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New Methodology for Analytical and Optimal Design
of Fuzzy PID Controllers

Baogang HuSenior Member, IEEEGeorge K. I. Mann, and Raymond G. Gosinember, IEEE

Abstract—This paper describes a new methodology for the the structural parameters are determined during off-line design,
systematic design of fuzzy PID controllers based on theoretical tuning parameters can be calculated during on-line adjustments
fuzzy analysis and genetic-based optimization. An important ¢ iha controller to enhance the process performance, as well as
feature of the proposed controller is its simple structure. It . o .
uses a one-input fuzzy inference with three rules and at most to accommOde}te the adaptive capability to system uncertamty
six tuning parameters. A closed-form solution for the control and process disturbance. Some parameters can be called either
action is defined in terms of the nonlinear tuning parameters. structural or tuning parameters depending on their usage. The

The nonlinear proportional gain is explicitly derived in the  gptional design parameters are marked by an asterisk (*) in
error domain. A conservative design strategis proposed for Table |

realizing a guaranteed-PID-performance (GPP) fuzzy controller. . . .

This strgategy suggests thaapfuzzy PID C(()ntroll)er shguld be able A Wide variety of fuzzy PID-like controllers have been

to produce a linear function from its nonlinearity tuning of the developed. Only a few of the designs are listed in Table Il to
system The proposed PID system is able to produce a close highlight the significant differences in the design parameters
approximart_]ipn of a linear function for approxirrlnating the GPIP and structures. In most cases, fuzzy controller design is accom-
fsgftﬁ]rg' OLti'rSni(zza'zizn?y\f\}iﬁméréc?gép?ggt'Bgr;'g'rtm a?] Cgee':%t'f,vgfs\éer pI.|sh.e-d by tnal—:?md-error methods using computer S|mulat|ons.
than the corresponding linear controller with respect to the Significant studies based on the closed-form analysis of fuzzy
specific performance criteria (i.e., response error, stability, or PID-like controllers started with the work of Ying, Siler, and
robustness). Two indexes, linearity approximation index (LAI) Buckley [34], [39], [40], where they have used a simple
and nonlinearity variation index (NVI), are suggested for eval- tqyr_ryle controller similar to that of Murakami and Maeda

uating the nonlinear design of fuzzy controllers. The proposed . . .
control system has been applied to several first-order, second- [28]. More analytical work in this regard was subsequently

order, and fifth-order processes. Simulation results show that reported for the four-rule controllers [6], [23], [38], and
the proposed fuzzy PID controller produces superior control linear-like fuzzy controllers [3], [5]. Palm has analytically

performance than the conventional PID controllers, particularly ~ demonstrated the equivalence between the fuzzy controller
in handling nonlinearities due to time delay and saturation. and sliding-mode controllers [29]. It is possible to build
Index Terms—Fuzzy logic control, genetic algorithms, nonlin- a fuzzy controller which provides better performance than

ear control, optimal control, PID control. a conventional PID controller, but a fundamental question
remains—s a fuzzy PID controller guaranteed to outperform
I. INTRODUCTION a conventional PID controller for any type of proc@sk has

been reported that a specific fuzzy controller is not necessarily

FUZZY Iog|c_ contrgl (FLC? te_chmque has found MaY,etter than a conventional PI controller [5]. This raises another
successful industrial applications and demonstrated Slﬂjestion—Under what conditions can a fuzzy PID system
nificant performance improvem_ents [71, .[9]' [12], [18]. [35], rovide better performance than a linear PID controffelo
However, fuzzy controller dgsgn remains a fuz_zy ProCe3ite, no satisfactory formal techniques have been developed to
due tp thg fact that th_ere I insufficient analyncal des'ggolve these problems. Moreover, in a study of optimal design
techmque in contrast with the well-developed linear contr%r fuzzy controllers, two relationships must be established:
theories. Althoug_h the fur_mtlons of fuzzy systems have ﬂl design parameters and control nonlinearity, and 2) control
advantage of being relatively easy to understand, the s nlinearity and process performance.

tems become complex or nontransparent due to many deSig':f'his work is an attempt to undertake the development of a

parameters involved. Considering fuzzy PID-like controllerﬁew analytical approach to the optimal design of fuzzy con-

we summarize the design parameters within two 9rOUREs|jers. We propose a new methodology for the optimal design

structural parameters and tuning parameters (Table I). Whi . . )

P gp ( ) oFfuzzy PID controllers. While an analytically based study is
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TABLE |
DESIGN PARAMETERS OF A Fuzzy PID CONTROLLER (* OPTIONAL DESIGN PARAMETERS)

Design Parameters

Structural Parameters Tuning Parameters
Input variables to fuzzy inference Proportional gain (X;)
Output variables of fuzzy inference Integral gain (X))
Fuzzy linguistic sets Derivative gain (K,)
Membership functions (MFs) Parameters of MFs
Fuzzy rules Scaling factors (SFs)
Inference mechanisms (IMs) Parameters for switching knowledge-based
systems*
Defuzzification mechanisms (DMs) Parameters of DMs or Look-up tables (1.Ts)*
PID connective structures Parameters for switching control schemes*
Anti-windup structures* Parameters for anti-windup*
TABLE I

CoMPARISON OF Fuzzy PID-LIKE CONTROLLERS (NOTE: SOME DESIGN PARAMETERS MIGHT BE APPLIED
But NoT GIVEN IN THE REFERENCES MF'S = MEMBERSHIP FUNCTIONS, RM = RELATION MATRIX)

Controller Input Number Required Source of
Type Variables of Rules Parameters Reference
PI e, de 48 S Spe Sy [24]
Self-organizing e, de 24 - 45 Sy Spe Sy [32]
PI
PI-A e, Ze 49 Ser S5 Sy [4]
PI-B e, de 49 Ser Sper Sy
Self-regulating e, de 49, 343 Se Sper Su Koo K, [31]
PI, PID
Two-stage e, de 25 oicchr [20]
PI Aein
Model-based e, du > 49 Sae Sau [11]
PI e, de 4 K, K, L [39,40]
P Ae 7 26,4, [26]
PI e, de 9 € anger A€,00ge
Adaptive network g, A0 4 Bri Ornr A8y O [15]
12 for MFs
Resetting e u 98 Ser S ger [19]
PI Siw Saw P
Gain-scheduling e, de 147 Ko min Kp o [41]
PID Kp i Kb s
PID e, de 49 - 56 - [12]
Types 1-5
Self-tuning e, de 49 K, t,y [14]
Sliding-mode Spro Ay 8 A, N, [29]
PD
Multi-region AV, e, 50 K, T, [33]
PI Ae, Au Ser Sder Sau
PD e, deg 4 K, K,, K, L [23]
Genetic fuzzy I 6 Loax> Noins Nonax [30]
model 30 for RM, 12 forMFs
Optimal e, de 25 8 for MFs [25]
PI
Genetic e, de 9or25 9 or 25 for MFs [17]
fuzzy net
fuzzy controller. Two indexes are proposed for the evaluation . NEW METHODOLOGY

of nonlinear controller designs. For an optimal system design

using genetic algorithms, an overall performance index isA new methodology is proposed for the analytical design
proposed including several individual performance indexe®f a fuzzy PID controller. Fig. 1 shows the proposed method-
Finally, numerical studies are performed on several processdsgy with respect to the data or parameter flow in off-line
including nonlinearities due to time delay and saturation. design. In Step 1, the structure of a fuzzy PID controller is
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Step 1. Step 2. Step 3. Step 4. Step 5.
Preliminary Parameter Analytical fuzzy  Control theory Genetic-based
design identification calculations or simulation optimizations

. Optimal

Fuzzy .| Tuning |Control .| Control Design
PID type "|Parameters Actions Performance Parameters
.
Step 6.
Redesign Designer's expertise
Command |

Fig. 1. Proposed methodology with respect to the data or parameter flows for optimal design of fuzzy PID controllers.

Crisp Scaled Fuzzy  Fuzzy  Defuzzified Scaled Non-saturated Controller
input input "states"  output output output output output
Normali- . Fuzzy| De- PID Denorma- Satura-

e |zation |; Fuzzifier rules fuzzifier|; |gains| - lization o Lton |,
P

Fig. 2. Structure of the proposed fuzzy PID controller.

designed and the structural parameters are set for the prelim-
inary design. The tuning parameters are identified in Step 2, .
while in Step 3 an analytical fuzzy calculation is performed, % Fuzzy 7,
which produces a closed-form relationship between the design
parameters and control action for the fuzzy inference. In Step
4, numerical simulation (or control theory) is used to obtain the
control performance data. In Step 5, genetic-based optimiza-
tions are carried out to produce optimal design parametef: 3- A single input fuzzy PID controller.

This also provides useful information for the redesign of the

original system. Finally, if necessary, redesign is undertaken IIl. STRUCTURE OFEuzzy PID CONTROLLER
using the designer’'s expertise for further improvement to the
control system. Note that the theoretical study in Step 3 malﬁg
the fuzzy controller transparent. This step is important sin

it will establish a close link between fuzzy control design . : .
. : with »(n) being a reference input, andn) a plant response
technigue and classical/modern control theory. . k .
simplicity is a key principle of this design methodologiye at time instantn. The controller output (or, control input to
a plant) is denoted by(n). The scaled discrete-time output

reason is obvious if we see that fuzzy logic controllers are' ", .
X . ; u{n) is the sum of three terms (Fig. 3), represented by
systems which simulate human control exercise. For man

everyday control tasks, people initially try to apply sim- o SN . Ady(n)
ple rules. Three rules used in this work are very commdHn) = Kpiip(n) +KIZUP('L)At+KD#7
in a feedback set-point control problem. If a satisfactory =0
control process can be achieved by applying simple rules,

the use of complex rules,_ which is often associated W'Where we defing:p as a defuzzified proportional output; and
a.h.|gh§r cost of computation, becomes unnecessary. SVfg'change i\ p (Adp(0) = 0) for the sampling periodAt.
plicity is the best and direct way to maintain a ClearI)f(P K;. and Kp, are the normalized proportional, integral
physical insight into the control laws. It also makes higl;a ’ ; ' '

. . ; ) nd derivative gains, respectively. They are all normalized
dimensional fuzzy systems tractable for using simple mal

: : o . . jithin a range of/0, 1]. Three rules used for the fuzzy control
ematical expressions for describing functionality between dgr—

sign parameters and nonlinearity. The simplicity of a system

Compatible with the cascade structure of a conventional
ﬁ) controller, a one-input fuzzy PID controller is proposed
glgig. 2). An error signal is defined by(n) = r(n) — y(n);

71:0,1,2,"' (1)

can be assessed by examining the structure of the infor- R1:if (¢ is NB) then(ip is NB)
mation flow and the total number of design parameters. R2: if (¢ is PB) then (iip is PB) (2)
It is preferable for a system to include high modularity, R3: if (¢ is AZ) then (iip is AZ)

parallelism, concurrency, and normality for implementation in

both software and hardware. To simulate the simplest contwhere é is the scaled error signal. The fuzzy variable “NB”
exercise of human beings, we develop a one-input/threstands for hegative big, “PB” for “ positive big and “AZ" for
rule fuzzy PID controller associated with at most six desigrapproximate zerfb The membership functions fat and . p
parameters. This system, having a simple structure to foare shown in Fig. 4. For simplicity, we use triangular mem-
a control curve, is closely analogous to a linear PID cofpership functions. While the membership functions doare
troller. fixed, the membership functions fé may change according
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TABLE Il
PARAMETERS FOR THE PROPOSEDOPTIMAL Fuzzy AND OPTIMAL LINEAR PID-TYPE CONTROLLERS
PID type Parameters
Optimal Fuzzy Optimal Linear
PID KP? 1?1, IeD’ su’ 'xl’ xl 121’, Kl, IeDv Su
PD Ie}” IeD! Sus X15 X3 K"p, IeDs Su
PI 1617 Sus X1> X2 12,, Sy
NB AZ PB NB AZ PB with “AZ,” and z, with “PB” and “NB.” Each parameter
1 1 changes the width of the associated triangular membership
function. For effective application of tuning parameters from
a fixed number of design parameters, we suggest assigning
0% 0 T %5 X% x, x 1 them to consequent fuzzy sets rather than to antecedent fuzzy

sets. Otherwise, the undesired output may result when no rule

or a single rule fires (refer to “rule completeness” in [9]).

Fig. 4. Membership functions of a three-rule fuzzy controller. For a conventional (or linear) PID controller, the gains
Kp, K7, and K, are independent tuning parameters. Without

to the parameters; and z», which will be discussed in the @ priori knowledge, they could take any nonnegative value.

next section. For a set-point process control, we normalize this arbitrary range usually causes trouble in determining the

crisp input data:(n) into scaled daté(n) using the following universe of discourse of the gains in a fuzzy PID controller

Up

transformation: design. In order to avoid this difficulty, we propose applying
1 see(n) > 1 the normalized control gains denoted in (1). An additional
&(n) = S’e(n) |;' e(n)] < 1 (3a) parameters,, is used to scale the overall values of the gains.

The universe of discourse of this parameter can be easily
obtained from the maximum absolute value:6f). Therefore,

Two operations are performed in the normalization. The scal-total of six tuning parameters for the generalized fuzzy PID
ing factor s, is calculated as controller is included in the system. The range for each design

se = [1/[(0) = y(0)]] = 1/¢(0) (3p) Variable is given by

wherer(0) andy(0) are the initial values of reference input O<Kps<l O<K;=l 0<Kp=l

and responsér(0) — y(0) # 0), respectively. The second 0 < sy < max([tmin|; [Umax])  0<z1 <1 (6)
operation is a saturation function as expressed by (3a). We 0< 29 <1,

have noted that the selection of a universe of discourse is R R R

usually arbitrary; this may cause an additional complexity ihhree normalized gainsi(p, K, and Kp, together with
the selection of the scaling factor. The saturation operatitie output scale factos, are interdependent. The reason for
in (3a) provides a standard calculationof The normalized addings,, is to provide a standard approach in the controller
error ¢ falls within the rangg—1, 1]. Denormalization of the design.

-1, see(n) < —1.

scaled outputi is expressed in the form As a generalized method, this three-gain fuzzy PID con-
- . troller is ready to change into a two-gain fuzzy Pl or PD
u(n) = sut(n) (4)  controller. At least one parameter can be eliminated for the

where@(n) is a crisp output without saturation operation, anffvo-gain controller. If a fuzzy PI controller is selected for
s. is a denormalized factor. use, only four independent tuning parameters are employed

Saturation is considered in the control structure (Fig. 2) fépr the condition suggested in [37]

true control action analysis. The final controller output is Ki/Kp<1. 7)
- Unnax (), a(ﬁ) z Unnax y ) Based on this priori knowledge, we remov&  as a variable
un) = § wn), Umin = u(n) < thmax and define it as a unity; i.elp = 1. Table Ill lists the tuning
umin(n)v U,(TL) < Umin

parameters for the optimal fuzzy PID-type as well as optimal
whereyin andu, ., are the minimum and maximum allow-linear PID-type controllers proposed in this work. Note that
able inputs to the plant. the normalization technique is also applied to a linear PID
controller (Table IlI).

IV. IDENTIFICATION OF DESIGN PARAMETERS

In this work, as few parameters as possible are included. The V. ANALYTICAL FUZZY CALCULATIONS

first two tuning parameters are associated with the allocation ofin this fuzzy PID controller, we apply the “max-min-
membership functions foi > (Fig. 4), wherez; is associated gravity” fuzzy reasoning method, known as Zadeh—Mamdani'’s
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In fact, this value is also equal to the height of the crossing
point between two adjacent membership functions of the
consequent fuzzy sets [Fig. 5(b)]. The following expressions
have been derived for the defuzzified outpwt by taking the
center of the hatched area(s). For convenience, the time instant
notationn is dropped for bothip, andé.

Case 1 (Nonoverlapping); < zo

5 s _ 52
B2 e R G Rk ) S
3[221(1 — &%) 4+ y2(2|¢] — €2)]
Case 2 (Overlapping}:; > z2
Range A:0 < |¢] < &4
6[3(1 - x%) +3x3|e| — x%éQ] (11b)

U T B0, 1 2(1 — 20)|E] — 2167
Range B:¢; < [¢| < 1 —¢&4

o = HwalelBraR—[e)+y2B8- )] —yia[B—Ca)r1 — ]}
r 31é][221 (1 %) +y2(2]6]—€2) —y124] '

(11c)
Range C:i1 — ¢4 < J¢g| <1

{3 a1+ )] — B pa(1-1] + )T}

P 3|é [21(2+.T122)—y223]
(11d)
in which the intermediate variables are defined as
C_B._ A __B C a=1-l¢]  m=1+[¢e] z=1-2 (11e)
T YL =21 — T2 Y2 =1 — 3.
e »
Aal4eg 64 0 & gy 1

VI. COMPARISON BETWEEN Fuzzy PID

e
© AND CONVENTIONAL PID CONTROLLERS

Fig. 5. Two cases for fuzzy output aggregation. (a) Case 1< x2. (b) . . .

Case 21 > #2. Range A0 < |¢] < &4. (c) Case 21 > 22. Range B: Equation (11) gives a closed-form solution to the proposed
éq <|é] <1—¢q4.(d) Case 2x1 > x5. Range C1— ¢4 < [é| < 1.(e) fuzzy proportional action. Further analysis of the fuzzy PID
Case 2iy > w. Three ranges with respect o gains compared to a conventional cascade PID controller can

o ~ be made. The present linear PID controller in its digital form
method. The hatched areas in Fig. 5 represent the combinati@iepresented as

of consequents of each rule, or aggregation, in the fuzzy .

inference system. The center of area method (COA) is use ) Ac(n)
=K K AL+ K,

as the defuzzification procedure [7] UPH) re(n) + 1260) t+Hp At

. N ) ) whereKp, K7, and K, are constant gains, and we impose the
where ¢ is the defuzzified control action, and. is the jnjtial condition Ac(0) = 0. Analogous to above, nonlinear
membership function of a control inference with its SUPPOB|D gains can be obtained for the fuzzy PID controller.

set given by Rewriting (1), we get
S ={c| pe(c) > 0}. ©) . dp S ap . Adp Aé
= |Kp— Je+ | Kr5— eAt+ [ K —f’>_
Two cases are given for the defuzzification. While Case 1 < e ) < ! D¢ )Z < P Ae ) At

[Fig. 5(a)] has two separated areas due to its nonoverlapping R R Aé
adjacent membership functions, a continuous area results in (Kp)egé + (KI)eQZCAt+ (KD)"“E (13)
Case 2 because of the overlapping of the adjacent member Iiﬁer . .

. i i e we definéK p)eq, (K1)eq, aNd(K p)e, to be theequiv-
functions [Fig. 5(b)—(d)]. In Case 2, three ranges [Fig. 5(e lent proportional, integral, and derivative gains to a con-

gref d|§ft'|n§1ws:1edt v_I\_n;h trhespe(cj:.tﬁté) fotr derivation c?ft the. v%ntional PID controller, respectively. Note that the scalar
be LAJZZ' 'ﬁ. r?u p_ut. 'ne I rc?de' diterent ranges are de ermlngu is not included for the equivalence since this factor does
y éa (which point is calleddivision poin) not change the nonlinear behavior of the controllers. The

éa= (21— 22)/(1 + 1 — x2). (10) equivalent proportional and derivative gains are readily found
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Fig. 6. “¢ versus @," plots of linear and fuzzy PID controllersA: :
a1 = 0.0079, 22 = 0.630. B: 217 = 0.874, 9 = 0.945. C: 21 = 0.466,
x2 =0.D: a1 = €(2—¢€)/4, 22 = 1 —€ (¢, an arbitrarily small value;>0). . .
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1 1 93 CR Fig. 8. Four types of simple nonlinear curvés,: angle corresponding to
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/ (6o > 61,61 < 81). (c) Type Il (60 > 61.6, > 61). (d) Type IV
T ; / (o < 1,61 < Br).
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VIl. PROPERTIES OFFUZzY PROPORTIONAL ACTIONS

Fig. 7. Membership functions of a two-rule fuzzy controller. In this section, we will discuss properties of the proportional

action, 4p(é, 1, z2), in error domains. The nonlinearities of

the present three-rule fuzzy PID controller are produced by

EE\'?VO design parametersa:; and z». We call them “nonlinear

tuning parameters.” The analysis of fuzzy proportional actions

is essential because the actions are a direct output from the

zzy inference, and they also influence the fuzzy integral

nd derivative actions. Several properties of the relationship

etweenup and é are summarized below to provide some

useful design guidelines for fuzzy PID controller design.
ip(n) = é(n) (14) 1) |ap| < 1 limits the magnitude of normalized propor-

tional action to be less than or equal to one.

a linear PID controller can be constructed by substituting 2) (¢ = 0) = 0 is a necessary condition for a zero

this relationship into (13). Using rules of R1 and R2 in (2) steady-state error.

with the membership functions shown in Fig. 7, we realize 3) |4,(é = +1)| = max(Jip|) = (2 + 22)/3 indicates a

a linear relationship using the smallest of maximum (SOM)  maximum proportional controller output for a fast rise-

defuzzification method [16] This method is a Slmpllfled up response when error is at an extreme. (Note&b}at

version of the mean of maxima (MOM) defuzzification method is not totally normalized because ofax (|ip|) < 1).

[7]. Instead of finding the mean point of al}, wherec; isan 4y () is a continuous function with respect &

element giving the maximal grade of membership in (9b), the 5y 4 .(2) provides a monotonic proportional action with

from (11) and (13). However, the equivalent integral gain c
be explicitly obtained only whe# is a known function with
respect to time.

A conventional PID controller can be implemented usin
a simple fuzzy controller. Fig. 6 shows differenis versus

¢é” plots describing linear and fuzzy PID controllers. If a plog
shows a linear relationship

distance to the origin (Fig. 7) relationship betwee® and ip.

X ¢, such thatmin (|ez |, [cr|) = |ez] 6) up(é) = —@p(—{z) gives an antisymmetric proportional

¢= : _ (15) control action with respect té.

¢r, such thatmin (|er|, |cr|) = |cr] S
7) 4p(é) can form three types (Type I, Il, and IIl) of

wherecy, andcg are the left and right points af;. This two- nonlinear (or control) curves shown in Fig. 8.
rule fuzzy PID-type controller using SOM defuzzification will  8) #p(é) cannot exhibit a linear function. A close approx-
result in a linear PID controller. For this linear realization, imation of the linear relationship (Curv@ in Fig. 6) is

an infinitive number of rules have to be used for linear-like obtained whene; = 0.466 and z, = 0.

fuzzy controllers in [3], [5], and [40] by using the COA 9) dip/8¢é > 0. The slope for the functionip(é) is
defuzzification method. It is reported in [27] that, using the always positive. This indicates that there is no flat zones
product-sum-gravity reasoning method, linear PD controllers  (d4p/8¢ = 0) in the control curve.

have been realized by four rules and linear PID controllers byl0) dup/9¢ can be viewed as a Normalized Sensitivity (NS)
eight rules. function. The higher the value, the more sensitive the
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controller to error. Note that for a linear PID controllerthe system: 1) the type of nonlinearity of proportional actions,
dtp/0é = 1. This function can be used to compare th&) the inclusion of a linear function, and 3) the evaluation of
normalized sensitivities of fuzzy PID and linear PIDnonlinearity variations for a given fuzzy controller. The issues
controllers. A complete sensitivity comparison shouldre addressed below respectively.

include the proportional gain and denormalized factors. Four simple types of nonlinear, or control, curves are
For the overlapping case (Case 2), the normalizatkentified in Fig. 8. These fundamental curves are defined
sensitivity at the zero error poifiNSy) is controlled within a positive regioné € [0, 1] andip € [0, 1]. Types

by z; (16). In the nonoverlapping case (Case 1),,NS and Il exhibit monotonic convexand concavecurves, re-

is the function of bothe; and . spectively. Two other simple types are Types Il and IV

11)

(Fig. 8(c), (d)), corresponding tsingle-convex-plus-single-

1— a2
Dy o 2 z1 £ x2 concavecurves. Only three types of curves, Types I, I, and
NS = ge | TV 1- éﬁ (16) 1l can be realized by the proposed controller. The need for
=0 92y T1 > T2. fast rising of the proportional action in the middle rangedf

12)

at the extreme error points.

Bothz; andz,, in (17), can affect the sensitiviNS; )

like Type IV curve in Fig. 8(d), may not be required for many
applications. In general, if the nonlinear functions are more
complex than those four types of curves, additional nonlinear

o, tuning parameters are required. If a plant is lower order or with

NS, = 9 |,y monotonic or essentially monotonic characteristics for a set-
4351'(2 . point control, a.simple nonliqear curve may be .sufficient. for
W’ z1 £ 22 the controller WIthOUt. employing a cpmplex npnlmear action.

T (21 + 22) (301 — 32+ 4) (17) As a rule of thumb, in general_ nonl|near_de3|gn, a controller

3(1 = a2) ) 1 > Ta. having complex nonlinear-action behavior should have the

flexibility to produce a simple action so as to adapt to those
simple control situations.

Considering the issues of stability, controllability, and op-
timization of fuzzy systems [18], [36], we propose a conser-
vative design strategy for fuzzy PID controllerg—fuzzy PID
controller should be able to perform a linear, or approximately
linear, PID function such that the system performance is no
worse than its conventional counterpaif the controller is

13) The sensitivity variations for NSand NS are partially
interdependent. Suppose NB any given value within
the range fromD to oo, i.e., [0, co). Then, the limited
ranges for Ng are

[2z0(2zo +4) 4

3(1_20) 7@)7 (NSO 750)7

1 < 22

[z0(3zo + 4)7 2z0(220 + 4)} . (20# 1), x>0 able to include a perfect linear function as its property, we call
3 3(1 = z0) it a guaranteed-PID-performancéGPP) system. We suggest

(18a)  that this GPP system should incorporate with an optimal solver

where for the specific performance index of interest, say, response

error, stability, or robustness. Therefore, the system will pro-

zo=4/1+ ng —NS,. (18b) duce the performance no lower than the corresponding linear

PID system. This conservative design strategy is particularly
important when we know that stability is guaranteed for a
linear PID. In this case, we know immediately that the GPP
fuzzy system will offer a safe performance bound with respect
to the stability criterion. The performance analysis of a linear
counterpart will provide a useful reference for the GPP fuzzy
(19) . . . .
system design. In order to evaluate the confidence in using a

The significant feature of the proposed controller is thpp bound, we proposdiaearity approximation indexLAl)
application of a single-input scheme, to evaluate the fuzzy

proportional action. Most other researchers have used the two-
input scheme (Table Ik and Ae, to produce the coupled PD
actions, or coupled PI actions by two-to-one mappings. Due t% U . . .

: . ) where1, is a linear function from using a least square method
this coupling effect, the change of errdwe will also alter the 1 . LT -

. . . . . . of datad.p. This function is imposed to pass through the origin

proportional action which may amplify any spurious signal of . . ) . :

X o aint to satisfy Property B). Since the Euclidean distance error
noise significantly. Therefore, the present controller has 1622 . : ) :

"y . . ; orm does not sensibly represent nonlinearity, the maximum-
sensitivity to the noisy data than a conventional tWO-InplE} ; L .
istance error norm is used. This index, representing the
fuzzy controller. . . S .

most linearity approximations which can be produced by the
controller, is normalized within a range @, 1]. The larger
the value of LAI, the higher degree of linearity approxima-
tion included by the fuzzy controller. The index provides a
Fig. 6 demonstrates that the fuzzy PID controller is a nonlimelatively quantitative measure of confidence in using a GPP
ear system. Therefore, three issues are related to the desighafnd for a fuzzy PID controller.

Thus the variations in NSand NS at the two extreme
points are

NS, =0, NS;’s range= [7/3, c0),
NS() = 00, NSl = 0,

whenz; =1
whenz; — 0.

LAl =1 max |up(¢e) — up(é)]

20
max |[Gp(8é)] (20)

VIIl. N ONLINEAR CONTROLLER DESIGN
AND CONSERVATIVE DESIGN STRATEGY
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As shown later in the numerical studies, good performance 4 g,/
of fuzzy PID controllers is attributed to their associated
nonlinearities. The greater the nonlinearity variations, the ™
greater the possibility of a high-performance controller. In
order to evaluate a fuzzy PID controller according to its 0.4 :
nonlinearity freedom, we propose ronlinearity variation 350U J} (L1}
index (NVI), NVI (N,,, N,,), where N, and N,, are the total
number of input variables associated with the fuzzy control 2
action and the total number of nonlinear tuning parameters 190,

| X,—~1

tune the control action, respectively. The present controller hasg , I"tane,) = E{f@)*
N, =1andN, = 2. NVl is defined as a process-independent.i72
measure and should be normalized within the rafiyel]
for a consistent comparison between different controllers. For©-! Ix,
the present controller, we propose the following definition for R : ; 5
NVI (1,2): N s z VN,
0 0.1 0.2 03 0.4 0.5 Bo/n
NVI (1 2) = —Aa(90, 91) (21) Fig. 9. Admissible area of nonlinearity diagram far andé;. A: gray area
(7r/2)2 for nonoverlapping caseB: hatched area for overlapping casg. point for

approximation of a linear PID, corresponding to Cufén Fig. 6. D: point
where A4, is the admissible aredor 6, and#é; of the present corresponding to Curv® in Fig. 6. E: point calculated from (25).
controller, anddy, andé; are the angles in radians correspond-
ing to N§ and NS, respectively. Any point beyond this areaput it involves a complex derivation. As an approximation, we
cannot be realized by the present controller. For a linear PIDd@ppose this point should satisfy the conditions
unity line in Fig. 6),0, andéd; are constants. This results in a
point area only, and it gives NVIL,0) = 0. If NVI (1,2) = 1, NSy = NS, = LAy
which is the maximum value for the index, it means that both max (|e])
6o andé, can be varied independently with{l, 7 /2). For the ' This means that this point gives identical values@gandé; .
present controllertf, and¢, are not totally independent. FromThe jdentical values are not equal to a unity due to the partial
Property M), we can supposg has a range of0, 7/2), and normalization ofi,» (See Property C). The solution of (25)

max (|ip|) (25)

then the ranges of, can be found from (18) shows this point, PoinE in Fig. 9, wheref, = 6, = 0.172r
tan—1 220(229 + 4) " 4 (Note that for a full normalization ofip, NSy = NS; = 1,
an 3(1—20) )’ amoANS ) ) andfy = #; = 0.25x). This point E) is outside the admissible

(NS#0),  x1<z2 area forf; and#,. Consequently, poin€, which is closest to
B the E, is chosen as the best approximation point to a linear

[tan—l<w>7tan—l<w>} function. In Fig. 6, curveC, corresponding to poin€ when
3 3(1 = z0) z1 = 0.466 and z» = 0, illustrates this linear approximation.
(20#1), x1>w2. The linear regression line goes through the extreme point of

(22) up(é = 1) = 2/3. Thus the linear approximation index for

ihe present controller is
2
)/<§> =0.9628.  (26)

This indicates that a good approximation of a linear relation-
(23) ship is included in the present fuzzy PID controller.

Based on (22), we obtain the admissible area of a nonline
ity diagram foré; and @, (Fig. 9), which consists of Area
(gray area) from the nonoverlapping case, and A¢aatched
area) from overlapping case. Equation (19) then becomes

6o =0, @ srange=[0.377,7/2), whenz; =1

LAl =1 — <1nax

ip— —¢
3

bo =m/2, 61 =0, whenz; — 0. Three important observations can be obtained from this
The admissible area is calculated based on the two enclosoealinearity investigation. First, for any point within the
curves in (22) admissible area, the further away from poft the greater
/2 4 nonlinearity the %> versusé” curve represents. Therefore, the
NVI(1,2) = —/ {tan1<—> nonoverlapping case generally produces higher nonlinearity
(m/2)* Jo NS than the overlappi i i
pping case. Second, four regions, Regions |, II,
_tan—l<w> } dbo lll, and 1V, are approximately divided by poir (Fig. 10).
3 Each region maps to the same number of curve type (say,
~0.09167° 0.366 (24) Region | maps to Type | curve) in Fig. 8. Because there is
02572 0 no admissible area located in the Region IV, Type IV curve

Based on the admissible area of the nonlinearity diagramigunavailable from the present controller. Third, the tuning
Fig. 9, we now can find a point within the area which givesiechanism for the nonlinear tuning parameters is clearly
the best approximation to a linear PID controller. This poirdescribed by the contour plot with respect4o and z, as
can be found mathematically using the least square methetlpwn in Fig. 10. The incremental value for contour curves is
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20, /x has only partially normalized range as shown in Property C)
(max (Jip|) < 1).

The nonlinearity diagrams of admissible areas between two
controllers are significantly different. The admissible area
of the alternative controller (Fig. 23) is fully covered by
the admissible area of the proposed controller (Fig. 9). This
means that any nonlinear function produced by the alternative
controller can be realized by the proposed controller, but not
vice versa Therefore, it is reasonable to consider that the
proposed controller shows better design for its greater degree
of nonlinearity variation. Table IV shows the nonlinearity
j . comparison between the two controllers. It is interesting to

oo N find out that, while a minor change is made to the membership
: functions of fuzzy controllers, their corresponding nonlinearity
variations may change significantly.

The investigation of the controller in regard to its associated
Fig. 10. Four regions for four types of simple nonlinear curves, and contoV| is of great help to demonstrate the potential and limita-
plot with respect tor; and» in admissible area of nonlinearity diagram fortion of the controller. For example, a diagram of admissible
% andd;. Az = 0.1. Dashed curves far, and solid curves for:. areas/lines/points can explain the reason why a fuzzy PID

controller may fail to provide better performance than a con-
Az; = 0.1 (j = 1,2). Givenz; and z2, the nonlinearity of ventional PID controller. Suppose that a specific process needs
the corresponding point is decided by the region number. Theperfect linear function for the high-performance control.
associated region number maps the type of nonlinear cutéethose admissible areas/lines/points produced by a fuzzy
directly. controller do not cover the point for a perfect linear function,

For a simple understanding of the tuning action with respeiéte fuzzy controller, of course, presents poorer performance
to the nonlinear tuning parameters, an example is given ftvan a linear PID controller. Using the NVI as a process-
the case when; = x> = z, which corresponds to a touchingindependent measure, designers are able to improve the design
case of the adjacent membership functions. The system, niewthe selection of the fuzzy rules, membership functions,
to be a single-nonlinear-tuning-parameter controller, resuigference schemes, etc.
in a single admissible line in the nonlinearity diagram (see
the boundary between the overlapping and nonoverlapping in
Fig. 9). Fig. 11 shows the nonlinear tuning for this system.
When the tuning parameter is increased, the associated Controller design decisions should be made based on the
nonlinear curve change from Type Il to Type Ill, and finallyspecific performance criteria. Supposg is the overall per-
to Type I. The best linear situation is when = 0.316 formance index of the system, which is in a form for a fuzzy
[Fig. 11(b)]. The slope of the control curve corresponds #8ID controller
the normalized sensitivity. While this slope is fixed for a o
linear controller, it will change with error for a fuzzy PID Jr = f(Kp, K7, Kp,MF’s, SF’s) (27)
controller. The desired property for this control curve is usually
considered whert is close to zero. A low value of NS where MF's are the membership functions for the fuzzy rules,
is preferred for a low degree of sensitivity to suppress tlend SF's are scaling factors. Usually, there is a nonlinear
broadband noise from measurement around the set-point. @lationship between the overall performance index and the
the other hand, a high degree of sensitivity is suggested in fldsign parameters. In additionfy may have multimodal
and [9] for a fine tuning around this point by arranging denseharacteristics, and the standard gradient-descent optimization
membership functions around the zero-error point. In our cageay trap into a local optimization. In this work, we apply
this can be realized by allocating the small valuerdb the genetic algorithms (GA’s) for high-performance controller
consequent membership functions. design. By mimicking the principles of natural selection, GA’s

For a nonlinearity comparison study of different designsre able to evolve a solution to real-world problems. Unlike
of a three-rule fuzzy PID controller, an alternative controllethe gradient algorithms, GA’s are not mathematically guided
is developed in the Appendix. This study aims to display asolvers. The advantage of the GA’s is its global optimization
analytical method for exploring the potentials and limitationsolution even for nonlinear, high-dimensional, multimodal,
of the fuzzy systems as a nonlinear approximator. The initiahd discontinuous problems [10]. Although there are many
difference between the proposed controller and the alternatiariations of off-line and on-line approaches [21], [22], we
controller results from the membership functionsigf. The focus on the simple genetic algorithm developed in [10].
alternative controller has symmetric membership functions bf this study, the GA parameters are given by: number of
the consequent fuzzy sets (Fig. 22 in the Appendix). Thegenerations= 100; population size= 100; crossover factor
a fully normalized range ofip is offered to the alternative (P.) = 0.9; mutation factor(P,,,) = 0.05; and binary bits of
controller (max (|4p|) = 1), while the proposed controller parameters= 7. The generalized optimization problem for the

_,RégionﬁIV Region I 0.
0 0.1 0.2 0.3 0.4 05 8,/n

IX. GENETIC-BASED OPTIMAL DESIGN
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Fig. 11. Nonlinear tuning with respect to (=z1 = x2). (a) Type Il (smallz). (b) Type Il (smallz = 0.316). (c) Type | (bigz).

DIFFERENCES AND NONLINEARITY COMPARISON BETWEE-II\—JA'I'EII;II:_DRJXPOSEDCONTROLLER AND THE ALTERNATIVE CONTROLLER
Proposed Controller Alternative Controller
Ranges of MFs for 4, [-1, 1] [[(1+x,), (1+x,)]
max || (2+x,)/3 1
LAI 0.963 0.959
NVI 0.366 0.0908
Types of nonlinear curves L I, IIT I, I, III

controller is described as
maximize F(Kp, K1, Kp, su, 1, 22) = 1/(1 + Jg)
subject to (6) (28)
G(f(p, KI, KD, Su,T1,22) <0

conflicting performance requirements between static accuracy
(steady-state error) and dynamic responsiveness (speed of
response). Most studies have applied a single-error criterion for
representing overall performance [17], [30], [42]. However, we
find that a single performance index may lead to poor design
with respect to other performance indexes (see Example 6 in

where I is a fitness function an@: is a constraint function y,o \merical studies). In this work, three individual indexes
from the performance requirement (say, the restraint for the

. o ) . . = 3) are applied
normalized sensitivity). The objective function using fitness ) PP
value produces uniformity from its normalized rarige1]. It Jr = wy ISE + w,POS+ wg& (30)
relates to the overall performance index from a sum of the max (e(n)) T

weighted individual performance indexes where ISE is integral of the square of the error over the total
simulation time7’; Ts is settling time, and the POS is the
m percent overshoot [8]. For a unit step response, we assume
= ZwiJi(f(P,f(I,f(D,Su,ﬂUl,@) (29) that max (e(n)) = 1.

i=1

JT(va Kfv-f(Dv 3'u7$17$2)

where w; is a weight associated with théh individual X. NUMERICAL STUDIES

performance index/;. Weighting is used in the case that In this section, numerical studies are conducted to exam-
indexes have large difference in their magnitudes; and it care the performance of the proposed fuzzy PID controllers.
also emphasize some specific performance indexes over oth€@nparisons are made with the conventional linear PID, and
In order to be compatible with the normalization techniquéeuristically rule-tuned PID controllers. For a fair comparison,
each individual performance index should be dimensionlegge conventional linear PID are also designed using the same
and represented in terms of error for consistency. As a resualptimal criteria for the testing. The present genetic-based
the smallerJr, the better the performance. This shows that@ptimization usually does not give the same results for each
high value of F corresponds to good performance. calculation. (The fitness results are close but may have distinct
Performance assessment based on response error signalesggn parameters.) This phenomenon implies two indications:
conducted but it is difficult for optimal control due to thethe method is a near-optimization approach, and the sets of
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TABLE V
PERFORMANCE COMPARISON IN EXAMPLE 1
Optimal Fuzzy PID Optimal PID
K, R, R, 1.0, 0.394, 0.0 1.01.0,0.0
X5, X, S, 0.0079, 0.630, 7.32 -, -, 10.0
T, (sec.) 0.16 0.20
T, (sec.) 0.20 0.36
POS (%) 0.0 0.39
ISE 0.0653 0.0590
ITSE 0.0023 0.0023
F 0.858 0.805

the distinct searching parameters represent the multimoti® present performance requirement (30), thatiis, = 0.
property in the optimization problem. Note that a fuzzy PD controller was used for the same process
The proposed fuzzy PID system, like other fuzzy contréh [23]. The selection of Pl-type controllers from the present
systems, assumes no mathematical model of a control procegstem can be understood by a simple analysis in examining
Without knowledge of a plant, the system searches for thige transfer functiorG of the closed-loop process (without

optimal tuning parameters automatically (this is also true ftihe controller) [8]
the proposed optimal linear PID controller). As a preliminary
study, the validity of the proposed system is tested only on Ge(s) = G(s)/[1+ G(s)] =1/[s + 2].

a single-input and single-output process for set-point control

tasks. Two basic low-order processes are initially investigate-lt—yv0 characteristics of the process explain the optimal results.

followed by a fifth-order process. For each plant, all initia'I:'rSt' the steady-state error of the process is nongexo=

conditions are set to be zero and saturation is included at {hé) wh|c_|t1hsqggestsl a requirement for an :Intggrallj law in the
plant input. Six examples are studied using Matlab's Fuz®/9¢€ss: 'he Integral term Is sometimes callggsetbecause
Logic Toolbox [16]. The Runge—Kutta third-order methodt 'S associated with setting a steady offset in the control

is used for all simulations. A unit step response is studidgPut: Here, an integral action is a necessary condition for

to simulate set-point control. The sampling time is set gy zero steady-state error of the process. The constant control

0.02 s unless otherwise specified. In calculation of the overéﬂpm, t0 a heater is caLcuIaIted bé this law for .ma|ntat|)n|ng
performance (29), an even weighting value = 1 is given a gnlt temperature to t © plant. ecor@_@ remains to be

for each individual index from Examples 1 to 5. The diﬁererﬁ? f|rst-ord_er process which has no oscillation. It_|s _known
weighting is tested in Example 6. In order to better interpr at Ia o!erlvat:ve Igvr\: has a damgl_ng eﬁhect on OSC'”?“O”deUt
the mathematical models of the processes, some examplesrﬁ?éj tS In a sluggish response. Since the present closed-loop

related to the physical systems in common industrial app}_rn_per.ature plaqt does not eth'b't r?scnlatory behawor,. th.e
cations. After the implementation of the controller system, erivative action is unnecessary for the response error criteria.

simple analysis is made based on the conventional controll N€ results of the performance indexes for each controller
theory to verify the design are listed in Table V, where the rise tim@,.), and the

Example 1. A First-Order Process Without Time Dela)j_ntegral of ime multiplied by the squared error (ITSE) [8]

Many industrial processes, such as temperature, pregﬁ&re,are also pres.ented for a broader comparison of individual
value, and fluid-level controls, can be approximated byafirsR'_en‘ormance indexes. It is clear that the fuzzy controller

order model. A three-term model of a first-order process ?é‘@ blett(_ardoverall_p(_arfo_rmancz:ﬁHowever, "; th_e ISEhIS uied
generally given by or single-index optimization, a different conclusion—that the

linear PID produces better performance than the fuzzy PID
G(s) = K otas (31) controller—is reached. A careful selection of performance
tes+1 indexes is important for optimal design. In Example 6, we will

. : demonstrate more results for the different index selections.
wheret,, t4, and K are time constant, time delay, and the -
. . The two controllers show a small difference: 6.58 %)
steady-state gain of the plant, respectively. A temperature ! .
. . : : iIn” terms of the fitness function (Table V). However, there
control process without time delay is assumed for this example

. ! iS” a significant difference in the response curves around
[23]. For a heater plant, a nonnegative range has deflnedforthe controlling ZoneA as illustrated in Fig. 12While the

t.=1 ty =0 K=1 Unin = 0 umax = 10.  CONventional PI controller reaches the set-point smoothly, a
fuzzy controller is able to produce a sharp-curve-like response
The step responses of the two optimal controllers are showhis characteristic is attributed to the nonlinearities of fuzzy
in Fig. 12. The three gains are automatically determined Bystems. While Curvé\ in Fig. 6 shows a Type-Il nonlinear
the genetic search for two optimal controllers. The conclusigmoportional action, Fig. 13 clearly illustrates the nonlinear
obtained from this example for both controllers is that thigining actions for two gains of the system in the error domain.
process does not require a derivative action with respectBoth gains are symmetric with respect &o[Fig. 13(a) and
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Fig. 12. Step responses of optimal PID and optimal fuzzy PID in Example 1. 3

(c)]. The plot of Fig. 13(a) is obtained from the closed-form 2
solution, but the plots in Fig. 13(b) and (c) are obtained from

numerical simulations. While the conventional PID gains are 1
constant, the fuzzy controller exhibits self-tuning capability

with respect to variations i# and/or > é. When the tem-

perature of the plant approaches the set point, the equivalent 0 1 2 3 4 5 6 &
gains of Kp and K are increased to realize a sharp-curve- (b)

like action (but this action is sensitive to the noise around

the set point). This is why a fuzzy controller shows a better 3
performance than a linear controller. Heuristic knowledge can
be extracted from the optimal tuning actions from the gain
plots in Fig. 13 for manual tuning. This operation is usually
based on an error domain [Fig. 13(a) and (c)], rather than on
a sum-of-error domain [Fig. 13(b)]. Therefore, we will show
the gain plots only with respect to error in the later examples.

t (K)o 'k;

Example 2. A First-Order Process with a Time Delayhe 0 >
time delay occurs when a sensor (e.g., a thermocouple) and an 405 0 05 1 e
actuator (e.g., a heater) are installed with a physical separation. ©

The effect of the time delay in the first-order process iRig. 13. Gain plots for the optimal fuzzy Pl in Example 1. (8 )eq /K p

Example 1 is examined next. The process parameters in (8dipusé” plot from a closed-form solution. (b)(f1)eq /K1 versusy é”
are chosen as plot from a numerical simulation. (c)(%;)eq/ K versusé” plot from a
numerical simulation.

t.=1 tqg=0.2 K=1 Umin = 0, Umax = 10.

A comparison is made with PI/PID controllers tuned using 1_8“ Y
the Ziegler-Nichols (Z-N) approach [2]. The Z-N gains are 16 i ot &N Tuned” PI
calculated from the three terms of the process [2] 14] o e 27N Tuned” PID
12} g peOptimal fuzzy PI
Z-N tuned PI:Kp = 4.5, K;=T7.5. AR
Z-Ntuned PID:Kp =6, K;=15Kp=0.6. 08| optmal pr
0.6 i
The step responses of four controllers are shown in Fig. 14. 04} -/
As in Example 1, the GA optimization results in Pl-type 02f 4
systems again for both linear and fuzzy controllers. Both 00 65 ; e 5 &

optimal controllers produce significant improvements over
the Z—N PI/PID controllers. The difference of the fitnegs Fig- 14. Step responses of “Z-N tuned” PI/PID, optimal PI, and optimal
. . fuzzy Pl in Example 2.

between optimal Pl and optimal fuzzy controllers becomes

larger & 14.0%, Table VI) than that observed in Example 1,

which is due to the nonlinearity introduced by the time delajxample 1 can be observed from the proportional actions.

While the linear PID controller has no self-tuning functioWhen a time delay is added, a Type | nonlinear curve is

for process nonlinearity, the present fuzzy controller has tkelected (Curv® in Fig. 6), while changing the tuning actions

capacity to self adjust. These two examples demonstrate thhtwo gains accordingly (Fig. 15). The overall magnitudes of

fuzzy controllers may present a significant improvement both gains are decreased compared with those in Example 1

control performance for a time-delayed process (Fig. 13) since the sluggish characteristics have been added to
Fig. 15 shows the nonlinearity variations of the two gainthe process. It is also interesting to see that the highest mag-

in this delayed first-order process. The main difference wittitudes for both gains move to the extreme points of the error.
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TABLE VI
PERFORMANCE COMPARISON IN EXAMPLE 2
Optimal Fuzzy PID Optimal PID
Ro K, K, 1.0, 0.961, 0.0 1.0,0.874 , 0.0
X, X 5, 0.874, 0.945, 4.57 - -, 2.52
T, (sec.) 0.16 0.38
T, (sec.) 0.46 0.74
POS (%) 0.51 1.62
ISE 0.286 0.345
ITSE 0.0394 0.0629
F 0.658 0.577
TABLE VII
PERFORMANCE COMPARISON IN EXAMPLE 3
Optimal Fuzzy PID Optimal PID
R, R, R, 1.0, 0.0, 0.874 1.0, 0.0, 0.449
Xp X 8, 0.102, 0.260, 25 -, -,25
T, (sec.) 0.42 0.48
T, (sec.) 0.64 0.72
POS (%) 1.83 1.98
ISE 0.249 0.234
ITSE 0.0364 0.0337
F 0.630 0.620
A (K})eq/kp A y
1 12
0.8} oo . 1 Qptimal fuzzy PD
06} 4% 51540 -106.1 0.8 ,
5.59x10 Y e o .
0l - .0061 |¢|-o:.969 06 Optimal PD
02 04| ]
0 _= 0.2 »,,’
-1 05 0 05 1 ¢
0 >
(@) 0 0.5 1 1.5 2 ¢
4 &) K i ) . .
1 Kn)ey/Ks Fig. 16. Step responses of optimal PD and optimal fuzzy PD in Example 3.
0.95 o )
09 Based on the optimization, both the linear and fuzzy con-
' trollers arrive at the same results regarding integral action (i.e.,
0.85 K7 = 0). This differs from the results of [19], where a fuzzy
08 Pl controller was used. Fig. 16 shows the step responses of
0.75 both optimal linear PD and optimal fuzzy PD controllers. A
0.7 » detailed comparison of performance is listed in Table VII. The
-1 05 0 0.5 1 e transfer function reveals the oscillation property inherent in

(b) the closed-loop process

Fig. 15. Gain plots for the optimal fuzzy Pl in Example 2. (6K )eq/ K p 9
versusé” plot from a closed-form solution. (b)(K)eq/ K7 versusé” plot Ge(s) =1/(s"+s+1).

from a numerical simulation. . . . .
The closed-loop model is equivalent to a damped vibration

Example 3. A Second-Order Process Having a Zero Steadystem with a natural frequency ©f, = 1 rad/s with the asso-
State Closed-Loop ErrorThis example follows the work in ciated damping ratio of = 0.5. A derivative term is required
[19] and [2, Example 11.2]. The plant is a second-order procdss suppress the vibrations of the closed-loop process. The

G(s) = 1/[s(s + 1)] steady-state clo_sed-loop error of this process is geto= 0). _
. . The self-regulating property of the system suggests that there is
such as position control of an ac motor [8]. The saturaliqf, need to employ integral action for the process. The physical
range is given as (see [19, fig. 8]) interpretation is that the motor is controlled to move by a
unity angle and then to stop. When a steady state is reached,

__r _or
Umin = —9 Umax = 25.
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TABLE VIl
PERFORMANCE COMPARISON IN EXAMPLE 4
C1 C2 C3
Upor 10 5 5
Upnin 0 0 0
R, s, 0.787, 8.98 same as 0.787, 4.65
X5, X, 0.323, 0913 Cl's 0.102, 0.937
T, (sec.) 0.76 0.74 0.88
T, (sec.) 1.14 2.34 1.34
POS (%) 1.72 6.22 1.07
ISE 0.310 0.348 0.387
ITSE 0.0658 0.0799 0.0991
F 0.620 0.501 0.577
A y A y
1.2
(Ze)p : C2
Set-point 1.0F s S
)
(Te)y
0 g 2 3 4
Step responses (y).
Fig. 17. Step Response of a controller including an integral law in Example 3. @
a
4 u
the process requires no control input, thatxig, = 0. If an 9

integral law is applied, the response will be forced to undergo h
an overshoot before reaching the steady state in order to com- i
pensate for the negatively accumulated error (Fig. 17). There-
fore, any integral action will decrease the performance by in-
cluding overshooting and possible oscillation from unbalanced
compensation. From this simple analysis, the heuristic design
guideline required is that a PD-type controller will produce
an optimal performance [in the sense of (29)] for a closed- 0 0 1 5 3 4
loop zero steady-state error process (or the “Type 1 or higher Controller's output ().
systems” [8] with the unity negative feedback for a step input). (b)

Example 4. A Second-Order Process with Overdampmﬁ'g. 18. Plots ofC1, C2, and C3 controllers (Fuzzy PIl) in Example 4. (a)
Many temperature control plants can also be modeled bys@p responsegy). (b) Controller’s output(u).
second-order process with overdamping. The fourth example

is a process with a transfer function of [23] two parameters arkp = 1 and Kp = 0. Comparing the
G(s) = 2/(s* +4s +3). fithess valuel" of each controller in Table VIII, as well as
In this example, we examine the saturation effect on tfiee step responses in Fig. 18(a), we fi@@d has the poorest
process performance. Three fuzzy controllers, namély, performance although it has the same design parameters as
C2, and C3, are investigated. While the lower bounds ofl The deteriorated performance is caused by an integral
saturation are always kept the sameg,,, = 0, for the three windup [2] that keeps integrating even though the control
controllers, the upper bounds are given different val@@k. input has been saturated. Sometimes, an antiwindup gain
has um,ax = 10, and C2 and C3 have u,.x = 5, for the with a feedback to the control input or additional rules are
heater input. BothC1 and C3 are independently designedadded to solve this problem [19]. Other schemes using fuzzy
to take account of the different associated saturation ranggstems are found in [13]. In this process, the controller
(Table VIII). However, the response @2 is evaluated using output curve ofC3 in Fig. 18(b) is dropped automatically at
the same design parametersCis but has the same saturatiorthe beginning of the process for preventing the windup. The
range asC3. simulation results suggest that the genetic-based optimization
A fuzzy PI controller is initially investigated. Four tuningmethods perform the antiwindup function without adding extra
parameters are selected according to Table Ill, and remainthgsign parameters for antiwindup. This is understandable that
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TABLE IX
PERFORMANCE COMPARISON IN EXAMPLE 5
Optimal Fuzzy PID Optimal PID
K B, K, 0.929, 0.110, 1.0 0.906, 0.173, 0.709
X, X S, 0.0315, 0.606, 9.53 - -, 9.53
T, (sec.) 0.44 0.78
T, (sec.) 0.68 1.18
POS (%) 0.841 1.58
ISE 0.314 0.358
ITSE 0.0561 0.0897
F 0.602 0.505
TABLE X
Z-N PID [42] A-H PID [42] Z-A PID [42] Optimal Fuzzy PID
K, K, K, 1.61, 0.358, 1.81 | 1.88, 0.273, 3.25 | 1.62, 0.307, 1.89 0.709,.0787,.724
Xp) X5 8, - - - .740,.961,9.37
T, (sec.) 4.2 3.5 4.6 2.5
T, (sec.) 20.1 22.8 19.2 6.5
POS (%) 18.0 14.6 8.5 2.26
ISE - - - 2.25
ITSE - - - 221
F - - - 0.287
sy This process requires all three gaidép, K;, and K, due
12 Ovtimal = to the oscillation and nonzero steady-state error in the closed-
1t P fuzzy B loop process. The optimal fuzzy PID controller is compared
08 S with the optimal linear PID controller (Fig. 19). The detailed
Optimal PID comparison of performance is listed in Table IX. Due to the
0.6 ‘ small damping ratio, the process puts more weight on the
0.4 derivative action than on the integral action in this example.
0.2. 2 The difference between the optimal PID and optimal fuzzy
0 » . PID controllers is significant=£ 19.2%) although the process
0 0.5 1 15 5 1 is linear. In the interest of gaining heuristic tuning knowledge

_ _ _ for tuning this process, the plots of three gains are presented
Flgl.zlg. ISte5p responses of optimal PID and optimal fuzzy PID controlle[ﬁ Fig 20 Generally all three gains reach their maxima when
in Example 5. : : !

P the error is small.
Example 6. A Fifth-Order Procesdn this example, a fifth-

if we consider the method, which is based.on a pnnqple %tr er process is studied. The transfer function of the process
performance selection, removes the candidate solution thsa 42]

is deteriorated by the windup. Further investigation is alsd 3
made using a fuzzy PID controller for the same process. G(s)=1/(s+1)".
The response performance is improved due to the inclusigihce this model did not give the saturation ranges, we initially
of derivative actions (The closed-loop process has a natupgke a calculation on,;,, = —10 andu,,., = 10. If the sim-
frequencyw, = /5 rad/s with the associated damping ratio ofjlation results show, = 10, the saturation range can be in-
¢ = 0.894). Again, the simulation results confirm the findingcreased for a better performance. The sampling time is chosen
of antiwindup functions of the proposed fuzzy controllers. a5 0.5 s. The purpose of this study is to show the applicability

Example 5, A Second-Order Process with a Small Dampig@ the proposed fuzzy PID system to a high-order process.
Ratio: A second-order process with a small damping ratio iaple X presents the detailed comparison results of optimal
examined. The general form of the process is fuzzy PID with the Ziegler—NicholsAstrom—Hagglund A—H)

G(s) w? [1], and Zhuang—Atherton (Z—A) [42] rule-tuned PID systems.
S) =

2+ 2&18 F w2 Significant improvement in performance is obtained compared
. .with other approaches (Table X). It should be noted that all

wherew, and ¢ are the natural frequency and damping rati
of the process, respectively. This example is similar to a ma;

Bther rule-tuned PID controllers [1], [2], [42] are implemented

ina-d ¢ d take the followi i W_'th less effort and by using simple calculations based on

Spring-damper systém and we take the following parameteig, issic rules. However, the three times differences in the
£€=0.01

wp, =1 Umin = —10 Umax = 10. settling time as well as in the overshoot in this example suggest
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TABLE XI
PERFORMANCE COMPARISON IN EXAMPLE 6
Optimal PID
P1 (based on F) P2 (based on F)) P3 (based on F,)
K, K, K, 0.394, 0.0630, 0.992 | 0.213, 0.0394, 0.0630 0.906, 0.323, 0.575
s, 4.17 8.90 0.551
T, (sec.) 2.5 2.5 5.5
T, (sec.) 16.5 25 9.5
POS (%) 4.55 13.2 0.923
ISE 3.08 2.96 4.36
ITSE 4.56 4.51 9.65
F 0.214 0.203 0.176
F, 0.245 0.253 0.186
F, 0.104 0.0805 0.117
10“ (Kpeg /Ko ty
8 12 P2
Y, . ¥ 7 S
8 0.113 Z:ﬁle |!ee|l- ol.?fs [P
4 TP1 ¢ ‘ L
2 ‘ Optimal fuzzy PID
0 >
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Fig. 21. Step responses of optimal PIP1{P3) and optimal fuzzy PID-type
controllers in Example 6.

PID systems. In addition to the original, two different fitness
functions, F; and F3, are also employed for the optimization

1 1
Fl=— = .
"T1+4ISE 7T 14ISE+POS+10%

Note that theFi, including a single-performance index, is in
principle the same as used in [42], where they have used the
ITSE as the single-performance index. Thg is adding a
higher weighting value to the settling time for the origidal

As we can see, a single-index performance using the error
sum, likeP2 curve in Fig. 21, may produce a large overshoot
and a long settling time. A multiple-index performance, say,
P1 and P3 curves, are preferred in applications.

Nonlinearity Comparison Among the Six Numerical Ex-
amples: Six numerical examples were investigated. Within
those examples, the fuzzy PID controllers always present
the best performance results. For a better comparison of the

Fig. 20. Gain plots for the optimal fuzzy PID in Example 5. (anonlinearity selected by the optimal method corresponding to

“(Kp)eq/ K p versug” plot from a closed-form solution. (b)( t)eq/ K s
versusy_ ¢” plot from a numerical simulation. (c)('s)eq/ K versuse”

plot from a numerical simulation.

each process, we list the related data in Table XIl. Out of
the four basic nonlinear curves, only Types | and Il nonlinear
curves, corresponding to the simplest, are selected from the
optimization. None of the controller systems selects Type lIl.

a worthwhile application of an optimal fuzzy PID systemit is also interesting to know that all curves correspond to
although an extra computing cost is added in the design. a nonoverlapping casér; < ). All systems resort to a

Further investigation is made on the selection of the perfagreat degree of nonlinearift Al = 0.231 ~ 0.765) for high
mance index and its associated weighting for the optimal lingaerformance of the processes.
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TABLE XIlI
NONLINEARITY COMPARISON AMONG THE SIX NUMERICAL EXAMPLES
Example Plant Fuzzy PID-type Nonlinear curve type LAI
1 First-order PI II 0.409
without time delay
2 First-order PI I 0.254
with time delay
3 Second-order PD II 0.765
with a zero pole
4-C1 Second-order PI I 0.479
4-C3 with overdamping PI 1 0.655
5 Second-order PID II 0.597
with a small damping
6 Fifth-order PID I 0.231
with the same poles

NB AZ PB NB AZ PB

1 1

0 0} . . , .

-1 0 1 2-2x) 1 ow xm0x x 1 ()2
e tp

Fig. 22. Membership functions of an alternative three-rule fuzzy controller.

XIl. SUMMARY 40, /n

This paper describes a novel methodology to study fuzzy o5
systems analytically. A closed-form solution to the fuzzy infer- _
ence is pursued to bridge the fuzzy theory and classical/modern , Xlzl AN
control theory. This investigation has clearly displayed that g ;,|(Curve A-C) . ;
fuzzy control techniques are possible to present a generalos]g L BN NG
framework for linear/nonlinear controllers. We believe that ; C
the study of fuzzy controllers should be exploded in the light ;

A Regiqnl Region 1l

0.25

of nonlinear control principle and reinforced by integrating 02 =i B b Ny 4

traditional and modern control theories. 5 (Ciu’r“fco_é) @61 = 1ane,)
One significant contribution of this work is the development o e

of a simple fuzzy PID controller using a single input variable ; ; : - X N

with three rules and at most six design parameters. Comparing |-  Region IV {Regionl © g\ § .

with a linear PID controller, the proposed fuzzy system 0 0.1 02 03 04 05 Bof/m

adds only two more parameters for nonlinear tuning. Thigg. 23. Admissible area of nonlinearity diagram fr andé; of the alter-
structure simplifies the system design significantly from thtive controller.C: point for approximation of a linear PID, corresponding
generation of a control curve, rather than a control surface. TRg! = ¥ andx2 = 1. E: point calculated from (24).
nonlinearity is explicitly defined for fuzzy proportional actions
in the error domain. Important properties of the fuzzy Plperformance analysis of linear PID systems will provide
system are derived for providing the guidelines of nonlineapproximately a lower performance bound of the specific
designs. Moreover, the physical meaning of the nonlineperformance criteria (for example, the response error in this
tuning parameters becomes clear for tuning actions from thwerk) for the proposed fuzzy systems. The second index,
admissible area of a nonlinearity diagram. NVI, is proposed for evaluating the degrees of freedom for
Another contribution of this work is the suggestion of twgroducing nonlinearities in a fuzzy PID system. Using these
indexes for nonlinear controller design. The first is a LAiIndexes and nonlinearity diagram proposed in this work, the
for a guaranteed-PID performance fuzzy system based omamtrol designer can immediately interpret the controllers in
conservative design strategy. This strategy suggests a furggard to its nonlinearity abilities on the following aspects:
PID controller can replace conventional PID controller by) the classes of nonlinear curves possibly produced by the
augmenting the linear function. The proposed fuzzy systerontrollers; 2) the range of nonlinearity variation encompassed
produces a close approximation of linearity. Therefore, tHer each class of nonlinear curves; and 3) the capability to
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1—=x
p x1 < T2
z

1
el - 1 =34+ 15x1 4+ 1322 — 122122 + 63:% — 143:% — 43:%3:2 + 4335’
(5 +x1 — 3.’1’2)2

(A.8)

) Ty > T2

approximate a linear function. A comparative study frorRange C:1 — ¢, < [¢] < 1
the viewpoint of nonlinear designs was made between thg _
proposed system and an alternative system. This comparativé’A . o oy . .
study clearly demonstrates that an in-depth analytical approach¢ (3 — 1) (3 —3le[ + é)le] + 3ya(4le] — 1) + 3]¢]
is a useful tool for an efficient fuzzy controller design. 3lé| (w1 +y2)(2]€] — €2) + 2y2(2]¢] — 1) + 2/¢]

The present system can operate as both fuzzy PID (including (A.4)
an approximate linear PID function), or linear PID versions on : . . ,

. . . . here some intermediate variables are defined as

an optimal basis. The work results in a standard |mplemen¥g\-

tion methodology for the design. These include normalizing 1 =1—[¢] 2 =1-2[¢] yp2=1-z2 (A5)

error and three gains, using normalized fitness function frogmd ¢,, a division point is calculated by

the multiple performance indexes, and considering actuator A T — Ty

saturation ranges. A B (A.6)
Numerical studies are reported on several processes having'}he normalized sensitivities at two points are

different response characteristics. For all six processes, com- 1

parisons of the control performance are made between conven- . 1— 2y T1 S T2

tional PID and the proposed fuzzy PID controllers. GeneticNSy = 8ép =Y 4—dzy— 22 + 22 (A.7)

based optimization solvers are used for fair comparisons. The é=0 5, L 2 31> 3

proposed system always provides the best control performanc
In comparison of the optimal linear PID controller with
heuristic methods, the Ziegler—Nicholéstrbm—l—ﬁgglund,
and Zhuang—Atherton rule-tuned PID controllers were al
tested for a fifth-order plant. Significant improvement o
performance suggests it worthwhile to apply the propos
fuzzy controllers.

®rhe differences of the properties of this controller from the
proposed controllers are given in (A.8) at the top of the page.
A fully normalized proportional control output is obtained;
at is, max(|ip|) = 1. Fig. 23 shows the admissible area
or 6y and 8;. While the nonoverlapping case results in an
SWmissible curve (curvé\-D-B), the overlapping forms an
admissible area adjoined by cur¥e-D-B. The most linear
approximation point is a€, which corresponds te; = 1 and
APPENDIX z2 = 0. It has LAl = 0.959 and NVI = 0.0908.
AN ALTERNATIVE THREE-RULE Fuzzy PID CONTROLLER

An alternative three-rule fuzzy PID controller is developed ACKNOWLEDGMENT
for a comparison with the proposed controller in Fig. 4. The
membership functions afp for the alternative controller are
extended to a range ¢f1 — 2, 1 + 3], as shown in Fig. 22.
The change, making thép to be fully normalized, is for
noninfluence to the, whenz, is adjusted. The change als
simplifies the closed-form derivation of fuzzy proportional
actions.

Based on the same fuzzy reasoning method, the fuzzy proy K. J. Astrém and T. Higglund, “Automatic tuning of simple regulators
portional action of the alternative controller is also represented With specification on phase and amplitude margirsiitomatica vol.

The authors would like to thank P. LeFeuvre and E. Nesbitt
for their editorial assistance. They would also like to thank the
anonymous referees whose comments have greatly improved
Othe presentation of this paper.
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