
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 1

Chapter 4: Dynamic Programming

Objectives of this chapter:

❐ Overview of a collection of classical solution methods
for MDPs known as dynamic programming (DP)

❐ Show how DP can be used to compute value functions,
and hence, optimal policies

❐ Discuss efficiency and utility of DP

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

Policy Evaluation

Policy Evaluation: for a given policy π, compute the
state-value function Vπ

Recall: State - value function for policy π :

Vπ (s) = Eπ Rt st = s{ }= Eπ γ krt +k +1 st = s
k =0

∞

∑







Bellman equation for Vπ :

Vπ (s) = π (s,a) Ps ′ s
a Rs ′ s

a + γ V π(′ s)[]
′ s

∑
a

∑
— a system of S simultaneous linear equations

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Iterative Methods

 V0 → V1 → L → Vk → Vk +1 → L→ Vπ

a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy evaluation backup:

Vk+1 (s) ← π (s,a) Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s

∑
a

∑

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Iterative Policy Evaluation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 5

A Small Gridworld

actions

r = −1
on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

❐ An undiscounted episodic task
❐ Nonterminal states: 1, 2, . . ., 14;
❐ One terminal state (shown twice as shaded squares)
❐ Actions that would take agent off the grid leave state unchanged
❐ Reward is –1 until the terminal state is reached

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Iterative Policy Eval for the Small Gridworld

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the
Random Policy

Greedy Policy
w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = ∞

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

π = random (uniform) action choices

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

Policy Improvement

Suppose we have computed for a deterministic policy π.Vπ

For a given state s,
would it be better to do an action ? a ≠ π(s)

 Qπ (s,a) = Eπ rt +1 + γ V π(st +1) st = s, at = a{ }
= Ps ′ s

a

′ s
∑ Rs ′ s

a +γ Vπ (′ s)[]

The value of doing a in state s is :

It is better to switch to action a for state s if and only if

 Qπ (s,a) > V π (s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Policy Improvement Cont.

′ π (s) = argmax
a

Qπ (s,a)

= argmax
a

Ps ′ s
a

′ s
∑ Rs ′ s

a + γ V π (′ s)[]

Do this for all states to get a new policy ′ π that is

greedy with respect to V π :

Then V ′ π ≥ Vπ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Policy Improvement Cont.

What if V ′ π = Vπ ?

i.e., for all s ∈S, V ′ π (s) = max
a

Ps ′ s
a

′ s
∑ Rs ′ s

a +γ Vπ (′ s)[] ?

But this is the Bellman Optimality Equation.

So V ′ π = V∗ and both π and ′ π are optimal policies.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

Policy Iteration

 π0 → V π 0 → π1 → Vπ1 → Lπ * → V * → π *

policy evaluation policy improvement
“greedification”

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

Policy Iteration

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

Value Iteration

Recall the full policy evaluation backup:

Vk +1 (s) ← π (s,a) Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s

∑
a

∑

Here is the full value iteration backup:

Vk+1 (s) ← max
a

Ps ′ s
a Rs ′ s

a + γ Vk (′ s)[]
′ s

∑

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Value Iteration Cont.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Asynchronous DP

❐ All the DP methods described so far require exhaustive
sweeps of the entire state set.

❐ Asynchronous DP does not use sweeps. Instead it works like
this:

Repeat until convergence criterion is met:
– Pick a state at random and apply the appropriate

backup
❐ Still need lots of computation, but does not get locked into

hopelessly long sweeps
❐ Can you select states to backup intelligently? YES: an

agent’s experience can act as a guide.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

π V

evaluation

improvement

V →V
π

π→greedy(V)

Vπ

A geometric metaphor for
convergence of GPI:

starting
V π

V = V π

π = gree d y (V)

V*

π*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Efficiency of DP

❐ To find an optimal policy is polynomial in the number of
states…

❐ BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables
(what Bellman called “the curse of dimensionality”).

❐ In practice, classical DP can be applied to problems with a
few millions of states.

❐ Asynchronous DP can be applied to larger problems, and
appropriate for parallel computation.

❐ It is surprisingly easy to come up with MDPs for which DP
methods are not practical.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Summary

❐ Policy evaluation: backups without a max
❐ Policy improvement: form a greedy policy, if only locally
❐ Policy iteration: alternate the above two processes
❐ Value iteration: backups with a max
❐ Full backups (to be contrasted later with sample backups)
❐ Generalized Policy Iteration (GPI)
❐ Asynchronous DP: a way to avoid exhaustive sweeps
❐ Bootstrapping: updating estimates based on other

estimates

	Chapter 4: Dynamic Programming
	Policy Evaluation
	Iterative Methods
	Iterative Policy Evaluation
	A Small Gridworld
	Iterative Policy Eval for the Small Gridworld
	Policy Improvement
	Policy Improvement Cont.
	Policy Improvement Cont.
	Policy Iteration
	Policy Iteration
	Value Iteration
	Value Iteration Cont.
	Asynchronous DP
	Generalized Policy Iteration
	Efficiency of DP
	Summary

