
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 7: Eligibility Traces



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

N-step TD Prediction

❐ Idea: Look farther into the future when you do TD backup
(1, 2, 3, …, n steps)



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

❐ Monte Carlo:

❐ TD:

Use V to estimate remaining return

❐ n-step TD:

2 step return:

n-step return:

Mathematics of N-step TD Prediction

T
tT

tttt rrrrR 1
3

2
21

−−
+++ ++++= γγγ L

)( 11
)1(

++ += tttt sVrR γ

)( 2
2

21
)2(

+++ ++= ttttt sVrrR γγ

)(1
3

2
21

)(
ntt

n
nt

n
ttt

n
t sVrrrrR ++

−
+++ +++++= γγγγ L



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Learning with N-step Backups

❐ Backup (on-line or off-line):

❐ Error reduction property of n-step returns

❐ Using this, you can show that n-step methods converge

)()(max)(}|{max sVsVsVssRE
s

n
t

n
t

s

ππ
π γ −≤−=

n step return

Maximum error using n-step return Maximum error using V

∆V s R V st t t
n

t t( ) ( )( )= −[ ]α



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

Random Walk Examples

❐ How does 2-step TD work here?

❐ How about 3-step  TD?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

A Larger Example

❐ Task: 19 state
random walk

❐ Do you think there
is an optimal n (for
everything)?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Averaging N-step Returns

❐ n-step methods were introduced to help with
TD(λ) understanding

❐ Idea: backup an average of several returns

e.g. backup half of 2-step and half of 4-
step

❐ Called a complex backup

Draw each component

Label with the weights for that
component

)4()2(

2
1

2
1

tt
avg
t RRR +=

One backup



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Forward View of TD(λ)

❐ TD(λ) is a method for
averaging all n-step backups

weight by λn-1 (time since
visitation)

λ-return:

❐ Backup using λ-return:

R Rt
n

n
t

nλ λ λ= − −

=

∞

∑( ) ( )1 1

1

∆V s R V st t t t t( ) ( )= −[ ]α λ



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

λ-return Weighting Function



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Relation to TD(0) and MC

❐ λ-return can be rewritten as:

❐ If λ = 1, you get MC:

❐ If λ = 0, you get TD(0)

R R Rt
n

n

T t

t
n T t

t
λ λ λ λ= − +−

=

− −
− −∑( ) ( )1 1

1

1
1

R R R Rt
n

n

T t

t
n T t

t t
λ = − + =−

=

− −
− −∑( ) ( )1 1 1 11

1

1
1

R R R Rt
n

n

T t

t
n T t

t t
λ = − + =−

=

− −
− −∑( ) ( ) ( )1 0 0 01

1

1
1 1

Until termination After termination



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

Forward View of TD(λ) II

❐ Look forward from each state to determine update from
future states and rewards:



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

λ-return on the Random Walk

❐ Same 19 state random walk as before

❐ Why do you think intermediate values of λ  are best?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Backward View of TD(λ)

❐ The forward view was for theory

❐ The backward view is for mechanism

❐ New variable called eligibility trace

On each step, decay all traces by γ λ and increment the
trace for the current state by 1

Accumulating trace

+∑)(set

e s
e s s s

e s s st
t t

t t

( )
( )

( )
=

≠
+ =





−

−

γλ
γλ

1

1 1

if 

if 



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

On-line Tabular TD(λ)

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          action given by  for 

          Take action ,  observe reward,  ,  and next state 

          

          

          For all s :

                

                

          

     Until  is terminal

V(s) e(s) s S

s

a s

a r s

r V s V s

e(s) e(s)

V s V s e s

e s e s

s s

s

= ∈

←
′

← + ′ −
← +

← +
←

← ′

0

1

π

δ γ

αδ
γλ

( ) ( )

( ) ( ) ( )

( ) ( )



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Backward View

❐ Shout δt backwards over time

❐ The strength of your voice decreases with temporal
distance by γλ

)()( 11 tttttt sVsVr −+= ++ γδ



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Relation of Backwards View to MC & TD(0)

❐ Using update rule:

❐ As before, if you set λ to 0, you get to TD(0)

❐ If you set λ to 1, you get MC but in a better way

Can apply TD(1) to continuing tasks

Works incrementally and on-line (instead of waiting to
the end of the episode)

)()( sesV ttt αδ=∆



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Forward View = Backward View

❐ The forward (theoretical) view of TD(λ) is equivalent to
the backward (mechanistic) view for off-line updating

❐ The book shows:

❐ On-line updating with small α  is similar

∆V s It
TD

t

T

t

T

ss
k t

k
k t

T

t
( ) ( )

=

−

=

−
−

=

−

∑ ∑ ∑=
0

1

0

1 1

α γλ δ ∆V s I It t ss
t

T

t

T

ss
k t

k
k t

T

t t

λ α γλ δ( ) ( )
=

−

=

−
−

=

−

∑ ∑ ∑=
0

1

0

1 1

∆ ∆V s V s It
TD

t

T

t t
t

T

sst
( ) ( )

=

−

=

−

∑ ∑=
0

1

0

1
λ

Backward updates Forward updates

algebra shown in book



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

On-line versus Off-line on Random Walk

❐ Same 19 state random walk

❐ On-line performs better over a broader range of parameters



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Control: Sarsa(λ)

❐ Save eligibility for state-action
pairs instead of just states

e s a
e s a s s a a

e s a

Q s a Q s a e s a

r Q s a Q s a

t
t t t

t

t t t t

t t t t t t t t

( , )
( , )

( , )

( , ) ( , ) ( , )

( , ) ( , )

=
+ = =




= +
= + −

−

−

+

+ + +

γλ
γλ

αδ
δ γ

1

1

1

1 1 1

1 if  and 

otherwise



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Sarsa(λ) Algorithm

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          Take action ,  observe 

          Choose  from  using policy derived from  (e.g. - greedy)

          

          

          For all :

                

                

Q(s a) e(s a) s a

s a

a r s

a s Q ?

r Q s a Q s a

e(s,a) e(s,a)

s,a

Q s a Q s a e s a

e s

, , ,

,

,

( , ) ( , )

( , ) ( , ) ( , )

( ,

=

′
′ ′

← + ′ ′ −
← +

← +

0

1

δ γ

αδ
aa e s a

s s a a

s

) ( , )

;

←
← ′ ← ′

γλ
          

     Until  is terminal



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 21

Sarsa(λ) Gridworld Example

❐ With one trial, the agent has much more information about how to get
to the goal

not necessarily the best way

❐ Can considerably accelerate learning



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Three Approaches to Q(λ)

❐ How can we extend this to Q-
learning?

❐ If you mark every state action
pair as eligible, you backup
over non-greedy policy

Watkins: Zero out eligibility
trace after a non-greedy
action.  Do max when
backing up at first non-
greedy choice.

e s a

e s a

e s a

s s a a Q s a Q s a

Q s a Q s a

Q s a Q s a

t

t

t

t t t t t a t t

t t t a t t

t t

( , )

( , )

( , )

, , ( , ) max ( , )

( , ) max ( , )

( , ) ( , )

=
+ = = =

≠






=

−

−

− −

− −

+

1

0
1

1

1 1

1 1

1

γλ

γλ

    if 

    if 

otherwise

++
= + ′ −+ ′ +

αδ
δ γ

t t

t t a t t t t t

e s a

r Q s a Q s a

( , )

max ( , ) ( , )1 1



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Watkins’s Q(λ)

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          Take action ,  observe 

          Choose  from  using policy derived from  (e.g. - greedy)

           (if  ties for the max,  then )

          

          

          For all :

                

Q(s a) e(s a) s a

s a

a r s

a s Q ?

a Q s b a a a

r Q s a Q s a

e(s,a) e(s,a)

s,a

b

, , ,

,

,

argmax ( , )

( , ) ( , )

* *

*

=

′
′ ′

← ′ ← ′

← + ′ ′ −
← +

0

1

δ γ

QQ s a Q s a e s a

a a e s a e s a

e s a

s s a a

s

( , ) ( , ) ( , )

( , ) ( , )

( , )

;

*

← +

′ = ←
←

← ′ ← ′

αδ
γλ                If ,  then 

                                else 

          

     Until  is terminal

0



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Peng’s Q(λ)

❐ Disadvantage to Watkins’s
method:

Early in learning, the
eligibility trace will be
“cut” (zeroed out)
frequently resulting in little
advantage to traces

❐ Peng:

Backup max action except
at end

Never cut traces

❐ Disadvantage:

Complicated to implement



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 25

Naïve Q(λ)

❐ Idea: is it really a problem to
backup exploratory actions?

Never zero traces

Always backup max at
current action (unlike Peng
or Watkins’s)

❐ Is this truly naïve?

❐ Works well is preliminary
empirical studies

What is the backup diagram?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Comparison Task

From McGovern and Sutton (1997).  Towards a better Q(λ)

❐ Compared Watkins’s, Peng’s, and Naïve (called
McGovern’s here) Q(λ) on several tasks.

See McGovern and Sutton (1997). Towards a Better
Q(λ) for other tasks and results (stochastic tasks,
continuing tasks, etc)

❐ Deterministic gridworld with obstacles

10x10 gridworld

25 randomly generated obstacles

30 runs

α  = 0.05, γ = 0.9, λ = 0.9, ε = 0.05, accumulating
traces



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Comparison Results

From McGovern and Sutton (1997).  Towards a better Q(λ)



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

Convergence of the Q(λ)’s

❐ None of the methods are proven to converge.

Much extra credit if you can prove any of them.

❐ Watkins’s is thought to converge to Q*

❐ Peng’s is thought to converge to a mixture of Qπ and Q*

❐ Naïve - Q*?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 29

Eligibility Traces for Actor-Critic Methods

❐ Critic: On-policy learning of Vπ.  Use TD(λ) as described
before.

❐ Actor: Needs eligibility traces for each state-action pair.

❐ We change the update equation:

❐ Can change the other actor-critic update:

p s a
p s a a a s s

p s at
t t t t

t
+ =

+ = =



1( , )
( , )

( , )

αδ if  and 

otherwise
),(),(),(1 aseaspasp tttt αδ+=+to

p s a
p s a s a a a s s

p s at
t t t t

t
+ =

+ −[ ] = =



1

1
( , )

( , ) ( , )

( , )

αδ π if  and 

otherwise to ),(),(),(1 aseaspasp tttt αδ+=+

e s a
e s a s a s s a a

e s at
t t t t t t

t

( , )
( , ) ( , )

( , )
=

+ − = =



−

−

γλ π
γλ

1

1

1 if  and 

otherwise
where



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Replacing Traces

❐ Using accumulating traces, frequently visited states can
have eligibilities greater than 1

This can be a problem for convergence

❐ Replacing traces: Instead of adding 1 when you visit a
state, set that trace to 1

e s
e s s s

s st
t t

t

( )
( )

=
≠
=





−γλ 1

1

if 

if 



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 31

Replacing Traces Example

❐ Same 19 state random walk task as before

❐ Replacing traces perform better than accumulating traces over more
values of λ



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Why Replacing Traces?

❐ Replacing traces can significantly speed learning

❐ They can make the system perform well for a broader set of parameters

❐ Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous for
accumulating traces?



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 33

More Replacing Traces

❐ Off-line replacing trace TD(1) is identical to first-visit MC

❐ Extension to action-values:

When you revisit a state, what should you do with the
traces for the other actions?

Singh and Sutton say to set them to zero:

e s a

e s a

s s a a

s s a a

s s
t

t

t t

t t

t

( , )

( , )

=






= =
= ≠

≠−

1

0

1γλ

if  and 

if  and 

if 



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 34

Implementation Issues

❐ Could require much more computation

But most eligibility traces are VERY close to zero

❐ If you implement it in Matlab, backup is only one line of
code and is very fast (Matlab is optimized for matrices)



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 35

Variable λ

❐ Can generalize to variable λ

❐ Here λ  is a function of time

Could define

e s
e s s s

e s s st
t t t

t t t

( )
( )

( )
=

≠
+ =





−

−

γλ
γλ

1

1 1

if 

if 

τλλλλ
t

ttt s == or  )(



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 36

Conclusions

❐ Provides efficient, incremental way to combine MC and
TD

Includes advantages of MC (can deal with lack of
Markov property)

Includes advantages of TD (using TD error,
bootstrapping)

❐ Can significantly speed learning

❐ Does have a cost in computation



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 37

Something Here is Not Like the Other


