Chapter 9: Planning and L earning

Objectives of this chapter:

[] Use of environment models
[I Integration of planning and learning methods
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M odels

[1 Model: anything the agent can use to predict how the
environment will respond to its actions

(] Distribution model: description of all possibilities and their
probabilities
= €9, P, andR, forals, s, andalA(s)

[1 Sample model: produces sample experiences
» €.0., asmulation model

[] Both types of models can be used to produce simulated
experience

[1 Often sample models are much easier to come by
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Planning

[1 Planning: any computational process that uses amodel to
create or improve apolicy

modd planning

» policy

(] Planning in Al:

» State-space planning

« plan-space planning (e.q., partial-order planner)
[1 We take the following (unusual) view:

« all state-space planning methods involve computing
value functions, either explicitly or implicitly

« they all apply backups to ssmulated experience

modd smulated backups

experience » values — » policy
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Planning Cont.

[1 Classical DP methods are state-space planning methods
[1 Heuristic search methods are state-space planning methods
[1 A planning method based on Q-learning:

Do forever: |
1. Select a state, s € 8, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain a sample next state, s/,
and a sample next reward, r
3. Apply one-step tabular Q-learning to s, a, s/, r:
Q(s,a) < Q(s,a) +a [r + y maxy Q(s', a’) — Q(s, a)]

Random-Sample One-Step Tabular Q-Planning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



L ear ning, Planning, and Acting

[1 Two uses of real experience: value/policy

» Model learning: to improve

the model acting
= direct RL: to directly planning direct

Improve the value function

and policy

: : model experlence
[1 Improving value function
and/or policy viaamodel is
sometimes called indirect RL or I;fﬁ;'g
model-based R L. Here, we call
It planning.
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Direct vs. Indirect RL

[1 Indirect methods: [1 Direct methods
= make fuller use of = SImpler
experience: get = Not affected by bad
fewer environment
Interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel
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The Dyna Architectur e (Sutton 1990)
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The Dyna-Q Algorithm

Initialize Q(s, a) and Model(s, a) for all s € § and a € A(s)
Do forever:
(a) s < current (nonterminal) state

(b) a < e-greedy(s, Q)

s',r < Model(s, a)
0(s,a) < Q(s,a) + a [r + y max, Q(s',a') — Q(s, a)]

(c) Execute action a; observe resultant state, s’, and reward, r direct RL
(d) Q(s,a) « O(s,a) +ea [r+y maxy O(s',a’) — Q(s, a)]
() Model(s,a) < s',r (assuming deterministic environment) <= Mmode! |
(f) Repeat N times:

s < random previously observed state

a <« random action previously taken in s <« planning

Par ning
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Dyna-Q on a Simple M aze
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Dyna-Q Snapshots. Midway in 2nd Episode
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When the Modd 1sWrong:
Blocking M aze

The changed envirnoment is harder
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Shortcut M aze

The changed environment is easier
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What is Dyna-Q™?

[ Uses an “exploration bonus’:

« Kegpstrack of time since each state-action pair was
tried for real

=« Anextrareward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

« Theagent actually “plans’ how to visit long unvisited
states
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Prioritized Sweeping

[1 Which states or state-action pairs should be generated
during planning?

[1 Work backwards from states whose values have just
changed:

»« Maintain aqueue of state-action pairs whose values
would change alot if backed up, prioritized by the size
of the change

= When a new backup occurs, insert predecessors
according to their priorities
« Always perform backups from first in queue
[1 Moore and Atkeson 1993; Peng and Williams, 1993
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Prioritized Sweeping

Initialize Q(s, a), Model(s, a) for all s, a, and PQueue to empty
Do forever:
(a) s « current (nontermmal) state
() a « policy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward r
(d) Model(s,a) < s',r
(e) p « Ir +y maxy Q(s', a') — Q(s, a)l.
(f) if p > 6, then insert s, a into PQueue with priority p
(g) Repeat N times, while PQueue is not empty:
s, a < first(PQueue)
s',r « Model(s, a)
Q(s, a) < Q(s,a) +a [r +y maxy O(s', @) — Q(s, a)]
Repeat, for all 5, a predicted to lead to s:
r < predicted reward
p < |IF +y max, Q(s, a) — Q(s, a)l.
if p > 6 then insert 5, a into PQueue with priority p
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Prioritized Sweeping vs. Dyna-Q

Both use N=5 backupsper 1071
environmental interaction
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Rod Maneuvering (Moore and Atkeson 1993)
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Full and Sample (One-Step) Backups

Value Full backups Sample backups
estimated (DP) (one-step TD)
S
Vris) a a
r r
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s
max
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AC r
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s,a s,a
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& S S
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max max
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Full vs. Sample Backups
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R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Trajectory Sampling

[I Trajectory sampling: perform backups along simulated
trajectories

[] This samples from the on-policy distribution
[1 Advantages when function approximation is used (Chapter 8)

[1 Focusing of computation: can cause vast uninteresting parts
of the state space to be (usefully) ignored:

Initial
states

Reachable under Irrelevant states
optimal control
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Trajectory Sampling Experiment

[]
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Heuristic Sear ch

[1 Used for action selection, not for changing a value function
(=heuristic evaluation function)

[1 Backed-up values are computed, but typically discarded
[1 Extension of the idea of agreedy policy — only deeper
[1 Also suggests ways to select states to backup: smart

/\ /\
M @
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Summary

[1 Emphasized close relationship between planning and
learning

[ Important distinction between distribution models and
sample models

[] Looked at some ways to integrate planning and learning
= Synergy among planning, acting, model learning
[1 Distribution of backups: focus of the computation
= trgectory sampling: backup along trajectories
» prioritized sweeping
» heuristic search
[1 Size of backups: full vs. sample; deep vs. shallow
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