
Chapter 7: Multicollinearity diagnostics, specification and other tests.

GROCER contains numerous diagnostics and specification tests proposed in the literature: 
diagnostic  of  multicollinearity  (part  2);  outlier  diagnostics  (part  3)  and  heteroskedasticity, 
autocorrelation,  normality,  stability… specification tests  (part  4),  (°)tests  of  forecasting  accuracy 
(part 5)(°°) as long as the simple Fisher test (part 1).

1. Fisher test.

GROCER contains a simple function, named waldf that calculates the Fisher statistics for a 
test of linear constraints and its p-value: this function takes as first entry the results tlist from the 
restricted regression and as second entry the results tlist from the unrestricted regression. If the user 
does not want to print the results, he has just to give as third argument ‘noprint’. This function returns 
a tlist, that can be printed later, with function prtfish (see chapter 21). There is also a function called 
waldf0, that returns only the statistics, its p-value and the degrees of freedom: results are neither 
stored in a tlist, nor printed. This last function is useful for the programmer who wants a quicker 
function and who wants to use, but not print, the results of the test. This function is for instance used 
by waldf, or by function automatic (see chapter 13).

2. Multicollinearity. (*)
 
In GROCER, the condition index, the multicollinearity diagnostic proposed by Belsey, Kuh 

and Welsch1, is implemented trough 3 functions: bkw, bkw_scale and bkwols. Function bkw provides 
the whole variance decomposition proportions table: let λ1,… λn be the eigen values of matrix X, 
ordered from the greatest to the smallest; then the table reports (first row of the table) the quotients of 
λ1 by all λi and (next rows) the contribution of the corresponding eigenvalues to the variance of each 
coefficients (see Belsley, Kuh and Welsch or James Lesage’s book for more details). The function 
bkw_scale performs the same decomposition but on variables that have been normalized to have a 
unit norm. Since  bkw applies to the exogenous variables, all types of exogenous variables can be 
given, as in  ols (see chapter 6): matrices, vectors, ts, the name of any of these arguments between 
quotes, or lists of such elements.

Function bkwols, used by ols and other single equation regression functions, provides only the 
condition  index,  that  is  the  quotient  of  the  greatest  by  the  smallest  eigenvalue,  applied  on 
normalized variables2.

As an example, below is the result of bkw_d, which applies bkw to an artificial dataset built to 
show multicollinearity.  This  is  done  simply  by  the  following command in  the  function  bkw_d: 
bkw('x').

Belsley, Kuh, Welsch Variance-decomposition (in %)

K(x) 1 1  1  2  45
x_1  0 4  80 17 0

1 Belsley, D.A., R.E. Welsch and E. Kuh, 1980. Regression Diagnostics, John Wiley & Sons, Inc. New York
2  This is new in version 1.1: in versions 1.0 to 1.041, bkwols was calculated on non normalized variables, which is not the 
best way to measure multicollinearity (a point made by Emmanuel Michaux).

Grocer 1.2

1



x_2  0 0  0  0  100
x_3  0 0  0  0  100
x_4  0 19 6  75 0
x_5  0 69 13 18 0

3. Outlier diagnostic.

A function dfbeta calculates 4 usual diagnostics for the influence of outliers on a regression. 
These diagnostics are: the dfbeta itself,  that measures the studentized change in the least squares 
estimates  when  each  observation  is  sequentially  omitted  from  the  regression;  the  dffits  which 
measures the effect of such changes on the fitted values; the studentized residuals and the hat-matrix 
diagonals. These results are stored in a results tlist and if the user has not given as an argument 
‘noprint’, they are plotted. Dfbetas, which are in same number than the coefficients, are plotted on 
one graphic windows each. Dffits, studentized residuals and hat-matrix diagonals are printed on the 
next graphic window. Here is the result of the command (where y is a (100x1) vector, x is a (100x6) 
matrix and 2 outliers have been artificially put at observations 50 and 70):

-->result = dfbeta('y','x');

Grocer 1.2

2

-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08

1 11 21 31 41 51 61 71 81 91

dfbetas fo r variab le  exo_1

-0.04
-0.03
-0.02
-0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06

1 11 21 31 41 51 61 71 81 91

d fbetas for va riable exo_2

-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.01.21.4

1 11 21 31 41 51 61 71 81 91

dfbetas fo r variab le  exo_3

-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12

1 11 21 31 41 51 61 71 81 91

d fbetas for va riable exo_4

-0.10-0.08-0.06-0.04-0.020.000.020.040.060.080.100.120.14

1 11 21 31 41 51 61 71 81 91

dfbetas fo r variab le  exo_5

-0.14-0.12-0.10-0.08-0.06-0.04-0.020.000.020.040.060.08

1 11 21 31 41 51 61 71 81 91

d fbetas for va riable exo_6



Grocer 1.2

3

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

dffits

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

hat-matrix diagonals



4. Specification tests.

GROCER contains numerous specification tests  that have been proposed in the literature. 
With only a few exceptions, discussed below, there are two functions performing each test. The first 
one, with suffix 0, provides only the statistics of the test, the corresponding p-value, the number of 
variables in the auxiliary regression (except for archz0, arlm0, chowtest0 and reset) and the R² of the 
auxiliary regression (except for chowtest0, hetero_sq0, and reset0). The other ones, without suffix 0, 
provide a tlist, that can be stored and printed later. They also display on screen the results of the test, 
unless the user has given the argument ‘noprint’. Most tests are presented in R² form (to conform to 
an usual practice; White’s famous test for instance has originally been presented in this form) and in 
Fisher  form,  which  should  be  preferred  in  practice  because  it  presents  less  small  sample  size 
distortion3.

The existing tests are the following:
• Lagrange multiplier autocorrelation test of order p: arlm and arlm0;
• Arch test of order p: archz and archz0;
• Breusch and Pagan Heteroskedasticity test with second stage exogenous variables given by the 

user: bpagan and bpagan0;
• Xi² Heteroskedasticity test: hetero_sq and hetero_sq0;
• White Heteroskedasticity test: white and white0;
• Chow traditional stability test: chowtest and chowtest0;
• Chow in-sample predictive failure test: predfailin and predfailin0;
• out-of-sample predictive failure test: predfail;
• Brown,  Durbin  and Evans cusum and cusum-squared  stability  tests:  cusumb (backward)  and 

cusmf (forward);
• Jarque and Bera normality test: jbnorm and jbnorm0;
• Doornik and Hansen normality test: doornhans and doornhans0;
3 see Kiviet  (1986):  “On the rigor  of  some mis-specification tests for  modelling dynamic relationships”,  Review of 
Economic Studies, 53, 241–261.

Grocer 1.2

4

-8

-6

-4

-2

0

2

4

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

studentized residuals



• Ramsay RESET test for non linearity: reset and reset0.

Note the following exceptions: because of the specificity of the test,  cusumb,  cusumf  and 
predfail do  not  exist  in  the  “0-suffixed”  form.  Functions  cusumf and  cusmb use  2  subroutines: 
recresid, that calculates the recursive residuals and cusmq_tab, that extrapolates Durbin’s table used 
to assess the confidence bands of the cusmq test.

As, an example, here are the tests of Hendry and Ericsson4 equation #6:

--> bounds('1964q3','1989q2');rols=ols('del(lm1-lp)','del(lp)', 'del(lagts(1,lm1-
lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')
// estimation of equation #6

-->jbnorm(rols);
Jarque and Bera normality test:
chi2(2)=1.683552
(p -value                  =  .4309445)

-->doornhans(rols)

Doornik and Hansen normality test:
chi2(2)=1.9768208
[More (y or n ) ?]
(p -value                  =  .3721678)

// Jarque and Bera and Doornik and Hansen normality tests 

-->arlm(rols,4);

Lagrange multiplier 1-4 autocorrelation test:
chi2(4)=7.1561938
(p -value                  =  .1278607)

Lagrange multiplier 1-4 autocorrelation test:
F(4,91)=1.9417464
(p -value                  =  .1102127)

// LM AR test with 4 lags

ARCH test:
chi2(4)=3.0104
(p -value                  = 0.5560865)

ARCH test:
F(4,92)=0.7780595
(p -value                  = 0.5422606)
// ARCH test with 4 lags5

4 D.F Hendry et N.R Ericsson (1991): "Modelling the demand for narrow money in the United Kingdom and the United 
States", European Economic Review, p833-886.
5 A correction has been made from the version 1.0 to the 1.1 one to the degrees of freedom of the test, following a similar 
correction made to pc-gets by D.F Hendry and H.M. Krolzig.

Grocer 1.2

5



-->hetero_sq(rols);
Xi² heteroskedasticity test:
F(8,86)=1.3573147
(p -value                  =  .2267385)

// heteroskedasticity test from the regression of the square of ols residuals on the exogenous 
// variables and their square

-->white(rols);

White heteroskedasticity test:
chi2(14)=15.475674
(p -value                  =  .3464303)

White heteroskedasticity test:
F(14,80)=1.0462364
(p -value                  =  .4180556)

// White’s heteroskedasticity test

-->reset(rols,2);

power 2 non linearity RESET test:
F(1,94)= .0821166
(p -value                  =  .7750799)

// Ramsey RESET test

(°)Grocer contains the reliability diagnostic proposed by Hendry and Krolzig in their software pcgets: 
it has been incorporated in grocer equivalent to pcgets, the function  automatic, but it can be used as well 
independently. The reliability diagnostic rests on the idea that if a variable belongs to a model, then its 
student T is diverging away from 0; so if a variable belongs to the model, it should be significant over the 
whole  sample  as  well  over  both  halves  of  the  sample.  Therefore  the  reliability  function  calculates  the 
Student's  t  of  each  variable  and  according  to  the  periods  over  which  they  are  significant  returns  the 
confidence one can have in the chosen variable.

The simplest call to function reliability involves the two following arguments:
• a results tlist taken from an ols estimation;
• a (4x1) vector w giving the percentages the user wants to give to the following cases:  a 

variable significant only on a sub-sample; a variable significant only on the sub-samples;  a variable 
significant  only  on  the  whole  sample;  a  variable significant  on  the  whole  sample  and  on  a 
sub_sample; note that when a variable is significant over these 3 samples, it is assumed to be 100% 
reliable and when it is significant over none of these, it is assumed to have 0% reliability.

Calculating the reliability of the variables in hendryericsson demo can be done as follows:
-->r=hendryericsson();reliability(r,[0.3 0.6 0.4 0.7])

which gives the following result:

variable                  reliability

delts(lp)                 1

Grocer 1.2

6



delts(lagts(1,lm1-lp-ly)) 0.7
rnet                      1
lagts(1,lm1-lp-ly)        1
cte                       1

The user can also enter two options: as a third argument, the size level (by default, as in the above 
example, it is set to 0.05); and as a fourth argument, 'noprint' if she does not want to print the results.

5. Tests of forecasting properties.

Grocer contains three tests proposed to evaluate forecasts: the test of directional accuracy proposed 
by Pesaran & Timmerman6 (function ddchange); the tests of Diebold-Mariano (function diebmar) and Clark 
and West (function clwest) that test the equivalence of two non-nested and nested forecasts respectively.

The test of directional accuracy tests if a forecast is good at predicting the sign of a variable. The 
function dchange takes therefore as its first argument the variable to forecast and as its second argument the 
forecast itself. There is also a third, optional, argument, which is 'noprint', that the user can give if she does 
not want to print the results. Take for instance the change in the "level of future own production in the next 
three  month"  and  the  "level  of  past  own  production  over  the  past  three  months"  in  database 
BusinessSurvey.dat in your Scilab  library macros\grocer\db: the first series should be a good predictor of the 
second series three months ahead. Using Pesaran & Timmerman's test to check this property can therefore be 
done as follows:

-->load('SCI\macros\grocer\db\BusinessSurvey.dat');  

-->rd = dchange('delts(dpp)','lagts(3,delts(dpf))');

With the following result:

Pesaran-Timmermann test of directional change

H0 : dpp & lagts(3,dpf) are independently distributed
estimation period: 1976m7-2004m10

right propor. pred. Stat. Sn  p-value
0.6                 3.6919749 0.0001113

                         *
                      *     *

And the test confirms that the sign of the change of the assessment of industrial firms on the "level of 
future own production in the next three month" is a good predictor of the sign of the "level of past 
own production over the past three months". Results are stored in a tlist which contains the values of 
the 2 series (fields 'y' and 'yc'), their names (fields 'namey' and 'nameyc'), the percentage of signs that 
are correctly predicted (field 'P'), the value of the test (field 'Pstar') and its pvalue (field 'pvalue'). In 
the example above rd('pvalue') gives therefore the test pvalue.

6 Pesaran,  M.H.  and  A.  Timmerman  (1992),  "A  Simple  Nonparmetric  Test  of
Predictive  Performance",  Journal  of  Business  and  Economic  Statistics,  Vol.
10, 4, 451-465.

Grocer 1.2

7



The test proposed by Diebold and Mariano7 to compare the predictive accuracy of two competing 
forecasts is done by function diebmar, which implements also the small sample correction proposed 
by Harvey, Leybourne and Newbold8. The simplest call to function diebmar takes the following form:
r=diebmar(y,yf1,yf2)
where  y  is  the  series  to  be  forecasted,  yf1  the  benchmark  forecast  and  yf2  the  forecast  which 
performance is to be compared with the benchmark one. 

If the user wants to apply Harvey, Leybourne and Newbold  small sample correction, the she must 
enter a fourth argument and set it to %t:
r=diebmar(y,yf1,yf2,%t) 
(r=diebmar(y,yf1,yf2,%f) is therefore equivalent to r=diebmar(y,yf1,yf2)).

If the user wants to change the default truncation point of the Barlett window used to compute the 
variance of the difference between the 2 forecasts, she has to enter the desired  truncation point (say 
trunc) of the Barlett window:
r=diebmar(y,yf1,yf2,%t,trunc) if she wants to apply Harvey, Leybourne and Newbold small sample 
correction and r=diebmar(y,yf1,yf2,%f,trunc) if she does not want to.

A last option is available: if the user does not want to print the results, then she has to enter 'noprint' 
(or %f) as a sixth argument.

As  an  example,  take  the  French  industrial  production  and  again  the  he  "level  of  future  own 
production in the next three month" and the "level of past own production over the past three months" 
in database Industrial.dat in your Scilab  library macros\grocer\db and, from function dibemar_d the 
one-step ahead forecast made from an AR(2) (series y_bench) as the benchmark series and the one-
step ahead forecast made with these series as the competing series (series y_indic).
then:
-->bounds('2000q1','2003q4')
-->rdb=diebmar('delts(log(y))','y_bench','y_indc')
is the easiest call in this context to diebmar.

It provides:

        Diebold-Mariano test

Benchmark serie: y_bench
Competing serie: y_indc
Truncation lag of the Barlett window:10
forecasting period: 2000q1-2003q4

Bench. MSE Comp. MSE DM-Stat.  p-value
0.0001463  0.0000827 2.0755579 0.0189674

                         *
                      *     *

Making Harvey, Leybourne and Newbold small sample correction is made as follows:
-->rdb=diebmar(delts(log(y)),y_bench,y_indic,%t)

7 Diebold  F.  X.  et  Mariano  R.  S.  (1995).  "Comparing  Predictive  Accuracy",
Journal of Business and Economic Statistics, 13, pp. 253-265. 
8 Harvey, D.I.,  S.J.  Leybourne & P.  Newbold (1998):  “Tests for  Forecast  Encompassing”,  Journal of  Business and 
Economic Statistics, 16, 254-259 

Grocer 1.2

8



with the following result:

        Diebold-Mariano test with small sample correction
truncation lag of the Barlett window:10
forecasting period: 2000q1-2003q4

Bench. MSE Comp. MSE DM-Stat.  p-value
0.0001463  0.0000827 0.8406743 0.2068655

                         *
                      *     *    

Lastly, imposing a truncation at period 4 to the Barlett widow is done as follows: 
-->rdb=diebmar(delts(log(y)),y_bench,y_indic,%t,4)

with the following result:

        Diebold-Mariano test with small sample correction
truncation lag of the Barlett window:4
forecasting period: 2000q1-2003q4

Bench. MSE Comp. MSE DM-Stat. p-value
0.0001463  0.0000827 1.238839 0.1172207

                         *
                      *     *     

Contrary  to  Diebold  and Mariano test,  Clark  and West9 test  applies  to  nested  models,  with  the 
constrained model the reference (H0) model and the more general one the competing one. Because of 
the possibility to take the martingale difference as the H0 model, the syntax of function  clwest is 
somehow diffrent from the one of function diebmar. The simplest call to clwest is however similar:
r=clwest(y,yf1,yf2)
If you want to keep the names of the variables, then enter yf1 and yf2 between quotes (you can also 
enter them directly in a vector ['yf1' 'yf2'] ) 

You  can  also,  as  in  Clark  and  West  first  paper10,  directly  test  a  forecast  against  a  martingale 
hypothesis and run:
r=clwest(y,yf1,'mdh')
where 'mdh' stands for Martingale Difference Hypothesis

Lastly you can also apply Clark and West test to overlapping forecasts; you have in that case to enter 
the option 'overlap=xx' with xx is the number of overlapping terms in the forecast.

And as usual you can enter 'noprint' if you do not want to enter the results of the test.

As an example, take again the industrial database:
-->load('SCI\macros\grocer\db\industrial.dat')

Make rolling forecasts with 1979q1 as the starting period of estimation and ending estimation going 
from 1992q1 to 2003Q4:

9Todd E. Clark & Kenneth D. West (2006), "Approximately normal test for equal predictive accuracy in nested models", 
NBER Technical Paper, 326
10Todd E. Clark & Kenneth D. West (2005), "Using out-of-sample mean squared prediction errors to test the martingale 
difference hypothesis", Journal of Econometrics.

Grocer 1.2

9



-->bounds('1979q1','2003q4');
-->rs = rolreg('delts(log(y))','lagts(ypast)','delts(lagts(yfut))','cte',...
-->      'dates=[''1992q1'' ''2003q4'']','hstep=1')

Then, test the predictive accuracy of these forecasts against a martingal hypothesis (note that the 
bounds are imposed :
-->y_short = rs('yhat') ;
-->bounds('1992q1','2003q4')
-->rscl=clwest('delts(log(y))','y_short','bench=''mdh''') ;

With the following result:

        Clark-West test of martingal difference hypothesis

Random walk series: delts(log(y))
Series of forecasts: y_short
Forecasting period: 1992q1-2003q4

MSE-adj.  CW-Stat.  p-value
0.0001913 4.3884761 0.0000057

                         *
                      *     *

The test is clearly rejected: the forecast has more predictive accuracy than a martingale.

(°°)

6. The tests functions and their specifications.

archz___________________________________________________________________ARCH test

CALLING SEQUENCE

[rarch]=archz(results,p,np)

PARAMETERS

INPUT:
* results = results tlist from a first stage estimation
* p = # of lag of squared residuals in the second stage estimation
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------

OUTPUT:
rarch= a typed list with :
  . rarch('meth') = 'arch' 
  . rarch('r1st') = results of the first step regression (allows the "traceability" of the results)
  . rarch('chistat') = the value of the chi2 statistics
  . rarch('chi_pvalue') = the corresponding p-value 
  . rarch('chi_df') = the corresponding degrees of freedom
  . rarch('fstat') = the value of the Fisher statistics

Grocer 1.2

10



  . rarch('pfstat') = the corresponding p-value 
  . rarch('dfnum') = degrees of freedom of the numerator
  . rarch('dfden') = degrees of freedom of the denominator

DESCRIPTION

Computes a test for AutoRegressive Conditional Heteroskedasticty (ARCH) of order p. Results are 
stored in a tlist and displayed on screen.

Example:
rarch=archz(rols,4)

This example is taken from hendryericsson. It provides the ARCH test of order 4 for Hendry and 
Ericsson equation #6, whose estimation result has been saved in tlist rols.

archz0__________________________________________________________________ARCH test

CALLING SEQUENCE

[f,f_pvalue,r2]=archz0(results,p,np)

PARAMETERS

INPUT:
* results = results tlist from a first stage estimation
* p = # of lag of squared residuals in the second stage estimation
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT:
 * f = value of the Goldfeld-Quandt F test
* f_pvalue = its p-value
* r2 = R² of the auxilliary regression

DESCRIPTION

Computes a test for ARCH(p). Results are saved as numbers and not displayed on screen.

Example:
[f,f_pvalue,r2]=archz0(results,p)

This example is taken from archz. Useful mainly for programming purpose (since archz does much 
more).

Grocer 1.2

11



arlm__________________________________________Lagrange multiplier autocorrelation test

CALLING SEQUENCE

[resulbp]=arlm(resul1,p,np)

PARAMETERS

INPUT:
* resul1 = results tlist from a first stage estimation 
* p = # of lag of residuals in the second stage estimation
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT:
resulbp = results tlist with:
 . resulbp('meth') = 'archtest'
 . resulbp('resul1st') = resul1
 . resulbp('f') = fstat
 . resulbp('p') = p
 . resulbp('df') = df
 . resulbp('f_pvalue')=f_pvalue

DESCRIPTION

Computes a Lagrange multiplier autocorrelation test of order p (see Godfrey, L. G. (1978). Testing 
for  higher  order  serial  correlation  in  regression  equations  when  the  regressors  include  lagged 
dependent variables. Econometrica, 46, 1303–1313). Results are stored in a tlist and displayed on 
screen.

Example:
rbp=arlm(rols,4)

This example is taken from hendryericsson. It provides the Lagrange multiplier autocorrelation test of 
order 4 for Hendry and Ericsson preferred equation, whose estimation result has been saved in tlist 
rols.

arlm0_________________________________________Lagrange multiplier autocorrelation test

CALLING SEQUENCE

[fstat,f_pvalue,r2]=arlm0(resulols,p,np)

PARAMETERS

INPUT:
* resul1 = results tlist from a first stage estimation 
* p = # of lag of residuals in the second stage estimation
* np = unused argument (but put here for compatibility with other testing functions)
------------------------------------------------------------

Grocer 1.2

12



OUTPUT:
 * fstat = value of the statistic
 * f_pvalue = its p-value

DESCRIPTION

Computes a Lagrange multiplier autocorrelation test of order p (see Godfrey, L. G. (1978). Testing 
for  higher  order  serial  correlation  in  regression  equations  when  the  regressors  include  lagged 
dependent variables. Econometrica, 46, 1303–1313).. Contrary to arlm, output does not take the form 
of a tlist, but of the Fisher test and its p value and nothing is printed.

Example:
[fstat,f_pvalue,r2]=arlm0(resul1,p)

This example is taken from arlm. Useful mainly for programming purpose (since  arlm does much 
more).

bkw_________________________________________________BKW multicollinearity diagnostic

CALLING SEQUENCE

[condindex]=bkw(arg1,…,argn)

PARAMETERS

INPUT:
argi = arguments which can be:
  . a time series
  . a real (nxp) vector 
  . a string equal to the name of a time series or a (nxp) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
------------------------------------------------------------
OUTPUT:
condindex = the condition number

DESCRIPTION

Computes and prints BKW collinearity variance-decomposition proportions matrix. 

Example:
bkw('x')

This example is taken from bkw_d. Here the exogenous variables take the form of a matrix x; it is 
entered between quotes, so the exogenous variables will be called x_1, x_2,…

Grocer 1.2

13



bkw_scale____________________________________________BKW multicollinearity diagnostic

CALLING SEQUENCE

[condindex]=bkw_scale(arg1,…,argn)

PARAMETERS

INPUT:
argi = arguments which can be:
  . a time series
  . a real (nxp) vector 
  . a string equal to the name of a time series or a (nxp) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
------------------------------------------------------------
OUTPUT:
condindex = the condition number

DESCRIPTION

Computes  and  prints  BKW collinearity  variance-decomposition  proportions  matrix,  each  column 
being normalized to have a unit norm 

Example:
Bkw_scale('x')

On the data used in bkw_d, the exogenous variables take the form of a matrix x; it is entered between 
quotes, so the exogenous variables will be called x_1, x_2,…

bkwols______________________________________________BKW multicollinearity diagnostic

CALLING SEQUENCE

[condindex]= bkwols(arg1,…,argn)

PARAMETERS

INPUT:
argi = arguments which can be:
  . a time series
  . a real (nxp) vector 
  . a string equal to the name of a time series or a (nxp) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
------------------------------------------------------------
OUTPUT:
condindex = the condition number

Grocer 1.2

14



DESCRIPTION

Computes BKW COND index of a x matrix, each column being normalized to have a unit norm. 
Contrary to bkw_scale, this function does not print the variance-decomposition matrix. 

Example:
condindex=bkwols(x)

This example is taken from ols. Useful mainly for programming purpose (since bkw_scale does much 
more).

bpagan_______________________________________Breusch and Pagan heteroskedasticity test

CALLING SEQUENCE

[resulbp]=bpagan(resulols,arg1,…,argn)

PARAMETERS

INPUT:
* resulols = results tlist from a first stage estimation 
* argi = arguments of the second stage regression, which can be:
  . a time series
  . a real (nxp) vector 
  . a string equal to the name of a time series or a (nxp) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
------------------------------------------------------------
OUTPUT:
resulbp = a results tlist with:
- resulbp('meth')   = 'bpagan'
- resulbp('resul1st') = results tlist of the first stage regression
- resulbp('u2') = sum of square residuals from the first stage regression
- resulbp('namex2') = names of the exogenous variables in the second stage regression
- resulbp('x2') = vector of the exogenous variables in the second stage regression
- resulbp('f') = Breush-Pagan LM-statistic (Fisher form)
- resulbp('p') = p-value of the test
- resulbp('dfnum') = degrees of freedom of the numerator
- resulbp('dfden') = degrees of freedom of the denominator
- resulbp('f_pvalue) = p-value of the test

DESCRIPTION

Computes  Breusch  and  Pagan heteroskedasticity  test  with  the  exogenous  second stage  variables 
provided by the user (see Breusch, T.S. and A.R. Pagan (1979): “A simple test for heteroskedasticity 
and random
coefficient variation”, Econometrica 47, 1287-1294). Results are stored in a tlist and displayed on 
screen.

Grocer 1.2

15



Example:
bpagan(rols,'del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte','(del(lp))^2', 
'(del(lagts(1,lm1-lp-ly)))^2','(rnet)^2','(lagts(1,lm1-lp-ly))^2')

This example is taken from bpagan_d. The first stage result comes from the estimation of Hendry and 
Ericsson  equation  #  6.  The  second  stage  exogenous  variables  are  the  squares  of  all  exogenous 
variables of the first stage regression.

bpagan0______________________________________Breusch and Pagan heteroskedasticity test

CALLING SEQUENCE

[nvar2,f,f_pvalue,r2]=bpagan0(u2,x2,nvar)

PARAMETERS

INPUT:
* u2 = the first stage regression squared residuals
* x2 = the exogenous variables of the Breusch and Pagan second stage regression
* nvar = number of exogenous variables in the first satge regression
------------------------------------------------------------
OUTPUT:
* nvar2 = # of exogenous variables of the Breusch and Pagan second stage regression
* f = value of the Goldfeld-Quandt F test
* f_pvalue = its p-value
* r2 = R² of the auxilliary regression

DESCRIPTION

Computes  Breusch  and  Pagan heteroskedasticity  test  with  the  exogenous  second stage  variables 
provided by the user (see Breusch, T.S. and A.R. Pagan (1979): “A simple test for heteroskedasticity 
and random
coefficient variation”, Econometrica 47, 1287-1294). Results are given only in constant form and not 
printed.

Example:
[nvar2,f,f_pvalue]=bpagan0(u2,x2)

This example is taken from function  bpagan. Useful mainly for programming purpose (since bkw 
does much more).

chowtest____________________________________________________________Chow usual test

CALLING SEQUENCE

[resulch]=chowtest(resulols,n1,np)

Grocer 1.2

16



PARAMETERS

INPUT:
* resulols = results tlist from a first stage estimation 
* n1 = # of observations of the first sub-period
* np = 'noprin' if the user does not want to display the results
------------------------------------------------------------
OUTPUT:
resulch = a results tlist with:
  . resulch('meth') = chow
  . resulch('rols') = the tlist results from first stage estimation
  . resulch('fstat') = value of the test statistic
  . resulch('f_pvalue') = its p-value
  . resulch('dfnum') = # dof of the numerator 
  . resulch('dfden') = # dof of the denominator 
  . resulch('cut') = date (if there is a ts in the regression) or index of the observation (if there is no ts in 
the   regression) of the cut

DESCRIPTION

Computes Chow usual test with a break at observation n1. Results are saved in a tlist and displayed 
on screen.

Example:
r=ols('del(lm1-lp)','lagts(lm1-lp-ly)','del(lp)','rnet','del(lagts(lm1-lp-ly))','cte'); chowtest(r,50)

This example is taken from function chowtest_d. The Chow test on Hendry and Ericsson equation # 6 
is provided for a break at observation # 50.

chowtest0___________________________________________________________Chow usual test

CALLING SEQUENCE

[fstat,f_pvalue,dfnum,dfden]=chowtest0(resulols,n1,np)

PARAMETERS

INPUT:
* resulols = a results tlist from a first stage estimation 
* n1 = # of observations of the first sub-period
------------------------------------------------------------
OUTPUT:
* fstat = value of the test statistic
* f_pvalue = its p-value
* dfnum = # dof of the numerator 
* dfden = # dof of the denominator

Grocer 1.2

17



DESCRIPTION

Computes Chow usual test with a break at observation n1. Results are saved as numbers and not 
displayed on screen.

Example:
[fstat,f_pvalue,dfnum,dfden]=chowtest0(resulols,n1)

This  example  is  taken  from  function  chowtest.  Useful  mainly  for  programming  purpose  (since 
chowtest does much more).

(°)clwest____________________Clark and West Test for Equal Predictive Accuracy in Nested Models 

CALLING SEQUENCE

rcw = clwest(namey,arg1,...,argn)

PARAMETERS

INPUT:
* namey = observed vector or ts

WARNING:  in  case  of  of  martingale  difference  test  combined with  overlapping  regression  (for 
computational purpose):

(1) this series should be in first difference: overlapping terms are built by summation
    Ex: If y(t)-y(t-4) = d(y(t))+d(y(t-1))+d(y(t-2))+d(y(t-3)) is the series to be forecasted it's d(y) that 

must be entered
(2) the series of forecasts should be in the overlapping form (y(t)-y(t-4) in the example)  

* arg1,...,argn: arguments that can be:
- 1 or 2 time series according to the test specified (first series should be the benchmark in case of nested 
model)
- a real (nx1) or (nx2) vector
- a string equal to the name of a time series or a (nx1)/(nx2) real vector or matrix between quotes
- a list of such elements
- 'bench = ''mdh''' if the user want to test martingale difference hypothesis otherwise 2 nested model are 
tested (default, 'nm')
-'overlap=xx' : if the user number of overlapping terms if the user estimated overlapping regression
- the string 'noprint' if the user doesn't want to display the results of the regression
------------------------------------------------------------
OUTPUT: 
rcw = a results tlist with:
- rcw('meth') = 'Clark-West' / 'Clark-West - martingal difference'
- rcw('y') = input forecasted series
- rcw('x') = forecasts 
- rcw('namey') = name of forecasted serie
- rcw('namex') = names of forecasts 
- rcw('stat') = value of the Clark-West statistics
- rcw('pvalue') = p-value of the Clark-West statistics
- rcw('overlap') = number of overalapping terme if any (0 otherwise)

Grocer 1.2

18



- rcw('prests') = flag for the presence of time series
- rcw('bounds') = if there is a timeseries in the forecast, the bounds of the regression

DESCRIPTION

A function that computes Clark & West (2006) approximately normal test for equal predictive accuracy in 
nested model and it's special case to test martingale difference hypothesis (Clark & West, 2005).

Examples:
1) rscl=clwest('delts(log(y))','y_short') ;
2) rlcl=clwest('delts(log(y))','y_long','overlap=4') ; 
3) rscl=clwest('delts(log(y))','y_short2','y_short','bench=''nm''') ;

Example 1 taken from function clwest_d(). The forecasted series is delts(log(y)).
In example 2, forecasts are computed by mean of a long horizon (overlapping) regression.
In example 3, 2 nested model are compared where 'y_short2' is defined as the benchmark series

(°°)

cusumb________________________________________________backward cusum stability tests

CALLING SEQUENCE

[rcusum]=cusumb(y,arg1,…,argn)

PARAMETERS

* grocer_namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a 
(nx1) real vector between quotes
*argi = arguments which can be:
  . a time series
  . a real (nx1) vector 
  . a string equal to the name of a time series or a (nx1) real vector between quotes
  . the string 'noprint' if the user doesn't want to print the results of the regression
  . the string 'size=x' where x=0.01, 0.05 or 0.1 is the size chosen for the test (default =0.05)
------------------------------------------------------------
OUTPUT: 
rcusum = a results tlist with:
  . rcusum('meth')='cusum'
  . rcusum('nobs')= # of observations
  . rcusum('nvar')= # of variables
  . rcusum('y')= y data vector
  . rcusum('x')= x matrix vector
  . rcusum('rres')= vector of recursive residuals
  . rcusum('cusum')= cusum test
  . rcusum('cusum_l90')= the lower value of its 90% confidence interval
  . rcusum('cusum_u90')= the upper value of its 90% confidence interval
  . rcusum('cusum_l95')= the lower value of its 95% confidence interval
  . rcusum('cusum_u95')= the upper value of its 95% confidence interval
  . rcusum('cusum_l99')= the lower value of the 99% confidence interval
  . rcusum('cusum_u99')= the upper value of the 99% confidence interval

Grocer 1.2

19



  . rcusum('cusums')= squared cusum test
  . rcusum('cusums_l90')= the lower value of its 90% confidence interval
  . rcusum('cusums_u90')= the upper value of its 90% confidence interval
  . rcusum('cusums_l95')= the lower value of its 95% confidence interval
  . rcusum('cusums_u95')= the upper value of its 95% confidence interval
  . rcusum('cusums_l99')= the lower value of the 99% confidence interval
  . rcusum('cusums_u99')= the upper value of the 99% confidence interval
  . rcusum('prests')=boolean indicating the presence or absence of a time series in the regression
  . rcusum('namey') = name of the y variable
  . rcusum('namex') = name of the x variables
  . rcusum('bounds') = if there is a timeseries in the regression, the bounds of the test (which are the 
bounds of the regression, less the k first dates)

DESCRIPTION

Computes backward cusum and cusum-squares test and plots the tests values along with their 5% 
confidence bands (see Brown R.L, J.  Durbin and J.M Evans (1975):”Techniques for Testing the 
Constancy of Regression Relationship over Time”, Journal of the Royal Statistical Society, Series B, 
n°2, 149-192).

Example:
load('grocer/bdexamples/bdhenderic.dat')  ;  bounds('1964q3','1985q2')  ;  r=cusumb('del(lm1-
lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')

This example is taken from function cusum_d. The example provides the cusum backward stability 
test for the estimation of Hendry and Ericsson equation # 6. 

cusumf__________________________________________________forward cusum stability tests

CALLING SEQUENCE

[rcusum]=cusumf(y,arg1,…,argn)

PARAMETERS

INPUT:
* grocer_namey = a time series, a real (nx1) vector or a string equal to the name of a time series or a 
(nx1) real vector between quotes
* arg1,…,argn = arguments which can be:
  . a time series
  . a real (nx1) vector 
  . a string equal to the name of a time series or a (nx1) 
    real vector between quotes
  . the string 'noprint' if the user doesn't want the 
    to print the results of the regression
  . the string 'size=x' where x=0.01, 0.05 or 0.1 is the 
    size chosen for the teste (default =0.05)
------------------------------------------------------------

Grocer 1.2

20



OUTPUT: 
rcusum = a results tlist with:
  . rcusum('meth')='cusum'
  . rcusum('nobs')= # of observations
  . rcusum('nvar')= # of variables
  . rcusum('y')= y data vector
  . rcusum('x')= x matrix vector
  . rcusum('rres')= vector of recursive residuals
  . rcusum('cusum')= cusum test
  . rcusum('cusum_l90')= the lower value of its 90% confidence interval
  . rcusum('cusum_u90')= the upper value of its 90% confidence interval
  . rcusum('cusum_l95')= the lower value of its 95% confidence interval
  . rcusum('cusum_u95')= the upper value of its 95% confidence interval
  . rcusum('cusum_l99')= the lower value of the 99% confidence interval
  . rcusum('cusum_u99')= the upper value of the 99% confidence interval
  . rcusum('cusums')= squared cusum test
  . rcusum('cusums_l90')= the lower value of its 90% confidence interval
  . rcusum('cusums_u90')= the upper value of its 90% confidence interval
  . rcusum('cusums_l95')= the lower value of its 95% confidence interval
  . rcusum('cusums_u95')= the upper value of its 95% confidence interval
  . rcusum('cusums_l99')= the lower value of the 99% confidence interval
  . rcusum('cusums_u99')= the upper value of the 99% confidence interval
  . rcusum('prests')=boolean indicating the presence or absence of a time series in the regression
  . rcusum('namey') = name of the y variable
  . rcusum('namex') = name of the x variables
  . rcusum('bounds') = if there is a timeseries in the regression, the bounds of the test (which are the 
bounds of the regression, less the k first dates)

DESCRIPTION

Computes forward cusum and cusum-squares test  and plots  the tests values along with their  5% 
confidence bands (see Brown R.L, J.  Durbin and J.M Evans (1975):”Techniques for Testing the 
Constancy of Regression Relationship over Time”, Journal of the Royal Statistical Society, Series B, 
n°2, 149-192).

Example:
load('grocer/bdexamples/bdhenderic.dat')  ;  bounds('1964q3','1985q2')  ;  r=cusumf('del(lm1-
lp)','del(lp)','del(lagts(1,lm1-lp-ly))','rnet','lagts(1,lm1-lp-ly)','cte')

This example is taken from function cusum_d. The example provides the cusum forward stability test 
for the estimation of Hendry and Ericsson equation # 6. 

cusumq_tab___________________________________________cusum squared confidence band

CALLING SEQUENCE

[s] = cusumsq_tab(nobs)

Grocer 1.2

21



PARAMETERS

INPUT:
nobs = # of observations 
------------------------------------------------------------
OUTPUT: 
s = (3x1) vector of (1%, 5%,10%) confidence bounds

REFERENCES
* Durbin 1969 'Test for Serial Correlation in Regression Analysis based on the Periodogramm of 
Least Squares Residuals', Biometrika, 56, 1-15
(°)* Edgerton, David & Wells, Curt, 1994. "Critical Values for the Cusumsq Statistic in Medium and 
Large Sized Samples",Oxford Bulletin of Economics and Statistics, BlackwellPublishing, vol. 56(3), 
pages 355-65, August.(°°)

DESCRIPTION

Gives the 1%, 5% and 10% stat level of the cusum-squared statistics. (°)Durbin's table is used when 
values exist and Edgerton and Wells ones for all other values of nobs.(°°)

Example:
s=cusumsq_tab(nobs)

This example is taken from function cusumb. Used in cusumb and cusumf.

(°)
dchange_________________________________________________Test for directional accuracy

CALLING SEQUENCE

rdb = dchange(y,yb,prt) 

PARAMETERS

INPUT:
* y = vector or ts of observable or benchmark series
* yb = vector or ts of competing or forecast series
* prt = %f if the user does not want to print the results (optional)
------------------------------------------------------------
OUTPUT: 
rdb = a results tlist with:
- rchange('meth')   = 'direct. change' 
- rchange('y')      = benchmark or observable serie s
- rchange('yc')     = competing series or forecasted series
- rchange('namey')  = name of benchmark or observable series 
- rchange('nameyc') = name of the competiting series or forecasted series
- rchange('P')      = proportion of time the sign of the observable value is correctly forecasted
- rchange('Pstar') = concordance index 
- rchange('pvalue')= pvalue of the statistic

Grocer 1.2

22



DESCRIPTION

A function that computes Pesaran & Timmerman nonparametric test for directional accuracy. 

Example:
rdb=diebmar('dpp','lagts(3,dpf)')

Example taken from function dchange(): tests in French business survey if changes in "level of future 
own production" are a good predictors of that of "level of past own production". 

(°°)

dfbeta_________________________________________BKW influential observation diagnostics

CALLING SEQUENCE

[results]=dfbeta(y, arg1,…,argn)

PARAMETERS

INPUT: 
* y = either an ols results tlist or a a time series, a real (nx1) vector or a string equal to the name of a 
time series or a (nx1) real vector between quotes
* argi = an argument which can be:
  . the string 'noprint' if the user doesn't want to print the results of the regression
  or, and only if y is not an ols results tlist:
  . a time series
  . a real (nx1) vector 
  . a string equal to the name of a time series or a (nx1) real vector between quotes
------------------------------------------------------------
OUTPUT: 
results = a results tlist with
- results('meth')   = 'dfbeta'
- results('nobs')   = # of observations
- results('nvar')   = # of variables in x-matrix
- results('dfbeta') = df betas
- results('dffits') = df fits
- results('hatdi')  = hat-matrix diagonals
- results('stud')   = studentized residuals
- result('namex') = name of the x variables
- result('namey') = name of the y variable
- result('prests') = boolean indicating the presence or absence of a time series in the regression

DESCRIPTION

Computes  BKW  (influential  observation  diagnostics)  dfbetas,  dffits,  hat-matrix,  studentized 
residuals. Plots the corresponding results.

Example:
result = dfbeta('y','x')

Grocer 1.2

23



This  example  is  taken from function  dfbeta_d.  The example provides  dfbetas,  dffits,  hat-matrix, 
studentized residuals for a regression whose endogenous variable is y and exogenous variables is a 
matrix (as in dfbeta_d), a vector or a ts x. 

(°)diebmar____________________Diebold and Mariano test for comparing predictive accuracy

CALLING SEQUENCE

rdb = diebmar(namey,arg1,…,argn)

PARAMETERS

INPUT: 
* namey = observed vector TS: a time series, a real (nx1) vector or a string equal to the name of a 
time series or a (nx1) real vector between quotes
* argi = an argument which can be:
- 2 time series (the first series is the benchmark model)
- a real (nx2) vector
- a real (nx2) matrix
- a string equal to the name of a time series or a (nx2) real vector or matrix between quotes
- a list of such elements
- 'smallc =1' if the user want to perform a small sample correction will be done (optional; default = 0: 
no small sample correction)
- 'trunc = xx' truncation point of the bartlett window (optional; default = floor(5*nobs^0.25))
- the string 'noprint' if the user doesn't want to display the results of the regression
------------------------------------------------------------
OUTPUT: 
rdb = a results tlist with</li>
- rdb('meth') = 'diebmar'
- rdb('y') = input forecasted series
- rdb('x') = forecasts resp. under the null hypothesis & under the alternative hypothesis
- rdb('namey') = name of forecasted serie
- rdb('namex') = names of forecasts resp. under the null hypothesis & under the alternative hypothesis
- rdb('mse') = vector of MSE
- rdb('stat') = value of the Diebold-Mariano statistics
- rdb('pvalue') = p-value of the Diebold-Mariano statistics
- rdb('smallc') = flag for a small sample correction
- rdb('trunc') = truncation lag of the Barlett window
- rdb('prests') = flag for the presence of time series
- rdb('bounds') = if there is a time series in the forecast, the bounds of the regression

DESCRIPTION

A function that computes Diebold and Mariano test for predictive accuracy while allowing for small 
sample correction as proposed by Harvey et al.

Example:
1) rdb=diebmar('delts(log(y))','y_bench','y_indic','smallc=1','trunc=4")

Grocer 1.2

24



2) rdb=diebmar('delts(log(y))','y_bench','y_indic','smallc=1')
3) rdb=diebmar('delts(log(y))','y_bench','y_indic')

Examples taken from function diebmar_d().  The forecasted series is delts(log(y)),  the benchmark 
series is y_bench, the alternative one is y_indic.

doornhans__________________________________________Doornik and Hansen normality test

CALLING SEQUENCE

[rdoornhans]=doornhans(res,np)

PARAMETERS

INPUT:
* res = a result tlist
* np= the string 'noprint' if the user doesn't want to print the results of the test
------------------------------------------------------------
OUTPUT: 
rdoornhans= a typed list with :
  . rdoornhans('meth') = 'doornhans' 
  . rdoornhans('r1st') = results of the first step regression (allows the "tracability" of the results)
  . rdoornhans('chistat') = the value of the chi2 statistics
  . rdoornhans('chi_pvalue') = the corresponding p-value 
  . rdoornhans('chi_df') = the corresponding degrees of freedom

DESCRIPTION

Computes "omnibus" normality test (see J. Doornik and H. Hansen (1994) : "A practical test for 
univariate and multivariate normality", Discussion Paper, Nuffield College). Results are stored in a 
tlist and displayed on screen if the user has not given as second argument ‘noprint’.

Example:
doornhans(rols)

This example is taken from function  hendryericsson. The example provides Doornik and Hansen 
normality test for the estimation of Hendry and Ericsson equation # 6, whose results have been stored 
in tlist rols.

doornhans0_________________________________________Doornik and Hansen normality test

CALLING SEQUENCE

[dh,pn]=doornhans0(res,np)

Grocer 1.2

25



PARAMETERS

INPUT:
* res = a result tlist
* np = unused argument put for compatibility with other testing functions
------------------------------------------------------------
OUTPUT: 
* dh = the value of the test
* pn = its p-value

DESCRIPTION

Computes "omnibus" normality test (see J. Doornik and H. Hansen (1994) : "A practical test for 
univariate and multivariate normality", Discussion Paper, Nuffield College). Results are stored as 
numbers and are not displayed on screen.

Example:
[dh,pn]=doornhans0(res)

This  example  is  taken from function  doornhans.  Useful  mainly for  programming purpose (since 
doornhans does much more).

hetero_sq___________________________________________________Xi² heteroskedasticity test

CALLING SEQUENCE

[resulh]=hetero_sq(r,np)

PARAMETERS

INPUT:
* r = results tlist from a first stage estimation 
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT: 
resulh = a results tlist with:
- resulth('meth')   = 'hagan'
- resulth('resul1st') = results tlist of the first stage regression
- resulth('f') = Xi² Hetero statistics
- resulth('p') = p-value of the test
- resulth('dfnum') = degrees of freedom of the numerator
- resulth('dfden') = degrees of freedom of the denominator
- resulth('f_pvalue) = p-value of the test

DESCRIPTION

Computes the value of the Xi² hetero test. Results are stored in a tlist and displayed on screen if the 
user has not given as second argument ‘noprint’.

Grocer 1.2

26



Example:
hetero_sq(rols)

This example is taken from function hendryericsson. The example provides the Xi² heteroskedasticity 
test for Hendry and Ericsson equation # 6, whose results have been stored in tlist rols.

hetero_sq0__________________________________________________Xi² heteroskedasticity test

CALLING SEQUENCE

[f,f_pvalue,nvar2]=hetero_sq0(r,np)

PARAMETERS

INPUT:
* r = results tlist from a first stage estimation 
* np = unused argument put for compatibility with other testing functions
------------------------------------------------------------
OUTPUT:
* f = value of the Xi² hetero F test
* f_pvalue = its p-value

DESCRIPTION

Computes the value of the Xi² hetero test. Results are stored as numbers and are not displayed on 
screen.

Example:
[f,f_pvalue,nvar2]=hetero_sq0(r)

This  example  is  taken  from function  hetero_sq.  Useful  mainly  for  programming  purpose  (since 
hetero_sq does much more).

jbnorm________________________________________________Jarque and Bera normality test

CALLING SEQUENCE

[rjbnorm]=jbnorm(res,np)

PARAMETERS

INPUT:
* res = a result tlist
* np= the string 'noprint' if the user doesn't want to print the results of the test. 
------------------------------------------------------------
OUTPUT: 
rjbnorm= a typed list with :
  . rjbnorm('meth') = 'jbnorm' 

Grocer 1.2

27



  . rjbnorm('r1st') = results of the first step regression (allows the "traceability" of the results)
  . rjbnorm('chistat') = the value of the chi2 statistics
  . rjbnorm('chi_pvalue') = the corresponding p-value 
  . rjbnorm('chi_df') = the corresponding degrees of freedom

DESCRIPTION

Computes Jarque and Bera normality test (see Jarque, C. M., and Bera, A. K. (1980). ' Efficient tests 
for normality, homoskedasticity and serial independence of regression residuals', Economics Letters, 
6, 255–259). Results are stored in a tlist and displayed on screen if the user has not given as second 
argument ‘noprint’.

Example:
jbnorm(rols)

This example is taken from hendryericsson. The example provides the normality test for Hendry and 
Ericsson equation # 6, whose results have been stored in tlist rols.

jbnorm0_______________________________________________Jarque and Bera normality test

CALLING SEQUENCE

[jb,pn]=jbnorm0(res,np)

PARAMETERS

INPUT:
* res = a result tlist
* np= unused argument put for compatibility with other testing functions
------------------------------------------------------------
OUTPUT: 
* jb = the value of the test
* jn = its p-value

DESCRIPTION

Computes Jarque and Bera normality test (see Jarque, C. M., and Bera, A. K. (1980). ' Efficient tests 
for normality, homoskedasticity and serial independence of regression residuals', Economics Letters, 
6, 255–259). Results are stored as numbers and are not displayed on screen.

Example:
[jb,pn]=jbnorm0(res)

This example is taken from  jbnorm. Useful mainly for programming purpose (since  jbnorm does 
much more).

Grocer 1.2

28



predfail____________________________________________out of sample predictive failure test

CALLING SEQUENCE

[rpredf]=predfail(grocer_res,arg1,…,argn)

PARAMETERS

INPUT:
* grocer_res = the tlist results resulting from a regression
* argi 
  . the string 'noprint' if the user doesn't want to print the results of the regression
  . either:
    - a constant, which idicates the # of periods over which the forecast is done
    - a date, which indicates the date until which the forecast is done (if the estimation has been made 
with ts)
------------------------------------------------------------
OUTPUT: 
grocer_rpredf = a results tlist with:
  . grocer_rpredf('meth')  = 'rprefail'
  . grocer_rpredf('res0')  = results tlist of the originating estimation
  . grocer_rpredf('chistat')  = value of the test statistics
  . grocer_rpredf('pchi') = its p-level
  . grocer_rpredf('p') = the # of forecasts
  .  grocer_rpredf('prests')   =  boolean indicating the  presence  or  absence of  a  time series  in  the 
regression
  . grocer_rpredf('prests')  = the residuals over the forecasting period
  . grocer_rpredf('bounds')  = the bounds of the forecasting period

DESCRIPTION

Computes out-of-sample predictive failure test. Results are stored in a tlist and displayed on screen if 
the user has not given as second argument ‘noprint’.

Example:
rpredf=predfail(rols,16)

This example is  taken from  predfail_d.  The example provides the predictive failure  test  with 16 
periods ahead for Hendry and Ericsson equation # 6, whose results have been stored in tlist rols.

predfailin_________________________________________________Chow predictive failure test

CALLING SEQUENCE

[resulch]=predfailin(resulols,n1)

Grocer 1.2

29



PARAMETERS

INPUT:
* resulols = a results tlist from a first stage estimation 
* n1 = # of observations of the sub-period
------------------------------------------------------------
OUTPUT:
resulch = a results tlist with:
  . resulch('meth') = predfail
  . resulch('rols') = the tlist results from first stage estimation
  . resulch('fstat') = value of the test statistic
  . resulch('f_pvalue') = its p-value
  . resulch('dfnum') = # dof of the numerator 
  . resulch('dfden') = # dof of the denominator 
  . resulch('cut') = date (if there is a ts in the regression) or index of the observation (if there is  no ts 
in the   regression) of the break

DESCRIPTION

Computes in-sample Chow predictive failure test. Results are stored in a tlist and displayed on screen 
if the user has not given as second argument ‘noprint’.

Example:
predfailin(r,50)

This example is taken from  predfailin_d. The example provides the predictive failure test with a 
break at observation # 50 for Hendry and Ericsson equation # 6, whose results have been stored in 
tlist r.

predfailin0________________________________________________Chow predictive failure test

CALLING SEQUENCE

[fstat,f_pvalue,dfnum,dfden]=predfailin0(res,n1,np)

PARAMETERS

INPUT:
* resulols = a results tlist from a first stage estimation 
* n1 = # of observations of the sub-period
------------------------------------------------------------
OUTPUT:
* fstat = value of the test statistic
* f_pvalue = its p-value
* dfnum = # dof of the numerator 
* dfden = # dof of the denominator

Grocer 1.2

30



DESCRIPTION

Computes  in-sample  Chow  predictive  failure  test.  Results  are  stored  as  numbers  and  are  not 
displayed on screen.

Example:
[fstat,f_pvalue,dfnum,dfden]=predfailin0(resulols,n1)

This example is taken from predfailin. Useful mainly for programming purpose (since jbnorm does 
much more).

recresid__________________________________________________________recursive residuals

CALLING SEQUENCE

[rresid]=recresid(y,x)

PARAMETERS

INPUT:
* y = dependent variable vector (n x 1)
* x = explanatory variables matrix (n x k)
------------------------------------------------------------
OUTPUT:
rresid = recursive residuals (first k-obs equal zero)

DESCRIPTION

Computes recursive residuals.

Example:
vv = recresid(grocer_y,grocer_x)

This example is taken from cusumf. 

(°)reliability____________________________________reliability of the variables in a regression

CALLING SEQUENCE

reso=reliability(res,w,p,np)

PARAMETERS

INPUT:
* res = the results of a -univariate- regression
* w = a (1 x 4) vector of reliability outcome:
  - w(1) = significant only on a sub-sample
  - w(2) = significant only on the sub-samples

Grocer 1.2

31



  - w(3) = significant only on the whole sample
  - w(4) = significant on a sub-period and on a sub_sample
* p = a size level
* np = 'noprint' if the user does not want to print the results 
------------------------------------------------------------
OUTPUT:
reso = a tlist with:
- res('meth')='reliability'
- res('namey')= a string, the name of the endogenous variable in the regression
- res('namex')= the string vector of the names of the exogenous variables in the regression
- res('reliab')= the real vector of the reliability of the coefficients

DESCRIPTION

Estimates the reliability of the variables in a regression

Example:
r=hendryericsson();reliability(r,[0.3 0.6 0.4 0.7],0.05) 

From Hendry and Ericsson estimation, calculates the reliability of the coefficients at a 5% level, 
using Hendry and Krolzig proposed parametrisation (w=[0.3 0.6 0.4 0.7]). (°°)

reset____________________________________________________________Ramsey RESET test

CALLING SEQUENCE

[resulres]=reset(resul1,power,np)

PARAMETERS

INPUT:
* resul1 = results tlist from a first stage estimation 
* power = degree of non linearity
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT:
resulres = results tlist with:
 . resulres('meth') = 'reset'
 . resulres('resul1st') = resul1
 . resulres('f') = fstat
 . resulres('p') = p
 . resulres('df') = df
 . resulres('f_pvalue')=f_pvalue

Grocer 1.2

32



DESCRIPTION

Computes Ramsey (1969) RESET test for non linearity of power 2 to p (see Ramsay (1969) :"Tests 
for specification errors in classical  linear least-squares regression analysis",  Journal  of the Royal 
Statistical Society, Series B, n°2, 350-371). Results are stored in a tlist and displayed on screen if the 
user has not given as second argument ‘noprint’.

Example:
reset(rols,2)

This  example  is  taken  from  hendryericsson.  The  example  provides  RESET test  for  Hendry  and 
Ericsson equation # 6, whose results have been stored in tlist rols.

reset0___________________________________________________________Ramsey RESET test

CALLING SEQUENCE

[f,f_pvalue]=reset0(r,npow,np)

PARAMETERS

INPUT:
* r = the first stage regression tlist result
* npow = degree of non linearity
------------------------------------------------------------
OUTPUT:
* f = value of the Goldfeld-Quandt F test
* f_pvalue = its p-value

DESCRIPTION

Computes Ramsey (1969) RESET test for non linearity of power 2 to p (see Ramsay (1969) :"Tests 
for specification errors in classical  linear least-squares regression analysis",  Journal  of the Royal 
Statistical Society, Series B, n°2, 350-371). Results are given only in constant form and not printed.

Example:
[fstat,f_pvalue]=reset0(resul1,power)

This example is taken from function reset. Useful mainly for programming purpose (since reset does 
much more).

waldf__________________________________________________________________Wald F-test

CALLING SEQUENCE

[resulwa]=waldf(resultr,resultu,np)

Grocer 1.2

33



PARAMETERS

INPUT:
* resultr = results tlist from ols() restricted regression
* resultu = results tlist from ols() unrestricted regression
* np= 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT: 
resulbp = a results tlist with:
- resultbp('meth')   = 'waldf'
- resultbp('runcons') = results tlist of the un restricted regression
- resultbp('rcons') = results tlist of the restricted regression
- resultbp('f') = Wald F-statistic 
- resultbp('dfnum') = degrees of freedom of the numerator
- resultbp('dfden') = degrees of freedom of the denominator
- resultbp('f_pvalue’) = p-value of the test

DESCRIPTION

Computes Wald F-test for two regressions. Results are stored in a tlist and displayed on screen if the 
user has not given as second argument ‘noprint’.

Example:
rwaldf=waldf(r1,r2)

This example provides the Fisher satistics corresponding to the restriction r1 imposes over r2.

waldf0_________________________________________________________________ Wald F-test

CALLING SEQUENCE

[fstat,fprb,dfnum,dfden]=waldf0(resultr,resultu)

PARAMETERS

INPUT:
* resultr = results tlist from ols() restricted regression
* resultu = results tlist from ols() unrestrcted regression
------------------------------------------------------------
OUTPUT: 
* fstat = {(essr - essu)/#restrict}/{essu/(nobs-nvar)} 
* fprb  = marginal probability for fstat

DESCRIPTION

Computes Wald F-test for two regressions. Results are stored as numbers and are not displayed on 
screen.

Grocer 1.2

34



Example:
[fstat,f_pvalue,dfnum,dfden]=waldf0(resultr,resultu)

This example is taken from function waldf. Useful mainly for programming purpose (since jbnorm 
does much more).

white__________________________________________________White’s heteroskedasticity test

CALLING SEQUENCE

[resulwhite]=white(resulols,np)

PARAMETERS

INPUT:
* resulols = results tlist from a first stage estimation returns a tlist 
* np = 'noprint' if the user does not want to display the results (optional argument!)
------------------------------------------------------------
OUTPUT:
resulwhite = a results tlist with:
- resulwhite('meth')   = 'white'
- resultwhite('resul1st') = results tlist of the first stage regression
- resulwhite('f') = White statistic (Fisher form)
- resulwhite('p') = p-value of the test
- resulwhite('dfnum') = degrees of freedom of the numerator
- resulwhite('dfden') = degrees of freedom of the denominator
- resulwhite('f_pvalue') = p-value of the test
- resulwhite('chistat') = p-value of the test
- resulwhite('f_chistat') = p-value of the test

DESCRIPTION

Computes the value of White’s  heteroskedasticity test (see White,  H. (1980) "A heteroskedastic-
consistent covariance matrix estimator and a direct test for heteroskedasticity", Econometrica, 48, 
817–838). Results are stored in a tlist and displayed on screen if the user has not given as second 
argument ‘noprint’.

Example:
r=white(he)

This example stores in tlist r, and display on screen, White’s test on regression results stored in he.

white0_________________________________________________White’s heteroskedasticity test

CALLING SEQUENCE

[f,f_pvalue,nvar2,r2]=white0(r,np)

Grocer 1.2

35



PARAMETERS

INPUT:
* r = results tlist from a first stage estimation 
* np = 'noprint' if the user does not want to print the results
------------------------------------------------------------
OUTPUT:
* f = value of the Xi² hetero F test
* f_pvalue = its p-value
* nvar2 = # of exogenous variables of the White second stage regression
* r2 = R² of the auxiliary regression

DESCRIPTION

Computes the value of White’s  heteroskedasticity test (see White,  H. (1980) "A heteroskedastic-
consistent covariance matrix estimator and a direct test for heteroskedasticity", Econometrica, 48, 
817–838). Results are stored as numbers and are not displayed on screen.

Example:
[f,f_pvalue,nvar2,r2]=white0(resulols)

This example is taken from function  white. Useful mainly for programming purpose (since  white 
does much more).

Grocer 1.2

36


	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION

	CALLING SEQUENCE
	PARAMETERS
	DESCRIPTION


