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Chapter 7: Eligibility Traces
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N-step TD Prediction

❐ Idea: Look farther into the future when you do TD backup
(1, 2, 3, …, n steps)
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❐ Monte Carlo:

❐ TD:

Use V to estimate remaining return

❐ n-step TD:

2 step return:

n-step return:

Mathematics of N-step TD Prediction
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Learning with N-step Backups

❐ Backup (on-line or off-line):

❐ Error reduction property of n-step returns

❐ Using this, you can show that n-step methods converge
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Random Walk Examples

❐ How does 2-step TD work here?

❐ How about 3-step  TD?
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A Larger Example

❐ Task: 19 state
random walk

❐ Do you think there
is an optimal n (for
everything)?
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Averaging N-step Returns

❐ n-step methods were introduced to help with
TD(λ) understanding

❐ Idea: backup an average of several returns

e.g. backup half of 2-step and half of 4-
step

❐ Called a complex backup

Draw each component

Label with the weights for that
component
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Forward View of TD(λ)

❐ TD(λ) is a method for
averaging all n-step backups

weight by λn-1 (time since
visitation)

λ-return:

❐ Backup using λ-return:
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λ-return Weighting Function
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Relation to TD(0) and MC

❐ λ-return can be rewritten as:

❐ If λ = 1, you get MC:

❐ If λ = 0, you get TD(0)
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Forward View of TD(λ) II

❐ Look forward from each state to determine update from
future states and rewards:
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λ-return on the Random Walk

❐ Same 19 state random walk as before

❐ Why do you think intermediate values of λ  are best?
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Backward View of TD(λ)

❐ The forward view was for theory

❐ The backward view is for mechanism

❐ New variable called eligibility trace

On each step, decay all traces by γ λ and increment the
trace for the current state by 1

Accumulating trace
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On-line Tabular TD(λ)

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          action given by  for 

          Take action ,  observe reward,  ,  and next state 

          

          

          For all s :

                

                

          

     Until  is terminal
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Backward View

❐ Shout δt backwards over time

❐ The strength of your voice decreases with temporal
distance by γλ
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Relation of Backwards View to MC & TD(0)

❐ Using update rule:

❐ As before, if you set λ to 0, you get to TD(0)

❐ If you set λ to 1, you get MC but in a better way

Can apply TD(1) to continuing tasks

Works incrementally and on-line (instead of waiting to
the end of the episode)
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Forward View = Backward View

❐ The forward (theoretical) view of TD(λ) is equivalent to
the backward (mechanistic) view for off-line updating

❐ The book shows:

❐ On-line updating with small α  is similar
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On-line versus Off-line on Random Walk

❐ Same 19 state random walk

❐ On-line performs better over a broader range of parameters
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Control: Sarsa(λ)

❐ Save eligibility for state-action
pairs instead of just states
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Sarsa(λ) Algorithm

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          Take action ,  observe 

          Choose  from  using policy derived from  (e.g. - greedy)

          

          

          For all :
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Sarsa(λ) Gridworld Example

❐ With one trial, the agent has much more information about how to get
to the goal

not necessarily the best way

❐ Can considerably accelerate learning
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Three Approaches to Q(λ)

❐ How can we extend this to Q-
learning?

❐ If you mark every state action
pair as eligible, you backup
over non-greedy policy

Watkins: Zero out eligibility
trace after a non-greedy
action.  Do max when
backing up at first non-
greedy choice.
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Watkins’s Q(λ)

Initialize  arbitrarily and ,  for all 

Repeat (for each episode) :

     Initialize 

     Repeat (for each step of episode) :

          Take action ,  observe 

          Choose  from  using policy derived from  (e.g. - greedy)

           (if  ties for the max,  then )

          

          

          For all :
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Peng’s Q(λ)

❐ Disadvantage to Watkins’s
method:

Early in learning, the
eligibility trace will be
“cut” (zeroed out)
frequently resulting in little
advantage to traces

❐ Peng:

Backup max action except
at end

Never cut traces

❐ Disadvantage:

Complicated to implement
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Naïve Q(λ)

❐ Idea: is it really a problem to
backup exploratory actions?

Never zero traces

Always backup max at
current action (unlike Peng
or Watkins’s)

❐ Is this truly naïve?

❐ Works well is preliminary
empirical studies

What is the backup diagram?
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Comparison Task

From McGovern and Sutton (1997).  Towards a better Q(λ)

❐ Compared Watkins’s, Peng’s, and Naïve (called
McGovern’s here) Q(λ) on several tasks.

See McGovern and Sutton (1997). Towards a Better
Q(λ) for other tasks and results (stochastic tasks,
continuing tasks, etc)

❐ Deterministic gridworld with obstacles

10x10 gridworld

25 randomly generated obstacles

30 runs

α  = 0.05, γ = 0.9, λ = 0.9, ε = 0.05, accumulating
traces



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 27

Comparison Results

From McGovern and Sutton (1997).  Towards a better Q(λ)
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Convergence of the Q(λ)’s

❐ None of the methods are proven to converge.

Much extra credit if you can prove any of them.

❐ Watkins’s is thought to converge to Q*

❐ Peng’s is thought to converge to a mixture of Qπ and Q*

❐ Naïve - Q*?
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Eligibility Traces for Actor-Critic Methods

❐ Critic: On-policy learning of Vπ.  Use TD(λ) as described
before.

❐ Actor: Needs eligibility traces for each state-action pair.

❐ We change the update equation:

❐ Can change the other actor-critic update:
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Replacing Traces

❐ Using accumulating traces, frequently visited states can
have eligibilities greater than 1

This can be a problem for convergence

❐ Replacing traces: Instead of adding 1 when you visit a
state, set that trace to 1
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Replacing Traces Example

❐ Same 19 state random walk task as before

❐ Replacing traces perform better than accumulating traces over more
values of λ
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Why Replacing Traces?

❐ Replacing traces can significantly speed learning

❐ They can make the system perform well for a broader set of parameters

❐ Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous for
accumulating traces?
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More Replacing Traces

❐ Off-line replacing trace TD(1) is identical to first-visit MC

❐ Extension to action-values:

When you revisit a state, what should you do with the
traces for the other actions?

Singh and Sutton say to set them to zero:
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Implementation Issues

❐ Could require much more computation

But most eligibility traces are VERY close to zero

❐ If you implement it in Matlab, backup is only one line of
code and is very fast (Matlab is optimized for matrices)
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Variable λ

❐ Can generalize to variable λ

❐ Here λ  is a function of time

Could define
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Conclusions

❐ Provides efficient, incremental way to combine MC and
TD

Includes advantages of MC (can deal with lack of
Markov property)

Includes advantages of TD (using TD error,
bootstrapping)

❐ Can significantly speed learning

❐ Does have a cost in computation
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Something Here is Not Like the Other


