Chapter 9: Planning and L earning

Objectives of this chapter:

[] Use of environment models
[I Integration of planning and learning methods

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

M odels

[1 Model: anything the agent can use to predict how the
environment will respond to its actions

(] Distribution model: description of all possibilities and their
probabilities
= €9, P, andR, forals, s, andalA(s)

[1 Sample model: produces sample experiences
» €.0., asmulation model

[] Both types of models can be used to produce simulated
experience

[1 Often sample models are much easier to come by

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning

[1 Planning: any computational process that uses amodel to
create or improve apolicy

modd planning

» policy

(] Planning in Al:

» State-space planning

« plan-space planning (e.q., partial-order planner)
[1 We take the following (unusual) view:

« all state-space planning methods involve computing
value functions, either explicitly or implicitly

« they all apply backups to ssmulated experience

modd smulated backups

experience » values — » policy

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning Cont.

[1 Classical DP methods are state-space planning methods
[1 Heuristic search methods are state-space planning methods
[1 A planning method based on Q-learning:

Do forever: |
1. Select a state, s € 8, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain a sample next state, s/,
and a sample next reward, r
3. Apply one-step tabular Q-learning to s, a, s/, r:
Q(s,a) < Q(s,a) +a [r + y maxy Q(s', a’) — Q(s, a)]

Random-Sample One-Step Tabular Q-Planning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

L ear ning, Planning, and Acting

[1 Two uses of real experience: value/policy

» Model learning: to improve

the model acting
= direct RL: to directly planning direct

Improve the value function

and policy

: : model experlence
[1 Improving value function
and/or policy viaamodel is
sometimes called indirect RL or I;fﬁ;'g
model-based R L. Here, we call
It planning.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Direct vs. Indirect RL

[1 Indirect methods: [1 Direct methods
= make fuller use of = SImpler
experience: get = Not affected by bad
fewer environment
Interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur
simultaneously and in parallel

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Dyna Architectur e (Sutton 1990)

SN\

/ \
Policy/value functions
Z \

planning update

direct RL simulated
P real I
_.experience
model searchI
learning contro
Model

[Environment]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Dyna-Q Algorithm

Initialize Q(s, a) and Model(s, a) for all s € § and a € A(s)
Do forever:
(a) s < current (nonterminal) state

(b) a < e-greedy(s, Q)

s',r < Model(s, a)
0(s,a) < Q(s,a) + a [r + y max, Q(s',a') — Q(s, a)]

(c) Execute action a; observe resultant state, s’, and reward, r direct RL
(d) Q(s,a) « O(s,a) +ea [r+y maxy O(s',a’) — Q(s, a)]
() Model(s,a) < s',r (assuming deterministic environment) <= Mmode! |
(f) Repeat N times:

s < random previously observed state

a <« random action previously taken in s <« planning

Par ning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Dyna-Q on a Simple M aze

G
800-
S
600 . actions
Steps 0 planning steps rewards = O until goal, when =1
per 4004 (direct RL only)
episode 5 planning steps
50 planning steps
200+
144 | | | | |
2 10 20 30 40 50

Episodes

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Dyna-Q Snapshots. Midway in 2nd Episode

WITHOUT PLANNING (N=0) WITH PLANNING (N=50)
o G ~~=lvlv=lv| |G

i e R AR AR

S S nalh Ana B AN
S e et e e

m

— ==}~

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

When the Modd 1sWrong:
Blocking M aze

The changed envirnoment is harder

G : G

150-
Dyna-Q
Cumulative
reward

—I—'_F'_'-'-'
Dyna-AC

O i 1 :I 1 1
0 1000 2000 3000

Time steps

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

11

Shortcut M aze

The changed environment is easier

G ; G

400
Dyna-Q
Cumulative Dyna-AC
reward :
01, ; .
0 3000 6000
Time steps

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

What is Dyna-Q™?

[Uses an “exploration bonus’:

« Kegpstrack of time since each state-action pair was
tried for real

=« Anextrareward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

« Theagent actually “plans’ how to visit long unvisited
states

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Prioritized Sweeping

[1 Which states or state-action pairs should be generated
during planning?

[1 Work backwards from states whose values have just
changed:

»« Maintain aqueue of state-action pairs whose values
would change alot if backed up, prioritized by the size
of the change

= When a new backup occurs, insert predecessors
according to their priorities
« Always perform backups from first in queue
[1 Moore and Atkeson 1993; Peng and Williams, 1993

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

14

Prioritized Sweeping

Initialize Q(s, a), Model(s, a) for all s, a, and PQueue to empty
Do forever:
(a) s « current (nontermmal) state
() a « policy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward r
(d) Model(s,a) < s',r
(e) p « Ir +y maxy Q(s', a') — Q(s, a)l.
(f) if p > 6, then insert s, a into PQueue with priority p
(g) Repeat N times, while PQueue is not empty:
s, a < first(PQueue)
s',r « Model(s, a)
Q(s, a) < Q(s,a) +a [r +y maxy O(s', @) — Q(s, a)]
Repeat, for all 5, a predicted to lead to s:
r < predicted reward
p < |IF +y max, Q(s, a) — Q(s, a)l.
if p > 6 then insert 5, a into PQueue with priority p

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

15

Prioritized Sweeping vs. Dyna-Q

Both use N=5 backupsper 1071
environmental interaction

106_
10° 4
Backups
until 107 prioritized
optimal sweeping
solution

| I [I I | I |
0O 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

16

Rod Maneuvering (Moore and Atkeson 1993)

17

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Full and Sample (One-Step) Backups

Value Full backups Sample backups
estimated (DP) (one-step TD)
S
Vris) a a
r r
S S
policy evaluation TD(0)
s
max
a
AC r
S

value iteration

s,a s,a
I r
Qas s s
a a
Q-policy evaluation Sarsa
s,a s,a
I r
& S S
Qas
max max
a a
Q-value iteration Q-learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Full vs. Sample Backups

1_

full

I
Sampe backups

backups

l

b=2 (branching factor)
\‘

1b 2b

Number of max Q(s',a') computations
a’

RMS error
in value
estimate

b successor states, equally likely; initial error = 1;
assume all next states values are correct

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Trajectory Sampling

[I Trajectory sampling: perform backups along simulated
trajectories

[] This samples from the on-policy distribution
[1 Advantages when function approximation is used (Chapter 8)

[1 Focusing of computation: can cause vast uninteresting parts
of the state space to be (usefully) ignored:

Initial
states

Reachable under Irrelevant states
optimal control

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Trajectory Sampling Experiment

[]

one-step full tabular backups
1000 STATES

[uniform: cycled through all state-
] . alue of 2
action pairs St":‘jrt]j%";‘te —
[on-policy: backed up along policy o
simulated trajectories on-policy
|:| 200 randomly ger]a-atm 00 5,600 10,I000 15,IOOO 20,2)00
undiscounted ep| SOdl C tasks Computation time, in full backups

[1 2 actions for each state, each with
b equally likely next states

[1 .1 prob of transitionto terminal

uniform

10,000 STATES

I f

tate yateot
O expected reward on each greedy
policy

transition selected from mean O
variance 1 Gaussian

0 50,I000 100:000 150:000 200:000
Computation time, in full backups

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Heuristic Sear ch

[1 Used for action selection, not for changing a value function
(=heuristic evaluation function)

[1 Backed-up values are computed, but typically discarded
[1 Extension of the idea of agreedy policy — only deeper
[1 Also suggests ways to select states to backup: smart

/\ /\
M @

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Summary

[1 Emphasized close relationship between planning and
learning

[Important distinction between distribution models and
sample models

[] Looked at some ways to integrate planning and learning
= Synergy among planning, acting, model learning
[1 Distribution of backups: focus of the computation
= trgectory sampling: backup along trajectories
» prioritized sweeping
» heuristic search
[1 Size of backups: full vs. sample; deep vs. shallow

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

