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Analysis of Direct Action
Fuzzy PID Controller Structures
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Abstract—The majority of the research work on fuzzy PID
controllers focuses on the conventional two-input PI or PD
type controller proposed by Mamdani [1]. However, fuzzy PID
controller design is still a complex task due to the involvement
of a large number of parameters in defining the fuzzy rule base.
This paper investigates different fuzzy PID controller structures,
including the Mamdani-type controller. By expressing the fuzzy
rules in different forms, each PID structure is distinctly identified.
For purpose of analysis, a linear-like fuzzy controller is defined.
A simple analytical procedure is developed to deduce the closed
form solution for a three-input fuzzy inference. This solution is
used to identify the fuzzy PID action of each structure type in
the dissociated form. The solution for single-input–single-output
nonlinear fuzzy inferences illustrates the effect of nonlinearity
tuning. The design of a fuzzy PID controller is then treated as a
two-level tuning problem. The first level tunes the nonlinear PID
gains and the second level tunes the linear gains, including scale
factors of fuzzy variables. By assigning a minimum number of
rules to each type, the linear and nonlinear gains are deduced
and explicitly presented. The tuning characteristics of different
fuzzy PID structures are evaluated with respect to their functional
behaviors. The rule decoupled and one-input rule structures
proposed in this paper provide greater flexibility and better
functional properties than the conventional fuzzy PID structures.

Index Terms—Apparent linear gains, apparent nonlinear gains,
fuzzy control, linear-like fuzzy, PID structures, two-level tuning.

I. INTRODUCTION

OVER THE past two decades, the field of fuzzy con-
troller applications has broadened to include many in-

dustrial control applications, and significant research work
has supported the development of fuzzy controllers. In 1974,
Mamdani [1] pioneered the investigation of the feasibility of
using compositional rule of inference that has been proposed
by Zadeh [2], for controlling a dynamic plant. A year later,
Mamdani and Assilian [3] developed the first fuzzy logic
controller (FLC), and it successfully implemented to control a
laboratory steam engine plant. In a strict sense, the first fuzzy
controller shown in [3] was equivalent to two-input fuzzy PI
(or PI-like) controllers where error and error change, were
used as the inputs for the inference. Mamdani’s pioneering
work also introduced the most common and robust fuzzy
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reasoning method, called Zadeh–Mamdani min–max gravity
reasoning. Also, a significant number of in-depth theoretical
and analytical investigations related to this structure have
been reported in [4]–[8]. Takagi and Sugeno [9] introduced
a different linguistic description of the output fuzzy sets, and
a numerical optimization approach to design fuzzy controller
structures.

There are several types of control systems that use FLC as
an essential system component. The majority of applications
during the past two decades belong to the class of fuzzy PID
controllers. These fuzzy controllers can be further classified
into three types: the direct action (DA) type, the gain sched-
uling (GS) type and a combination of DA and GS types. The
majority of fuzzy PID applications belong to the DA type;
here the fuzzy PID controller is placed within the feedback
control loop, and computes the PID actions through fuzzy
inference. In GS type controllers, fuzzy inference is used to
compute the individual PID gains and the inference is either
error driven self-tuning [10] or performance-based supervisory
tuning [11]. In addition to the common Mamdani-type PI
structure, several other structures using one- or three-input
controllers have been reported. For comparison, a few selected
error driven fuzzy PID applications are listed in Table I. It
is clear from this literature review that the majority of these
applications belong to the class of two-input fuzzy PID type
structures. The majority of other related fuzzy PID references,
which have not been included in this table, fall into the
category of two-input Mamdani-type PID structures. In our
recent work [38], a one-input fuzzy PID structure was used
to control several first- and second-order plant models. The
one-input FLC with fewer rules has not been commonly
used for simultaneously deriving the three fuzzy PID actions.
Based on this literature review, we can argue that different
fuzzy PID structures are possible in the context of knowledge
representation, and that they should be evaluated with respect
to their functional behaviors. Therefore, in this paper we
intend to deduce and evaluate different fuzzy PID structures,
including the commonly available fuzzy PID controllers. Since
the DA type fuzzy PID is the most commonly used, our study
is restricted to those controllers only.

The linear PID controllers are easy to implement, and
sufficient tuning rules are available to cover wider range of
process specifications. Moreover, the available PID tuning
heuristics are easy to understand and implement for practical
control problems. Fuzzy controllers generally provide the
nonlinear transfer elements for nonlinear control [39]. The
system of if-then rules in the fuzzy knowledge base system
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TABLE I
DIFFERENT FUZZY PID STRUCTURES IN THE LITERATURE,

e-ERROR, �e-CHANGE OF ERROR, �2
e-RATE OF CHANGE OF

ERROR, y-PLANT RESPONSE, �y-CHANGE OF PLANT RESPONSE, +
GS TYPE, �COMBINED DA AND GS TYPES. OTHERS DA TYPE

is transformed into this nonlinear transfer elements. As a
result the FLC has been successfully implemented in the
past to for many linear and nonlinear processes [9], [11],
[18], [36]. The natural representation of control knowledge
through fuzzy paradigms allows the control action to be
either linear or nonlinear and provides improved control in
comparison with a conventional PID controller using linear
control policy. The final tuning of fuzzy controllers, however,
is still a difficult task. Many off-line techniques have been
developed in the past for deciding the nonlinear transfer
elements of the fuzzy controllers. As an example, cell-to-
cell mapping [30], training algorithms using input/output data
[40], and genetic search algorithms [38], [41] are capable
of generating the optimum or near optimum solutions to the
fuzzy systems in a high dimensional space, but at the cost
of extensive computer simulations and time. Although the
genetic algorithms are quite powerful in handling a large
number of variables, the number of iteration cycles and the
accuracy definitions (or resolution) allows one to reach only
a near optimum rather than global optimum. Due to the
complexity of the nonlinear control surface that is generated
by conventional two-input fuzzy controllers, identifying and
solving a large number of tuning parameters by an analytical
means is extremely difficult. In this paper we propose simple
fuzzy PID controller structures for reducing the dimensionality
in designs. Functional behaviors of these fuzzy controllers are
evaluated to show the main drawbacks of the conventional
two-input fuzzy PID controllers.

In this paper we describe three contributions. First, new
fuzzy PID structures are identified in addition to commonly

Fig. 1. Cascade type feedback PID controlled system.

available conventional fuzzy PID structures. These include a
one-input–three-outputs fuzzy controller using error mapping
for generating individual fuzzy PID actions. Second, a new
analytical procedure is presented for the general three-input
LLFLC inference based on min–max gravity reasoning. Two
and one-input simplifications are included to cover a spectrum
of fuzzy PID structures. Third, the apparent nonlinear and
apparent linear PID gain analysis is presented for identifying
the two-level tuning of fuzzy PID structures. Therefore the
work in this paper is arranged as follows.

1) Fuzzy PID elements are proposed and then six different
fuzzy PID structures, including commonly available
structures, are constructed.

2) Closed form solutions for the outputs of fuzzy PID
elements are deduced based on a linear-like fuzzy logic
controller (LLFLC). Also the output of a SISO nonlinear
like fuzzy controller with three rules is deduced.

3) Using the closed-form expressions, apparent nonlinear
and apparent linear fuzzy PID gains are deduced while
considering two-levels of tuning.

4) The structures are evaluated in terms of two-levels of
tuning. Nonlinear tuning is evaluated with respect to the
functional behaviors of structures.

II. FUZZY PID STRUCTURAL ELEMENTS

The linear PID controllers can be classified into different
categories with respect to the positioning of the three terms in
the closed-loop control system. In computer controlled single-
input single-output (SISO) plant systems, the cascade-form
PID controller is commonly used. Therefore in this study we
restrict our classification to cascade type PID controllers as
shown in Fig. 1. Other forms [35]–[37] can be obtained by
extending the fundamental principle we propose in this study.

Considering a linear PID controller in Fig. 1, the controller
signal at any given time instancewith a sampling time
can be expressed in two forms; (1) shows the output in the
absolute form, while (2) shows it in the incremental form

(1)

and

(2)

The terms , , and stand for proportional, integral,
and derivative gains, respectively. The error state variables
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Fig. 2. Fuzzy PID structural elements.

are defined as: error , error change
, rate of error change

, and sum-of-error ,
with being the feedback response signal, and
the desired response or reference input at theth sampling
instant. In a fuzzy PID controller, the error terms in (1) or
(2) are expressed in a linguistic form and the fuzzy rules
are used to infer a fuzzy control action. Since the linguistic
expressions are qualitative, the linguistic variables are usually
confined to an arbitrary space or universe of discourse. The
error state variables defined above are the four basic inputs
to any fuzzy PID type controller. In defining general fuzzy
rule bases, the input error variables are therefore transformed
to the normalized regions. Such normalization is quite useful
for representing the fuzzy outputs in a unique fashion. For
convenience, we sometimes drop the time instant notation
from all the control variables. The scale factors () for error
variables are defined to obtain the normalized error terms as

(3)
where , , , and , are the normalized error vari-
ables corresponding to the error terms, , , and ,
respectively. The defuzzified output after the fuzzy reasoning
is represented by .

Assume the error elements in (1) and (2) are fuzzy variables.
Then by observing (1) and (2), fuzzy rules can be expressed to
generate absolute and incremental fuzzy PID signals. By using
three or two variables the coupled rules for three-input or two-
input control elements are formed. In the case of one-input
elements, the rules are defined for individual control actions
in a PID signal. Thus, basic structural elements are identified
as shown in Fig. 2; here each element shown in a block is
described by fuzzy rules of the form “If (input 1 and input
2 ) then (output).” In the case of two-input configurations,
only PD and PI controller elements are considered. A subscript
with the normalized output variable is used for identifying
the corresponding action in a fuzzy PID controller.

In deriving a practical fuzzy PID structure the following
remarks are made.

Remark 1: It is difficult to formulate control rules with
the input variable sum-of-error , as its steady-state value
is unknown for most control problems. As an example,
the load disturbances at the plant input, dead weights and
friction in drive systems are always unknown. Therefore it
is difficult to identify membership values and their locations
in the universe of discourse for defining control rules
corresponding to steady-state conditions. It is possible to
use this variable only ifa priori knowledge about the steady
state conditions is available [15].

Remark 2: For any fuzzy PID controller, the error () is
considered the necessary input for deriving any PID structure.
The error input provides the nonlinear proportional actions
through the fuzzy inference. For any system to drive from a
dead state, proportional control is the basic action required
from the three-term PID controller. For example, in case of
a steady offset in the system response, or in case of a time-
delay process, the magnitude of all error derivatives becomes
negligible. In those circumstances the steady error is the only
available information that can provide a finite control action
to divert the output from a dead situation.

III. FUZZY PID STRUCTURES

By taking different combinations of the fuzzy PID structural
elements defined in the previous section, we can now construct
fuzzy controllers to represent PID actions in a nonlinear form.
Based on Remarks 1 and 2, some of the structural elements
can be considered to be “bad” and can be eliminated in
building a fuzzy PID structure. Therefore in this systematic
investigation we evaluate six types of controllers and compare
their performance. In 1975, Zadeh published a three-part paper
[42] describing the fundamentals of fuzzy logic principles for
using in decision-making systems. Zadeh has included many
definitions and concepts to generalize the broader perspectives
of humanisticsystems. The FLC systems uses some of those
concepts for describing the knowledge base.

Define the linguistic variables that correspond to the in-
put scaled variables, , and as , , and

, respectively. The indices, , and represent the
linguistic values or fuzzy states of the input fuzzy vari-
ables and their ranges are ,

, and , where ,
, and denote the total numbers of fuzzy states assigned

for each of the fuzzy variables. Let the de-normalizing scale
factor is given by the relation where is the final
controller output. Assign linguistic variables for the controller
output as for absolute output signal, or for
incremental signal , The index .
The value denotes the total number of fuzzy states defined
for the output fuzzy variable. For each element used in the
following structures, the nonlinear function is used to
denote the nonlinear mapping between inputs and output.

Type I—Three-Input FLC Structure with Coupled Rules:It is
practically difficult to assign linguistic values or terms for the
input as explained in Remark 1. Therefore with a three-
input configuration the fuzzy PID controllers are unable to
produce an absolute signal. Hence the possible inputs are,

, and , corresponding to an incremental type fuzzy PID
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Fig. 3. Three-input fuzzy PID (Type I).

Fig. 4. Three-input fuzzy PID (Type II).

controller. Using the rule base notation of [11], Type-I fuzzy
PID structure can be expressed by

ELSE
IF IS AND IS AND

IS THEN IS
(4)

The final PID control output is produced after taking the
cumulative sum of the FLC output as shown in Fig. 3. The
total number of rules required for a complete description of
the normalized space is . The final controller
output can be expressed by

(5)

Type II—Three-Input FLC Structure with Decoupled Rules:
The idea of knowledge based decoupling has been used in
[11] and [43] to formulate a simple set of rules for GS type
fuzzy controllers where the performance based inference is
used for fuzzy tuning of conventional PID controllers. When
this idea is extended for DA type fuzzy PID applications, we
can select three one-input structural elements corresponding to
decoupled rules of Type I for generating the fuzzy incremental
control signals. Each incremental PID control action is now
represented by a separate set of rules. The knowledge base is
expressed by three rules sets

ELSE IF IS THEN IS

ELSE IF IS THEN IS

ELSE IF IS THEN IS

(6)

The inference of each rule base is independent and the
output constitutes three separate nonlinear functions. The total
number of rules required is . The fuzzy PID
structure is shown in Fig. 4. The final control action is given
by

(7)

Fig. 5. Two-input fuzzy PID (Type III).

Type III—Two-Input FLC Structure with Coupled Rules:By
observing the two-input control elements shown in Fig. 2 we
select the elements having the inputs (, ) as the useful
PID elements for fuzzy control. They are corresponding to the
incremental PI or absolute PD signals. The other two-input
control elements shown in the Fig. 2 are eliminated according
to the Remarks 1 and 2. By combining both PI and PD actions
as shown in Fig. 5, a two-input fuzzy PID controller can be
formed. The rule base structure is identical to Mamdani-type
fuzzy PI controller. The basic rule base of this conventional
type is given by

ELSE
IF IS AND IS

THEN IS
(8)

The total number of rules required in this case is equal to
. With additional gains and the final PID

control signal shown in Fig. 5 is given by

where (9)

Type IV—Two-Input FLC Structure with Decoupled Rules:
The decoupled structure corresponding to the two-input cou-
pled structure is described next. When the rules are decoupled
from the two-input fuzzy PD element, the individualand
actions can be generated by two one-input elements described
by the inputs and , respectively. The two rule bases
corresponding to the two one-input control elements are given
by

ELSE IF IS THEN IS

ELSE IF IS THEN IS
(10)

From the one-input elements we can infer that
and therefore by taking the cumulative sum of the fuzzy
proportional action, the fuzzy PID structure is derived as
shown in Fig. 6. The total number of rules required in this
case is equal to . With additional gains , , and

, the final PID controller action is given by

(11)

Type V—One-Input FLC Structure with Single Rule-Base:
The error signal is the essential and fundamental control
component in PID control (Remark 1). Therefore by using
the input variable , a one-input fuzzy PID control system
is formed. This is simply the nonlinear mapping of error into
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Fig. 6. Two-input fuzzy PID (Type IV).

Fig. 7. One-input fuzzy PID (Type V).

fuzzy proportional action. The rule base of the one-input fuzzy
proportional control element is given by

ELSE IF IS THEN IS (12)

Similar to the previous case, we can infer from one-input
elements and by assuming the analogy between
the proportional and derivative actions as,

, the fuzzy PID structure is derived as shown in
Fig. 7. This is the simplest fuzzy PID structure requiring only

rules. With additional gains , , and , the final
control action is given by

(13)

Type VI—One-Input FLC Structure with Three Rule-Bases:
In this structure, three separate rule bases, using only error
as the input variable, are used for generating three separate
fuzzy proportional actions. The knowledge base parameters
can be independently chosen or tuned to produce different
nonlinearity for the individual PID actions. With respect to

Fig. 8. One-input fuzzy PID (Type VI).

the input error variable, three rule bases are defined as

ELSE IF IS THEN IS

ELSE IF IS THEN IS

ELSE IF IS THEN IS

(14)

An additional integer suffix is used to separate the three
proportional fuzzy rule bases. Using the same basic principle
as used in the Type V controller, the integral and derivative
actions are now generated using different nonlinear propor-
tional sources as shown in Fig. 8. The total number of rules
required in this case is . Using three additional
gains , , and , the final control action is given by

(15)

When the three rule bases are identical to the each other
(identical knowledge base parameters), the structure would
be same as the Type-V structure. Therefore, this is the most
general form of the one-input fuzzy PID structure.

IV. I NFERENCEANALYSIS FOR LINEAR-LIKE AND

NONLINEAR-LIKE FUZZY LOGIC CONTROLLERS

The purpose of this analysis is to provide an analytical base
for the evaluation of the above fuzzy controller structures and
also to identify a tuning basis for those controllers. In order to
simplify the problem, we define two classes of controllers: A
general three-input linear-like fuzzy logic controller (LLFLC)
and one-input nonlinear fuzzy controller. The output of each is
derived using the standard Zadeh–Mamdani’s (Z–M) min–max
gravity reasoning method.

In this analysis, we show a new solution procedure for
generating the output of three-input LLFLC. The two- and
one-input solutions are obtained as special cases of the general
solution. The main difficulty in a three-input Z–M based
fuzzy inference analysis is the visualization of the output
space with respect to three error state variables. Compared
to a conventional two-input analytical procedure [5], [35],
the three-input Z–M inference may require a minimum of
48 different equations to represent the controller output. In
order to reduce this complexity of having multi-expressions
in the solution, a transformation technique is provided and
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the general solution is expressed with only two different
nonlinear terms. In addition to the above we have used
the standard center of area (COA) defuzzification method
rather than center of heights (COH) [39] or center average
defuzzification [40] that was used in [5], [6], and [35]. The
COH method is a convenient way to obtain output solution
with least number of expressions. However, the COH method
ignores the effect offuzziness[11] associated with the output
linguistic variables and is equivalent to taking fuzzy singleton
functions. As an example, the COH method ignores the width
of the support set or the partitioning of the output membership
functions during the defuzzifications. As a result the COH
produces less nonlinearity than the COA method, particularly
for one-input fuzzy inferences. On the other hand COH is
better for obtaining piece-wise linearity. For high degree of
nonlinearity, it requires a large number of rules. This particular
characteristics has been exploited to obtain the nonlinear
function approximations [40], but at the expense of larger
number of rules. However the COG method is difficult to
analyze for a highly nonlinear rule bases. The nonlinear like
analysis we perform in the latter part of this paper (Section IV-
D) clearly demonstrates the benefits of COG method.

A. Definition—Linear-Like Fuzzy Logic Controller

Let the three error inputs in any order be defined as
. After scaling the three error inputs, let

the normalized input error vector at any time instant be given
by . For simplicity we assume symmetrical
triangular membership functions for each control variable. It
is important to note that any symmetrical shaped membership
function can be used for deriving the output of the LLFLC. The
universe of discourse of each variable is uniformly partitioned
and the membership functions are placed with a 50% overlap.
The variables are defined by the following specifications.

1) The universe of discourse of each input variable is
defined to be within the range [1, 1] as shown in
Fig. 9(a). The total numbers of linguistic variables used
for , , and are , , and , respectively,
and the corresponding distances between two adjacent
memberships are given by

(16)

2) The output linguistic variables are defined within the
universe of discourse of , where
is the distance between two adjacent output member-
ship functions as shown in Fig. 9(b). Total number of
membership functions defined for the output variable
is equal to .

3) Using rules, the rule base is defined as

ELSE
IF IS AND IS

AND IS THEN IS
(17)

(a)

(b)

Fig. 9. Membership distributions of fuzzy variables.

Assigning for three-input LLFLC, the output
modal spacing can be expressed as

or

(18)

B. LLFLC Output Solution Procedure

1) Three-Input LLFLC Output Solution:The general solu-
tion to the three-input LLFLC is provided with the following
seven steps and the derivation of the nonlinear term is shown
in the Appendix.

Step 1: Define input variables and their associated scale
parameters.

, , and where,
, , and are the scale factors. For the purpose

of defuzzification, define the error saturation limits as
. The index

and . The values for , , , and are
obtained from (18).

Step 2: Define an input index vector and reference error
inputs. Input index vector is defined as

(19)

where , , and are the nearest integers given by,
round , round , and
round . Reference input variables are given

by

(20)
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TABLE II
NONLINEAR TERM FOR THE THREE-INPUT LLFLC OUTPUT

Step 3: Define the incremental input vectors. Normalized
incremental input vector and Normalized absolute incremental
input vector are respectively given by

(21)

(22)

The incremental values are

(23)

Step 4: Input transformation.

1) Compute the transformed absolute incremental inputs
and identify the corresponding incremental input vector
positions , , and

(24)

2) Compute the transformed true incremental inputs

(25)
3) Redefine the transformed index vector

(26)

If then

Step 5: Assign the nonlinear output term. The values of
and may be modified depending on the signs of the

three values computed in Steps 4-2) and shown in Table II.
Using the modified terms in the Table II, the nonlinear term

is deduced. The values are given by

(27)

Fig. 10. Input fuzzy variable with a single fuzzy set.

Step 6: Reassign the modified index values to the input
index vector

modified

Step 7: Compute the LLFLC output

(28)

where the reference modal position is

Using Table II and (20), (23), and (28), the general LLFLC
output can be decomposed into two parts; a linear controller
output ( ) and a nonlinear controller output ( ). The
linear controller is defined as the equivalent linear controller
(ELC) of the LLFLC system

(29)
2) Two-Input LLFLC Output Solution:When only two in-

puts are considered, the third variable can have only a single
fuzzy set “Any” for any crisp input value. Therefore the total
number of fuzzy sets is equal to one and we assign this for the
redundant input variable. Let us assume this variable isand

. From (15), . The triangular
membership function defined for the single linguistic variable
will now have an infinite long support set as shown in Fig. 10.
The fuzzy membership function will be a horizontal line with
a unit grade of membership height. The modal position of the
single fuzzy set becomes with . Also, any
normalized incremental input value measured from this modal
position becomes . Thus for any input
conditions the which implies . The two-
input rule base for generating the LLFLC surface can now
be described by linear rules and is obtained by
simplifying the three-input rule base in (17) as

ELSE IF IS AND IS THEN IS

(30)
The modal spacing of output membership functions ( )
is given by, . Since we now have only two
input variables, the eight cases in Table II reduce to four cases
and is eliminated. For a two-input fuzzy controller, Steps
1–7 are used while equating one of the input variables to zero.
Taking the special case for when we can obtain the
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TABLE III
NONLINEAR TERM FOR THE TWO-INPUT LLFLC OUTPUT

corresponding nonlinear term () as shown in Table III. With
the modified terms the nonlinear term is deduced by, where

(31)

The LLFLC output is given by

where (32)

Similar to the three-input case, the general output expression
for the two-input LLFLC output can be obtained as the sum
of linear ( ) and nonlinear ( ) controller outputs

(33)

3) One-Input LLFLC Output Solution:Similar to the two-
input case, the second and third variables can now be assigned
single fuzzy sets. Therefore both and the system
simplifies to a one-dimensional problem. The corresponding
LLFLC rule base structure can be represented by,rules as

ELSE IF IS THEN IS (34)

Allowing and
for any ( ) we can take the special case for when

. The corresponding nonlinear term and its
values are shown in Table IV. The termis given by

(35)

The one-input LLFLC output is given by

(36)

where for a SISO LLFLC system and
. Similar to the two cases above, the general solution

for one-input LLFLC output can be expressed as the sum of
linear ( ) and nonlinear ( ) controller outputs, and is
given by

(37)

TABLE IV
NONLINEAR TERM FOR THE ONE-INPUT LLFLC OUTPUT

Fig. 11. Two uniformly distributed memberships for input variables of the
simplest LLFLC.

C. Output Solution of a Simplest Type LLFLC

We define a fuzzy controller with least number of rules [5]
to obtain concise expressions relating the error variables for
the purpose of analyzing fuzzy PID gains in the next section.
In this simplest LLFLC structure, each input is assigned
two uniformly distributed membership functions as shown in
Fig. 11, where . Since the index values,
, and now have only two values, 0 and 1, we first consider

the positive incremental inputs measured from the 0 index
positions. For any given input error vector
the incremental values are

Considering the PID structural elements in Fig. 2, the LLFLC
outputs are deduced.

1) For Three-Input Elements:As it was shown in
Section IV-B1 and Table II, the value of the nonlinear
term changes with respect to the relative difference between
the normalized input variables. In order to express the outputs
in terms of the actual input terms (without transformation) and
also to aid the PID gain analysis, a single case is considered.
Assume . Using
the general solution in (29) we can show

(38)
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The (38) is rewritten in the dissociated form as

where

Assuming the dissociated form
we define

(39)

The superscript PID is used to show the inference source.
2) For Two-Input Elements:Considering the case,

. and using the two-input
solution in (33), we can show

(40)

Equation (40) is rewritten in the dissociated form as

where

Assuming the dissociated form and
we define

and

(41)

The superscript PI or PD is used to show the inference source.
3) For One-Input Elements:Considering the one-input

LLFLC solution in (37), the fuzzy outputs for one-input
control elements can be expressed by

(42)

D. Output Solution of a Simplest One-Input
Nonlinear Like Fuzzy Controller

For this simple analysis, we consider a three-rule fuzzy
controller [38] with triangular membership functions for both
antecedent and consequent variables. All membership func-
tions are assumed to be triangular and symmetrical. The input
membership functions are assumed to be uniformly distributed
over the input universe of discourse with a 50% overlap to
satisfy the rule completeness [39] during the inference. The
output membership positions (support sets) are varied while
keeping a symmetrical partitioning of the output universe of
discourse about zero. Fig. 12 shows the membership distribu-
tion where the fuzzy variables are labeled with “NB,” “ZE,”
and “PB” to represent “negative big,” “zero,” and “positive
big,” respectively. The knowledge base design parameters are

Fig. 12. Membership distributions for the nonlinear like SISO fuzzy con-
troller.

then reduced to terms and as shown in the figure. For the
derivation, assume the one-input fuzzy proportional element
where normalized input and output crisp variables areand

, respectively. The additional suffix “” is used to identify
the nonlinear like controller. The simplest three linear rules,
R1–R3, for a one-input PID controller element can be then
represented by

R1: If is NB then is NB

R2: If is ZE then is ZE

R3: If is PB then is PB

(43)

All the variables are normalized into the range [1, 1]. In
order to reduce the complexity of the solution, the following
constraint is imposed for the membership variables.

Range for , for keeping the ZE fuzzy set
triangular about zero.

Range for , for obtaining unique expressions
for the fuzzy output. The solution has two main cases to
be considered; nonoverlapping memberships or overlapping
memberships, as shown in Fig. 13. The derivation is based on
the Z–M inference and COA defuzzification as described in the
Appendix. As the input membership functions are uniformly
distributed (Fig. 12), for any given input value the inference
always fires two rules simultaneously, except when or

. The same error saturation limits given in the step
1 of the LLFLC output solution procedure (Section IV-B1) is
imposed. During the fuzzy inference, the inferred fuzzy set
(output) takes different shapes depending on the input value.
The gray areas of Fig. 13 show these shapes. As a result
the overlapping case has three different equations correspond-
ing to three different ranges of the input. These ranges are
determined by the membership height corresponding to the
intersection of the consequent membership functions and the
relative difference between the two membership variables as
shown in Fig. 13. The common membership heightat this
intersection is given by

(44)

The final expressions for the defuzzified output are obtained
by taking the center of the gray areas shown in Fig. 13. The
cases when constitutes similar relationships to those
given below. Let and .

Case I—Nonoverlapping:

(45a)
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Fig. 13. Fuzzy outputs (shaded areas) corresponding to different input con-
ditions.

Case II—Overlapping: AND

a) AND OR
AND

(45b)

b) AND

(45c)

c) AND OR
AND

(45d)

Fig. 14. Effect of membership parameters on nonlinear fuzzy propor-
tional action, A: s1 = 0:1; s2 = 0, B: s1 = 0:3; s2 = 0:3,
C: s1 = 0:566; s2 = �0:2, D: s1 = 0:95; s2 = 0:9, and E:
s1 = 0:8; s2 = 0:8.

Equations (45a)–(45d) allow the nonlinearity of the propor-
tional actions to be changed using the membership parameters

and . Different curves corresponding to the values of
and are shown in Fig. 14. Curve C shows the most

approximate linear function of this fuzzy system.

V. FUZZY PID GAIN ANALYSIS

Any fuzzy PID structure together with its fuzzy knowledge
base usually results in nonlinear PID actions. In many fuzzy
adaptive controllers, the nonlinearity has been adjusted on-
line via modifying rules [13], [17] or membership functions
[18]. Computational or numerical search techniques [9], [30],
[38], [40], [41] are commonly used to produce optimum
nonlinear controllers using fuzzy paradigms. An attempt has
been made to investigate this nonlinear behavior by identifying
the nonlinear proportional action in [38]. In this part we derive
the fuzzy PID gains for each structure in order to identify
the two-levels of tuning [33]. The first level of tuning relates
to the normalized nonlinear characteristicsand is usually
obtained by changing the knowledge base parameters of the
fuzzy system (rules, membership functions or support sets). We
define apparent nonlinear gain (ANG) terms for all structures
to identify the first tuning level. The second level of tuning
is related to scale factors and other gain parameters used in
constructing the fuzzy PID system. These parameters provide
desired magnifications to the control surface in the directions
of state axes. Therefore the second tuning level determines the
overall characteristicsof the controller. For this purpose we
define PID apparent linear gain (ALG) terms.

A. Apparent Nonlinear Gains

Better understanding of nonlinear tuning in various fuzzy
structures requires an analysis of FLC’s in terms of the
variables including the knowledge base parameters. This is
a complex task due to high dimensionality in FLC systems
and moreover the higher dimensionality may leads to non-
transparency of the fuzzy output. In practical fuzzy controller
designs, design experience usually reduces the dimensionality
due to the availability ofa priori knowledge. This is also a
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TABLE V
ANG TERMS OF DIFFERENT FUZZY PID STRUCTURES

question for inner loop controllers where the availability of
such controller experience is minimal [11]. In many cases, the
nonlinear tuning is carried out arbitrarily by changing rules and
membership function parameters, and observing the effect in
computer simulations. A generic analysis is extremely difficult,
particularly for coupled three-input or two-input rule bases. As
we are primarily interested in comparing fuzzy PID structures,
a simplest LLFLC rule base structure is assumed for deriving
ANG terms of controller structure types I–V. The ANG terms
of type VI controller are shown with respect to the nonlinear
like fuzzy controller.

The nonlinear PID gains (ANG terms) related to normalized
PID actions are defined as

and

(46)

where , , and are the apparent nonlinear propor-
tional, integral, and derivative gains, respectively. The ANG
terms obtained for each structure type are listed in the Table V
and the steps followed are described as follows.

1) ANG for Type I: Using the dissociated form given in
(39), the normalized control action corresponding to (5) can

be described by

(47)
The equivalent form with ANG terms are then arranged as

(48)
Substituting the terms in (39) to (47), the ANG terms that
correspond to the arrangement in (48) are thus obtained.

2) ANG for Type II: The normalized control action corre-
sponding to (7) can be described by

(49)

The expression of the ANG terms arrangement for (49) is
identical to (48). Substituting one-input element outputs in (42)
to (49), the ANG terms that correspond to the arrangement in
(48) are thus obtained.

3) ANG for Type III: Using the dissociated form given in
(41), the normalized output corresponding to (9) in the disso-
ciate form can be described by

(50)
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The equivalent form with ANG terms is then arranged as

(51)

Using the dissociated outputs for two-input element in (41)
and substituting to (50), the ANG terms that correspond to the
arrangement in (51) are thus obtained.

4) ANG for Type IV: In this decoupled rule structure, the
normalized output corresponding to (11) can be expressed by

(52)

The equivalent form with ANG terms can be arranged as

(53)

Substituting the one-input element outputs in (42) to (52), the
ANG terms that correspond to the arrangement in (53) are
thus obtained.

5) ANG for Type V: In this one-input structure, the normal-
ized output corresponding to (13) can be expressed by

(54)

The expression of the ANG terms arrangement for (54) is
identical to (53). Substituting one-input element output for

in (42)–(54), the ANG terms that correspond to the
arrangement in (53) are thus obtained. For small sampling
time intervals the equivalent nonlinear derivative gain has
been further simplified while using the relation

.
6) ANG for Type VI: Since type V structure is a special

case of type VI, with the simplest LLFLC rule bases both types
are identical. A practical high performance fuzzy controller
requires the knowledge base to have a nonlinear-like structure.
However, for the normalized proportional controller output to
be monotonic with respect to error, the rules must be arranged
in the linear form, as in (34). In such circumstances, the
membership functions are placed nonuniformly to obtain the
nonlinear tuning. In order to illustrate this, the solution of
the simplest nonlinear like fuzzy controller shown by (45) is
used. Let , be the vector containing nonlinear
tuning parameters of the one-input fuzzy knowledge base.
Then we can define three separate proportional actions with
three different terms as

(55)

The normalized output corresponding to (15) can be expressed
as

(56)

The expression of the ANG terms arrangement for (56) is
identical to (53). Substituting (55) into (56), the ANG terms
that correspond to the arrangement in (53) are thus obtained.
Similar to the type V, the small sampling time is assumed for
obtaining the derivative ANG term.

B. Apparent Linear Gains

The overall tuning of fuzzy controllers is generally achieved
by the second-level tuning, where scale factors and other gains
are adjusted to obtain the desired or optimum response. In
practice this is a trial and error procedure. Some tuning rules
for these linear gains are reported in [44] for the two-input
PI structure. The use of genetic algorithms to select these
gains is described in [38] and [41]. In this analysis, apparent
linear PID gains are defined for the fuzzy PID structures. The
behavior of those gains is expected to be linearly equivalent
to conventional PID gains. In order for the apparent gains
to be functional, without loss of generality, we impose the
following constraints.

Constraint 1: Assume the universe of discourse of all in-
put variables are uniformly partitioned and the membership
functions are placed with 50% overlap support sets. The rules
are defined in the linear form. Nonlinearity is allowed by
changing positions of output membership functions. Let the
uniform input membership spacing be given by, , and

, respectively for the inputs, , and .
Constraint 2: The defuzzified output value is scaled to

the range [ 1, 1] by modifying the defuzzified output as;
where is the maximum defuzzified

output when the normalized error input terms are maximum.
Constraint 3: For set point control problems, the scale

factor for error is fixed, i.e., where is the
maximum error signal during the transient. As the set point
varies this value also varies.

The Constraint 1 is defined for obtaining rule completeness
[39]. Also, this allows one to define a particular controller
that would be linearly closest to the nonlinear fuzzy controller
output. Alternatively, a linear surface equivalent to an existing
nonlinear fuzzy output can be determined by linear regression
analysis. Since this work is of a more general nature, this
constraint is imposed so that the equivalent representation
can be justified. As the ELC is derived from LLFLC and
its maximum output is normalized within [1,1], the Con-
straint 2 is imposed so that any skewed output shapes are
normalized to this compact region. The Constraint 3 provides
a standard procedure for determining the scale factor for the
error input.

In the following analysis the superscript “” denotes the
equivalent linear actions. After substituting the scale factors
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TABLE VI
ALG TERMS OF DIFFERENT FUZZY PID STRUCTURES

and assigning , , and , the ELC
outputs shown in (29), (33), and (37) are rewritten as follows:

For three-input elements

(57)

For two-input elements

(58)

For one-input elements

(59)

In order to define the linear apparent PID gains, the outputs
corresponding to each PID structure is written in the following
form:

(60)
where , , and are the linear apparent PID gains.
Substituting the linear outputs in (57)–(59) (or ELC terms) to
the output expressions given in (5), (7), (9), (11), (13), and
(15), the ALG terms corresponding to each structure can be
arranged as (60). The final expressions for ALG terms are
shown in Table VI. In order to be analogues with linear PID
systems, some linear terms have been assigned a value of unity
to simplify the overall tuning a three-term tuning problem.
The three corresponding tuning parameters of each structure
are shown in the same table.

VI. COMPARISON OF FUZZY PID STRUCTURES

Comparison of the PID structures should address two issues:

1) the adjustment of fuzzy PID gains with respect to two-
levels of tuning;

2) the assessment of the effect of these gains in the plant
performance and tuning criterion related to PID gains.

The second issue is a process dependent problem and also
it relates to the stability properties of each structure. This
is a future area of research, and in this section we attempt
to provide a comparative assessment of the first issue. It is
known that linear PID controllers have independent control
of the three control actions in a linear form, and that is
accomplished by the tuning of three linear gain terms. Fuzzy
control exhibits better performance primarily due to its higher
level tuning, or the nonlinear gain tuning. A better fuzzy
controller should allow maximum versatility and flexibility in
tuning these nonlinear gains to achieve superior performance
over linear control. Therefore the functional behaviors are
considered with respect to the two levels of tuning.

A. High-Level Tuning

When the FLC system is known, the variations of ANG
terms with respect to the error response are also known. In
optimal designs this is usually achieved by varying the fuzzy
knowledge base parameters, which directly affects the nonlin-
ear characteristics of the control surface or curve with respect
to normalized state variables. In the recent developments the
nonlinear function approximation properties of fuzzy systems
have been exploited to train or approximate highly nonlinear
dynamical systems [40], [45]. However, in most cases the
nonlinear function that requires for control is unknown. The
same is true for fuzzy PID control action. Also the changing
plant dynamics or environmental effects are unknown and
unpredictable during the control. The fuzzy systems have the
capabilities to produce these nonlinear functions either in cou-
pled form [40] or in decoupled form [46]. The tuning heuristics
and rules for gain adjustments of linear PID controller are
usually available in the decoupled form [11], [43]. As an
example, when there is a steady state offset in the response, the
tuning is performed to increase the integral gain and the other
two gains are kept unaltered [43]. In addition to this linear
tuning the fuzzy PID controllers can produce local control
by changing the ANG terms. Hence, these tuning rules can
be used to approximate the unknown nonlinear functions in
a single dimension to produce decoupled and independent
tuning for ANG terms. To illustrate this effect more clearly
for PID structures, the characteristics of the high-level tuning
in coupled and decoupled rule bases are discussed with respect
to three functional behaviors, namely, action association, input
coupling, and gain dependency.

1) Action Association:The basic difficulty in coupled rule
bases is the identification of those nonlinear tuning parameters
relating to the nonlinear PID gains. In types I and III structures,
the output actions are in the associated form. TheAction
Association refers to the singular nature of the output of
the three PID actions. In coupled rule bases it is difficult to
dissociate the nonlinear tuning parameters with respect to each



384 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 3, JUNE 1999

control action. The basic dissociation that has been done for
the simplest LLFLC structure [see (37) and (39)] is an attempt
to identify the individual PID actions in dissociated form. A
similar approach has been employed in [6] to identify ANG
terms of a simplest fuzzy PI controller using different inference
methods. This is quite artificial since the algebraic decomposi-
tion of nonlinear terms may not show the true representation of
the individual fuzzy PID outputs. Furthermore, when the rules
are highly nonlinear and memberships are nonuniform, action
identification in a dissociated form will become an extremely
difficult mathematical task. The nonlinear PID gains become
nontransparent for independent nonlinear tuning. The action
association is one of major reasons why no satisfactory in-
depth analysis has been done in identifying nonlinear tuning
parameters in an explicit form for the most common Mamdani-
type two-input fuzzy PID controllers.

2) Input Coupling: In the coupled rule bases we again see
input coupling in the ANG terms. In the type I controller,
all the gains are highly coupled by all three error terms. The
advantage of input coupling is the inclusion of generalized
damping [47], which gives each nonlinear gain term the effect
of error derivatives. The disadvantage is that the proportional
and integral actions are unnecessarily complicated by the effect
of damping and this results in a more sluggish response. For
example, when a process is responding slowly, the coupled
action of error rates tends to produce low equivalent gain
for the apparent nonlinear proportional action. This can be
numerically verified by comparing the maximum proportional
ANG values when all the error derivatives are forced to zero.
This is one of the reasons why in [7] the conventional (type
III) fuzzy PI structure was unable to perform better than an
optimally designed linear PI controller.

3) Gain Dependency:This functional behavior can be seen
when one fuzzy action is generated by another fuzzy action as
in type III–V structures and can be described mathematically
by the following analysis.

a) Dependency between coupled PI and PD controllers:
The dependency that exist in the type III controller outputs is
given by . Replacing the normalized
terms with ANG terms, the gain dependency can be expressed
by

(61)

b) Dependency between P and I controllers:The de-
pendency that exists in the types IV and V controller outputs is
given by, . Substituting the normalized
terms with ANG terms the gain dependency can be described
by

(62)

By assuming the continuous form for small sampling intervals,
the above expression can be further simplified. The gain

dependency can be described by the following nonlinear
differential equation

(63)

c) Dependency between P and D controllers:The depen-
dency that exist in the type V controller output is given
by . With ANG terms this gain
dependency in the type V controller can be expressed by

(64)

Considering small sampling intervals, the above can be de-
scribed in a continuous form by the following nonlinear
differential equation:

(64)

The gain dependency has the disadvantage of obtaining op-
timum nonlinear tuning of individual ANG terms. As an
example, in the type V controller, both integral and derivative
gains follow the nonlinear proportional action in terms of
nonlinear tuning. In case of optimum nonlinear tuning, this
requires a compromise for achieving best performance. The
conventional type III controller shows a highly complex gain
dependency. The independent nonlinear gain control in types
II and VI controllers allows the design to achieve the best
independent nonlinear tuning in terms of ANG values.

B. Low-Level Tuning

This tuning level is described by the apparent linear PID
gains (ALG). The nonlinear tuning has a direct effect on
the normalized controller surface or curve, whereas the ALG
terms adjust the overall magnifications, similar to a linear
PID controller. From a practical point of view, the behavior
of the linear gains is expected to be similar to the three
gains of a linear PID controller. In coupled structures, these
gains provide magnifications for all dimensions in the error
state space. Therefore, any increase of a single ALG term
also indirectly affects the overall magnification of the other
two ANG values as well. In the common two-input coupled
structure, the complex nature of the linear proportional gain
can be compared with other linear gain terms. Practically, the
overall gains are controlled by the tuning variables provided in
Table VI. The coupled nature of tuning variables in the linear
proportional gain of type III controller makes it difficult for
designers to adapt linear PID tuning heuristics. Even the low
level tuning heuristics developed in [44] are applicable only for
the PI version of a type III controller. The design of low-level
gain terms of two-input fuzzy controllers using a sliding mode
approach [29] is limited only to PD type controllers. In [35]
and [36], this proportional action complexity was avoided by
having a separate one-input fuzzy integral controller connected
to a two-input coupled fuzzy PD controller. Again, decoupled
rule structures or one-input fuzzy PID controllers provide
better individual overall tuning, enabling the control engineer
to use accumulated PID tuning knowledge to obtain optimum
overall tuning of the fuzzy PID controllers.
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VII. SUMMARY AND CONCLUSIONS

This paper describes research to provide control engineers
with fundamental information about the design aspects of
fuzzy PID controllers and a selection procedure by evaluating
the functional behaviors of structures. This systematic anal-
ysis has facilitated the identification of different fuzzy PID
controller structures, particularly decoupled and one-input type
controllers, which have not been commonly used in previous
applications. It is known that the curse of dimensionality
is a major problem in fuzzy controller design today [45].
In controller designs, the identification of fuzzy controller
parameters relating the plant dynamics or performance is
particularly challenging. In most cases extensive computer
simulations or exhaustive numerical search techniques are used
for solving the multidimensional problem. In our work, this
high dimensional design was identified as a two-level tuning
problem. The choice of any fuzzy PID structure should be done
based on the efficiency of these tuning levels while seeking
superior performance. Our study also has shown the explicit
representation of high-level tuning by ANG terms. For optimal
design one has to choose the nonlinear tuning parameters for
varying the ANG terms.

The type V controller is the simplest, with the nonlinear
tuning accomplished through the fuzzy proportional action.
However, the gain dependency in this controller avoids in-
dependent tuning of integral and derivative nonlinear gains.
The rule decoupled structures and one-input fuzzy structures
have the advantage of identifying individual PID actions in
terms of their nonlinear tuning parameters. Types II and VI
structures offer independent gain control for both of the tuning
levels. The type VI controller is more analogous to a linear
PID controller, where each control action is nonlinearly related
to the error. The system can be made exactly like a linear
PID controller by selecting nonlinear tuning parameters to
produce a linear function for the proportional signal. As an
example, the proper selection of and in the one-input
nonlinear like fuzzy controller element allows the fuzzy output
to be almost linear (curve C in Fig. 14). Therefore proper
selection of nonlinear tuning parameters can produce the linear
controller as a special case of the fuzzy PID controller. This
particular feature makes the fuzzy controller always perform
either better than or equal to a linear PID controller and
avoids the poorer performance of the fuzzy controllers as
experienced in [7]. The scaling factors for the error can be
readily computed by knowing its maximum deviation, which is
usually available with the response data. With proper choice of
nonlinear tuning, the type II controller also can be made with a
perfect incremental (velocity) type PID controller. Due to the
derivative error inputs, this structure is sensitive to noise [48].
However the error derivatives provide additional information
and enhance the generalized damping of the control system
[47]. Thus the type II structure may make the controller more
robust than the type VI controller.

In this study we have proposed an equivalent linear con-
troller analysis to identify second level or overall tuning terms.
The ALG terms derived from the ELC analysis have the same
effect as the three PID gains of a linear PID controller. Also we

have shown that the final overall tuning task can be simplified
to a three term tuning problem. Therefore one can find suitable
tuning heuristics for the ALG tuning terms by correlating
existing linear PID tuning methods.

All coupled structures have the disadvantage of using a large
number of rules compared to decoupled structures. Since the
nonlinearity tuning parameters are associated with the rules,
the parameter growth also increases with the rule growth.
Therefore, rule decoupled structures are quite advantageous
in terms of using the least number of nonlinearity tuning
parameters, thus enabling one to perform efficient and easy
high level tuning for attaining optimum performance.

The design of a fuzzy controller requires the building
a knowledge based system with the specific nonlinearity
to generate a specific performance of the process response.
The variation of tuning parameters is always related to the
performance. Therefore, development of a suitable tuning
scheme for fuzzy PID controllers requires consideration of the
two tuning levels, where one level matches the plant dynamics
and the nonlinear behavior and the second level provides the
necessary magnifications to PID control actions.

From this study it can be concluded that the Mamdani-
type conventional two-input fuzzy PID structure produces an
inferior performance in terms of functional behaviors. These
drawbacks can be summarized as follows.

1) The coupled rules produce an associated PID action and
therefore identifying nonlinear tuning parameters for the
nonlinearity (or high-level) tuning is difficult.

2) The complex and coupled nature of both linear and non-
linear gains makes the tuning of fuzzy PID controllers an
extremely a difficult task, and therefore its applications
are limited to either the PI or PD versions.

3) With linear rules, [see (17)] the nonlinearity obtained
by changing membership functions of the consequent
fuzzy variables is limited [33]. Therefore any nonlin-
earity tuning for better control performance requires an
exhaustive search of large numbers of rules for obtaining
an optimum control surface.

In this paper, we have also described a new analytical
solution procedure for the output of a general three-input
LLFLC system. The input transformation procedure reduces
the number of nonlinear expressions required to represent
multi-phase solutions for any LLFLC structure. The LLFLC
structure can be used as the basic controller structure to com-
pare the dynamic characteristics of different fuzzy controller
structures.

APPENDIX

DERIVATION OF THE NONLINEAR TERM

For this derivation, assume the incremental input values
from the reference modal positions given in Step 3 of the so-
lution procedure shown in Section IV-B satisfy the following
condition:

or
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Fig. 15. Relative positions of inputs.

Fig. 16. Fuzzy output shapes corresponding to different input conditions.
The incremental inputs are measured from the modal positions. The subscript
ijk � i + j + k.

The shaded areas in Fig. 15 show these relative input condi-
tions. This particular region is selected to give a simple and
concise expression for the nonlinear term. Any other region

TABLE VII
RULE IMPLICATION AND FUZZY OUTPUTS FORCASE I

TABLE VIII
RULE IMPLICATION AND FUZZY OUTPUTS FORCASE II

in the incremental input space is then transformed to this space
by the input transformation shown in Step 4 of the solution
procedure in Section IV-B. Consider the linear rule base given
for the general three-input case by (17) in Section IV-A. For
given crisp inputs the final control decision

is determined by applying the Z–M min–max reasoning
(compositional rule of inference) as described in [11]. It is
given by

The fuzzy inference will fire a maximum of eight fuzzy rules to
produce eight nonzero fuzzy outputs (clipped outputs) against
any arbitrary three fuzzy singleton input values. The clipped
fuzzy output produced by a single rule inference is a trapezoid.
After the union of all clipped outputs, the final fuzzy set,
can have four different shapes with respect to the reference
crisp output position . The reference output is when
all crisp inputs are at membership modal positions. The input
conditions and the resultant fuzzy outputs corresponding to
each case are shown in Fig. 16. For convenience the subscript

is represented by . The membership functions
used for each rule fired and the heights () of the trapezoids
produced for each rule are shown in Table VII–X. As an
example, the rule R1 shown in Table VIII reads as “If (
is and is and is ) then is .” The
rules having the same output fuzzy labels are combined by the
“max” operation. Thus the maximum height of the trapezoids
having the same support sets is described by ().
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TABLE IX
RULE IMPLICATION AND FUZZY OUTPUTS FORCASE III

TABLE X
RULE IMPLICATION AND FUZZY OUTPUTS FORCASE IV

TABLE XI
THE NONLINEAR OUTPUT TERM

Defuzzification: The COA based defuzzified value can be
expressed as [11]

where the membership function with its support set is
given by . This refers to the center of
the shaded areas shown in Fig. 16. From these diagrams the
membership heights shown in the columns of Table VI
can be expressed as follows:

where and

Using the membership equations above and applying the
COA defuzzification method for each case, we can obtain the
nonlinear term as shown in the Table XI. The values

and are given by (27) with

Table II given in Section IV-B shows 8 cases with respect to
the sign of the incremental inputs. The extra four cases shown
have been transformed to the region shown in Fig. 15 by
modifying the modal position and thus changing the direction
of the maximum incremental input. This procedure would
eliminate the use of an excessive number of formulae for
representing different input conditions.
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