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Chapter 5: Monte Carlo Methods

❐ Monte Carlo methods learn from complete sample returns

Only defined for episodic tasks

❐ Monte Carlo methods learn directly from experience

On-line: No model necessary and still attains optimality

Simulated: No need for a full model
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Monte Carlo Policy Evaluation

❐ Goal: learn Vπ(s)

❐ Given: some number of episodes under π which contain s

❐ Idea: Average returns observed after visits to s

❐ Every-Visit MC: average returns for every time s is visited
in an episode

❐ First-visit MC: average returns only for first time s is
visited in an episode

❐ Both converge asymptotically

1 2 3 4 5
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First-visit Monte Carlo policy evaluation
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Blackjack example

❐ Object: Have your card sum be greater than the dealers
without exceeding 21.

❐ States (200 of them):

current sum (12-21)

dealer’s showing card (ace-10)

do I have a useable ace?

❐ Reward: +1 for winning, 0 for a draw, -1 for losing

❐ Actions: stick (stop receiving cards), hit (receive another
card)

❐ Policy: Stick if my sum is 20 or 21, else hit
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Blackjack value functions
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Backup diagram for Monte Carlo

❐ Entire episode included

❐ Only one choice at each state
(unlike DP)

❐ MC does not bootstrap

❐ Time required to estimate one
state does not depend on the
total number of states

terminal state
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e.g., Elastic Membrane (Dirichlet Problem)

The Power of Monte Carlo

How do we compute the shape of the membrane or bubble?
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Relaxation Kakutani’s algorithm, 1945

Two Approaches
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Monte Carlo Estimation of Action Values (Q)

❐ Monte Carlo is most useful when a model is not available

We want to learn Q*

❐ Qπ(s,a) - average return starting from state s and action a
following π

❐ Also converges asymptotically if every state-action pair is
visited

❐ Exploring starts: Every state-action pair has a non-zero
probability of being the starting pair
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Monte Carlo Control

❐ MC policy iteration: Policy evaluation using MC methods
followed by policy improvement

❐ Policy improvement step: greedify with respect to value
(or action-value) function

π Q

evaluation

improvement

Q →Q
π

π→greedy(Q)
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Convergence of MC Control

❐ Policy improvement theorem tells us:
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❐ This assumes exploring starts and infinite number of
episodes for MC policy evaluation

❐ To solve the latter:

update only to a given level of performance

alternate between evaluation and improvement per
episode
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Monte Carlo Exploring Starts

Fixed point is optimal
policy π*

Proof is open question
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Blackjack example continued

❐ Exploring starts

❐ Initial policy as described before
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On-policy Monte Carlo Control
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❐ On-policy: learn about policy currently executing

❐ How do we get rid of exploring starts?

Need soft policies: π(s,a) > 0 for all s and a

e.g. ε-soft policy:

❐ Similar to GPI: move policy towards greedy policy (i.e. ε-
soft)

❐ Converges to best ε-soft policy
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On-policy MC Control
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Off-policy Monte Carlo control

❐ Behavior policy generates behavior in environment

❐ Estimation policy is policy being learned about

❐ Average returns from behavior policy by probability their
probabilities in the estimation policy
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Learning about π while following π′
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Off-policy MC control
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Incremental Implementation

❐ MC can be implemented incrementally

saves memory

❐ Compute the weighted average of each return
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Racetrack Exercise

Starting line

Finish
line

Starting line

Finish
line

❐ States: grid squares, velocity
horizontal and vertical

❐ Rewards: -1 on track, -5 off
track

❐ Actions: +1, -1, 0 to velocity

❐ 0 < Velocity < 5

❐ Stochastic: 50% of the time it
moves 1 extra square up or right
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Summary

❐ MC has several advantages over DP:

Can learn directly from interaction with environment

No need for full models

No need to learn about ALL states

Less harm by Markovian violations (later in book)

❐ MC methods provide an alternate policy evaluation process

❐ One issue to watch for: maintaining sufficient exploration

exploring starts, soft policies

❐ No bootstrapping (as opposed to DP)


