Chapter 2: Evaluative Feedback

[1 Evaluating actions vs. instructing by giving correct actions

[1 Pure evaluative feedback depends totally on the action taken.
Pure nstructive feedback depends not at all on the action taken.

[ Supervised learning is instructive; optimization is evaluative
L] Associative vs. Nonassociative:

» Associative: inputs mapped to outputs; learn the best output
for each input

=« Nonassociative: “learn” (find) one best output
[1 n-armed bandit (at least how we treat it) is:
»« Nonassociative

s Evaluative feedback
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The n-Armed Bandit Problem

[1 Choose repeatedly from one of n actions; each choice 1s
called a play

L After each play 4,, you get areward 7, , where
Krla)=0'(a)
These are unknown action values

Distribution of 7; depends only on @,

[1 Objective 1s to maximize the reward 1n the long term, e.g.,
over 1000 plays

To solve the n-armed bandit problem,
you must explore a variety of actions
and the exploit the best of them
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The Exploration/Exploitation Dilemma

[1 Suppose you form estimates

Qt(a) ~ Q*(Cl) action value estimates

[] The greedy action at 7 1s
a, = argmax Q,(a)

a, = a, = exploitation
a, # a, = exploration

[1 You can’t exploit all the time; you can’t explore all the time

[1 You can never stop exploring; but you should always reduce
exploring
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Action-Value Methods

[1 Methods that adapt action-value estimates and nothing
else, e.g.: suppose by the #-th play, action @ had been
chosen £, times, producing rewards 7, %, ..., ¥, , then

B+

0(a) =———

a

“sample average”

3 lim 0,(a) =0’ (a)
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e-Greedy Action Selection

[1 Greedy action selection:

a

= a; =argmaxQ,(a)
a

[1 e-Greedy:
g = { a, with probability 1 — ¢

t random action with probability &

.. . the simplest way to try to balance exploration and exploitation
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10-Armed Testbed

L] n =10 possible actions
[1 Each O (a) is chosen randomly from a normal distribution: 17(0,1)
] each 7 is also normal: 7(Q (a,),l)

[1 1000 plays
LI repeat the whole thing 2000 times and average the results
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e-Greedy Methods on the 10-Armed Testbed
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Softmax Action Selection

[1 Softmax action selection methods grade action probs. by
estimated values.

[1 The most common softmax uses a Gibbs, or Boltzmann,
distribution:

Choose action a on play ¢ with probability
AL

n ”
z th(byT
b=1

where 71s the
“computational temperature”
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Binary Bandit Tasks

Suppose you have just two actions: a=1 or a =2

and just two rewards: r, = success or r,= failure

Then you might infer a target or desired action:

d —

{ a, if success
t

the other action 1f failure

and then always play the action that was most often the target

Call this the supervised algorithm
It works fine on deterministic tasks...
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Contingency Space

The space of all possible binary bandit tasks:
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Linear Learning Automata

Let z.(a)=Pr {at = a} be the only adapted parameter

L, , (Linear, reward - inaction)
On success : n,,(a,)=rn(a)+a(l-rx,(a)) 0O0<a<l
(the other action probs. are adjusted to still sum to 1)

On failure : no change

L. » (Linear, reward - penalty)
On success : n, (a,)=r,(a,)+a(l-7,(a)) 0<a<l
(the other action probs. are adjusted to still sum to 1)
On failure : z, (a,)=rn,(a)+a(0-7,(a)) O0<a<l

For two actions, a stochastic, incremental version of the supervised algorithm
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Performance on Binary Bandit Tasks A and B
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Incremental Implementation

Recall the sample average estimation method:

The average of the first k£ rewards is n+n+--n
(dropping the dependence on a ): O = I

Can we do this incrementally (without storing all the rewards)?

We could keep a running sum and count, or, equivalently:

1
Qk+1 — Qk+k+1[rl'c+1 _Qk]

This 1s a common form for update rules:

NewEstimate = OldEstimate + StepSize| Target — OldEstimate]
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Tracking a Nonstationary Problem

Choosing ¢, to be a sample average is appropriate in a
stationary problem,
i.c., when none of the O (a) change over time,

But not in a nonstationary problem.

Better in the nonstationary case is:

O =0, +a[’7c+1 - Qk]

for constant o, 0 < a < 1
k
=(1-a)Q, + 2 al—a) ',
i=1

exponential, recency-weighted average
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Optimistic Initial Values

[1 All methods so far depend on Q,(a), i.e., they arc biased.

[1 Suppose instead we initialize the action values optimistically,

i.e., on the 10-armed testbed, use Q,(a) =5 forall a
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Reinforcement Comparison

[] Compare rewards to a reference reward, 7, , e.g., an
average of observed rewards

[J Strengthen or weaken the action taken depending on 7, —7,
[ Let p,(a) denote the preference for action a

[1 Preferences determine action probabilities, €.g., by Gibbs

distribution:

ept(a)

Z’;Zl oP(®)

w(a)= Pr{at = a} =

[1 Then:

pt+1(at):pt(a)+[l/;_’7t] and Ft+1 =7’t+0{[lf't—7’t]
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Performance of a Reinforcement
Comparison Method
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Pursuit Methods

[] Maintain both action-value estimates and action preferences

[1 Always “pursue” the greedy action, 1.e., make the greedy
action more likely to be selected

[ After the #-th play, update the action values to get ¥,.,
[J The new greedy action is a;l = argmax Q,,,(a)

L] Then:
7Z-t+1(a:<+1) = 7z-t (a::rl) + ﬁ[l - ﬂt(at*-i-l )]

and the probs. of the other actions decremented to
maintain the sum of 1
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Performance of a Pursuit Method
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Associative Search

Imagine switching bandits at each play
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Conclusions

[] These are all very simple methods

= but they are complicated enough—we will build on them
[1 Ideas for improvements:

= estimating uncertainties . . . interval estimation

= approximating Bayes optimal solutions

» Gittens indices

[1 The full RL problem offers some 1deas for solution . . .
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