Ch

apter 3: The Reinforcement Learning Problem

Objectives of this chapter:

R. S. Sutton an

[1 describe the RL problem we will be studying for the
remainder of the course

[1 present idealized form of the RL problem for which we
have precise theoretical results;

[1 introduce key components of the mathematics: value
functions and Bellman equations;

1 describe trade-offs between applicability and
mathematical tractability.

d A. G. Barto: Reinforcement Learning: An Introduction

The Agent-Environment Interface

>[Agent]
state rreward action
S t %
:: w1 [

' s.1 | Environment]<—

| \

Agent and environment interact at discrete time steps: ¢=20,1, 2, ...

Agent observes state at stepz: s, €5
produces action at step¢: a, € A(s,)

gets resulting reward: 7, €R

t+1

and resulting next state: s,

—@ ortﬂm crt+2@ olt3 St43)—"""
' J a NG \ 7 4 +3

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

The Agent Learns a Policy

Policy at step ¢, 7, :
a mapping from states to action probabilities

7T, (s, a) = probability thata, = a when s, = s

[1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

[] Roughly, the agent’s goal is to get as much reward as 1t
can over the long run.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Getting the Degree of Abstraction Right

[1 Time steps need not refer to fixed intervals of real time.

[1 Actions can be low level (e.g., voltages to motors), or high
level (e.g., accept a job offer), “mental” (e.g., shift in focus
of attention), etc.

[1 States can low-level “sensations”, or they can be abstract,
symbolic, based on memory, or subjective (e.g., the state
of being “surprised” or “lost™).

[1 An RL agent is not like a whole animal or robot, which
consist of many RL agents as well as other components.

[1 The environment is not necessarily unknown to the agent,
only incompletely controllable.

[1 Reward computation is in the agent’s environment because
the agent cannot change it arbitrarily.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Goals and Rewards

[1 Is a scalar reward signal an adequate notion of a goal?—
maybe not, but it 1s surprisingly flexible.

[1 A goal should specify what we want to achieve, not how
we want to achieve it.

L] A goal must be outside the agent’s direct control—thus
outside the agent.

[1 The agent must be able to measure success:
» explicitly;
» frequently during its lifespan.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns

Suppose the sequence of rewards after step 71s:

I/;+1,I"t+2,lf;+3,

What do we want to maximize?

In general,

we want to maximize the expected return, E{R, }, for each step ¢.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r +r ,+-+r,

where T 1s a final time step at which a terminal state is reached,
ending an episode.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

o0
— 2 _ k
]zr =l +7/rt+2 Ty Vi3 T = 27/ Vi kr1o
k=0

where 7,0 <y <1, 1s the discount rate.

shortsighted 0 <— y — 1 farsighted

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

An Example

Avoid failure: the pole falling beyond
a critical angle or the cart hitting end of

track.
_— N -

As an episodic task where episode ends upon failure:
reward = +1 for each step before failure

= return = number of steps before failure

As a continuing task with discounted return:
reward = —1 upon failure; 0 otherwise

= return = —y*, for k steps before failure

In either case, return 1s maximized by
avoiding failure for as long as possible.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Another Example

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where not at top of hill

— return = —number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps reach the top of the hill.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Unified Notation

[1 In episodic tasks, we number the time steps of each
episode starting from zero.

[1 We usually do not have distinguish between episodes, so
we write S, instead of S, ; for the state at step ¢ of
episode J.

[1 Think of each episode as ending in an absorbing state that
always produces reward of zero:

r,=+1 r,=+1 r,=+1 r,=0

[We can cover all cases by writing R =>

k=0
where ycan be 1 only if a zero reward absorbing state is always reached.

+k+1°

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

The Markov Property

[] By “the state” at step #, the book means whatever information 1s
available to the agent at step ¢ about its environment.

[1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

[1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

7,

i

t—l’at—l"“’rl’SO’aO}:
=s'.r

Pr{StH Tl = I"| Stﬂat}

, L
for all s, , and histories s,,a,,7,s,_,a,_,,...,1,8,,a,.

— o —
Pr{SHl =8,ha = I”| S5y

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

11

Markov Decision Processes

[1 If a reinforcement learning task has the Markov Property, it 1s
basically a Markov Decision Process (MDP).
[] If state and action sets are finite, it 1s a finite MDP.
[1 To define a finite MDP, you need to give:
= state and action sets
= one-step “dynamics” defined by transition probabilities:
Py =Pris

— o — — /
=S | S, =8,a, = a} for alls,s’ €S, a € A(s).

= reward probabilities:

a _ — _ — ! '
R —E{1;+1 S, =8,d,=a,S,,; =S } for all s,s" €S, a € A(s).

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

12

An Example Finite MDP

Recycling Robot

[1 At each step, robot has to decide whether 1t should (1) actively
search for a can, (2) wait for someone to bring it a can, or (3)
go to home base and recharge.

[] Searching 1s better but runs down the battery; if runs out of
power while searching, has to be rescued (which 1s bad).

[1 Decisions made on basis of current energy level: h gh,l ow.

[1 Reward = number of cans collected

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

Recycling Robot MDP

S = {hi gh,I ow} R***°" = expected no. of cans while searching
A(hi gh) = {search, wai t } R™" = expected no. of cans while waiting
A(l ow) = {sear ch,wai t,rechar ge} Reeareh » pyait

1, RVt 1B, -3

B Rsearch
search

1, 0 recharge
@

sear ch

wai t
1o Rsearch 1—G, R search 1, R

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

Value Functions

[1 The value of a state is the expected return starting from
that state; depends on the agent’s policy:

State - value function for policy 7 :

VE(S): Eﬂ {Rf | S :S}: Eﬁ{zyk’/;+k+l | S, = S}
k =0

[1 The value of taking an action in a state under policy 7
is the expected return starting from that state, taking that

Action - value function for policy 7 :

action, and thereafter following 7 :
S, =S,a, = a}

Qﬂ(Sa a) — E;z{Rt| St =5 at :a}: Eﬂ{zyk}/ﬂkﬂ
k=0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

15

Bellman Equation for a Policy 7

The basic 1dea:
2 3
R =r +yn, vV s+,
2
t+1+7/(t+2+7/t+3+7/ ’/;+4.”)
+ 7R

t+1 r+1

So: Vi(s)=E, <{R[| s, =S}
— E;z %Hl + 7/V(St+1)St — S}

Or, without the expectation operator:

V7(s)= 2 a(s.a) 2 B[R, + 7V (s"]

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

16

More on the Bellman Equation

V7(s)= 2 ats.a) 2 BL R, + 7V (s"]

This 1s a set of equations (in fact, linear), one for each state.
The value function for 7 1s its unique solution.

Backup diagrams:

(@) 2 (b) >4

for " for Q"

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Gridworld

[1 Actions: north,sout h, east , west ; deterministic.
[1 If would take agent off the grid: no move but reward = —1

[1 Other actions produce reward = 0, except actions that
move agent out of special states A and B as shown.

AN BN
+5‘
#0] | B' +
' Actions
S

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

3.3

8.8

4.4

5.3

1.5

15

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

-1.0

-0.4

-0.4

-0.6

-1.2

-1.9

-1.3

-1.2

-1.4

-2.0

State-value function
for equiprobable
random policy;
v=0.9

1R

Golf

[] State is ball location

[Reward of —1 for each stroke
until the ball 1s in the hole

[1 Value of a state?
[1 Actions:
= put (use putter)
» driver (use driver)

[] putt succeeds anywhere on the
green

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Vputt

—O

10

Optimal Value Functions

[For finite MDPs, policies can be partially ordered:
7> 7' ifand onlyif V" (s)>V" (s) foralls €S

[1 There 1s always at least one (and possibly many) policies that
1s better than or equal to all the others. This 1s an optimal
policy. We denote them all 7 *.

[1 Optimal policies share the same optimal state-value function:
V'(s)=maxV"(s) forall s €S
[1 Optimal policies glso share the same optimal action-value
function:
O (s,a)= max Q" (s,a) forall s eSanda € A(s)

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 70

Optimal Value Function for Golf

[1 We can hit the ball farther with dri ver than with putt er, but
with less accuracy

[1 O*(s,driver) gives the value or using driver first, then using
whichever actions are best

Q' (s,driver)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 71

—O

Bellman Optimality Equation for V*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

V*(s) = max O (s,a)

acA(s)
= ma(X)E 7;+1 + Y V*(SHI) St =5, at = a}
acA(s
=max > Pu|R, + 7V ()]
acA(s) o (a) S
max
The relevant backup diagram: 2
r
S

V'is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

M

Bellman Optimality Equation for Q%

\

Q*(S,G)ZE t+1 +7/II£E}XQ*(SH1,CZ')|SI = 8,4, :aJ
=D P, Eﬁif +y max Q*(s’,a’)]

0 S

The relevant backup diagram: g

max

O is the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

73

Why Optimal State-Value Functions are Useful

Any policy that i1s greedy with respect to V' is an optimal policy.

Therefore, given V: one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

Ad |B\ 22.0/24.4)22.0[19.4/17.5 — <$> — <$> —

+5 19.8/22.0/19.8/17.816.0 1t Jd ||«

a0| | B 17.8/19.8/17.8/16.0{ 14.4 Lt d

16.0{17.8)16.0|14.4|13.0 L P o O o

A'f 14.4(16.0/14.4/13.0/11.7 L P O
a) gridworld b) V* c) T*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

24

What About Optimal Action-Value Functions?

Given O , the agent does not even
have to do a one-step-ahead search:

7 (s)=argmax O (s,a)

acA(s)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

25

Solving the Bellman Optimality Equation

[1 Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

» accurate knowledge of environment dynamics;
= we have enough space an time to do the computation;
« the Markov Property.

[1 How much space and time do we need?

= polynomial in number of states (via dynamic
programming methods; Chapter 4),

« BUT, number of states 1s often huge (e.g., backgammon
has about 10**20 states).

[] We usually have to settle for approximations.

[1 Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 76

Summary

[J Agent-environment interaction [1 Value functions

» States » State-value function for a policy
= Actions = Action-value function for a policy
= Rewards » Optimal state-value function
[Policy: stochastic rule for = Optimal action-value function
selecting actions [0 Optimal value functions

L Return: the function of future [Qptimal policies
rewards agent tries to maximize - p ellman Equations

[]

Episodic and continuing tasks [The need for approximation

[]

Markov Property
[J Markov Decision Process
= Transition probabilities

= Expected rewards

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 7

	Chapter 3: The Reinforcement Learning Problem
	The Agent-Environment Interface
	The Agent Learns a Policy
	Getting the Degree of Abstraction Right
	Goals and Rewards
	Returns
	Returns for Continuing Tasks
	An Example
	Another Example
	A Unified Notation
	The Markov Property
	Markov Decision Processes
	An Example Finite MDP
	Recycling Robot MDP
	Value Functions
	Bellman Equation for a Policy p
	More on the Bellman Equation
	Gridworld
	Golf
	Optimal Value Functions
	Optimal Value Function for Golf
	Bellman Optimality Equation for V*
	Bellman Optimality Equation for Q*
	Why Optimal State-Value Functions are Useful
	What About Optimal Action-Value Functions?
	Solving the Bellman Optimality Equation
	Summary

