cgal_delaunay_n - Delaunay triangulation of a set of points in some n-dimensional space
tes = cgal_delaunay_n(S) is a Delaunay triangulation of a set S of points in some n-dimensional space. We call S the underlying point set and n the dimension of the underlying space. A Delaunay triangulation is a simplicial complex. All simplices in the Delaunay triangulation have dimension dcur. In the nearest site Delaunay triangulation the circumsphere of any simplex in the triangulation contains no point of S in its interior. In the furthest site Delaunay triangulation the circumsphere of any simplex contains no point of S in its exterior. If the points in S are co-circular then any triangulation of S is a nearest as well as a furthest site Delaunay triangulation of S.
x = rand(1,10); y = rand(1,10); z = rand(1,10); t = rand(1,10); w = rand(1,10); S = [x' y' z' t' w']; tes = cgal_delaunay_n(S) tes = ! 1. 2. 3. 4. 5. 6. ! ! 1. 3. 4. 5. 6. 8. ! ! 1. 2. 3. 4. 6. 8. ! ! 1. 8. 4. 5. 6. 9. ! ! 1. 7. 4. 5. 8. 9. ! ! 1. 3. 8. 5. 6. 9. ! ! 1. 3. 7. 5. 8. 9. ! ! 1. 2. 3. 8. 6. 9. ! ! 1. 2. 3. 7. 8. 9. ! ! 1. 2. 8. 4. 6. 9. ! ! 1. 2. 7. 4. 8. 9. ! ! 1. 2. 4. 5. 6. 9. ! ! 1. 2. 3. 5. 6. 9. ! ! 1. 9. 4. 5. 7. 10. ! ! 1. 2. 4. 9. 7. 10. ! ! 1. 2. 4. 5. 9. 10. ! ! 1. 9. 3. 5. 7. 10. ! ! 1. 2. 3. 9. 7. 10. ! ! 1. 2. 3. 5. 9. 10. ! ! 1. 2. 3. 4. 5. 10. ! ! 1. 8. 4. 5. 7. 10. ! ! 1. 3. 8. 5. 7. 10. ! ! 1. 3. 4. 5. 8. 10. ! ! 1. 2. 8. 4. 7. 10. ! ! 1. 2. 3. 8. 7. 10. ! ! 1. 2. 3. 4. 8. 10. !
cgal_delaunay_2 , cgal_delaunay_3 , cgal_constrained_delaunay_2 ,