Chapter 18: Disaggregation

GROCER contains several procedures for the disaggregation of time series': the Boot-Feibes-Lisman
method, that provides a simple interpolation of a low frequency series alone; the Chow-Lin, Litterman, Fernandez
and Denton methods that provide the distribution of aggregates using a high frequency indicator.

1. The bfl function

The function bfl derives disaggregated data by the Boot-Feibes-Lisman method: the disaggregated series is
calculated by the minimisation of a quadratic function of the disaggregated series, with the function equalto the
level (d=0), the first order difference (d=1) or the second order difference (d=2). A call to this function takes the
form:

[y,res]=bfl(nameY ta,d,s)

where:

* nameY is a vector, a ts or a string representing such an object

» ta, which is the type of aggregation; if ta=-1, as in the default case, then the aggregated series is
supposed to be the sum of the disaggregate; if ta=0, then the aggregated series is supposed to be the
mean of the disaggregate; lastly, if ta=i with >0, then the aggregated series is supposed to be the i th
value of the disaggregate;

* dis the parameter relative to the objective function to be minimize: if d=0, then this is the variance of
the level of the series which is minimized; if d=1, then this is the variance of the first difference of the
series which is minimized; if d=2, then this is the variance of the second difference of the series which
1S minimized;

* s is the factor by which the low frequency has to be multiplied to obtain the high frequency one (12 for
instance to transform annual data into monthly ones)

The output of the function is twofold: the value of the high frequency disaggregate of the low frequency
series and a results tlist with various results. When the indicator is a time series, then y is returned as a time series
over the same period.

To have an example, load the database xesp going with Grocer and that contains annual exportations for
Spain:

-->load ('SCI\macros\grocer\db\xesp.dat")

And apply the function bfl to the series Y, with options set to O for ta (aggregate is the mean of the disaggregate), 1
for d (this is the norm of the first difference of the disaggregated) and 12 for the disaggregating factor:

-->[y,res] = bfl(Y,0,1,12)

Which gives the following value for y:

! 19790.14 !
! 19819.882 !
! 19879.367 !

! For the most part, these functions has been built by translating and adapting matlab programms written by Carlos Alberto Castro

Grocer 1.2

! 19968.594
! 20087.564
! 20236.276
! 20414.73

! 20622.927
! 20860.866
! 21128.547
! 21425.971
! 21753.137
! 22110.046
! 22441.946
! 22748.837
! 23030.719
! 23287.592
! 23519.457
! 23726.313

2. The functions working with indicators: chowlin, fernandez and litterman.

The 3 functions Chow-Lin, Fernandez and Litterman methods differ only by the assumptions they make on
the residuals of the relationship between the low-level aggregate and the indicator: autoregressive in the case of the
Chow-Lin method; random walk in the case of Fernandez method; ARMA(1,1,0) in the case of Litterman method.
Their specification is therefore very similar in GROCER.

Take function chowlin. The simplest call to chowlin takes the following form:
chowlin(‘endo’,’exo1’,’ex02’,..., exon)

In that case, endo is the name of the low frequency aggregate and exol,..., exon are the names of the high
frequency indicators. This is in fact equivalent to the following command:
chowlin(‘endo’,’exo1’,’ex02’,..., exon, 'ta=-1’, typemin=llike’,”delta=sqrt(%eps)’)

This formulation shows 3 options for which there are default values:

* ta, which is the type of aggregation; if ta=-1, as in the defaults case, then the aggregated series is
supposed to be the sum of the disaggregate; if ta=0, then the aggregated series is supposed to be the
mean of the disaggregate; lastly, if ta=I with >0, then the aggregated series is supposed to be the |
th value of the disaggregate;

* typemin, which is the function that is optimized; 2 options are possible; the default case is ‘llike” for
log-likelihood; the other option is ‘wls’ for “weighted least squares’;

* delta is the increment used to calculate the numerical derivative; the default value is sqrt(%eps).

The user can also enter the factor by which the low frequency has to be multiplied to obtain the high
frequency one: this done through the option ‘divfqg=n’ where n is the factor needed to transform low frequency
data into high ones (12 for instance to transform annual data into monthly ones). If this option is not given then
this factor is determined automatically be the program. It gives the good number either if the low frequency and
some of the high frequency data are ts or if the sizes of these data are derived one from another by around their
factor: if you are not sure, better use the option ‘divfq=n’!

These function have the following output: firstly, the high frequency disaggregated series; secondly is a
results tlist containing the input to the function as well as various output results.

Grocer 1.2

An example can be found in Grocer function chowlin_d:

--> load('SCI\macros\grocer\db\xesp.dat'); [y,res] = chowlin('Y',6'x', 'ta=-1"', 'typemin=wls"')

With the following display:

Chow-Lin estimation results for dependent variable: Y
number of low-frequency observations: 22
frequency conversion: annual to quarterly
number of high-frequency observation: 88
number of extrapolations: 0

number of indicators (incl. constant): 2
type of disaggregation: sum

estimation method: wls

log-likelihood = -175.20304

AIC = 9.4354866 BIC = 9.5346722
innovationnal parameter (rho): 0.99

variable coeff t-statistic p-value
cte 857.15271 1.1814633 0.2512773
X 0.9450798 37.765527 0
*
* *

And the following result for y:

! 5403.2908 !
! 5300.6574 !
! 4353.0462 !
! 5442.0057 !
! 5238.0203 !
! 5834.7712 !
! 6047.1281 !
! 6357.0803 !
! 6636.0948 !
! 5833.1694 !
! 5838.4641 !
! 6750.2717 !
! 6930.7772 !
! 7201.7284 !
! 6426.2006
! 7149.2939
! 8556.3442 !

! 23539.702 !
! 27579.35 !
! 27866.959
! 29223.248 !
! 25696.094 !
! 30239.699 !
! 29955.619 !
! 30033.7 !
! 25994.272 !
! 29589.409

When the indicator is a time series, then y is returned as a time series over the same period.

Grocer 1.2

The function litterman has exactly the same calling syntax. The function fernandez too, except for the
option ‘typemin’ that is not available because it is not relevant.

3. Estimation of several high frequency data with their annual counterpart and the high frequency
available.

Grocer contains 2 functions that allow to estimate high frequency disaggregate when an indicator for each
annual data and the aggregate exist at a high frequency: denton and difonzo.

The syntax is the same for the 2 functions. Take for instance denton. The simplest call to denton takes the
following form:
denton(nameY, X, z, d)

Where :

* nameY is areal matrix, a string vector or a list of ts, real vectors, representing the low frequency series
that will be disaggregated;

* X isis areal matrix, a string vector or a list of ts, real vectors, representing the high frequency indicators
(one for each annual series);

e zisats, areal vector or a string representing a ts or a real vector; z is the high frequency sum of the
unknown high frequency series;

* dis the parameter relative to the objective function to be minimize: if d=0, then this is the variance of
the level of the series which is minimized; if d=1, then this is the variance of the first difference of the
series which is minimized; if d=2, then this is the variance of the second difference of the series which
1s minimized;

Two options can be entered into the function:

» the option 'divfq=n', where n indicates as for functions described in part 2 the factor needed to
transform low frequency data into high ones;

» ta, which is the type of aggregation; if ta=-1, as in the default case, then the aggregated series is
supposed to be the sum of the disaggregate; if ta=0, then the aggregated series is supposed to be the
mean of the disaggregate; lastly, if ta=i with >0, then the aggregated series is supposed to be the i th
value of the disaggregate;

The function as the following output: a matrix y where each column is the high frequency disaggregate of
the corresponding series in x; a results tlist that contains various input and output results. An example can be found
in function denton_d.

3. The disaggregation functions and their specifications.

aggregl temporal aggregation matrix

CALLING SEQUENCE
[Cl=aggregl(N,s,opt)

Grocer 1.2

PARAMETERS

INPUT:
* N = number of low frequency data
* s = freq. conversion
* opt = type of temporal aggregation:
- opt =-1 ---> sum (flow)
- opt = 0 ---> average (index)
- opt = k ---> k-th element (k>=1 and k<=s)

OUTPUT:
C = (N x sN) temporal aggregation matrix

DESCRIPTION
Generates a temporal aggregation matrix.

Examples
1) aggreg1(100,3,-1)
2) aggregl(150,12,12)

Example 1 provides an aggregation matrix for a series of length 100, with a frequency conversion of 3 (from
annual to quarterly for instance) and where the aggregation is made by taking the sum of the high frequency
components.

Example 2 provides an aggregation matrix for a series of length 150, with a frequency conversion of 12 (from
annual to monthly for instance) and where the aggregation is made by taking the 12" element of the high frequency
components.

bfl Boot-Feibes-Lisman disaggregation method

CALLING SEQUENCE
[y,res]=bfl(nameY ta,d,s)

PARAMETERS

INPUT:
* nameY = a ts or a Nx1 vector of low frequency data or a string representing the name of a vector or a ts
* ta = type of disaggregation
- ta=-1 ---> sum (flow)
- ta=0 ---> average (index)
- ta=1 ---> 1 th element (stock) ---> interpolation
* d = objective function to be minimized: volatility of ...
- d=0 ---> levels
- d=1 ---> first differences
- d=2 ---> second differences
* s = number of high frequency data points for each low frequency data point
- s= 4 ---> annual to quarterly
- §=12 ---> annual to monthly

Grocer 1.2

- s= 3 ---> quarterly to monthly

OUTPUT:
* y = High frequency estimate
* res = a results tlist with:

- res('meth') = 'Boot-Feibes-Lisman'

-res('nobs _1f') = Number of low frequency data

- res(‘aggreg _mode') = Type of disaggregation

- res('s") = Frequency conversion

- res('dift") = Degree of differencing

-res('y_IfY) = Low frequency data

- res('y") = High frequency estimate

- res('namey") = name of the low frequency data
DESCRIPTION

Performs temporal disaggregation using the Boot-Feibes-Lisman method.

Example
load('SCI\macros\grocer\db\xesp.dat'); [y,res] = bfl(Y,0,1,12);

Example taken from function bfl_d. Provides the minimisation of volatility of the first difference of monthly
Spanish exportations data, the annual series being the sum of the monthly series.

bfl1 Boot-Feibes-Lisman disaggregation method

CALLING SEQUENCE
[y,res]=bfl1(Y ta,d,s)

PARAMETERS

INPUT:
*Y = NxI1 vector of low frequency data
* ta = type of disaggregation
- ta=-1 ---> sum (flow)
- ta=0 ---> average (index)
- ta=i ---> 1 th element (stock) ---> interpolation
* d = objective function to be minimized: volatility of ...
- d=0 ---> levels
- d=1 ---> first differences
- d=2 ---> second differences
* s = number of high frequency data points for each low frequency data point
- s= 4 ---> annual to quarterly
- s=12 ---> annual to monthly
- s= 3 ---> quarterly to monthly

Grocer 1.2

OUTPUT:
* y = High frequency estimate
* res = a results tlist with:

- res('meth') = 'Boot-Feibes-Lisman';

-res('nobs _1f') = Number of low frequency data

- res(‘aggreg _mode') = Type of disaggregation

- res('s") = Frequency conversion

- res('dift") = Degree of differencing

-res('y_IfY) = Low frequency data

- res('y") = High frequency estimate
DESCRIPTION

Performs temporal disaggregation using the Boot-Feibes-Lisman method. This is the low level version that works
with only a vector.

Example

1) load('SCI\macros\grocer\db\xesp.dat"); [y,res] = bfl(Y,0,1,12);

2) [y,res]=bfl1(Y,ta,d,s)

Example 1 provides the minimisation of volatility of the first difference of monthly Spanish exportations data, the

annual series being the sum of the monthly series. Example 2 is taken from function bfl.

chowlin Chow-Lin disaggregation method

CALLING SEQUENCE
[y,res]=chowlin(namey,argil,...,argn)

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real
vector between quote, representing the low frequency data that must be disaggregated
*argl,..., argn = arguments which can be:
. a time series
.areal (nx1) vector
. a string equal to the name of a time series or a (nx1) real vector between quotes
. a list of such objects
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data points
. the string 'typemin=xxx' where xxx is the maximisation method (llike -default- or wls)
. the string 'ta=n' where n is the aggregation type:
n=-1 (default) ---> sum (flow)
n=0 ---> average (index)
n=i ---> i th element (stock) ---> interpolation
. the string 'delta=x' where x is the increment used for numerical derivation

OUTPUT:
* y = the disaggregated variable

Grocer 1.2

* res = a results tlist with:
-res('meth') ='Chow-Lin'
- res('ta") = type of disaggregation
- res('nobs_1f') = nobs. of low frequency data
- res('nobs_hf') = nobs. of high-frequency data

-res('pred’) = number of extrapolations
- res('s") = frequency conversion between low and high freq.
- res('p") = number of regressors (including intercept)

-res('y_If') =low frequency data
- res('indicator') = high frequency indicators

- res('y') = high frequency estimate

-res('y_dt') = high frequency estimate: standard deviation
-res('y up') = high frequency estimate: sd + sigma
-res('y_lo") = high frequency estimate: sd - sigma

- res('resid_hf') = high frequency residuals
- res('resid_If) = low frequency residuals

-res('beta') = estimated model parameters

- res('sd") = estimated model parameters: standard deviation
- res('tstat'’) = estimated model parameters: t ratios
-res('tho') = innovational parameter

- res(‘aic") = Information criterion: AIC

- res('bic') = Information criterion: BIC

- res('typemin') = method of estimation

- res('llike") = Log-likelihood at the estimated parameters
-res('sigma') = Variance at the estimated parameters

- res('namey') = Name of the high frequency aggregate

- res('namex') = Name of the low frequency indicators

- res('prests') = a boolean indicating the presence or absence of a time series in the regression
- res('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION
Performs Temporal disaggregation using the Chow-Lin method (high level function with vectors, matrices or ts
and the possibility of default parameters).

Example
1) load("SCI\macros\grocer\db\xesp.dat') ; [y,res] = chowlin('Y",'x','ta=-1","typemin=wls');
2) load('SCI\macros\grocer\db\xesp.dat') ; [y,res] = chowlin('Y",'x','ta=-1","typemin=llike");

Provides the disaggregation of the Spain's Exports of Goods by the Chow-lin method, using Spain's Registered
exports of goods deflated by unit value index as an indicator. In example 1, the weighted least squares method is
used to estimate the autocorrelation parameter, while the maximum likelihood method is used in example 2. The
annual data are the sum of the monthly data (ta=-1).

chowlinl Chow-Lin disaggregation method

CALLING SEQUENCE
[y,res]=fernandez(namey, argl,...,argn)

Grocer 1.2

PARAMETERS

INPUT:
* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real vector
between quotes, representing the low frequency data that must be desaggregated
* argl,...,argn = arguments which can be:
. a time series
. areal (nxk) matrix
. a string matrix whose elements represent the names of a time series or a (nx1) real vector between quotes
. a list of such objects
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data points
(default: recovered from the data)
. the string 'ta=n' where n is the aggregation type:
n=-1 (default) ---> sum (flow)
n=0 ---> average (index)
n=i ---> i th element (stock) ---> interpolation

OUTPUT:
* y = the disaggregated variable
* res = a results tlist with:
-res('meth') ='Fernandez',
- res('ta") = type of disaggregation
- res('nobs_1f') = nobs. of low frequency data
- res('nobs_hf') = nobs. of high-frequency data

-res('pred’) = number of extrapolations

- res('s") = frequency conversion between low and high freq.
- res('p") = number of regressors (including intercept)

- res('y') = high frequency estimate

-res('y_If') = low frequency data
- res('indicator’) = high frequency indicators

-res('y_dt') = high frequency estimate: standard deviation
-res('y up') = high frequency estimate: sd + sigma
-res('y_lo") = high frequency estimate: sd - sigma
-res('resid') = high frequency residuals
- res('resid_If) = low frequency residuals
-res('beta’) = estimated model parameters
- res('sd") = estimated model parameters: standard deviation
- res('tstat'’) = estimated model parameters: t ratios
- res(‘aic") = Information criterion: AIC
- res('bic') = Information criterion: BIC
- res('namey") = Name of the low frequency disaggregated data
- res('namex") = Name of the indicators

DESCRIPTION

Performs Temporal disaggregation using the Chow-Lin method (low level function that works only with vectors
and matrices).

Grocer 1.2

10

Example
[y,res]=chowlin1(Y,x,grocer ta,grocer divfq,grocer delta,grocer typemin)

Example taken from function chowlin.

denton Multivariate temporal disaggregation with transversal constraint

CALLING SEQUENCE
[y,res]=denton(Y,x,z,d,argl,...,argn)

PARAMETERS

INPUT:
*Y = a (NxM) matrix, a list of M vectors or ts or a string vector representing names such objects
---> M series of low frequency data with N observations
* x = a (nxM) matrix, a list of M vectors or ts or a string vector representing names such objects
---> M series of high frequency data with n observations
* z=a (nx1) vector or a ts ---> high frequency transversal constraint
* d = objective function to be minimized: volatility of
- - d=0 ---> levels
- - d=1 ---> first differences
- - d=2 ---> second differences
*argl,...,argn = options to denton:
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data point
(default: recovered from the data)
. the string 'ta=n' where n is the aggregation type:
n=-1 (default) ---> sum (flow)
n=0 ---> average (index)
n=i ---> i th element (stock) ---> interpolation

OUTPUT:
* y = the disaggregated variable
* res = a results tlist with

- res('meth') = 'Multivariate Denton';

- res('ta') = Type of disaggregation

-res('nobs _1f') = Number of low frequency data

- res('nobs_hf') = Number of high frequency data

- res('pred") = Number of extrapolations (=0 in this case)
- res('s") = Frequency conversion

- res('diff") = Degree of differencing

- res('y") = High frequency estimate

-res('y_IfY) = low frequency data

- res('indicator') = high frequency indicators
- res('tanvsersal') = data for the transversal constraint

- res('namey") = Name of the low frequency aggregate
- res('namex") = Name of the high frequency indicators
- res('namez') = Name of the high frequency transversal constraint

Grocer 1.2

11

DESCRIPTION
Performs multivariate temporal disaggregation using Denton method (high level function with vectors, matrices or
ts and the possibility of default parameters).

Example
[y.res=denton('Y''x', %' 1, \ta=1", divfq=4;

Provides the quarterly (since divfq=4) disaggregation of Spain's annual exports of Goods (Y) by Denton method,
using Spain's Registered exports of goods deflated by unit value index (x) as an indicator. The vector of constraints
is supposed to be called z. Annual data are supposed to be the sum of quarterly ones (ta=-1).

dentonl Multivariate temporal disaggregation with transversal constraint

CALLING SEQUENCE
[y,res]=dentonl(Y,x,z,d,ta,s)

PARAMETERS

INPUT:
*Y = (NxM) matrix ---> M series of low frequency data with N observations
* x = (nxM) matrix ---> M series of high frequency data with n observations
* z = (nx1) vector ---> high frequency transversal constraint
* d = objective function to be minimized: volatility of
- d=0 ---> levels
- d=1 ---> first differences
- d=2 ---> second differences
* ta = type of disaggregation
- ta=-1 ---> sum (flow)
- ta=0 ---> average (index)
- ta=i ---> 1 th element (stock) ---> interpolation
* s = number of high frequency data points for each low frequency data point
- s= 4 ---> annual to quarterly
- s=12 ---> annual to monthly
- s= 3 ---> quarterly to monthly

OUTPUT:
* y = the disaggregated variable
* res = a results tlist with

- res('meth') = 'Multivariate Denton';

- res('ta') = Type of disaggregation

-res('nobs _1f') = Number of low frequency data

- res('nobs_hf') = Number of high frequency data

- res('pred") = Number of extrapolations (=0 in this case)
- res('s") = Frequency conversion

- res('diff") = Degree of differencing

- res('y") = High frequency estimate

Grocer 1.2

12

-res('y_IfY) = low frequency data
- res('indicator') = high frequency indicators
- res('tanvsersal') = data for the transversal constraint

DESCRIPTION
Performs multivariate temporal disaggregation using Denton method (low level function with vectors, and matrices

only).

Example
[y,res]=denton1(Y,x,z,grocer d,grocer ta,grocer divfq)

Example taken from function denton.

difonzo Multivariate temporal disaggregation with transversal constraint

CALLING SEQUENCE
[y,res]=difonzo(Y,x,z, argl,...,argn)

PARAMETERS

INPUT:
*Y = list of N vectors or ts or (NxM) matrix
---> M series of low frequency data with N observations
* x = (nxM) real or string matrix or list
---> M series of high frequency data with n observations
* z=(nx1) vector or ts ---> high frequency transversal constraint
* d = objective function to be minimized: volatility of
- d=0 ---> levels
- d=1 ---> first differences
- d=2 ---> second differences
*argl, ..., argn = options to difonzo:
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data points
(default: recoverd from the data)
. the string 'ta=n' where n is the aggregation type:
n=-1 (default) ---> sum (flow)
n=0 ---> average (index)
n=i ---> i th element (stock) ---> interpolation
. typemod = model for the high frequency innvations
typemod='wn' ---> multivariate white noise (default)
typemod="rw' ---> multivariate random walk

OUTPUT:
* y = the disaggregated variable
* res= a result tlist with:

- res('meth") = 'Multivariate di Fonzo'
- res('ta") = type of disaggregation
- res('nobs_1f') = nobs of low frequency data

Grocer 1.2

13

- res('nobs_hf') = nobs of high-frequency data

- res('pred") = number of extrapolations

- res('s") = frequency conversion between low and high freq
- res('y") = high frequency estimate

-res('y_IfY) = low frequency data

- res('indicator') = high frequency indicators
- res('transversal') = high frequency indicators

- res('y_dt") = high frequency estimate: standard deviation

- res('resid') = high frequency residuals

-res('resid U') = low frequency residuals

- res('beta’) = estimated model parameters

- res('sd") = standard deviation of the estimated model parameters

- res('namey") = Name of the low frequency aggregate

- res('namex’) = Name of the high frequency indicators

- res('namez’) = Name of the high frequency transversal constraint
DESCRIPTION

Performs multivariate temporal disaggregation using Di Fonzo’s method (high level function with vectors,
matrices or ts and the possibility of default parameters).

Example
difonzo(Y,x,z,'ta=-1',"typemod=rw");

Example taken from function difonzo_d. Provides the disaggregation of Spain's annual exports of Goods (Y) by
Denton method, using Spain's Registered exports of goods deflated by unit value index (x) as an indicator. The

vector of constraints is supposed to be called z. Annual data are supposed to be the sum of low frequency ones
(ta=-1).

difonzol Multivariate temporal disaggregation with transversal constraint

CALLING SEQUENCE
[y,res]=difonzo1(Y,x,z,ta,s,typemod)

PARAMETERS

INPUT:
*Y =NxI ---> vector of low frequency data
* X = nxp ---> matrix of high frequency indicators
(without intercept)
* ta = type of disaggregation:
-ta=-1 ---> sum (flow)
- ta =0 ---> average (index)
- ta =k --->k th element ---> interpolation
* s = number of high frequency data points for each low frequency data point:
- s= 4 ---> annual to quarterly
- s=12 ---> annual to monthly
- s= 3 ---> quarterly to monthly

Grocer 1.2

14

* delta = the increment used to evaluate the derivative
* typemin estimation method:
typemin='wls' ---> weighted least squares
typemin="llike' ---> maximum likelihood

OUTPUT:
* y = the disaggregated variable
* res= a result tlist with:

- res('meth') = 'Multivariate di Fonzo'

- res('ta') = type of disaggregation

-res('nobs _1f') =nobs of low frequency data

- res('nobs_hf') = nobs of high-frequency data

- res('pred") = number of extrapolations

- res('s') = frequency conversion between low and high freq
- res('y') = high frequency estimate

- res('y_If") = low frequency data

- res('indicator’) = high frequency indicators
- res('transversal') = high frequency indicators

-res('y_dt") = high frequency estimate: standard deviation

-res('resid’) = high frequency residuals

-res('resid U') = low frequency residuals

- res('beta’) = estimated model parameters

- res('sd") = standard deviation of the estimated model parameters
DESCRIPTION

Performs multivariate temporal disaggregation using Di Fonzo’s method (low level function with vectors, and
matrices only).

Example
[y,res]=difonzo1(Y ,x,z,grocer ta,grocer divfq,grocer typemod)

Example taken from function difonzo.

explo_agreg explosion of variables for a disaggregation estimation
CALLING SEQUENCE

[Y,x,namendo,namexos,s|=explo_agreg(ta,namey, argl,...,argn)

PARAMETERS

INPUT:

* ta = type of disaggregation:
-ta=-1 ---> sum (flow)
- ta =0 ---> average (index)
- ta =k --->k th element ---> interpolation
* namey = low frequency data
*argl,...argn = a collection of ts, vectors, matrices or strings or lists of such objects

Grocer 1.2

15

OUTPUT:

*Y = (Nx1) real vector of low frequency data

* x = (Nxp) real matrix of high frequency indicators (without intercept)

* nameY = a string name of low frequency data

* X = (nxp) string matrix of names for the high frequency indicators

* s = number of high frequency data points for each low frequency data points:
- s= 4 ---> annual to quarterly
- s=12 ---> annual to monthly
- s= 3 ---> quarterly to monthly

DESCRIPTION
Generates matrices associated to the exogenous and endogenous variables of a disaggregation problem, the

associated names and the conversion from low to high frequency parameter.

Example
[Y,x,grocer namendo,grocer namexos,grocer divfq]=explo agreg(grocer ta,grocer namey,varargin(:))

Example taken from function chowlin.

fernandez Temporal disaggregation using the Fernandez method

CALLING SEQUENCE
[y,res]=difonzo(Y ,x,z, argl,...,argn)

PARAMETERS

INPUT:
*Y = list of N vectors or ts or (NxM) matrix
---> M series of low frequency data with N observations
* x = (nxM) real or string matrix or list
---> M series of high frequency data with n observations
* z = (nx1) vector or ts ---> high frequency transversal constraint
* d = objective function to be minimized: volatility of
- d=0 ---> levels
- d=1 ---> first differences
- d=2 ---> second differences
*argl, ..., argn = options to difonzo:
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data points
(default: recoverd from the data)
. the string 'ta=n' where n is the aggregation type:
n=-1 (default) ---> sum (flow)
n=0 ---> average (index)
n=i ---> i th element (stock) ---> interpolation
. typemod = model for the high frequency innvations
typemod='wn' ---> multivariate white noise (default)
typemod="rw' ---> multivariate random walk

Grocer 1.2

16

OUTPUT:
* y = the disaggregated variable
* res= a result tlist with:

- res('meth') = 'Multivariate di Fonzo'

- res('ta') = type of disaggregation

-res('nobs _1f') =nobs of low frequency data

- res('nobs_hf') = nobs of high-frequency data

- res('pred") = number of extrapolations

- res('s') = frequency conversion between low and high freq
- res('y') = high frequency estimate

- res('y_If") = low frequency data

- res(‘indicator’) = high frequency indicators
- res('transversal') = high frequency indicators

-res('y_dt") = high frequency estimate: standard deviation
-res('resid’) = high frequency residuals

-res('resid U') = low frequency residuals

- res('beta’) = estimated model parameters

- res('sd") = standard deviation of the estimated model parameters
-res('namey') = Name of the low frequency aggregate

- res('namex") = Name of the high frequency indicators
-res('namez') = Name of the high frequency transversal constraint

- res('prests') = a boolean indicating the presence or absence of a time series in the regression
- res('bounds') = if there is a timeseries in the regression, the bounds of the regression

DESCRIPTION
Performs temporal disaggregation using the Fernandez method (high level function with vectors, matrices or ts and
the possibility of default parameters).

Example
load('SCI\macros\grocer\db\xesp.dat"); [y,res] = fernandez(Y,x,'ta=-1");

Example taken from function fernandez_d. Provides the disaggregation of Spain's annual exports of Goods (Y) by

Fernandez method, using Spain's Registered exports of goods deflated by unit value index (x) as an indicator.
Annual data are supposed to be the sum of low frequency ones (ta=-1).

fernandezl Temporal disaggregation using the Fernandez method

CALLING SEQUENCE
[y,res]=fernandez1(Y,x,ta,s)

PARAMETERS

INPUT:

*Y =NxI ---> vector of low frequency data

* X = nxp ---> matrix of high frequency indicators (without intercept)
* ta = type of disaggregation:

Grocer 1.2

17

-ta=-1 ---> sum (flow)
- ta = 0 ---> average (index)
- ta =k ---> k th element ---> interpolation
* s = number of high frequency data points for each low frequency data points:
- s= 4 ---> annual to quarterly
- s=12 ---> annual to monthly
- s= 3 ---> quarterly to monthly

OUTPUT:
* y = the disaggregated variable
* res= a result tlist with:

- res('meth") = 'Multivariate di Fonzo'

- res('ta") = type of disaggregation

- res('nobs_1f') = nobs of low frequency data

- res('nobs_hf') = nobs of high-frequency data

- res('pred") = number of extrapolations

- res('s") = frequency conversion between low and high freq
- res('y") = high frequency estimate

-res('y_IfY) = low frequency data

- res('indicator') = high frequency indicators
- res('transversal') = high frequency indicators

- res('y_dt") = high frequency estimate: standard deviation

- res('resid') = high frequency residuals

-res('resid U') = low frequency residuals

- res('beta’) = estimated model parameters

- res('sd") = standard deviation of the estimated model parameters
DESCRIPTION

Performs temporal disaggregation using the Fernandez method (low level function with vectors, and matrices
only).

Example
[y,res]=fernandez1(Y,x,grocer ta,grocer divfq)

Example taken from function fernandez.

litterman Temporal disaggregation using the Litterman method

CALLING SEQUENCE
[y,res]=litterman(namey, argl,...,argn)

PARAMETERS

INPUT:

* namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a (nx1) real vector
between quote, representing the low frequency data that must be disaggregated

*argl,...,argn = arguments which can be:

Grocer 1.2

18

. a time series
.areal (nx1) vector
. a string equal to the name of a time series or a (nx1) real vector between quotes
. a list of such objects
. the string 'divfq=n' where n is the number of high frequency data points for each low frequency data points
(default: recoverd from the data)
. the string 'typemin=xxx' where xxx is the maximisation method (llike -default- or wls)
. the string 'ta=n' where n is the aggregation type:
=-1 (default) ---> sum (flow)

n=0 ---> average (index)

n=i ---> i th element (stock) ---> interpolation
. the string 'delta=x' where x is the increment used for numerical derivation

OUTPUT:
* y = the disaggregated variable
* res = a results tlist with:
-res('meth') = 'Litterman'
- res('ta') = type of disaggregation
- res('nobs_1f') = nobs. of low frequency data
- res('nobs_hf') = nobs. of high-frequency data

-res('pred’) = number of extrapolations
- res('s') = frequency conversion between low and high freq.
- res('p') = number of regressors (including intercept)

-res('y_If') = low frequency data
- res('indicator") = high frequency indicators

- res('y") = high frequency estimate

-res('y _dt') = high frequency estimate: standard deviation
-res('y_up') = high frequency estimate: sd + sigma
-res('y lo") = high frequency estimate: sd - sigma

- res('resid') = high frequency residuals
- res('resid_If) = low frequency residuals

-res('beta’) = estimated model parameters

- res('sd") = estimated model parameters: standard deviation
- res('tstat’) = estimated model parameters: t ratios

-res('rho’) = innovational parameter

- res(‘aic") = Information criterion: AIC

- res('bic') = Information criterion: BIC

- res('llike") = Objective function used by the estimation method
- res('typemin') = method of estimation

- res('llike") = Log-likelihood at the estimated parameters
-res('sigma') = Variance at the estimated parameters

- res('namey') = Name of the low frequency aggregate

- res('namex') = Name of the high frequency indicators

- res('prests’) = a boolean indicating the presence or absence of a time series in the regression
- res('bounds') = if there is a timeseries in the regression, the bounds of the regression

Grocer 1.2

19
DESCRIPTION

Performs temporal disaggregation using the Litterman method (high level function with vectors, matrices or ts and
the possibility of default parameters).

Example
load('SCI\macros\grocer\db\xesp.dat"); [y,res] = litterman(Y,x,'ta=-1",'typemin=wls');

Example taken from function litterman_d. Provides the disaggregation of the Spain's Exports of Goods by the
Chow-lin method, using Spain's Registered exports of goods deflated by unit value index as an indicator. The
weighted least squares method is used to estimate the autocorrelation parameter. The annual data are the sum of
the monthly data (ta=-1).

littermanl Temporal disaggregation using the Litterman method

CALLING SEQUENCE
[y,res]=litterman1(Y,x,ta,s,delta,typemin)

PARAMETERS

INPUT:
*Y = NxI ---> vector of low frequency data
* X = nxp ---> matrix of high frequency indicators (without
intercept)
* ta = type of disaggregation
ta=-1 ---> sum (flow)
ta=0 ---> average (index)
ta=i ---> 1 th element (stock) ---> interpolation
* s = number of high frequency data points for each low
frequency data point
s= 4 ---> annual to quarterly
s=12 ---> annual to monthly
s= 3 ---> quarterly to monthly
* typemin = estimation method:
typemin='wls' ---> weighted least squares
typemin='"llike' ---> maximum likelihood

OUTPUT:
* y = the disaggregated variable
* res = a results tlist with:
- res('meth') = 'Litterman'’
- res('ta") = type of disaggregation
- res('nobs_1f') = nobs. of low frequency data
- res('nobs_hf') = nobs. of high-frequency data

-res('pred’) = number of extrapolations
- res('s") = frequency conversion between low and high freq.
- res('p") = number of regressors (including intercept)

Grocer 1.2

20

-res('y_If') =low frequency data
- res(‘indicator') = high frequency indicators

- res('y') = high frequency estimate

-res('y_dt') = high frequency estimate: standard deviation
-res('y up') = high frequency estimate: sd + sigma
-res('y_lo") = high frequency estimate: sd - sigma

- res('resid') = high frequency residuals
- res('resid_If) = low frequency residuals

-res('beta’) = estimated model parameters

- res('sd") = estimated model parameters: standard deviation

- res('tstat'’) = estimated model parameters: t ratios

-res('tho') = innovational parameter

- res(‘aic") = Information criterion: AIC

- res('bic') = Information criterion: BIC

- res('llike’) = Objective function used by the estimation method

- res('typemin') = method of estimation
- res('llike’) = Log-likelihood at the estimated parameters
- res('sigma') = Variance at the estimated parameters

DESCRIPTION
Performs temporal disaggregation using the Litterman method (low level function with vectors, and matrices only).

Example
[y,res]=litterman1(Y,x,grocer ta,grocer divfq,grocer delta,grocer typemin)

Example taken from function litterman.

Grocer 1.2

	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	 - res('prests') = a boolean indicating the presence or absence of a time series in the regression
	 - res('bounds') = if there is a timeseries in the regression, the bounds of the regression
	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	DESCRIPTION
	 - res('prests') = a boolean indicating the presence or absence of a time series in the regression
	 - res('bounds') = if there is a timeseries in the regression, the bounds of the regression
	DESCRIPTION
	DESCRIPTION
	 - res('prests') = a boolean indicating the presence or absence of a time series in the regression
	 - res('bounds') = if there is a timeseries in the regression, the bounds of the regression
	DESCRIPTION
	DESCRIPTION

