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Chapter 4: Dynamic Programming

Objectives of this chapter: 

❐ Overview of a collection of classical solution methods 
for MDPs known as dynamic programming (DP)

❐ Show how DP can be used to compute value functions, 
and hence, optimal policies

❐ Discuss efficiency and utility of DP
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Policy Evaluation

Policy Evaluation: for a given policy π, compute the 
state-value function Vπ

Recall: State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑ 
 
 

 
 
 

Bellman equation for Vπ :

Vπ (s) = π (s,a) Ps ′ s 
a Rs ′ s 

a + γ V π( ′ s )[ ]
′ s 

∑
a

∑
— a system of S  simultaneous linear equations
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Iterative Methods

 V0 → V1 → L → Vk → Vk +1 → L→ Vπ

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

Vk+1 (s) ← π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 

∑
a

∑
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Iterative Policy Evaluation
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A Small Gridworld

actions

r  =  −1
on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14; 
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached
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Iterative Policy Eval for the Small Gridworld
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Random Policy
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w.r.t. Vk
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π = random (uniform) action choices
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Policy Improvement

Suppose we have computed       for a deterministic policy π.Vπ

For a given state s, 
would it be better to do an action                 ? a ≠ π(s)

 Qπ (s,a) = Eπ rt +1 + γ V π(st +1 ) st = s, at = a{ }
= Ps ′ s 

a

′ s 
∑ Rs ′ s 

a +γ Vπ ( ′ s )[ ]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if

                            Qπ (s,a) > V π (s)
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Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

Ps ′ s 
a

′ s 
∑ Rs ′ s 

a + γ V π ( ′ s )[ ]

Do this for all states to get a new policy ′ π that is 

greedy with respect to V π :

Then V ′ π ≥ Vπ
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Policy Improvement Cont.

What if V ′ π = Vπ  ?

i.e.,    for all s ∈S,    V ′ π (s) = max
a

Ps ′ s 
a

′ s 
∑ Rs ′ s 

a +γ Vπ ( ′ s )[ ]  ?

But this is the Bellman Optimality Equation.

So V ′ π = V∗ and both π and ′ π  are optimal policies.
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Policy Iteration

 π0 → V π 0 → π1 → Vπ1 → Lπ * → V * → π *

policy evaluation policy improvement
“greedification”
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Policy Iteration
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Value Iteration

Recall the full policy evaluation backup:

Vk +1 (s) ← π (s,a) Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 

∑
a

∑

Here is the full value iteration backup:

Vk+1 (s) ← max
a

Ps ′ s 
a Rs ′ s 

a + γ Vk ( ′ s )[ ]
′ s 

∑
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Value Iteration Cont.
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Asynchronous DP

❐ All the DP methods described so far require exhaustive 
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like 
this:

Repeat until convergence criterion is met:
– Pick a state at random and apply the appropriate 

backup
❐ Still need lots of computation, but does not get locked into 

hopelessly long sweeps
❐ Can you select states to backup intelligently? YES: an 

agent’s experience can act as a guide.
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Generalized Policy Iteration

Generalized Policy Iteration (GPI):  
any interaction of policy evaluation and policy improvement, 
independent of their granularity.

π V

evaluation

improvement

V →V
π

π→greedy(V)

*Vπ*

A geometric metaphor for
convergence of GPI: 

starting
V   π

V = V π

π = gree d y ( V )

V*

π*
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Efficiency of DP

❐ To find an optimal policy is polynomial in the number of 
states…

❐ BUT, the number of states is often astronomical, e.g., often 
growing exponentially with the number of state variables 
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a 
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and 
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP 
methods are not practical.   
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Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other 

estimates
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