cgal_delaunay_3 - Delaunay triangulation of a set of points in 3d space.
A Delaunay triangulation of a set of points is a triangulation of the sets of points that fulfills the following empty circle property (also called Delaunay property): the circumscribing circle of any facet of the triangulation contains no point of the set in its interior. For a point set with no case of cocircularity of more than three points, the Delaunay triangulation is unique, it is the dual of the Voronoi diagram of the points.
x =rand(1,10); y =rand(1,10); z =rand(1,10); tri = cgal_delaunay_3(x,y,z) ! 10. 2. 3. 4. ! ! 2. 1. 3. 4. ! ! 5. 1. 2. 9. ! ! 9. 2. 3. 10. ! ! 3. 1. 2. 5. ! ! 1. 2. 7. 4. ! ! 1. 5. 3. 4. ! ! 9. 2. 10. 7. ! ! 7. 2. 10. 4. ! ! 8. 1. 2. 7. ! ! 9. 8. 2. 7. ! ! 9. 1. 2. 8. ! ! 6. 7. 10. 4. ! ! 6. 10. 3. 4. ! ! 1. 7. 8. 4. ! ! 9. 7. 6. 8. ! ! 5. 9. 6. 8. ! ! 5. 1. 9. 8. ! ! 3. 5. 9. 6. ! ! 3. 5. 2. 9. ! ! 6. 9. 10. 7. ! ! 6. 9. 3. 10. ! // use the pointer if you want to interact with dt3. [tri,ptr] = cgal_delaunay_3(x,y,z); cgal_dt3_insert_points(ptr,rand(1,100),rand(1,100),rand(1,100)); new_tri = cgal_dt3_get_connectivity(ptr); cgal_dt3_delete(ptr,"ptr"); size(new_tri) ans = ! 579. 4. !
cgal_delaunay_2 , cgal_delaunay_n , cgal_constrained_delaunay_2 ,