

Training an artificial neural network to
play tic-tac-toe

Sebastian Siegel

ECE 539 Term Project

12/20/2001

This PDF file contains hyperlinks.

mailto:ss803738@rcs.urz.tu-dresden.de

Contents
1 Introduction... 3

1.1 Problem Statement.. 3
1.2 Importance of the topic.. 3
1.3 Tic-Tac-Toe... 3

2 Reinforcement learning .. 4
2.1 Method .. 4
2.2 Convergence of the P-values .. 5

3 Generating the training data for the ANN ... 7
3.1 Setting up a lookup table... 7
3.2 Converting the lookup table to training data .. 9

4 Introducing an artificial neural network ... 11
4.1 Training a Multilayer Perceptron (MLP)... 11
4.2 Comparison: MLP vs. lookup table.. 12
4.3 Tic-Tac-Toe on a larger board... 13

5 Discussion .. 14
6 Fun facts... 15
7 References ... 16

Figures
figure 1: Plain grid.. 3
figure 2: X’s won .. 3
figure 3: Draw .. 3
figure 4: Updating afterstates... 4
figure 5: Convergence of P-values for three sample states (observed every 10 games). 6
figure 6: symmetrical states and their corresponding S(X) and S(O)............................... 7
figure 7: Assigning numbers 1, 2, 3, … on the board... 8
figure 8: best classification rates obtained for different MLP configurations 11
figure 9: comparing a lookup table and an MLP in terms of speed and memory 13

2

1 Introduction

1.1 Problem Statement

In this project I will train an artificial neural network (ANN) to play tic-tac-toe (see 1.3 for
further details on the game). The learning method involved will be reinforcement
learning.

1.2 Importance of the topic

“The ability to play games is important for management information systems. Input will
be a board position1. Number of input neurons is log2 of the number of different
positions to be considered. Output is a move, suitably encoded [DeWilde95, p.48-49].”

“Reinforcement learning is learning what to do – how to map situations to actions – so
as to maximize a numerical reward signal. The learner is not told which actions to take,
as in most forms of machine learning, but instead must discover which actions yield the
most reward by trying them [Sutton98, p. 3-4].” Tic-tac-toe is an illustrative application of
reinforcement learning.

1.3 Tic-Tac-Toe

Usually, tic-tac-toe is played on a three-by-three grid (see figure 1). Each player in turn
moves by placing a marker on an open square. One player’s marker is “X” and the
other’s is “O”. The game is over as soon as one player has three markers in a row:
horizontally, vertically, or diagonally (an example is shown in figure 2). The game can
also end as a draw (see figure 3), if there is no chance of winning for either player.

figure 1: Plain grid

figure 2: X’s won

figure 3: Draw

1 This method was suggested for the game of backgammon. It is quoted here because tic-tac-toe shares
many properties.

3

2 Reinforcement learning

2.1 Method

Supposed the exact probability of winning from a particular state is know for all possible
situations that one player can encounter after it made a move, it could always make a
perfect decision (by playing in such a way that any the next state has the highest
probability out of all possible next states). But how can we get these probabilities? As
mentioned in 1.2, the learning process is based upon the reward gained after every
game. So, we already know the probability of winning for every final state. It will either
be zero for losing or one for winning2.

After every game, all intermediate states can be updated for each player. Note that
these states are “afterstates”. This means that for each player, only the states that result
from a just completed move matter. As an example, figure 2 would represent an
afterstate for the player marking X’s while figure 3 may be afterstate of both players,
depending upon who began.

Initially, all states are assigned a probability of winning of 0.5. The updating procedure
after every games replays the game backward starting from the final state. Every
previous afterstate’s winning probability will be moved a little bit closer to the one of the
current afterstate using the following formula [Sutton98, p. 12]:

[)()()()(sPsPsPsP −′+← α] s’ … current afterstate, s … previous afterstate
 α ... learning rate (small positive fraction)

P(1a)=0.5625 P(1b)=0.125 P(2a)=0.625 P(2b)=0.25 P(3a)=0.75 P(3b)=0 P(4a)=1

figure 4: Updating afterstates

2 I intended to train a player that will never lose. So I also rewarded any final state that represented a draw
with +1, since it is also desirable.

4

In figure 4, an example of a possible game is shown. The final state for player A (plays
X’s) is the rightmost. Since player A won, that state will be rewarded with P(4a)=1. The
previous afterstate would be state 3a. According to the updating rule,

P(3a) P(3a) + α [P(4a)-P(3a)]=0.5+0.5[1-0.5]=0.75. Note that I assigned α=0.5 and
that P(3a) was initially 0.5. All other P-values are computed in a similar way. A lookup
table3 contains all the states and their corresponding P-values.

If player A once again goes first, all afterstates for an empty board would have a chance
of winning of 0.5 except for state 1a from figure 4. Therefore, its first move would be
similar. Again, all afterstates for player B in this case are 0.5 (were never met yet)
except for state 1b (see figure 4). Therefore, player B would make a different choice this
time.

Playing always the “best move” according to the P-values will not completely cover all
possible states. During the process of learning, exploratory moves become necessary.
This means, that each player makes a random move every once in a while. According to
[Sutton98, p. 11 ff.] the updating has to be skipped for random moves. This means, that
an afterstate that was the result of a random move will not be used to update the
previous afterstate. However, I decided to still update completely, if the player managed
to win or played a draw, even if random moves were involved for it was most likely a
good “decision”.

2.2 Convergence of the P-values

The method described in 2.1 is known to converge [Sutton98, p. 13] if α decreases
within the course of training. I initially set α=0.5 and decreased it by a constant value
after every game such that after the last game it would be zero. Note, that in this case
the total number of games for the training need to be known initially. Another approach
would be the multiplication with a positive constant that is less than one.

The convergence of the P-values is shown in figure 5. There, 20000 games between two
lookup tables took place. On average, 15 out of 100 moves were randomly chosen.
Every ten games, the P-values for three example states were recorded. All three states
are afterstates for the player that plays X’s. So, state two is not desirable because of the
fact that the opponent can easily win with its next move. That is why the P-value
dropped down to 0 from its initial value of 0.5 (after approximately 4000 games). State 1
is highly desirable and has therefore a P-value that converges to almost one. The P-

3 see 3 for more details

5

value of state three converges to 0.8. Yet this state is not desirable at all. Because the
opponent (playing O’s) can easily win from that state as well. However, this afterstate is
only one of six possible afterstates that player A (playing X’s) can chose from. All other
five afterstates had higher P-values. This means that player A will always avoid example
state 3 in figure 5, unless it makes random decisions.

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P(s1) ... P(s3) shown every ten games

1
2
3

example state 1:

example state 2:

example state 3:

figure 5: Convergence of P-values for three sample states (observed every 10 games)

6

3 Generating the training data for the ANN

3.1 Setting up a lookup table

One approach is, to generate all possible afterstates for each player and initialize their
corresponding P-values with 0.5. I decided to start with an empty lookup table. Since I
knew that any state that the lookup table does not contain yet would have a P-value of
0.5, I just assumed that and set up the lookup table by adding new states met (or
updated values that the lookup table contained already).

I simulated4 all possible afterstates for one player and figured, that there is a total of
5890 for a three-by-three board. Many entries will be somewhat similar due to symmetry.
In order to exploit the symmetry, a unique mapping is necessary that maps all (up to
eight) states to one and only one. For the lookup table approach, this is not really
necessary. But there are two main advantages involved: Since there are less states to
learn, the algorithm converges much faster. Also, the ANN (to be trained) needs to learn
less states and corresponding targets. This will either raise the classification rate or
allow a smaller ANN.

There are as many as eight symmetric states that are considered to be equal (regarding
the P-value). For any state, all the other symmetric ones can be found by turning the
board 90 degrees clockwise (or counterclockwise). For each of those 4 states exists
another one (flip either horizontally or vertically), as shown in figure 6.

S(X):
S(O):

0.5625 0.1406 0.375 0.75 0.0176 0.0703 0.1172 0.0059
0.1328 0.5020 0.5020 0.1328 0.1328 0.5020 0.5020 0.1328

figure 6: symmetrical states and their corresponding S(X) and S(O)

Now, the question is: Which of the eight symmetric states in figure 6 shall be the unique
one? For this reason I introduce a function S(X) and S(O) that will assign all X’s a real
number S(X) and all O’s a real number S(O), such that the state can be reproduced from

4 findafterstates.m

7

these two numbers. The encoding is done as follows. Assign numbers 1, 2, 3, … on the
board5 (see figure 7):

 (a) (b)

figure 7: Assigning numbers 1, 2, 3, … on the board

Furthermore, form a sum S(X) such that , i=1..9 for the three-by-three

tic-tac-toe. I

() ∑=
i

X
i iIXS)(5.0

X(i)=1 if there is an X on the ith square on the board and zero otherwise.
Similarly, , where I() ∑=

i
O

i iIOS)(5.0 O(i)=1 if there is an O on the ith square on the board

and zero otherwise. In figure 7, all red numbers correspond to X’s on the board and all
blue numbers correspond to O’s respectively. Situation (a) represents the first state
shown in figure 6 and situation (b) represents the rightmost one. As an example, I will
compute S(X) for both states just mentioned:

S(a)(X)=0.51+0.54=0.5625 and S(b)(X)=0.58+0.59=0.005859375.

The mapping always maps to the state that has a minimum S(X). If there are more than
one S(X) that are a minimum and equal, then the state with a minimum S(O) out of these
would be chosen. So in figure 6, all eight states would be mapped to the rightmost one
for it has a minimum S(X). It turns out6, that there are only 825 (from 5890 originally)
afterstates left for a three-by-three tic-tac-toe game.

The reason I chose 0.5i in the previous sum is this: Most computer programs store real
numbers as single or double precision floating point numbers (see IEEE 754: Floating
Point). This format consists of a sign bit, some bits for the exponent and many bits for
the mantissa. The sum S(X) or S(O) can be perfectly stored in the mantissa. The

5 Start at the upper left corner and go right until the end of the row. Move on to the next row and start from
the leftmost position. Go right again…
6 findafterstates.m computes all possible afterstates for either player

8

number of bits reserved for the mantissa equals the maximum dimension7 of the board,
that can be handled in this way. A single precision floating point format (4 bytes: 23
precision bits) could perfectly store all X’s or all O’s on a board as large as 4 by 5. For
the double precision floating format (8 bytes: 52 precision bits), this method works for
boards as large as 7 by 7 (among other combinations).

I implemented a function8 that would return S(X) and S(O) for any state. These two
values and the corresponding P-value of that state were stored9 in a lookup table. Each
player had its own lookup table.

In order to obtain a lookup table that would have entries such that it could not lose any
more, I implemented a program10 that started out with two virtual players and two empty
lookup tables (one for each). Both players competed for 20000 games. They each
learned within the progress of the playing. However, they both did not encounter all
possible afterstates. They only learned 711 and 707 out of 825 possible afterstates.

Now, the question was, are they already perfect? For this reason I (player B) played
against the lookup table (player A). I was not able to win. But humans fail and therefore I
decided to let A play against itself11 by giving player B the same lookup table. Of course,
all games would end as a draw. For this reason I let player B make some random (20 %)
moves. If player A would lose once, it means that it does not play perfect. The result12
after 10,000 games was this: player A won 2728 games, 7272 draws, player B did not
win a single game. So I decided that from now on, I had a perfect playing lookup table13.

3.2 Converting the lookup table to training data

Once a lookup table with converged P-values (probability of winning from that state) is
available, its S(X) and S(O) could be expanded to a matrix representing the board, such
that all X’s are +1, all O’s are –1 and all empty squares are 0. This could be the input to
an ANN. The output of the ANN would be the corresponding P-value. It turns out, that it

7 dimension in this case means number of squares on the board (e.g. three-by-three tic-tac-toe:
dimension=3 rows x 3 columns =9 positions)
8 framevalue.m, works for any board dimension (also of rectangular shape: only 4 symmetric states)
according to the floating point number format
9 setframeprob.m (getframeprob.m must be run in advance, see function for details)
10 generatelookuptable.m
11 test.m
12 logfile: test1.log
13 lookuptablesmat (holds a variable “lookuptablepos” and “lookuptableneg”), here I only consider
“lookuptablepos”

9

is extremely difficult to train such an ANN to a degree that the output (corresponding P-
value) is computed precise enough, such that the state of all possible afterstates with a
maximum P-value according to the lookup table matches the state that has a maximum
P-value according to the ANN. Furthermore, this implementation has another
disadvantage: For a given state in the game, all possible afterstates would have to be
figured out and applied to the ANN. All the P-values would have to be stored and the
maximum needs to be determined. After that, the desirable move would be available.

In order to improve the training data and make it easier to actually train an ANN, I
decided to use a different strategy: implement an ANN for “position-move” pairs (as
suggested by the first quote in 1.2). This means that the input of the ANN would once
again be a state in the game, but not an afterstate. It would be the state before a move
was made (“beforestate”). The output neurons that has the highest value would
represent the position for the best move. Therefore, the ANN would have as many
output neurons as the board has squares (for the three-by-three tic-tac-toe it would be
nine output neurons). Now, we have a pattern classification problem which in this case
promises better results.

In order to convert the lookup table to the training data that would be used for training
the latter ANN, all beforestates14 (not afterstates) have to be computed. Note that there
are less beforestates (609) than there are afterstates (825). This has to do with the fact
that all the final states in the game (someone won, lost, or game ended as a draw) are
no longer necessary. This is another advantage of the second approach (regarding the
kind of ANN) mentioned earlier.

The classification rates I achieved did not satisfy me at first. Instead of increasing the
size of the ANN, I thought about further pruning the training data. Supposed the
opponent does not miss a chance to win whenever it has the opportunity to complete a
row on its turn, I do not really need to train all “position-move” pairs that can result in
such a situation for the opponent. This way of pruning the training data means that I
actually evaluate future moves of the opponent. One could do a further evaluation, but
that would pretty much mean an implementation of the rules of the game, which was not
my intension. However, by doing the one step evaluation, I was able to reduce the size
of the training data to 537 entries15 (was 609 before) without losing a perfect player16.

14 part of lookuptable2trainingdata.m
15 that is the output of lookuptable2trainingdata.m
16 test(trainingdata,2) will “prove” that

10

4 Introducing an artificial neural network

4.1 Training a Multilayer Perceptron (MLP)

Once the training data is available, an MLP can be trained. The input data will be the
beforestates17. The output neuron with the highest value will represent the next
suggested move by its position (see 3.2 for further details). This is a classification
problem. For this reason I wrote a function18 (based upon “bp.m19”) that trains an MLP
using the back propagation algorithm20. The input was the training data and several
parameters regarding the process of training the MLP. The output was the best weights
obtained.

I tried different sizes of MLPs several times (see figure 8) and varied parameters such
as the learning rate α, the momentum µ and others. The activation function for each
hidden layer was the hyperbolic tangent and for the output neurons it was the sigmoidal
function. It turned out that the best results could be obtained with the following
parameters (besides those mentioned in figure 8):

α=0.1, µ=0, epoch size=64, convergence test every 8 epochs,

hidden layers neurons within hidden layers classification rate

1 9 80.26 %

1 27 93.30 %

2 9 – 9 88.27 %

2 9 – 27 93.11 %

2 27 – 27 95.72 %

3 27 – 27 – 27 98.51 %

4 9 – 27 – 81 – 27 94.41 %

figure 8: best classification rates obtained for different MLP configurations

17 input values: squares with an X: +1, O: -1, empty square: 0
18 mlpbp.m
19 Implementation of backpropagation algorithm © copyright 2001 by Yu Hen Hu
20 using class notes and [Haykin99]

11

It turns out that it is most likely impossible to achieve a classification rate of 100% with a
reasonable sized MLP. Also, large MLPs tend to get stuck at a certain classification rate
without improving during the process of training which makes it even harder to reduce
misclassification.

In order to still achieve perfect playing, I simply computed21 a new lookup table that
contained all those “position-move” pairs that the MLP would misclassify. The function22
that I implemented to compute the ANN output for a given beforestate will automatically
use that new lookup table to make a decision.

4.2 Comparison: MLP vs. lookup table

In this chapter I define the lookup table as a table that contains all the “position-move”
pairs (this was the training data before). So the MLP (expanded by a new lookup table to
deal with misclassifications) and the lookup table would have the same input and the
same output.

I compared both in terms of speed and memory. For this reason I used my test23
function that would play a large number of games. When it tested the lookup table (537
“position-move” pairs), it took 262 seconds to play 1000 games while the MLP24 finished
the same task in 108 seconds.

For the memory comparison I assume that I need 24 bytes for each entry in the lookup
table ([S(X) S(O) target], 8 bytes each). So, the lookup table has a size of 12,888 bytes.
The MLP consists of 27 hidden neurons and 9 output neurons. That makes a total of
27x10+9x28=522 weights (including bias terms). They will need 522x8 bytes= 4176
bytes. Furthermore I needed a new lookup table with 36 entries. That adds an additional
36x24 bytes= 864 bytes.

The following figure 9 will summarize the just mentioned comparison:

21 errortable.m
22 comp_mlp(board matrix, player (-1 or +1), random play (0=no, 1=yes), weights, lookup table (optional))
23 test.m, first introduced in 3.1
24 1 hidden layer with 27 neurons, „expanded“ by a new lookup table (36 entries) to achieve perfect
classification

12

 lookup table MLP

speed (1000 games) 262 sec. 108 sec. (saves 59% computing time)

memory (bytes) 12,888 5,040 (saves 61% memory)

figure 9: comparing a lookup table and an MLP in terms of speed and memory

The comparison in terms of memory usage is based upon double precision floating point
numbers. With access to the bits of a variable, one could easily prune the size of the
lookup table to 22 bit per entry (18 bits for the current board state and 4 bits for the
target). Using Huffman encoding, this could even be further reduced because the board
contains only three different marks (and empty squares appear with a chance of 41.3%
on the board regarding the 537 entries). This would result in a bit stream of 1,996x1
bits+2,837x2 bits=7,670 bits for all 537 board states. Allowing 4 bits for the target (could
also be reduced by Huffman encoding), the lookup table could be stored within a bit
stream of 9,818 bits. However, implementing such techniques in Matlab is not advisable.
The major disadvantage would be time consuming calculations.

4.3 Tic-Tac-Toe on a larger board

My original intension was, to train an artificial neural network to play tic-tac-toe on a
larger board (e.g. four-by-five, four in a row win). But there is an immediate problem
involved: The lookup table becomes tremendously large (millions of entries even after
symmetry pruning). For this reason, a different approach would have to be considered.
The MLP could now be used to learn the P-value of a given state immediately without
storing it in a lookup table. Training such an artificial neural network requires a different
approach25.

As there would be millions of states to be evaluated, the P-values will only converge
after millions of games. A simulation of such a process with Matlab will take way too long
these days. Therefore, I could not try this approach.

25 see [Sutton98] chapter 8.2, TD-learning, Gradient-Descent Methods

13

5 Discussion
In this project, I used the method of reinforcement learning to learn how to play a game:
tic-tac-toe. It is rather interesting that without implementing any rules26 or strategies, it
was possible to learn a perfect strategy from the reward after each game only. For this
reason, a lookup table was introduced that would contain the information gained from
the previous games (afterstates and corresponding P-values).

Training an MLP with the information gained from the lookup table was possible with a
high classification rate (see figure 8). Transferring the lookup table to an MLP may not
yield perfect recall. In those cases, a combination of a strongly reduced lookup table
(contains all entries that would be misclassified by the MLP) and an MLP can be applied.

Especially for large lookup tables (e.g. thousands of entries), an MLP can give a much
faster answer. It may also reduce the required memory for storing all entries. All MLPs
had nine input neurons. According to [DeWilde95]27, the number of input neurons should
be log2 of the number of different positions to be considered. I trained an ANN with 537
“position-move” pairs. So, nine input neurons are a reasonable approach.

Further investigation possible:

1. Train an ANN with a teaching algorithm such that the ANN learns all tricky
“position-move” pairs only.

2. Try to teach an ANN those “position-move” pairs encountered in playing against a
human and train a method of defense (e.g. always move where the human went
next in a previous game). This may actually pick up the strategy the human
follows (if there was one).

26 The only things known were whose turn it was and when the game was over.
27 see first quote in 1.2

14

6 Fun facts
• One can actually play against the MLP (extended by the lookup table to take care

of misclassification) by running “play.m”.

• All the steps28 mentioned that are necessary to train the MLP are performed by
starting “batch.m”. This process will take two to three minutes. At the end, you
can play against the MLP (“play.m” will be called). Note that the lookup table with
converged P-values will be loaded. It was generated by “generatelookuptable.m”
(takes about two to three hours).

• Most functions are general such that they would work on a larger board (e.g. 4x5
as well).

• I implemented a function winnertest.m that tests if the game is over and for this
reason introduced a matrix mc29 that contains all possible chains of squares that
need to be tested:

2 2 2 1 3 3 3
2 2 2 1 3 3 3 2 4 3
5 5 5 5 0 0 0 5 0 0
5 5 5 5 0 0 0 5 0 0
5 5 5 5 0 0 0

Example of mc for a 5x7 board Example of mc for a 3x3 board
and 4 in a row win and 3 in a row win

Whereas the number on each position would indicate in what directions the “four
in a row test” or “three in a row test” would have to be considered:

1: , 2: , 3: , 4: , 5:

28 convert lookuptable with converged P-values to training data, train an MLP, generate a new lookup
table for those “position-move” pairs that the MLP would misclassify
29 generated by init_mc.m (given dr=# of rows, dc=# of columns, dwin=# of marks that indicate a winner)

15

7 References

Sutton98 Sutton, Richard S., and Barto, Andrew G. (1998). Reinforcement
Learning: An Introduction, “A Bradford Book”, MIT Press
online: http://www-anw.cs.umass.edu/~rich/book/the-book.html

Haykin99 Haykin, Simon (1999). Neural networks: a comprehensive foundation,
2nd edition, Prentice Hall, New Jersey

DeWilde95 De Wilde, Philippe (1995). Neural network models: an analysis,
Springer-Verlag

16

http://www-anw.cs.umass.edu/~rich/book/the-book.html

	Introduction
	Problem Statement
	Importance of the topic
	Tic-Tac-Toe

	Reinforcement learning
	Method
	Convergence of the P-values

	Generating the training data for the ANN
	Setting up a lookup table
	Converting the lookup table to training data

	Introducing an artificial neural network
	Training a Multilayer Perceptron (MLP)
	Comparison: MLP vs. lookup table
	Tic-Tac-Toe on a larger board

	Discussion
	Fun facts
	References

