
Chapter 20: Bayesian model averaging1

The bayesian model averaging is a bayesian method developed in the 90's to take into account the 
uncertainty associated to the presence of a variable in the true model when the econometrician has at her 
disposal a set of variables potentially important to explain an endogenous variable. Instead of estimating a 
lone model, the method estimates many models built from various subset of the initial set of variables and 
attribute them posterior probabilities. Part 1 presents the theoretical background, part 2 how to estimate in 
practice by this method and part 3 presents the precise description of the functions and their specifications 

1. Some theoretical background

Be y= y1, ... , yT    the quantity of interest X ={X 1, ... , X n} and  a set of n potential regressors, 
where  X i=X i ,1 ,... , X i , T  .  We  consider  a  representation  in  the  linear  framework,  where 

X ∗={X 1
∗ , ... , X q

∗} is a q ,1 subset of {X 1,... , X n }  such as 

y t=X t
∗t

Let us define a given model M i and M the finite set of model  M  . In theory M includes 
2k elements. Here, ∈{0,1 }n is a summarized representation of the regressors entering the model. For 

all j=1, ... , n ,  j=1  (resp.  j=0 )  means  that X j does  belong  (resp.  not)  to  the  model.  Said 
differently, M  is a short representation of the following model: 

y / , 2~X  , 2 I  (1)

with =  ,2  the unknown vector of parameters.

Given the set M={M 1, ... , M 2n} of possible models, we can associate p M  and p /M 
the prior probabilities for a given model and distributions of the related parameters. Let L /M  be the 
likelihood associated to the model (1) then, the posterior probabilities of the model are given by:

p M / y =
m  y /M 0

 pM 0


∑
m  y /M  p M 

=[∑

p M m y /M 
p M 0

m y /M 0
 ]

−1

=[∑

p M 
pM 0


B0,]

−1

where m y /M  is the  marginal likelihood, conditional to the model M  , 

m  y /M =∫
L  y / , M  p y / , M d 

and B0, is the Bayes factor. It remains to specify the prior model probabilities p M  . As in 
Fernandez et alii (2001) we use an uniform prior on model space: p M =2−k . 

The posterior probability that the variable i belongs to the ''true'' model is:

1This chapter owes for the most part to Emmanuel Michaux's work. Thanks Emmanuel!

Grocer 1.2

1



p x i / y =∑
I x j∈M  p M / y

where I x j∈M  is one if x j is included in model   or zero otherwise. If we come back to 
our initial objective, the minimum square error forecast of our quantity of interest (here y t  taking into 
account bayesian uncertainty is given by the following average2: 

E  y th/ y=∑
E  y th/ y , M  pM / y 

In Grocer, we stick to the the Fernandez et alii (2001)3 approach using g-priors and considering only 
models with a constant. We use non-informative priors for the ordinary regression parameters through g-
prior:

/
2, M ~N 0,2 g X 

' X 
−1

with g accounting for the share of information4, which is “a priori”' available in the studied sample5. 
As in Raftery et alii (1997)6, Fernandez et alii (2001) consider the same prior for the constant vector of the 
matrix γβ . The mean is defined as follows: =m1 ,0 ,... ,0 , with a non informative law p ∝1 . We 
follow the common g-prior specifications: g=g=q−2 as n≤q2 . 

Contrary  to  Raftery  et  alii (1997),  where  prior laws  are  conjugate  and  hyperparameters have 
considerable influence on the  posterior distributions and the Bayes factor,  prior distribution of  2σ  is non 
informative. We may derive in this framework the posterior distribution: 

p  y / , g ,M  ,∝
g

1g


g

2 [ 1
1g 

y ' M X y
g

1g

 y−y1'  y−y 1]
n−1

2

where M X=I−X  X ' X −1 X ' .

We propose  two  algorithms  to  approximate  the  distribution  of M  :  the  MC3 as  proposed  by 
Madigan and York (1995)7 and Green (1995)8 MCMC algorithm with reversible jump. The MC3  works as 
follow:

• define an arbitrary initial model M 0 ; 
• define the neighbourhood (nbd) of a model as the set of models with either one variable more or 

one variable fewer than M  ; 

2 The  coefficient BMA
j related  to  the  regressor  j may  be  extracted  in  the  same  way:

BMA
j =E 

j / y =∑


j pM / y  .
3 Fernandez, C., E. Ley and F. J. Steel} (2001), Benchmark Priors for Bayesian Model Averaging, Journal of Econometrics, 100, 
381-427.
4In this formulation of the prior X  is supposed to be strictly exogenenous and residuals are assumed to be iid. g-pior does not 
allow for lagged endogenous variable, so is not compatible with GLS like variance-covariance matrix. This can be seen as a 
straightforward limit of the method when used for forcasting time series.
5 For instance, if g=0.1$, 10% of information of the sample is taken into account.
6 Raftery, A. E. , D. Madigan and J. A. Hoeting (1997), Bayesian Model Averaging for Linear Regression Models, Journal of the 
American Statistical Association, 92, 179-191.
7 Madigan, D. and York, J. (1995), Bayesian Graphical Models for Discrete Data, Inter-national Statistical Review, 63, 215-232.
8 Green, J. P. (1995),  Reversible Jump Markov Chain Monte Carlo Computation Analysis and Bayesian Model Determination,  
Biometrika, Vol. 83, n°4, 711-713.
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• define a transition matrix q by setting q M M ' =q M  , M ' =0 for all M ∉nbd M 

and q M M '  non zero for all M ∈nbd M  ;
• If the chain is currently in sate M  proceed by drawing M ' from q M M '  , M '  is 

accepted with probability:
•

=min1,
p M

' / y p M
'q M

' , M 

p M / y p M q M  , M  =min1,
p M

'

pM  
(this simplification holds because we use equal a priori probability for each model).
• set M =M ' if the move is accepted;

The MCM with reversible jump can be sketched9 as follows: 
• define an arbitrary initial model M 0 ;
• propose a jump from M ' to M ' with probability j M  , M '  ;
• generate  a  vector  i u (which can have a  different  dimension than M  ) from a specified 

proposal density q u/M 
, M  , M ' ;

• set  M 
' , u' =g M  ,M  '

M 
, u where g M  ,M  '

. ,. is  a  specified invertible  function.  Hence
dim M 

dim u=dimM  '
 .

• Accept the proposal move with probability 

=min1,
p M ' / y  p M '  j M ' , M 
p M / y p M  j M  , M  

Two types of model modifications are considered:
• Draw a variable at random and drop if it is in the model or add it to the model. The step is 

attempted with a probability p A ;
• Swap randomly a selected variable in the model and a randomly selected variable outside the 

model. This step is attempted with a probability 1− pA ;
For this two moves j M  , M ' = j M ' , M   so the acceptance ratio simplifies to: 

=min1,
p M ' / y  p M '  j M ' , M 
p M / y p M  j M  , M  =min1,

pM ' 
pM  

2. Performing a bayesian model averaging estimation

Performing a bayesian averaging estimation involves a call to the function bma_g with the following 
arguments:

• first the endogenous variable, in the form of a vector, a time series, eventually between quotes;
• second, the number of draws to carry out.

9 see Eklund, J. & S. Karlsson (2005), Forecast Combination and Model Averaging Using Predictive Measures, Sveriges Riksbank 
Working Paper Series, n°191.
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Then you have to enter in any order the following arguments:
• a time series, a real vector, a real matrix, a string vector or a list of such objects, all pertaining to one 

or several exogenous variables;
• 'nvmax=xx'  where  xx  is  the  maximum  number  of  exogenous  variables  allowed  in  each  model 

(optional: if nvmax is not given, then no limit is imposed)
• 'burnin=xx'  number  of  burn-in MCMC  simulation,  that  is  the  number  of  simulations  that  are 

discarded at the start of the process in order to prevent the starting conditions to distort the results 
(optional: if burnin is not given, then all simulations are kept);

• 'g =xx' where xx is the value of g-prior (optional: default = 1/max(n,k^2))
• 'mcmc = ''mc3'' or ''jump''' type of MCMC algorithm (MC3 or reversible jump) must be between 

quotes;
• the string 'noprint' if the user doesn't want to print the results of the regression

As  an  example,  take  the  modelisation  of  the  crime  rate  in  the  US  states  that  have  been  used 
extensively  in  the  literature  and  whose  data  are  gathered  in  the  database  crime.dat  in  your  library 
SCI/macros/grocer/db. 

-->load('SCI/macros/grocer/db/crime.dat')

Estimating this model with the MC3 algorithm, 30000 draws of which 10000 are discarded is done as 
follows:

-->rbma=  bma_g('log(crime)',30000,'log(m)','so','log(ed)','log(po1)','log(po2)', 
'log(lf)','log(mf)','log(pop)','log(nw)','log(u1)','log(u2)','log(gdp)','log(ineq)',
'log(prob)', 'log(time)','burnin=10000','mcmc=''mc3''');

With the following result:

MCMC sampling, be patient ...

        Bayesian model averaging estimates

dependent variable: log(crime)
MCMC            = mc3
# of obs        = 47
# of var        = 16
g-prior         = 0.0044444
# of draws      = 30000
# of burn-in    = 10000
# of models     = 2953
max # of var.   = 15
time (sec.)     = 22

standard error of the regression: 0.2124261
sum of squared residuals: 1.3988704

        Model averaging information

models    model 1   model 2  model 3   model 4   model 5   model 6   model 7
log(m)    1         1        1         1         1         1         0
so        0         0        0         0         0         0         0
log(ed)   1         1        1         1         1         1         1
log(po1)  1         1        0         1         1         0         1
log(po2)  0         0        1         0         0         1         0
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log(lf)   0         0        0         0         0         0         0
log(mf)   0         0        0         0         0         0         0
log(pop)  0         0        0         0         0         0         1
log(nw)   0         1        0         0         0         1         1
log(u1)   0         0        0         0         0         0         0
log(u2)   1         1        1         1         0         1         0
log(gdp)  0         0        0         0         0         0         0
log(ineq) 1         1        1         1         1         1         1
log(prob) 1         1        1         0         1         1         1
log(time) 0         0        0         0         0         0         0
prob. (%) 3.6645623 3.524985 2.3658671 2.3424289 2.3169626 2.2316282 2.0769821
visits    90        65       47        121       142       45        25

models    model 8  model 9  model 10  model 11  model 12  model 13  model 14
log(m)    1        1        1         1         1         0         1
so        0        0        0         0         0         0         0
log(ed)   1        1        1         1         1         1         1
log(po1)  1        1        1         1         0         0         0
log(po2)  0        0        0         0         1         1         1
log(lf)   0        0        0         0         0         0         0
log(mf)   0        0        0         0         0         0         0
log(pop)  0        0        0         0         0         1         0
log(nw)   1        1        0         1         0         1         1
log(u1)   0        0        0         0         0         0         0
log(u2)   0        1        0         0         0         0         0
log(gdp)  0        0        0         0         0         0         0
log(ineq) 1        1        1         1         1         1         1
log(prob) 1        1        0         1         1         1         1
log(time) 0        1        0         1         0         0         0
prob. (%) 2.043623 1.905743 1.8068672 1.6623433 1.3208134 1.2193039 1.1718728
visits    90       44       201       49        56        17        50

models    model 15  model 16  model 17
log(m)    1         0         1
so        0         0         0
log(ed)   1         1         1
log(po1)  1         1         1
log(po2)  0         0         0
log(lf)   0         0         0
log(mf)   0         0         0
log(pop)  1         0         1
log(nw)   1         1         1
log(u1)   0         0         0
log(u2)   0         0         1
log(gdp)  0         0         0
log(ineq) 1         1         1
log(prob) 1         1         1
log(time) 0         0         0
prob. (%) 1.1695046 1.0447255 1.0229731
visits    34        74        45

        Posterior Estimates

 variable     coeff.     prob. (%)
log(m)       1.0690828  76.235402
so           0.0215394  13.581143
log(ed)      1.8147624  95.388281
log(po1)     0.6933074  66.506064
log(po2)     0.3543414  37.405194
log(lf)      0.0192253  7.1828681
log(mf)      0.0685876  8.3501908
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log(pop)     -0.0148996 21.655796
log(nw)      0.0502995  50.74361
log(u1)      -0.0041745 10.49671
log(u2)      0.1523679  45.284013
log(gdp)     0.1063140  17.14796
log(ineq)    1.4594029  99.698106
log(prob)    -0.1787950 78.730202
log(time)    -0.0411575 17.873478

                         *
                      *     *

Note that the visited models are provided in columns: first exogenous variables are accorded 0 values 
if they do not belong to the model and 1 if they belong to; then the posterior probability of the model and 
lastly the # of times the model has been visited. The results are provided by the function prtbma_g.

Three graphs are provided. The first 2 graphs are the traditional graphs, one of the residuals, the other 
one of the observed and fitted values, but applied in this case to the model where each coefficient is averaged 
over all simulations (results provided by function pltuniv). The third one provides the posterior probability 
distribution of each exogenous variable (result provided by function pltdensbma_g).
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3. The bma estimation functions and their specifications.

bma_g_________________________________________________Bayesian model averaging estimation 

CALLING SEQUENCE
rbma_g = bma_g(namey0,ndraw,arg1,...,argn)
 
PARAMETERS
  
INPUT:
* namey0 = dependent variable vector
* ndraw = # of draws to carry out
* arg1,..., argn = a string which can be

- a time series
- a real (nxk) vector 
- a string equal to the name of a time series or a (nxp) real vector between quotes
- 'burnin=xx' : # of burn-in MCMC simulation 
-  'g =XX' : value of g-prior (default = 1/max(n,k^2))
- 'mcmc = ''mc3''  or ''jump''' : type of MCMC algorithm (MC3 or reversible jump) must be in quote 
(default: MC3)
- 'nvmax = xx' : max # of variables allowed in each models
- the string 'noprint' if the user doesn't want to print the results of the regression
 ------------------------------------------------------------ 

OUTPUT:
a tlist result with:
- rbma_g('meth')  = 'bma g-prior'
- rbma_g('nmod')  = # of models visited during sampling
- rbma_g('beta')  = bhat averaged over all models
- rbma_g('mprob') = posterior prob of each model
- rbma_g('vprob') = posterior prob of each variable 
- rbma_g('model') = indicator variables for each model (nmod x k)
- rbma_g('yhat')  = yhat averaged over all models
- rbma_g('resid') = residuals based on yhat averaged over models
- rbma_g('sige')  = averaged over all models
- rbma_g('nobs')  = nobs
- rbma_g('nvar')  = # of exogenous
- rbma_g('y')     = y data vector
- rbma_g('x')     = y data vector
- rbma_g('visit') = visits to each model during sampling (nmod x 1)
- rbma_g('time')  = time taken for MCMC sampling
- rbma_g('ndraw') = # of MCMC sampling draws
- rbma_g('burnin') = # of burn-in MCMC simulation
- rbma_g('gprior') = value of g-prior
- rbma_g('namey') = name of the y variable
- rbma_g('namex') = name of the x variables
- rbma_g('bounds') = if there is a time series in the regression, the bounds of the regression
- rbma_g('mcmc') = type of MCMC algorithm
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DESCRIPTION
Provides Bayesian model averaging estimates of Fernandez, Levy and Steel. This is the high level version 
which allows various data types (time series, real vectors and matrices, eventually between quotes). Some 
options  (such  as  the  maximum number  of  variables  that  is  allowed  for  any  model,  the  g-prior  or  the 
algorithm) are not necessarily to be entered and take in that case default values.
  
Example 
load('SCI/macros/grocer/db/crime.dat')
rbma=  bma_g('log(crime)',30000,'log(m)','so','log(ed)','log(po1)','log(po2)','log(lf)','log(mf)','log(pop)', 
'log(nw)','log(u1)','log(u2)','log(gdp)','log(ineq)','log(prob)','log(time)','burnin=10000','mcmc=''mc3''');

Example taken from function  bma_d. The bma method is applied to Rafferty crime data. The number of 
draws is set to 30000. The results obtained from the first 10000 are discarded. The algorithm used is the 
MCM one.

bma_g1_________________________________________________Bayesian model averaging estimation 

CALLING SEQUENCE
rbma_g = bma_g1(y,x,ndraw,burnin,mcmc,g,nvmax)
 
PARAMETERS

INPUT:
* y = dependent variable vector (nobs x 1)
* x = explanatory variables (nobs x k)
* ndraw = # of draws to carry out 
* burnin = # of burn-in MCMC simulation 
* g = value of g-prior (default = 1/max(nobs,k^2))
* nvmax = max number of variable allowed in each model
* mcmc = name of the MCMC algorithm (jump_g or mc3_g)

 ------------------------------------------------------------ 
OUTPUT:
a tlist result with:
- rbma_g('meth')  = 'bma g-prior'
- rbma_g('nmod')  = # of models visited during sampling
- rbma_g('beta')  = bhat averaged over all models
- rbma_g('mprob') = posterior prob of each model
- rbma_g('vprob') = posterior prob of each variable 
- rbma_g('model') = indicator variables for each model (nmod x k)
- rbma_g('yhat')  = yhat averaged over all models
- rbma_g('resid') = residuals based on yhat averaged over models
- rbma_g('sige')  = averaged over all models
- rbma_g('nobs')  = nobs
- rbma_g('nvar')  = # of exogenous
- rbma_g('y')     = y data vector
- rbma_g('x')     = y data vector
- rbma_g('visit') = visits to each model during sampling (nmod x 1)
- rbma_g('time')  = time taken for MCMC sampling
- rbma_g('ndraw') = # of MCMC sampling draws
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- rbma_g('burnin') = # of burn-in MCMC simulation
- rbma_g('gprior') = value of g-prior
    
DESCRIPTION
Provides Bayesian model averaging estimates of Fernandez, Levy and Steel. This is the low level function 
that works only for an endogenous in vector form, exogenous variables in a matrix form and where all 
options must given.
  
Example 
1)rbma_g = bma_g1(y,x,ndraw,burnin,tmcmc,g,nvmax)
2) load('SCI/macros/grocer/db/crime.dat');
[y,namey,x]=explouniv('log(crime)',['log(m)','so','log(ed)','log(po1)','log(po2)','log(lf)','log(mf)','log(pop)','log
(nw)','log(u1)','log(u2)','log(gdp)','log(ineq)','log(prob)','log(time)'],[]);
r=bma_g1(y,x,30000,10000,mc3_g);

Example 1 is taken from function bma_g. Example 2 provides the same estimation as in bma_d, but using 
the  function  bma_g1 instead  of  bma_g.  Function  explouniv is  used  to  recover  the  y  and  x  matrices 
corresponding to the data. Note that the names of the variables are nevertheless lost in the operation and that 
the function prtbma_g and prtdensbma cannot be used to print the results.
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