the regression
 . rnls('tstat') = t-stats
 . rnls('pvalue') = pvalue of the betas
 . rnls('dw') = Durbin-Watson Statistic
 . rnls('prests') = boolean indicating the presence or absence of a time series in the regression
 . rnls('namey') = the equation
 . rnls('namex') = name of the coefficients
 . rnls('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . rnls('ropt') = the output tlist from maxlik (see maxlik for the list of arguments)

DESCRIPTION

Provides the non linear least squares estimation of a regression, which is given by the string eq. This string
must have the form : ‘lhs(y,x1,…,xk, coef1, coef2,…, coefn) = rhs(coef1,x1,…,xk,coef2,…, coefn)’. y,x1,…
,xk are respectively the endogenous variable and the exogenous ones. They can be time series or vectors. In
the first case, the user can have specified the bounds; if she has not, then they are chosen to cover the longest
time span. In the second case, vectors must have the same length.

The equation must be the first argument of nls. All other arguments can be given in whatever order.

The user can specify the name of the coefficients. In that case, the string ‘coef =
[namecoef1;namecoef2;...;namecoefn]’ must be entered in nls. If the user has not given the names of her
coefficients, the function assumes that all variables beginning with the character ‘a’ are coefficients, that the
first one is named a1 and that the following ones are a2,… without any discontinuity: you can name your
coefficients a1,a2,a3; but not a1,a2,a4.

The user can specify starting values for the maximisation program. In that case, the parameter ‘init =
[init_1;init_2;...;inti_n]’ must be entered in nls. If the user does not give starting values, they are drawn from
a normal law.

Lastly, the user can give all maxlik() options as in maxlik().

Grocer 1.2

21

Examples

All these examples use the ts smptr in the database smpt.dat. smptr is an annual timeseries, from 1978 to
1999.

1) r=nls('smptr/lagts(smptr)-1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1)')
2) r=nls('smptr/lagts(smptr)-1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1','coef=[a1 ;a2])')
3) r=nls('smptr/lagts(smptr)-1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1)','init=rand(2,1,''normal''')
4) bounds('1980a’,’1999a’); r=nls('smptr/lagts(smptr)-1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1)')
5) r=nls('smptr/lagts(smptr)-1=a+b*(lagts(smptr)/lagts(2,smptr)-1-a1)','coef=[a;b]')
6)[r]=nls('smptr/lagts(smptr)-1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1)','init=[0.5;0.5]','maxit=1000')
7) s=series(smptr) ; s0=s(3:22) ; s1=s(2:21) ; s2=s(1:20) ;r=nls('s0./s1-1=a1+a2*(s1./s2-1-a1)'

Examples 1 to 4 are strictly equivalent: they provide the estimation of the equation 'smptr/lagts(smptr)-
1=a1+a2*(lagts(smptr)/lagts(2,smptr)-1-a1)' over the period 1980-1999 (note that since there are 2 lags in the
equation, the bounds are adjusted to withdraw the first 2 years of smptr), starting with random values (note
the double quotes before and the triple quotes after normal).

Example 5 does the same as examples 1 to 4, except that the coefficient are named a and b.

Example 6 does the same as examples 1 to 4, except that starting values are set to [0.5 ;0.5] and that the
maximum # of iterations is set to 1000.

Example 7 does the same as examples 1 to 4, except that it uses the vector representation of the ts (trickier,
but quicker).

nwest________________________________Estimation with Newey-West correction on standard errors

CALLING SEQUENCE

[rnwest]=nwest(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* varargin = arguments which can be:
 . a time series
 . a real (nx1) vector
 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
 . the string 'win=n' where n is the length of the Barlett window (default = floor(5*nobs^0.25))
--
OUTPUT:
rnwest = a tlist with
 . rnwest('meth') = 'Newey-West's heteroskedastic-autocorrelation consistent'
 . rnwest('y') = y data vector
 . rnwest('x') = x data matrix

Grocer 1.2

22

 . rnwest('nobs') = nobs
 . rnwest('nvar') = nvars
 . rnwest('beta') = bhat
 . rnwest('yhat') = yhat
 . rnwest('resid') = residuals
 . rnwest('vcovar') = estimated variance-covariance matrix of beta
 . rnwest('sige') = estimated variance of the residuals
 . rnwest('sige') = estimated variance of the residuals
 . rnwest('ser') = standard error of the regression
 . rnwest('tstat') = t-stats
 . rnwest('pvalue') = pvalue of the betas
 . rnwest('dw') = Durbin-Watson Statistic
 . rnwest('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rnwest('rsqr') = rsquared
 . rnwest('rbar') = rbar-squared
 . rnwest('f') = F-stat for the nullity of coefficients other than the constant
 . rnwest('pvaluef') = its significance level
 . rnwest('prests') = boolean indicating the presence or absence of a time series in the regression
 . rnwest('namey') = name of the y variable
 . rnwest('namex') = name of the x variables
 . rnwest('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

Computes Newey-West's adjusted heteroskedastic and autocorrelation consistent (HAC) Least-squares
Regression. High level function that works with ts, matrices,…

Example:
load('SCI/macros/grocer/db/bdhenderic.dat') ; bounds('1964q3','1989q2') ; rn=nwest('delts(lm1-lp)',
'delts(lp)','delts(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')

Provides the Newey-West's adjusted heteroskedastic and autocorrelation consistent (HAC) Least-squares
Regression of equation (6) in Hendry and Ericsson (1991).

nwest1_______________________________Estimation with Newey-West correction on standard errors

CALLING SEQUENCE

[rnwest]=nwest1(y,x,win)

PARAMETERS

INPUT:
* y = a real (nx1) vector
* x = a real (nxk) matrix
* win = a scalar (length of the Barlett window)
--

Grocer 1.2

23

OUTPUT:
rnwest = a tlist with
 . rnwest('meth') = 'Newey-West's heteroskedastic-autocorrelation consistent'
 . rnwest('y') = y data vector
 . rnwest('x') = x data matrix
 . rnwest('nobs') = nobs
 . rnwest('nvar') = nvars
 . rnwest('beta') = bhat
 . rnwest('yhat') = yhat
 . rnwest('resid') = residuals
 . rnwest('vcovar') = estimated variance-covariance matrix of beta
 . rnwest('sige') = estimated variance of the residuals
 . rnwest('sige') = estimated variance of the residuals
 . rnwest('ser') = standard error of the regression
 . rnwest('tstat') = t-stats
 . rnwest('pvalue') = pvalue of the betas
 . rnwest('dw') = Durbin-Watson Statistic
 . rnwest('prescte') = boolean indicating the presence absence of a constant in the regression
 . rnwest('rsqr') = rsquared
 . rnwest('rbar') = rbar-squared
 . rnwest('f') = F-stat for the nullity of coefficients other than the constant
 . rnwest('pvaluef') = its significance level
 . rnwest('prescte') = boolean indicating the presence or absence of a time series in the regression

DESCRIPTION

Computes Newey-West's adjusted heteroskedastic and autocorrelation consistent (HAC) Least-squares
Regression. Low level function that works only on vectors and matrices.

Example:
rnwest=nwest1(grocer_y,grocer_x,grocer_win)

Example taken from function nwest1.

ols__ordinary least squares

CALLING SEQUENCE

[rols]=ols(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* varargin = arguments which can be:
 . a time series
 . a real (nx1) vector

Grocer 1.2

24

 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
--
OUTPUT:
rols = a results tlist with
 . rols('meth') = 'ols'
 . rols('y') = y data vector
 . rols('x') = x data matrix
 . rols('nobs') = # observations
 . rols('nvar') = # variables
 . rols('beta') = bhat
 . rols('yhat') = yhat
 . rols('resid') = residuals
 . rols('vcovar') = estimated variance-covariance matrix of beta
 . rols('sige') = estimated variance of the residuals
 . rols('sigu') = sum of squared residuals
 . rols('ser') = standard error of the regression
 . rols('tstat') = t-stats
 . rols('pvalue') = pvalue of the betas
 . rols('dw') = Durbin-Watson Statistic
 . rols('condindex') = multicolinearity cond index
 . rols('llike') = the log-likelihood
 . rols('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rols('rsqr') = rsquared
 . rols('rbar') = rbar-squared
 . rols('f') = F-stat for the nullity of coefficients other than the constant
 . rols('pvaluef') = its significance level
 . rols('prests') = boolean indicating the presence or absence of a time series in the regression
 . rols('namey') = name of the y variable
 . rols('namex') = name of the x variables
 . rols('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

The most general GROCER function performing least-squares regression. Endogenous variable must be
given first, as a vector, a ts, between quotes (if the user wants to keep the name of the variable in the tlist
result and for the printings) or not. Exogenous variables are given after, in one of the formats authorized for
the endogenous one, or in matrix format. The program displays on screen various results (coefficients, tstat,
R², Durbin and Watson,…) except if the user has entered the argument ‘noprint’ anywhere after the first
argument.

Examples:
1) bounds('1964q3','1989q2'); rols=ols('del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet', 'lagts(1,lm1-lp-
ly)', 'cte');
2) bounds('1964q3','1989q2'); rols=ols('del(lm1-lp)',['del(lp)','del(lagts(1,lm1-lp-ly))','rnet', 'lagts(1,lm1-lp-
ly)','cte']);
3) bounds('1964q3','1989q2'); rols=ols(del(lm1-lp),del(lp),del(lagts(1,lm1-lp-ly)),rnet, lagts(1,lm1-lp-
ly),cte);
4) bounds('1964q3','1989q2'); rols=ols(del(lm1-lp),del(lp),del(lagts(1,lm1-lp-ly)),rnet, lagts(1,lm1-lp-ly),cte,
'noprint');

Grocer 1.2

25

5) y=grand(100,1, 'nor',0,1); x=grand(100,4, 'nor',0,1);ols('y', 'x')
6) ols(y, x);

Examples 1 to 3 provide the same results except that the third example does not keep the names of the
variables, which are named 'endogenous', 'exogenous # 1’, 'exogenous # 2’, 'exogenous # 3’, 'exogenous # 4’,
'exogenous # 5’. Example 4 gives exactly the same tlist result as example 3, but the results are not displayed
on screen (this can be done later by typing prtuniv(rols)). Examples 5 and 6 give the same results, except that
the endogenous variables is named 'y' in example 5 and 'endogenous' in example 6 and the exogenous
variables 'x_1', 'x_2', 'x_3', 'x_4' in example 5 and 'exogenous # 1’, 'exogenous # 2’, 'exogenous # 3’,
'exogenous # 4’ in example 6.

ols_cons__constrained ordinary least squares

CALLING SEQUENCE

[rols]=ols(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* arg1,…,argn = arguments which can be:
 . a time series
 . a real (nx1) vector
 . a string equal to the name of a time series or a (nx1) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
 . the string 'R=m' where m is the R matrix in Rb = r
 . the string 'r=m' where m is the r matrix in Rb = r
--
OUTPUT:
rols = a results tlist with
 . rols('meth') = 'ols'
 . rols('y') = y data vector
 . rols('x') = x data matrix
 . rols('nobs') = # observations
 . rols('nvar') = # variables
 . rols('beta') = bhat
 . rols('yhat') = yhat
 . rols('resid') = residuals
 . rols('vcovar') = estimated variance-covariance matrix of beta
 . rols('sige') = estimated variance of the residuals
 . rols('sigu') = sum of squared residuals
 . rols('ser') = standard error of the regression
 . rols('tstat') = t-stats
 . rols('pvalue') = pvalue of the betas
 . rols('dw') = Durbin-Watson Statistic
 . rols('condindex') = multicolinearity cond index
 . rols('prescte') = boolean indicating the presence or absence of a constant in the regression

Grocer 1.2

26

 . rols('R') = the R matrix in Rb=r
 . rols('r') = the r matrix in Rb=r
 . rols('rsqr') = rsquared
 . rols('llike') = the log-likelihood
 . rols('rbar') = rbar-squared
 . rols('f') = F-stat for the nullity of coefficients other than the constant
 . rols('pvaluef') = its significance level
 . rols('prests') = boolean indicating the presence or absence of a time series in the regression
 . rols('namey') = name of the y variable
 . rols('namex') = name of the x variables
 . rols('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

The high-level function that provides the constrained ordinary least squares, when the constraint takes the
form Rb=r. Endogenous variable must be given first, as a vector, a ts, between quotes (if the user wants to
keep the name of the variable in the tlist result and for the printings) or not. Exogenous variables are given
after, in one of the formats authorized for the endogenous one, or in matrix format. The matrices R and r
must be entered under the form 'R=m1' and 'r=m2' where m1 and m2 are their respective values. The
program displays on screen various results (coefficients, tstat, R-squared, Durbin and Watson,...) except if
the user has entered the argument 'noprint' anywhere after the first argument.

Examples:
load('SCI/macros/grocer/db/bdhenderic.dat') ; bounds('1964q3','1989q2') ;rols=ols_cons('delts(lm1-
lp)','delts(lp)','delts(lagts(1,lm1))','delts(lagts(1,lp))','delts(lagts(1,ly))','rnet', 'lagts(1,lm1-lp-ly)','cte','R=[0 1 1
0 0 0 0 ; 0 1 0 1 0 0 0]','r=[0;0]')

The example shows the estimation of Hendry and Ericsson (1991) model by imposing the constraints on
delts(lagts(1,lm1)), 'delts(lagts(1,lp))' and 'delts(lagts(1,ly))' in order to obtain delts(lagts(1,lm1-ly-lp)).
Calling b the vector of coefficients, the constraints are:
 b2=-b3 and b2=-b4
 hence:
 R= [0 1 1 0 0 0 0]
 [0 1 0 1 0 0 0]
 and:
 r = [0]
As expected, results are the same as those provided by function hendryericsson!

ols0___ordinary least squares

CALLING SEQUENCE

[bhat]=ols0(y,x)

PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* x = independent variables matrix (nobs x nvar)

Grocer 1.2

27

--
OUTPUT:
bhat = estimated beta in y=x*beta+u

DESCRIPTION

The most basic least-squares regression: provides only the estimated beta, bhat. Used mainly in other
programs.

Example:
1) beta=ols0(y,x)

This example is taken from hwhite.

ols1___ordinary least squares

CALLING SEQUENCE

[rols]=ols1(y,x)

PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* x = independent variables matrix (nobs x nvar)
--
OUTPUT:
a tlist with:
 rols('meth') = 'ols'
 rols('y') = y data vector
 rols('x') = x data matrix
 rols('nobs') = nobs
 rols('nvar') = nvars
 rols('beta') = bhat
 rols('tstat') = t-stats
 rols('pvalue') = pvalue of the betas
 rols('resid') = residuals
 rols('vcovar') = estimated variance-covariance matrix
 of beta
 rols('sige') = estimated variance of the residuals
 rols('sigu') = sum of squared residuals
 rols('ser') = standard error of the regression
 rols('yhat') = yhat

DESCRIPTION

One of the numerous functions performing ordinary least squares: this one assumes that x et y are already a
matrix and a vector and does not provide DW, R² statistics. Used in other programs.

Grocer 1.2

28

Example:
r=ols1(y,ptrend(t,nobs))

This example is taken from kpss.

ols2___ordinary least squares

CALLING SEQUENCE

[rols]=ols2(y,x)

PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* x = independent variables matrix (nobs x nvar)
--
OUTPUT:
rols = a tlist with
 . rols('meth') = 'ols'
 . rols('y') = y data vector
 . rols('x') = x data matrix
 . rols('nobs') = nobs
 . rols('nvar') = nvars
 . rols('beta') = bhat
 . rols('yhat') = yhat
 . rols('resid') = residuals
 . rols('vcovar') = estimated variance-covariance matrix of beta
 . rols('sige') = estimated variance of the residuals
 . rols('sige') = estimated variance of the residuals
 . rols('ser') = standard error of the regression
 . rols('tstat') = t-stats
 . rols('pvalue') = pvalue of the betas
 . rols('dw') = Durbin-Watson Statistic
 . rols('condindex') = multicolinearity cond index
 . rols('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rols('rsqr') = rsquared
 . rols('rbar') = rbar-squared
 . rols('f') = F-stat for the nullity of coefficients other than the constant
 . rols('pvaluef') = its significance level

DESCRIPTION

Least-squares regression when variables looks like in the textbook. The results tlist contains all the results
recorded by ols, except the fields 'namey', 'namex', 'prests', and, naturally, 'bounds'.

Example:
rols=ols2(grocer_y,grocer_x)

Grocer 1.2

29

This example is taken from ols.

ols2_cons___constrained ordinary least squares

CALLING SEQUENCE

rols=ols2_cons(y,x,R,r)

PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* x = independent variables matrix (nobs x nvar)
* R = a (nc x k) matrix
* r = a (nc x 1) vector
--
OUTPUT:
rols = a results tlist with
 . rols('meth') = 'ols'
 . rols('y') = y data vector
 . rols('x') = x data matrix
 . rols('nobs') = # observations
 . rols('nvar') = # variables
 . rols('beta') = bhat
 . rols('yhat') = yhat
 . rols('resid') = residuals
 . rols('vcovar') = estimated variance-covariance matrix of beta
 . rols('sige') = estimated variance of the residuals
 . rols('sigu') = sum of squared residuals
 . rols('ser') = standard error of the regression
 . rols('tstat') = t-stats
 . rols('pvalue') = pvalue of the betas
 . rols('dw') = Durbin-Watson Statistic
 . rols('condindex') = multicolinearity cond index
 . rols('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rols('R') = the R matrix in Rb=r
 . rols('r') = the r matrix in Rb=r
 . rols('rsqr') = rsquared
 . rols('llike') = the log-likelihood
 . rols('rbar') = rbar-squared
 . rols('f') = F-stat for the nullity of coefficients other than the constant
 . rols('pvaluef') = its significance level

DESCRIPTION

The low-level function that provides the constrained ordinary least squares, when the constraint takes the
form Rb=r. Endogenous variable y and r in 'Rb=r' must be given in a vector form and x and R in 'Rb=r' in a
matrix form. The program does not display the results, but they can be found in the output results tlist.

Grocer 1.2

30

Examples:
load('SCI/macros/grocer/db/bdhenderic.dat') ; bounds('1964q3','1989q2') ;[y,junk,x]=explouniv('delts(lm1-
lp)',['delts(lp)','delts(lagts(1,lm1))','delts(lagts(1,lp))','delts(lagts(1,ly))','rnet','lagts(1,lm1-lp-ly)','cte']);
r=ols2_cons(y,x,[0 1 1 0 0 0 0 ; 0 1 0 1 0 0 0],[0;0])
<p>
The example shows the estimation of Hendry and Ericsson (1991) model by imposing the constraints on
delts(lagts(1,lm1)), 'delts(lagts(1,lp))' and 'delts(lagts(1,ly))' in order to obtain delts(lagts(1,lm1-ly-lp)) (see
help for ols_cons). Estimation results are stored in tlist r.

olsar1_______________________________maximum likelihood estimation of an autocorrelated model

CALLING SEQUENCE

[result]=olsar1(namey, arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want the to display the results of the regression
--
OUTPUT:
rolsar1 = a results tlist with
 . rolsar1('meth') = ' ar(1) maximum likelihood'
 . rolsar1('y') = y data vector
 . rolsar1('x') = x data matrix
 . rolsar1('nobs') = # observations
 . rolsar1('nvar') = # variables
 . rolsar1('beta') = bhat
 . rolsar1('yhat') = yhat
 . rolsar1('resid') = residuals
 . rolsar1('vcovar') = estimated variance-covariance matrix of beta
 . rolsar1('sige') = estimated variance of the residuals
 . rolsar1('sigu') = sum of squared residuals
 . rolsar1('ser') = standard error of the regression
 . rolsar1('tstat') = t-stats
 . rolsar1('pvalue') = pvalue of the betas
 . rolsar1('dw') = Durbin-Watson Statistic
 . rolsar1('condindex') = multicolinearity cond index
 . rolsar1('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rolsar1('rsqr') = rsquared
 . rolsar1('rbar') = rbar-squared
 . rolsar1('f') = F-stat for the nullity of coefficients other than the constant
 . rolsar1('pvaluef') = its significance level

Grocer 1.2

31

 . rolsar1('prests') = boolean indicating the presence or absence of a time series in the regression
 . rolsar1('namey') = name of the y variable
 . rolsar1('namex') = name of the x variables
 . rolsar1('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . rolsar1('rho') = estimated first order autocorrelation of residuals
 . rolsar1('trho') = its Student t
 . rolsar1('like') = log-likelihood of the regression

DESCRIPTION

Computes maximum likelihood ols regression for AR1 errors, using Cochrane-Orcutt estimates as starting
values. Endogenous variable must be given first, as a vector, a ts, between quotes (if the user wants to keep
the name of the variable in the tlist result and for the printings) or not. Exogenous variables are given after,
in one of the formats authorized for the endogenous one, or in matrix format. The program displays on
screen various results (coefficients, tstat, R², Durbin and Watson, first order autocorrelation of residuals,…)
except if the user has entered the argument 'noprint' anywhere after the first argument.

Example:
load('grocer/bdexamples/bdhenderic.dat') ; bounds('1964q3','1989q2') ; rolsar1=olsc('del(lm1-
lp)','del(lp)','rnet','lagts(1,lm1-lp-ly)','cte')

This example, taken from olsar1_d, shows the estimation of first order autocorrelated model on Hendry and
Ericsson (1991) preferred specification from which the variable 'del(lagts(1,lm1-lp-ly))' has been withdrawn.

olsc____________________________________Cochrane-Orcutt estimation of an autocorrelated model

CALLING SEQUENCE

[rolsc]=olsc(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want the to display the results of the regression
--
OUTPUT:
rolsc = a tlist with
 . rolsc('meth') = 'Cochrane-Orcutt'
 . rolsc('y') = y data vector
 . rolsc('x') = x data matrix
 . rolsc('nobs') = nobs
 . rolsc('nvar') = nvars
 . rolsc('beta') = bhat

Grocer 1.2

32

 . rolsc('yhat') = yhat
 . rolsc('resid') = residuals
 . rolsc('vcovar') = estimated variance-covariance matrix of beta
 . rolsc('sige') = estimated variance of the residuals
 . rolsc('sige') = estimated variance of the residuals
 . rolsc('ser') = standard error of the regression
 . rolsc('tstat') = t-stats
 . rolsc('pvalue') = pvalue of the betas
 . rolsc('dw') = Durbin-Watson Statistic
 . rolsc('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rolsc('rsqr') = rsquared
 . rolsc('rbar') = rbar-squared
 . rolsc('f') = F-stat for the nullity of coefficients other than the constant
 . rolsc('pvaluef') = its significance level
 . rolsc('prescte') = boolean indicating the presence or absence of a time series in the regression
 . rolsc('namey') = name of the y variable
 . rolsc('namex') = name of the x variables
 . rolsc('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . rolsc('rho') = the autocorrelation coefficient of the residuals
 . rolsc('trho') = its T-stat
 . rolsc('iterout') = a (niter x 3) matrix giving for each iteration the estimated rho, the convergence criterion
and the iteration itself

DESCRIPTION

Computes Cochrane-Orcutt ols regression for AR1 errors. Endogenous variable must be given first, as a
vector, a ts, between quotes (if the user wants to keep the name of the variable in the tlist result and for the
printings) or not. Exogenous variables are given after, in one of the formats authorized for the endogenous
one, or in matrix format. The program displays on screen various results (coefficients, tstat, R², Durbin and
Watson, first order autocorrelation of residuals,…) except if the user has entered the argument 'noprint'
anywhere after the first argument.

Example:
load('grocer/bdexamples/bdhenderic.dat') ; bounds('1964q3','1989q2') ; rolsc=olsc('del(lm1-
lp)','del(lp)','rnet','lagts(1,lm1-lp-ly)','cte')

This example, taken from olsar1_d, shows the estimation of first order autocorrelated model on Hendry and
Ericsson (1991) preferred specification from which the variable 'del(lagts(1,lm1-lp-ly))' has been withdrawn.

olst__ ols with t-distributed errors

CALLING SEQUENCE

[rolst]=olst(namey,arg1,…,argn)

Grocer 1.2

33

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want the to display the results of the regression
--
rolst = a tlist with
 . rolst('meth') = 'olst'
 . rolst('y') = y data vector
 . rolst('x') = x data matrix
 . rolst('nobs') = nobs
 . rolst('nvar') = nvars
 . rolst('beta') = bhat
 . rolst('yhat') = yhat
 . rolst('resid') = residuals
 . rolst('vcovar') = estimated variance-covariance matrix of beta
 . rolst('sige') = estimated variance of the residuals
 . rolst('ser') = standard error of the regression
 . rolst('tstat') = t-stats
 . rolst('pvalue') = pvalue of the betas
 . rolst('dw') = Durbin-Watson Statistic
 . rolst('namey') = name of the y variable
 . rolst('namex') = name of the x variables
 . rolst('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION

Computes ols with t-distributed errors, using iterated re-weighted least-squares to find maximum likelihood
estimates. Endogenous variable must be given first, as a vector, a ts, between quotes (if the user wants to
keep the name of the variable in the tlist result and for the printings) or not. Exogenous variables are given
after, in one of the formats authorized for the endogenous one, or in matrix format. The program displays on
screen various results (coefficients, tstat, R², Durbin and Watson, first order autocorrelation of residuals,…)
except if the user has entered the argument 'noprint' anywhere after the first argument.

Example:
lresult = olst(y,x,'maxit=1000','crit=.0001');

This example, taken from olst_d, shows the estimation of a model where residuals are supposed to follow a
Student law (in olst_d, the residuals are drawn from the Student law through the use of function tdis_rnd –
see chapter 12 for a description of this function)

Grocer 1.2

34

probit___probit regression

CALLING SEQUENCE

[rprobit]=probit(namey,arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes; all values should be 0 or 1.
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want the to display the results of the regression
--
rprobit = a results tlist with
 . rprobit('meth') = 'probit'
 . rprobit('y') = y data vector
 . rprobit('x') = x data matrix
 . rprobit('nobs') = # observations
 . rprobit('nvar') = # variables
 . rprobit('beta') = bhat
 . rprobit('yhat') = yhat
 . rprobit('resid') = residuals
 . rprobit('vcovar') = estimated variance-covariance matrix of beta
 . rprobit('tstat') = t-stats
 . rprobit('pvalue') = pvalue of the betas
 . rprobit('r2mf') = = McFadden pseudo-R²
 . rprobit('rsqr') = = Estrella R²
 . rprobit('lratio') = LR-ratio test against intercept model
 . rprobit('lik') = unrestricted Likelihood
 . rprobit('zip') = # of 0's
 . rprobit('one) = # of 1's
 . rprobit('iter') = # of iterations
 . rprobit('crit') = convergence criterion
 . rprobit('namey') = name of the y variable
 . rprobit('namex') = name of the x variables
 . rprobit('prests') = boolean indicating the presence or absence of a time series in the regression
 . rprobit('prescte') = %f (for printings)
 . rprobit('bounds') = if there is a timeseries in the regression, the bounds of the regression

Grocer 1.2

35

DESCRIPTION

Computes Probit Regression. Endogenous variable must be given first, as a vector, a ts, between quotes (if
the user wants to keep the name of the variable in the tlist result and for the printings) or not. Exogenous
variables are given after, in one of the formats authorized for the endogenous one, or in matrix format. The
program displays on screen various results (coefficients, tstat, R², Durbin and Watson, first order
autocorrelation of residuals,…) except if the user has entered the argument 'noprint' anywhere after the first
argument.

Examples:
1) r = probit('grade','cte','psi','tuce','gpa');
2) r = probit('grade','cte','psi','tuce','gpa', 'tol=sqrt(%eps)', 'noprint', 'maxit=200')

Example 1, taken from probit_d, shows the estimation of a probit model taken from Greene (1997). Example
2 does the same, except that the options tol and maxit are set to non default values and that the results are not
displayed.

res2ts__result vector object to timeseries

CALLING SEQUENCE

[tsout]=res2ts(res,nameobject)

PARAMETERS

INPUT:
* res = a results tlist
* nameobject = the name of a tlist field that can be transformed into ts ('y','resid' or 'yhat')
--
OUTPUT:
tsout = the corresponding timeseries

DESCRIPTION

Transforms into a timeseries a vector object in a results tlist according to the bounds saved in the tlist.

Example:
1) load('SCI/macros/grocer/db/bdhenderic.dat') ;bounds('1964q3','1989q2');
 rols=ols('delts(lm1-lp)','delts(lp)','delts(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte') ;
 he_yhat=res2ts(rols,'yhat')
 2) rols_resid=res2ts(rols,'resid')

In example 1, the yhat from Hendry and Ericsson's estimate is transformed into the corresponding ts.
Example 2 is takane from function cadf.

Grocer 1.2

36

ridge___ridge regression

CALLING SEQUENCE

[rridge]=ridge(namey, arg1,…,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes; all values should be 0 or 1.
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want the to display the results of the regression
 . the string 'theta=xx' if the user wants to enter theta's value (default is the one recommended by Hoerl and
Kennard)
--
OUTPUT:
rridge = a tlist with
 . rridge('meth') = 'ridge'
 . rridge('y') = y data vector
 . rridge('x') = x data matrix
 . rridge('nobs') = nobs
 . rridge('nvar') = nvars
 . rridge('beta') = bhat
 . rridge('yhat') = yhat
 . rridge('resid') = residuals
 . rridge('vcovar') = estimated variance-covariance matrix of beta
 . rridge('sige') = estimated variance of the residuals
 . rridge('sige') = estimated variance of the residuals
 . rridge('ser') = standard error of the regression
 . rridge('tstat') = t-stats
 . rridge('pvalue') = pvalue of the betas
 . rridge('dw') = Durbin-Watson Statistic
 . rridge('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rridge('rsqr') = rsquared
 . rridge('rbar') = rbar-squared
 . rridge('f') = F-stat for the nullity of coefficients other than the constant
 . rridge('pvaluef') = its significance level
 . rridge('prescte') = boolean indicating the presence or absence of a time series in the regression
 . rridge('namey') = name of the y variable
 . rridge('namex') = name of the x variables
 . rridge('bounds') = if there is a timeseries in the
 regression, the bounds of the regression
 . rridge('theta') = the scale factor theta

Grocer 1.2

37

DESCRIPTION

Computes Hoerl-Kennard Ridge Regression, using either the theta value entered by the user or the default
one recommended by Hoerl and Kennard. Endogenous variable must be given first, as a vector, a ts, between
quotes (if the user wants to keep the name of the variable in the tlist result and for the printings) or not.
Exogenous variables are given after, in one of the formats authorized for the endogenous one, or in matrix
format. The program displays on screen various results (coefficients, tstat, R², Durbin and Watson, first order
autocorrelation of residuals,…) except if the user has entered the argument 'noprint' anywhere after the first
argument.

Example:
1) r = ridge('del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')
2) r = ridge('del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte', 'theta=0.001')

These examples shows the results of a ridge regression on Hendry and Ericsson’s preferred regression, using
for theta the default parameter in example 1 and 0.001 in example 2.

robust___robust regression

CALLING SEQUENCE

[rrobust]=robust(wfunc,wparm, namey, arg1,…,argn)

PARAMETERS

INPUT:
* wfunc = 'huber' for Huber's t function
 'ramsay' for Ramsay's E function
 'andrew' for Andrew's wave function
 'tukey' for Tukey's biweight
* wparm = weighting function parameter
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = an argument which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
--
OUTPUT:
rrobust = a tlist with
 . rrobust('meth') = 'robust'+ 'huber', 'ramsay', 'andrew' or 'tukey'
 . rrobust('y') = y data vector
 . rrobust('x') = x data matrix
 . rrobust('nobs') = nobs
 . rrobust('nvar') = nvars
 . rrobust('beta') = bhat
 . rrobust('yhat') = yhat
 . rrobust('resid') = residuals

Grocer 1.2

38

 . rrobust('vcovar') = estimated variance-covariance matrix of beta
 . rrobust('sige') = estimated variance of the residuals
 . rrobust('sige') = estimated variance of the residuals
 . rrobust('ser') = standard error of the regression
 . rrobust('tstat') = t-stats
 . rrobust('pvalue') = pvalue of the betas
 . rrobust('dw') = Durbin-Watson Statistic
 . rrobust('prescte') = boolean indicating the presence or absence of a constant in the regression
 . rrobust('rsqr') = rsquared
 . rrobust('rbar') = rbar-squared
 . rrobust('f') = F-stat for the nullity of coefficients other than the constant
 . rrobust('pvaluef') = its significance level
 . rrobust('prescte') = boolean indicating the presence or absence of a time series in the regression
 . rrobust('namey') = name of the y variable
 . rrobust('namex') = name of the x variables
 . rrobust('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . rrobust('wparm') = wparm
 . rrobust('iter') = # of iterations
 . rrobust('weight') = nobs - vector of weights
 . rrobust('convg') = convg criterion

DESCRIPTION

Computes robust regression using iteratively reweighted least-squares. The first argument control the
weighting scheme. The second argument controls the weighting parameter. Endogenous variable must be
given third, as a vector, a ts, between quotes (if the user wants to keep the name of the variable in the tlist
result and for the printings) or not. Exogenous variables are given after, in one of the formats authorized for
the endogenous one, or in matrix format. The program displays on screen various results (coefficients, tstat,
R², Durbin and Watson, first order autocorrelation of residuals,…) except if the user has entered the
argument 'noprint' anywhere after the first argument.

Example:
1) r = robust('huber', 0.000338','del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet', 'lagts(1,lm1-lp-ly)','cte')
2) r = robust('andrew', 0.000338','del(lm1-lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet', 'lagts(1,lm1-lp-ly)','cte',
'noprint')

These examples shows the results of a robust regression on Hendry and Ericsson’s preferred regression,
using huber’s weighting scheme in example 1 and andrew’s one in example 2. Results are not displayed in
example 2.

rolreg___________________________________rolling/recursive regression and h-step ahead forecasts

CALLING SEQUENCE

rreg = rolreg(namey0,arg1,…,argn)

Grocer 1.2

39

PARAMETERS

INPUT:
* namey0 = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* arg1,…,argn = arguments which can be:
 . a time series
 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . a list of such elements
 . 'simu =''roll''' or ''recu''' : if the user want to use a rolling or recursive window (default=)
 . 'hstep = xx': number of out-of-sample forecasts (which determines the frequency of re-estimation of the
model)
 . 'mul = 0' : if the user wants to keep only the forecast at the hstep horizon
 . 'dates = [''xx'',''yy'']': end of first estimation + end of last estimation
 . 'const' or 'cte' if the user want a constant in the regression
 . 'meth=nwest' / 'ols'
 . 'win = xx" truncation window for newey-west estimation
 . 'xsmpl = 1' : allows more forecasts than the number of y observations if there is enough exogenous obs (x)
--
OUTPUT:
rreg = a results tlist with
- rreg('meth') = 'rolling' / 'recursive'
- rreg('beta') = rolling/recursive betas
- rreg('tstat') = rolling/recursive tstats
- rreg('pvalue') = rolling/recursive pvalue of the betas
- rreg('rsqr') = rolling/recursive rsquared
- rreg('rbar') = rolling/recursive rbar-squared
- rreg('yhat') = out-of-sample forecasts
- rreg('prescte') = boolean indicating the presence or absence of a constant in the regression
- rreg('bounds') = begin-end of first estimation & end of sample
- rreg('nfor') = vector of number of realized forecast and number of desired forecast

DESCRIPTION

Computes rolling or recursive estimation and makes out-of-sample forecasts.

Example:
1) ri = rolreg('delts(log(y))','ypast','delts(yfut)','cte','dates=[''1992q1'' ''2003q4'']','hstep=4','mul=1',
'simu=''recu''')

 (2) ri = rolreg('delts(log(y))','ypast','delts(yfut)','cte','dates=[''1992q1'' ''2003q4'']','hstep=1','simu=''roll''')
 Out-of-sample forecasts 1 quarter ahead with rolling estimation

These examples are taken from function rolreg_d. In example 1, out-of-sample forecasts 4 quarters ahead,are
performed form 1992q1 to 2003q4 forecasts from 1 to 4 quarters are stored, with recursive estimation.

Grocer 1.2

40

statfore___static forecast

CALLING SEQUENCE

[p]=statfore(res,arg1,…,argn)

PARAMETERS

INPUT:
* res = result tlist
* argi =
 - (optional) subperiod over which the forecast is done if variables are ts
 - a (mxk) matrix of exogenous variables if they are not ts
--
OUTPUT:
p = prevision

DESCRIPTION

Provides a static forecast from an equation estimated by ols(), hwhite(), olst(), lad(),... It can be used also
with results of olsc, but does not take into account the autocorrelation of residuals. If the estimation has been
performed with ts, then the function assumes that the variables have been entered between quotes and that
their name have therefore been saved in the tlist; in that case, the corresponding data must be present in the
environment.

Examples:
1) r = hendryericsson();statfore(r, '1985q1', '1989q3 ')
2) r2=ols(r('y'),r('x'));statfore(r2,[0.02 0.01 0.03 0.015 1])

Example 1 shows the static forecast made on period 1985q1 to 1989q3 with Hendry and Ericsson preferred
specification. Example 2 shows a static forecast made with the same model, but estimated now with the
corresponding vectors (r('y') and r('x')), and with exogenous values equal to [0.02 0.01 0.03 0.015 1].

theil__Theil-Goldberger mixed estimator

CALLING SEQUENCE

[results]=theil(rvec, rmat, v, namey, arg1,…,argn)

PARAMETERS

INPUT:
* rvec = a vector of prior mean values, (c in description)
* rmat = a matrix of rank(r) (R in description)
* v = prior variance-covariance (var-cov(U) in description)
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quotes
* argi = arguments which can be:
 . a time series

Grocer 1.2

41

 . a real (nxp) vector
 . a string equal to the name of a time series or a (nxp) real vector between quotes
 . the string 'noprint' if the user doesn't want to display the results of the regression
--
OUTPUT:
results = a results tlist with
 . results('meth') = 'Theil-Goldberger'
 . results('beta') = bhat
 . results('y') = y data vector
 . results('x') = x data matrix
 . results('nobs') = # observations
 . results('nvar') = # variables
 . results('yhat') = yhat
 . results('resid') = residuals
 . results('vcovar') = estimated variance-covariance matrix of beta
 . results('sige') = estimated variance of the residuals
 . results('sigu') = sum of squared residuals
 . results('ser') = standard error of the regression
 . results('tstat') = t-stats
 . results('pvalue') = pvalue of the betas
 . results('dw') = Durbin-Watson Statistic
 . results('condindex') = multicolinearity cond index
 . results('prescte') = boolean indicating the presence or
 absence of a constant in the regression
 . results('rsqr') = rsquared
 . results('rbar') = rbar-squared
 . results('f') = F-stat for the nullity of coefficients other than the constant
 . results('pvaluef') = its significance level
 . results('prests') = boolean indicating the presence or absence of a time series in the regression
 . results('namey') = name of the y variable
 . results('namex') = name of the x variables
 . results('bounds') = if there is a timeseries in the regression, the bounds of the regression
 . results('pmean') = prior means
 . results('pstd') = prior std deviations

DESCRIPTION

Computes Theil-Goldberger mixed estimator
 y = X B + E, E = N(0,sige*IN)
 c = R B + U, U = N(0,v)

Example:
r = theil(ones(5,1),eye(5,5),0.1*eye(5,5),'endo','exo')

This example shows the estimation of endogenous variables 'endo' on exogenous variables 'exo' (which
should be a (nobsx5) constant matrix), with the relatively tight prior (v=0.1*eye(5,5)) that each coefficient
should be equal to 1 (since c=ones(5,1) and R=eye(5,5))

Grocer 1.2

42

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	[bounds_out]=lagbounds(bounds_in,l)
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	[xuux]=mcov(x,u)
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION
	Examples
	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	OUTPUT:
	rolsar1 = a results tlist with
	 . rolsar1('meth') = ' ar(1) maximum likelihood'
	 . rolsar1('y') = y data vector
	 . rolsar1('x') = x data matrix
	 . rolsar1('nobs') = # observations
	 . rolsar1('nvar') = # variables
	 . rolsar1('beta') = bhat
	 . rolsar1('yhat') = yhat
	 . rolsar1('resid') = residuals
	 . rolsar1('vcovar') = estimated variance-covariance matrix of beta
	 . rolsar1('sige') = estimated variance of the residuals
	 . rolsar1('sigu') = sum of squared residuals
	 . rolsar1('ser') = standard error of the regression
	 . rolsar1('tstat') = t-stats
	 . rolsar1('pvalue') = pvalue of the betas
	 . rolsar1('dw') = Durbin-Watson Statistic
	 . rolsar1('condindex') = multicolinearity cond index
	 . rolsar1('prescte') = boolean indicating the presence or absence of a constant in the regression
	 . rolsar1('rsqr') = rsquared
	 . rolsar1('rbar') = rbar-squared
	 . rolsar1('f') = F-stat for the nullity of coefficients other than the constant
	 . rolsar1('pvaluef') = its significance level
	 . rolsar1('prests') = boolean indicating the presence or absence of a time series in the regression
	 . rolsar1('namey') = name of the y variable
	 . rolsar1('namex') = name of the x variables
	 . rolsar1('bounds') = if there is a timeseries in the regression, the bounds of the regression
	 . rolsar1('rho') = estimated first order autocorrelation of residuals
	 . rolsar1('trho') = its Student t
	 . rolsar1('like') = log-likelihood of the regression
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	OUTPUT:
	rolsc = a tlist with
	 . rolsc('meth') = 'Cochrane-Orcutt'
	 . rolsc('y') = y data vector
	 . rolsc('x') = x data matrix
	 . rolsc('nobs') = nobs
	 . rolsc('nvar') = nvars
	 . rolsc('beta') = bhat
	 . rolsc('yhat') = yhat
	 . rolsc('resid') = residuals
	 . rolsc('vcovar') = estimated variance-covariance matrix of beta
	 . rolsc('sige') = estimated variance of the residuals
	 . rolsc('sige') = estimated variance of the residuals
	 . rolsc('ser') = standard error of the regression
	 . rolsc('tstat') = t-stats
	 . rolsc('pvalue') = pvalue of the betas
	 . rolsc('dw') = Durbin-Watson Statistic
	 . rolsc('prescte') = boolean indicating the presence or absence of a constant in the regression
	 . rolsc('rsqr') = rsquared
	 . rolsc('rbar') = rbar-squared
	 . rolsc('f') = F-stat for the nullity of coefficients other than the constant
	 . rolsc('pvaluef') = its significance level
	 . rolsc('prescte') = boolean indicating the presence or absence of a time series in the regression
	 . rolsc('namey') = name of the y variable
	 . rolsc('namex') = name of the x variables
	 . rolsc('bounds') = if there is a timeseries in the regression, the bounds of the regression
	 . rolsc('rho') = the autocorrelation coefficient of the residuals
	 . rolsc('trho') = its T-stat
	 . rolsc('iterout') = a (niter x 3) matrix giving for each iteration the estimated rho, the convergence criterion and the iteration itself
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

