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Analysis of Direct Action
Fuzzy PID Controller Structures

George K. I. Mann, Bao-Gang HiMember, IEEE.and Raymond G. Gosin®lember, IEEE

Abstract—The majority of the research work on fuzzy PID reasoning method, called Zadeh—Mamdani min—max gravity
controllers focuses on the conventional two-input Pl or PD reasoning. Also, a significant number of in-depth theoretical
type controller proposed by Mamdani [1]. However, fuzzy PID 5,4 apalytical investigations related to this structure have
controller design is still a complex task due to the involvement b d in 141-[8]. Takagi and S 9l i d d
of a large number of parameters in defining the fuzzy rule base. ee.n ref)ort.e '_n .[ 1-(8]. ) a_ agl an ugeno [9] introduce
This paper investigates different fuzzy PID controller structures, @ different linguistic description of the output fuzzy sets, and
including the Mamdani-type controller. By expressing the fuzzy a numerical optimization approach to design fuzzy controller
rules in different forms, each PID structure is distinctly identified.  stryctures.

For purpose of _analysis, a Iine_ar-like fuzzy controller is defined. There are several types of control systems that use FLC as
A simple analytical procedure is developed to deduce the closed

form solution for a three-input fuzzy inference. This solution is &N €ssential system component. The majority of applications
used to identify the fuzzy PID action of each structure type in during the past two decades belong to the class of fuzzy PID
the dissociated form. The solution for single-input—single-output controllers. These fuzzy controllers can be further classified
nonlinear fuzzy inferences illustrates the effect of nonlinearity nto three types: the direct action (DA) type, the gain sched-

tuning. The design of a fuzzy PID controller is then treated as a | s
two-level tuning problem. The first level tunes the nonlinear PID uling (GS) type and a combination of DA and GS types. The

gains and the second level tunes the linear gains, including scaleMajority of fuzzy PID applications belong to the DA type;
factors of fuzzy variables. By assigning a minimum number of here the fuzzy PID controller is placed within the feedback

rules to each type, the linear and nonlinear gains are deduced control loop, and computes the PID actions through fuzzy
and explicitly presented. The tuning characteristics of different i ference. In GS type controllers, fuzzy inference is used to

fuzzy PID structures are evaluated with respect to their functional combute the individual PID dains and the inference is either
behaviors. The rule decoupled and one-input rule structures p g

proposed in this paper provide greater flexibility and better ~€rror driven self-tuning [10] or performance-based supervisory
functional properties than the conventional fuzzy PID structures. tuning [11]. In addition to the common Mamdani-type PI
Index Terms—Apparent linear gains, apparent nonlinear gains, structure, several other structures using one- or three-input
fuzzy control, linear-like fuzzy, PID structures, two-level tuning. ~ controllers have been reported. For comparison, a few selected
error driven fuzzy PID applications are listed in Table I. It
is clear from this literature review that the majority of these
applications belong to the class of two-input fuzzy PID type
VER THE past two decades, the field of fuzzy constructures. The majority of other related fuzzy PID references,
troller applications has broadened to include many invhich have not been included in this table, fall into the
dustrial control applications, and significant research wodategory of two-input Mamdani-type PID structures. In our
has supported the development of fuzzy controllers. In 197cent work [38], a one-input fuzzy PID structure was used
Mamdani [1] pioneered the investigation of the feasibility ofo control several first- and second-order plant models. The
using compositional rule of inference that has been proposetke-input FLC with fewer rules has not been commonly
by Zadeh [2], for controlling a dynamic plant. A year laterused for simultaneously deriving the three fuzzy PID actions.
Mamdani and Assilian [3] developed the first fuzzy logi®Based on this literature review, we can argue that different
controller (FLC), and it successfully implemented to control fuzzy PID structures are possible in the context of knowledge
laboratory steam engine plant. In a strict sense, the first fuzgypresentation, and that they should be evaluated with respect
controller shown in [3] was equivalent to two-input fuzzy Pto their functional behaviors. Therefore, in this paper we
(or Pl-like) controllers where error and error change, weigtend to deduce and evaluate different fuzzy PID structures,
used as the inputs for the inference. Mamdani’s pioneerifigtluding the commonly available fuzzy PID controllers. Since
work also introduced the most common and robust fuzzje DA type fuzzy PID is the most commonly used, our study
Manuscript received February 14, 1998; revised November 20, 1998. T resm(.;ted to those controllers only. .
work was supported by the Natural Sciences and Engineering ResearciThe linear PID controllers are easy to implement, and
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Reé?ﬂf:?s'MT;r']f] F;%ewaé.rgf)osﬂr:e;iesvi?g gsesc(’f_'étgREg'fr:dAi:z?S%f'&process specifications. Moreover, the available PID tuning
Engineering and Applied Science, Memorial University of Newfoundland, Sheuristics are easy to understand and implement for practical
John’s, NF, Canada (e-mail: mann@engr.mun.ca and rgosine@engr.mungghtrol problems. Fuzzy controllers generally provide the
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of Automation, Beijing 100080, China (e-mail: hubg@prisun3.ia.ac.cn). nonlinear transfer elements for nonlinear control [39]. The
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TABLE |
DiFFeRENT Fuzzy PID STRUCTURES IN THE LITERATURE, Fuzzy or y
e-ERROR A e-CHANGE OF ERROR A2 ¢-RATE OF CHANGE OF € Linear PID u » Process >
ERROR %-PLANT RESPONSE Ay-CHANGE OF PLANT RESPONSE + reference C 11
GS TypE, *ComBINED DA AND GS TypeEs OTHERS DA TYPE signal (yd) ontroller

Input Conditions Type | References
Three-input FLCs:
e,Ae, A% PID | [12]*,[13], [14]

e, Ae, [edt PID {15]
Two-input FLCs:

Fig. 1. Cascade type feedback PID controlled system.

available conventional fuzzy PID structures. These include a
one-input—three-outputs fuzzy controller using error mapping

e, Ae PI (3)-(7),[16}-(25] for generating individual fuzzy PID actions. Second, a new
e, Ae PD (26]-{30] analytical procedure is presented for the general three-input
e, Ae PID | [31], 32, [33] LLFLC inference based on min—-max gravity reasoning. Two

and one-input simplifications are included to cover a spectrum
of fuzzy PID structures. Third, the apparent nonlinear and
apparent linear PID gain analysis is presented for identifying

e, Ae PID* | [10], (34]
Two two-input FLCs

(e, Ae)+y, Ay PI+D | [35] the two-level tuning of fuzzy PID structures. Therefore the
Two+-one-input FLCs work in this paper is arranged as follows.
e, Ae +e PD+I | [36], [37] 1) Fuzzy PID elements are proposed and then six different
one-input FLCs fuzzy PID structures, including commonly available
. - (16] structures, are con'structed.
2) Closed form solutions for the outputs of fuzzy PID
¢ I [16] elements are deduced based on a linear-like fuzzy logic
e PI (38] controller (LLFLC). Also the output of a SISO nonlinear
Ae P [20] like fuzzy controller with three rules is deduced.

3) Using the closed-form expressions, apparent nonlinear
and apparent linear fuzzy PID gains are deduced while

is transformed into this nonlinear transfer elements. As a  considering two-levels of tuning.
result the FLC has been successfully implemented in the4) The structures are evaluated in terms of two-levels of
past to for many linear and nonlinear processes [9], [11], tuning. Nonlinear tuning is evaluated with respect to the
[18], [36]. The natural representation of control knowledge  functional behaviors of structures.
through fuzzy paradigms allows the control action to be
either linear or nonlinear and provides improved control in Il. Fuzzy PID STRUCTURAL ELEMENTS

comparison with a conventional PID controller using linear ) e .
The linear PID controllers can be classified into different

control policy. The final tuning of fuzzy controllers, however, X ) o .
is still a difficult task. Many off-line techniques have beelfategories with respect to the positioning of the three terms in

developed in the past for deciding the nonlinear transf[ane cloged—loop control system. In computer controlled single-
elements of the fuzzy controllers. As an example, cell-tdPut single-output (SISO) plant systems, the cascade-form

cell mapping [30], training algorithms using input/output datgID _controller IS p_omr_nonly used. Therefore in this study we
[40], and genetic search algorithms [38], [41] are Capa?icg-‘smd our _classmcatlon to cascade type PID contrpllers as
of generating the optimum or near optimum solutions to t own 1n Fig. 1. Other forms_ [3.5]_[37] can be (_)btal_ned by
fuzzy systems in a high dimensional space, but at the ngttendmg the funQamentaI principle WE propose in this study.
of extensive computer simulations and time. Although the Considering a Imegr PI,D controllgr in Fig. 1, .the c;ontroller
genetic algorithms are quite powerful in handling a Iarg\"‘éIgnal at any g|ven_t|me instaneewith a sampling tlméT,?
number of variables, the number of iteration cycles and " be expressed_ In two forms_; .(1) sh(_)ws the output in the
accuracy definitions (or resolution) allows one to reach on solute form, while (2) shows it in the incremental form
a near optimum rather than global optimum. Due to the n
complexity of the nonlinear control surface that is generated urm(n) =Kpe(n) + KT, > e(g) + (Kp/T)Ac(n)
by conventional two-input fuzzy controllers, identifying and =0
solving a large number of tuning parameters by an analytical 1)
means is extremely difficult. In this paper we propose simpleAupip(n) = KpAe(n) + KiT.e(n) 4+ (Kp/T.)A%e(n)
fuzzy PID controller structures for reducing the dimensionality
in designs. Functional behaviors of these fuzzy controllers #ad
evalgated to show the main drawbacks of the conventional upt(n) = upin(n — 1) + Auprp (n). )
two-input fuzzy PID controllers.

In this paper we describe three contributions. First, newhe termsK p, Ky, and K, stand for proportional, integral,
fuzzy PID structures are identified in addition to commonlgnd derivative gains, respectively. The error state variables
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Onc-input fuzzy ~ Two-input fuzzy ~ Three-input fuzzy Remark 1:1t is difficult to formulate control rules with

PID elements PID elements PID elements the input variable sum-of-errofe, as its steady-state value
R & R & is unknown for most control problems. As an example,
—€yf Fuzzy| Y = Fuzzy| ¥ED, 75 > Fuzzy | Adlego the load disturbances at the plant input, dead weights and
P — L PD s " Ppp friction in drive systems are always unknown. Therefore it
¢ [Fomzy | D0, _é A LN is difficult to identify membership values and their locations
p| FUZ2Y — — £y | DUPI R . - : -
1 Ae | pr [ 8 in the universe of discourse for defining control rules
Aé u 5 . Aé | F Au corresponding to steady-state conditions. It is possible to
Fuzzy| “D , e uzzy PID ) g 8 et
' _’Zé Fuzzy | #P1 sp | PID > use this variable only if priori knowledge about the steady
A2 [roms] Aflp L —= state conditions is available [15].
== A, - Aflpp, Remark 2: For any fuzzy PID controller, the erroe)(is
. ANelpy — considered the necessary input for deriving any PID structure
o Afi, =5 PD . Ssary Inp . ganyt ture.
M»F“lz)zy — The error input provides the nonlinear proportional actions
. R through the fuzzy inference. For any system to drive from a
_Ze lPuzzy | ™, dead state, proportional control is the basic action required
! from the three-term PID controller. For example, in case of

a steady offset in the system response, or in case of a time-
delay process, the magnitude of all error derivatives becomes
negligible. In those circumstances the steady error is the only
available information that can provide a finite control action
to divert the output from a dead situation.

Fig. 2. Fuzzy PID structural elements.

are defined as: erroe(n) = y(n) — yqa(n), error change
Ae(n) = e(n) — e(n — 1), rate of error changé\?e(n) =
Ae(n) — Ae(n — 1), and sum-of-errole(n) = 37 _; e(q),
with y(n) being the feedback response signal, anpdn) IIl. Fuzzy PID STRUCTURES

_the desired response or reference input atsitre Samp"”g By taking different combinations of the fuzzy PID structural
instant. In a fuzzy PID controller, the error terms in (1) or

(2) are expressed in a linguistic form and the fuzzy rul elements defined in the previous section, we can now construct
P 9 y %lsjzzy controllers to represent PID actions in a nonlinear form.

are used to infer a fuzzy control action. Since the linguist
. . : . . \ﬁased on Remarks 1 and 2, some of the structural elements
expressions are qualitative, the linguistic variables are usua é{n be considered to be "bad” and can be eliminated in

confined to an arbitrary space or universe of discourse. Tﬁe. . . . .
. ; . ilding a fuzzy PID structure. Therefore in this systematic
error state variables defined above are the four basic inputs

t0 anv fuzzv PID tvoe controller. In definina general fuzzmvestigation we evaluate six types of controllers and compare
y y yp . 99 Yheir performance. In 1975, Zadeh published a three-part paper

rule bases, the input error variables are therefore transforr:@ ] describing the fundamentals of fuzzy logic principles for

to the normalized regions. Such normalization is quite useful.” Y : !
: : . . using in decision-making systems. Zadeh has included many
for representing the fuzzy outputs in a unique fashion. FQr

convenience, we sometimes drop the time instant notation efinitions and concepts to generalize the broader perspectives

. of humanisticsystems. The FLC systems uses some of those
from all the control variables. The scale factoff for error -
concepts for describing the knowledge base.

variables are defined to obtain the normalized error terms as .. S . .
Define the linguistic variables that correspond to the in-
é=Sce, Aé=S8.Ae, A’¢=S5,.A% Yée=S8,% putscaled variableg, A¢, and A%¢ as {E;}, {AE;}, and
(3) {A?Ey}, respectively. The indices j, and k represent the
where &, Aé, A2¢, and £¢é, are the normalized error vari- linguistic values or fuzzy states of the input fuzzy vari-

ables corresponding to the error termsAe, A%e, andXe, ables and their ranges aie= 0,1, 2,---, Ny — 1, j =
respectively. The defuzzified output after the fuzzy reasonifigl, 2, ---, No—1,andk =0, 1, 2, ---, N3 — 1, whereNy,
is represented byi. No, and N3 denote the total numbers of fuzzy states assigned

Assume the error elements in (1) and (2) are fuzzy variabldst each of the fuzzy variables. Let the de-normalizing scale
Then by observing (1) and (2), fuzzy rules can be expressedagtor S, is given by the relatiom. = 5,4 wherew is the final
generate absolute and incremental fuzzy PID signals. By usicontroller output. Assign linguistic variables for the controller
three or two variables the coupled rules for three-input or twoutput as{U,,} for absolute output signat, or {AU,,} for
input control elements are formed. In the case of one-inpucremental signaA#, The indexm = 0,1, 2, ---, M — 1.
elements, the rules are defined for individual control actiofi$ie valueM denotes the total number of fuzzy states defined
in a PID signal. Thus, basic structural elements are identifiéat the output fuzzy variable. For each element used in the
as shown in Fig. 2; here each element shown in a blockf@lowing structures, the nonlinear functiofy(.) is used to
described by fuzzy rules of the formf“(input 1 and input denote the nonlinear mapping between inputs and output.

2 ---) then (outpu).” In the case of two-input configurations, Type |I—Three-Input FLC Structure with Coupled Rulésis

only PD and PI controller elements are considered. A subscriptctically difficult to assign linguistic values or terms for the
with the normalized output variable is used for identifying input ¥¢é as explained in Remark 1. Therefore with a three-
the corresponding action in a fuzzy PID controller. input configuration the fuzzy PID controllers are unable to

In deriving a practical fuzzy PID structure the followingproduce an absolute signal. Hence the possible inputg€,are
remarks are made. Aé, andAZ¢, corresponding to an incremental type fuzzy PID
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e é
Fic
Ae Ae FLC fé,A8)
Sce flé,A6,K¢) p
A% A%
Srce

Fig. 5. Two-input fuzzy PID (Type IlI).

Type lll—Two-Input FLC Structure with Coupled RuleBy

e ¢ | FLC observing the two-input control elements shown in Fig. 2 we
f1(&) select the elements having the inpués QAé) as the useful

PID elements for fuzzy control. They are corresponding to the

Ae S Aé | FLC ‘ incremental Pl or absolute PD signals. The other two-input
ce 1> (A8 control elements shown in the Fig. 2 are eliminated according
to the Remarks 1 and 2. By combining both Pl and PD actions

A% S A% FLC as shown in Fig. 5, a two-input fuzzy PID controller can be
rce f (A%6) formed. The rule base structure is identical to Mamdani-type

fuzzy PI controller. The basic rule base of this conventional

Fig. 4. Three-input fuzzy PID (Type II). type is given by

controller. Using the rule base notation of [11], Type-I fuzzy (8)

PID structure can be expressed by

IF ¢ 1S E; AND A¢ IS AE; AND A2¢ The total number of rules required in this case is equal to

ELSE ) . ! (4) N; x N,. With additional gainsKpp and Kpr the final PID
bk L 1S A%Ey THEN Adprp 1S AUn, prp control signal shown in Fig. 5 is given by

The final PID control output is produced after taking the "

cumulative sum of the FLC output as shown in Fig. 3. The =, () =5, [Km Z Adipr(q) +KPDaPD(”)]7

total number of rules required for a complete description of

the normalized space &, x N, x N3. The final controller

output can be expressed by

. E[IF ¢1S E; AND A¢ IS AE]}
o THEN Adpp ISUp pp 1

q=0
where Aipg (n) = Upp (n) . (9)

n Type IV—Two-Input FLC Structure with Decoupled Rules:
upp(n) = Sy, Z Adprp(q). (5) The decoupled structure corresponding to the two-input cou-
q=0 pled structure is described next. When the rules are decoupled

Type Il—Three-Input FLC Structure with Decoupled Ruledf0™ the two-input fuzzy PD element, the individugllandD
The idea of knowledge based decoupling has been use fions can be generated by tvvo.one—mput elements described
[11] and [43] to formulate a simple set of rules for GS typdY the inputsé and A¢, respectively. The two rule bases
fuzzy controllers where the performance based im‘erenceCi%rres‘pomj'ng to the two one-input control elements are given
used for fuzzy tuning of conventional PID controllers. Whe y
this idea is extended for DA type fuzzy PID applications, we  ELSE([IF ¢ IS E; THEN ip IS Uy, p]
can select three one-input structural elements correspondingto _ * ) )
decoupled rules of Type | for generating the fuzzy incremental EL]SE[”: Ae IS AE; THEN dp IS Up,, p]
control signals. Each incremental PID control action is now

represented by a separate set of rules. The knowledge bade@®n the one-input elements we can infer that = Ady
expressed by three rules sets and therefore by taking the cumulative sum of the fuzzy

R R proportional action, the fuzzy PID structure is derived as
ELSE[IF & IS E; THEN Ady IS AU, 1] shown in Fig. 6. The total number of rules required in this

ELSE[IF A¢ IS AE; THEN Adp IS AU, p] ©6) case is equal tdv; + No. With additional gainss'p, Ky, and
J ) Kp, the final PID controller action is given by

(10)

n

The inference of each rule base is independent and thiero (n) = Su | Kpip(n) + K7 ZQP(Q)JFKDQD(”) .

output constitutes three separate nonlinear functions. The total
number of rules required i&; + Ny + N3. The fuzzy PID
structure is shown in Fig. 4. The final control action is given Type V—One-Input FLC Structure with Single Rule-Base:
by The error signal is the essential and fundamental control
n component in PID control (Remark 1). Therefore by using
upip(n) = Sy Y (Aip(q) + Ady(q) + Aiip(g).  (7) the input variablez, a one-input fuzzy PID control system
9=0 is formed. This is simply the nonlinear mapping of error into

ELSE[IF A% IS A?E; THEN Aiip IS AU, p]

q=0

(11)
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i FLC
Type Kpa K K Tuning C
i - " be variables 1@
1 SuSeeds SuSeds | 8,8,00dsT, |S,.5.0.5,0 —
- i Aree £(@)
S.S.  |s,.5..8
u S.S., ue $,8,0 T, | SusSeerSne
u~cee T; FLC
SeuKor /3(é)
dos | e | SuS.dyKer | SuSeedsKpaTy | Sy, Sees Kon
e SeKep als foe (Ko =1) Fig. 8. One-input fuzzy PID (Type VI).
ae
IV | S.S.Kp SS.K | SSLKpT (SI“(’S“;(KI ) the input error variable, three rule bases are defined as
p=~/Ap = R .
L ELSE[IF ¢ IS E; ; THEN 4p IS U, p1]
SuSuKP SIISEKI SuScKDTx KP’KI’KD v . R
v T, S, =1 ELSE[IF ¢ IS By j THEN ip IS Un, r2] L (12
VI | SuS.Kp SuSe K1 SuS.KpT, (IEWKII;KD ELkSE[IF ¢ 1S Ey , THEN ip IS Uy, ps3]
T\ u

An additional integer suffix is used to separate the three
proportional fuzzy rule bases. Using the same basic principle
as used in the Type V controller, the integral and derivative
actions are now generated using different nonlinear propor-

Fig. 6. Two-input fuzzy PID (Type IV).

@ tional sources as shown in Fig. 8. The total number of rules
e P FLC ip ~ Upip required in this case i + N> + N3. Using three additional
4 £1(®) gainsKp, K7, and Kp, the final control action is given by
L.—| n
upmp(n) =Sy | Kptpi(n) + Kr Z iip2(q)
- q=0
Fig. 7. One-input fuzzy PID (Type V). + Kp(ips(n) —aps(n—1))|. (15)

fuzzy proportional action. The rule base of the one-input fuzayhen the three rule bases are identical to the each other

proportional control element is given by (identical knowledge base parameters), the structure would
be same as the Type-V structure. Therefore, this is the most
ELSE[IF ¢ IS E; THEN ip IS Uy, p]. (12) general form of the one-input fuzzy PID structure.

IV. INFERENCEANALYSIS FOR LINEAR-LIKE AND

Similar to the previous case, we can infer from one-input
NONLINEAR-LIKE FUzzy LOGIC CONTROLLERS

elementsip = Aty and by assuming the analogy between _ o _ _

the proportional and derivative actions @s,(n) = @p(n) — The purpose of this analysis is to provide an analytical base
ip(n — 1), the fuzzy PID structure is derived as shown iffor the evaluation of the above fuzzy controller structures and
Fig. 7. This is the simplest fuzzy PID structure requiring onl@lso to identify a tuning basis for those controllers. In order to

N rules. With additional gaing(p, K7, and Kp, the final simplify the problem, we define two classes of controllers: A
control action is given by general three-input linear-like fuzzy logic controller (LLFLC)

and one-input nonlinear fuzzy controller. The output of each is
n derived using the standard Zadeh—Mamdani’s (Z—M) min—max
upi(n) =S, | Kpiip(n) + K; > dp(q) gravity reasoning method.
=0 In this analysis, we show a new solution procedure for
generating the output of three-input LLFLC. The two- and
+ Kp(iap(n) —ap(n—1))|. (13) one-input solutions are obtained as special cases of the general
solution. The main difficulty in a three-input Z-M based
fuzzy inference analysis is the visualization of the output
Type VI—One-Input FLC Structure with Three Rule-Basespace with respect to three error state variables. Compared
In this structure, three separate rule bases, using only ernmra conventional two-input analytical procedure [5], [35],
as the input variable, are used for generating three sepaithte three-input Z—M inference may require a minimum of
fuzzy proportional actions. The knowledge base parametdi® different equations to represent the controller output. In
can be independently chosen or tuned to produce differamtier to reduce this complexity of having multi-expressions
nonlinearity for the individual PID actions. With respect tan the solution, a transformation technique is provided and
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the general solution is expressed with only two different =0 i=1 i=(N; -1)
nonlinear terms. In addition to the above we have used[ j=0 j=1 J=(N2-1)]
the standard center of area (COA) defuzzification method [or k=0 %=1 k=(N3-1)]

rather than center of heights (COH) [39] or center average |
defuzzification [40] that was used in [5], [6], and [35]. The
COH method is a convenient way to obtain output solution
with least number of expressions. However, the COH method
ignores the effect ofuzzinesg11] associated with the output
linguistic variables and is equivalent to taking fuzzy singleton
functions. As an example, the COH method ignores the width
of the support set or the partitioning of the output membership
functions during the defuzzifications. As a result the COH
produces less nonlinearity than the COA method, particularly @
for one-input fuzzy inferences. On the other hand COH is
better for obtaining piece-wise linearity. For high degree of
nonlinearity, it requires a large number of rules. This particular
characteristics has been exploited to obtain the nonlinear
function approximations [40], but at the expense of larger
number of rules. However the COG method is difficult to
analyze for a highly nonlinear rule bases. The nonlinear like
analysis we perform in the latter part of this paper (Section IV-
D) clearly demonstrates the benefits of COG method.

T a—

a, (or a; or as)

é,(or &, or és) +1

r r+l1 m=N,+N;+N;3;-3

+1 1+d

(b)
A. Definition—Linear-Like Fuzzy Logic Controller Fig. 9. Membership distributions of fuzzy variables.

Let the three error inputs in any order be defined as
e = {e1, ey, e3}T. After scaling the three error inputs, let Assigningd = d3 for three-input LLFLC, the output
the normalized input error vector at any time instant be given ~ modal spacing can be expressed as
by é={é, ¢z, é3}7. .For simplicity we assume symmgtrical ds =2/(N1 + No + N3 — 3)
triangular membership functions for each control variable. It
is important to note that any symmetrical shaped membersi?ﬁ:)
function can be used for deriving the output of the LLFLC. The 1/ds =1/a; +1/as + 1/a3. (18)
universe of discourse of each variable is uniformly partitioned
and the membership functions are placed with a 50% overldp. LLFLC Output Solution Procedure
The variables are defined by the following specifications. 1) Three-Input LLFLC Output SolutionThe general solu-
1) The universe of discourse of each input variable ion to the three-input LLFLC is provided with the following
defined to be within the range-fl, 1] as shown in seven steps and the derivation of the nonlinear term is shown
Fig. 9(a). The total numbers of linguistic variables useg the Appendix.
for é;, é;, and é; are Ny, N, and Vs, respectively,  Step 1 Define input variables and their associated scale
and the corresponding distances between two adjacearameters.

memberships are given by é1 = Siey, éa = Sases, and é3 = Sies where,
S1, S2, and S3 are the scale factors. For the purpose
—9/(N, —1 of defuzzification, define the error saturation limits as
al = /( 1 )a

éw = max(—1, min(1, Sy,e,)). The indexw = 1,2, 3

az =2/(Np - 1), and ¢, € [-1, +1]. The values fora;, as, a3z, anddz are

az =2/(N3z — 1). (16)  obtained from (18).

Step 2 Define an input index vector and reference error

2) The output linguistic variables are defined within th&Puts. Input index vector is defined as
_universe_ of discourse di(1 + d)_, (1 4+ d)], whered ia(w) = {ia, ja, ka}” (19)
is the distance between two adjacent output member- o . .
ship functions as shown in Fig. 9(b). Total number o¥here 7., jo, and k, are the nearest integers given by,
membership functions defined for the output variable ta = round(1 + é1)/a1)), j. = round(l + é»)/a2)), and
is equal to(N; + Ny + N; — 2). ke = round(1+és)/a3)). Reference input variables are given

3) Using(Ny x Ny x N3) rules, the rule base is defined a®y

€1,i = — 1 +dqa;

IF ¢, IS Ey ; AND &, IS E, 4
ELSE ! b ? 2 . @7 &2 = — 14 jaaz
7.5 |AND &5 IS Es 1, THEN @ IS Usy s Gon= — 14 koas. (20)

2
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TABLE I k=0
NONLINEAR TERM FOR THE THREE-INPUT LLFLC OutpPuT | , ,
1 i i
Sign Modify Nonlinear Term i i i
; ] i i
m m m m In . :
1 2 3 1 B3 K o1 T
+ |+ | + my in o1 58x3 '
[} 5 > a3 = o0
- + + 1- ‘ml‘ Zn -1 a1
" _ + my in as Fig. 10. Input fuzzy variable with a single fuzzy set.
-l -+ 1—ml | i1 as
P e —an Step 6 Reassign the modified index values to the input
) index vector
- + - my in —02
+ | - | - |l ma] | i+l - 1o = modifieds,), Ja = Jn, ko = kn.
- - my in —Q
Step 7 Compute the LLFLC output
Step 3 Define the incremental input vectors. Normalized = liyj+k + d3fs (28)

incremental input vector and Normalized absolute incremental o
input vector are respectively given by where the reference modal position is

6)A( = {(5.7}171‘/@1, (5.7}27]'/@2, 6.%‘37 k/ag}T (21) a/i+j+k - _1 + (ia +ja + ka)dg.

ox, = {|bx1 4 s |62, 4 , |6z & T 22 _

Xo ={|61,4|/ a1, 622, 5]/ a2, 623 k|/as} (22) Using Table Il and (20), (23), and (28), the general LLFLC
The incremental values are output can be decomposed into two parts; a linear controller
output @y rz3) and a nonlinear controller output {-7.3). The

by, = (81 — é1,i) linear controller is defined as the equivalent linear controller

w2, 5 = (€2 — €2,5) (ELC) of the LLFLC system
6.’1’37 L = (ég — 637 k) (23) R R R
U=Urs +UNL3
(6z1.:/a1), (8z2,;/a2), (613 1/as) € [~0.5, 0.5]. ips = (é1/ay + é2/az + és/as) ds
Step 4 Input transformation. vrs = (o = 0y, if o — 8wz, /a0 = 8ws,/a3) dy (29)

1) Compute the transformed absolute incremental inputs2) Two-Input LLFLC Output SolutionWhen only two in-
and identify the corresponding incremental input vect@juts are considered, the third variable can have only a single
positionswi, ws, andws fuzzy set ‘Any’ for any crisp input value. Therefore the total

number of fuzzy sets is equal to one and we assign this for the

L . redundant input variable. Let us assume this variabég &nd

[ma| = min(8%,) = 6%a(ws) - @Y N, — 1 From (15),a5 = 2/(Ns — 1) = . The triangular

[ma| = 6Xq(6 — w1 — w3) = 6Xq(w2) membership function defined for the single linguistic variable

will now have an infinite long support set as shown in Fig. 10.

The fuzzy membership function will be a horizontal line with

|my| = max(6X,) = 6%, (wy)

2) Compute the transformed true incremental inputs

my = 6x(wy), mg = 0X(wa), mz = 6%(ws).  a unit grade of membership height. The modal position of the
(25) single fuzzy set becomes ; = 0 with k, = 0. Also, any
3) Redefine the transformed index vector normalized incremental input value measured from this modal

) . . . . osition becomelm, ., _.qo(éxz3 1 /a3) = 0. Thus for any input
tn =ta(ws),  Jn =la(wa),  kn=lalws) (26) Eonditions themin(8%.) 0:(0 v?;ﬁiéhgi%plieSmg = 0. Thi tWF())-
It my =mz =mg thenw, =1, wy =2, w3 = 3. input rule base for generating the LLFLC surface can now
Step § Assign the nonlinear output term. The values df described by, x N,) linear rules and is obtained by
m; and i, may be modified depending on the signs of th&iMPlifying the three-input rule base in (17) as

three values computed in Steps 4-2) and shown in Table I R R N
Using the modified terms in the Table II, the nonlinear term E!i]SE[lF €1 1S By, AND & IS By, j THEN 4 1S Usyj].

33 is deduced. The values are given by (30)
. ) ) ) The modal spacing of output membership functiots=(d>)
_ 1<7|m3| + Slmo| 4 3lmu| — ms —ms — ml) is given by,1/dy = 1/a;+1/as. Since we now have only two
2 1+ ma| + |ma| + [ma| — m7 input variables, the eight cases in Table Il reduce to four cases
1/ 5ms| — 3|ma| +3|m1| —m3 +m3 —m?\ [ anday is eliminated. For a two-input fuzzy controller, Steps
a2 = §< 1+ [ma| + |ma| + |my| — m?2 ) 1-7 are used while equating one of the input variables to zero.

(27) Taking the special case far; whenms = 0 we can obtain the
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TABLE 111 TABLE IV
NONLINEAR TERM FOR THE Two-INPUT LLFLC OutpPuT NONLINEAR TERM FOR THE ONE-INPUT LLFLC OuTtpPuT
Sign Modify Nonlinear Term Sign | Nonlinear Term
my | mz m in B2 my Joi
+ 1+ m in g + ¢
- + 1—|ma| |in—1 [ - —¢
+ - =14 my| i+ 1 -0
- - m in -6 . .
- i=j=k=0 i=j=k=1

corresponding nonlinear tern¥y) as shown in Table Ill. With

the modified terms the nonlinear term is deduced pwhere
5lma| + 3lmy| — m3 — m%)

0 = (1)ma=0 = = . 31

(1) 30 2< 1+|m2|+|m1|_m2 ( )

The LLFLC output is given by

1 e ) +1
é(or Aé or A%¢

=Gy +dafa,  Whered;y; = —14(iq + jo)dz. (32) Sx0(ordxyg & )

or 8x3,0)

Similar to the three-input case, the general output expression

for the two- mput LLFLC output can be obtained as the Sullﬂg 11. Two uniformly distributed memberships for input variables of the

simplest LLFLC.
of linear (z2) and nonlinear#2) controller outputs

U= tr2 +UNr2 C. Output Solution of a Simplest Type LLFLC
G2 = (é1/a1 + é2/az) d2 - (33)  We define a fuzzy controller with least number of rules [5]
tnr2 = (B2 — 6x1,i/a1 — bx2, j/az) da to obtain concise expressions relating the error variables for

the purpose of analyzing fuzzy PID gains in the next section.
3) One-Input LLFLC Output SolutionSimilar to the two- In this simplest LLFLC structure, each input is assigned
input case, the second and third variables can now be assigivgd uniformly distributed membership functions as shown in
single fuzzy sets. Therefore bo#}, a2 — oo and the system Fig. 11, wherea; = a, = a3 = 2. Since the index values
simplifies to a one-dimensional problem. The correspondifgandk now have only two values, 0 and 1, we first consider
LLFLC rule base structure can be represented/¥yrules as the positive incremental inputs measured from the 0 index
positions. For any given input error vectde, A¢, A%e}T
ELSE[IF &, IS £y ; THEN @ IS Uj]. (34)  the incremental values are

Allowing k, = j, = 0 and (6x3 r/a3) = (62, ;/a2) = 0 .
for any (., cs) we can take the special case for when br1,0 =(1+¢)/2
mg = mg = 0. The corresponding nonlinear terfy and its bz 0=(1+A¢&)/2
values are shown in Table IV. The temgnis given by bz3,0 = (1+ A2%8)/2.

_ 2
d) == (Oél)rng:rnz:O = %(M) . (35)

L+ |ma| —mi Considering the PID structural elements in Fig. 2, the LLFLC

. L outputs are deduced.

The one-input LLFLC output is given by 1) For Three-Input ElementsAs it was shown in

i =i+ Budy (36) Section IV-B1 and Table Il, the value of the nonlinear

' term changes with respect to the relative difference between

the normalized input variables. In order to express the outputs
terms of the actual input terms (without transformation) and
0 to aid the PID gain analysis, a single case is considered.
Assume(éx1,9/a1) > (62, 0/a2) > (8x3 0/as) > 0. Using
the general solution in (29) we can show

where for a SISO LLFLC systed = d; = a; and4; =
—1+41i,d;. Similar to the two cases above, the general solut|d
for one-input LLFLC output can be expressed as the sum
linear @r1) and nonlinear 1) controller outputs, and is
given by

U =141 +Unr1

1/46—26% + 2Aé—(Aé)? + 6A%e—(A%e)?
~ 5 Ail P .
fipy = é : 37 “rID 3< 9_ &2 _2A¢ I 2A%

UNL1 = (/31 - 5$1,i/a1) dy (38)
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The (38) is rewritten in the dissociated form as NB ZE PB NB ZE PB
. (2—A8)Ae  (2-e)2e  (6— A%e)A% i i
A = i
HrID 5P P 3P ! !
where P = 9 — ¢ — 2A¢é + 2A%¢. i i
I 1

Assuming the dissociated fordviiprp = AaLP + AP + A1 0 -8 $,08 8 +l

AP we define : o o
Fig. 12. Membership distributions for the nonlinear like SISO fuzzy con-

pip (2— A@)Aé troller.
Aty - = 5P
Aa?ID _ (2—e)2¢ then reduced to termsg ands. as shown in the figure. For the
3P derivation, assume the one-input fuzzy proportional element
AGDID = (6 - AQ@)AQé' (39) Where normalized input and output crisp variables @mnd
3P ipn, respectively. The additional suffix” is used to identify

2) For Two-Input ElementsConsidering the case, R1-R3, for a one-input PID controller element can be then

(6z1,0/a1) > (8x2.0/az) > 0. and using the two-input "epresented by
solution in (33), we can show R1: If ¢ is NB thendp, is NB
iipp = Adipp = 1<4é + 52:2456 —Agﬁé)(‘)), (40) R2: If ¢ is ZE theniip, is ZE 5. (43)
e R3: If ¢ is PB theniip, is PB

2

Equation (40) is rewritten in the dissociated form as
. . . All the variables are normalized into the rangel] 1]. In
e +e + A4 — Ac) order to reduce the complexity of the solution, the following
2Q 2Q 7 constraint is imposed for the membership variables.
whereQ = 7 + 2Aé — é2. Range fors; € (0, 1], for keeping the ZE fuzzy set
) . ) ) PD . APD triangular about zero.
Assuming the dissociated formipn = 4p” +4p° and  pange fors, € [—s,, 1), for obtaining unique expressions

Upp = Alpr =

~ _ ~PT ~PT 3 . .
dpr = Aip + Aty we define for the fuzzy output. The solution has two main cases to
aPP = AGPT = 8(4 + 2)/(20), be considered; nonoverlapping memberships or overlapping

memberships, as shown in Fig. 13. The derivation is based on
D . . the Z-M inference and COA defuzzification as described in the
tp =Adp = Aé(d— Ac)/(2Q). (41)  Appendix. As the input membership functions are uniformly

The superscript Pl or PD is used to show the inference sourgias.mbmed (Fig. 12), for. any given input value the inference
always fires two rules simultaneously, except wléer 0 or

3) For One-Input ElementsConsidering the one-input . P : ;
C . ¢ = £1. The same error saturation limits given in the step
LLFLC solution in (37), the fuzzy outputs for one-input ) . .
control elements can be expressed by l of the LLFL_C output solutl_on procedure (_Sectlon IV-B1) is
imposed. During the fuzzy inference, the inferred fuzzy set
tp = Aty =4¢/(5 — &%) (output) takes different shapes depending on the input value.
ap = Adip =408/ (5 — (Aé)?) ) (42) The gray areas of Fig. 13 shovy these shap_es. As a result
R 24 e 32 the overlapping case has three different equations correspond-
Aup =487¢/(5 — (A%¢)7) ing to three different ranges of the input. These ranges are
determined by the membership height corresponding to the
intersection of the consequent membership functions and the
relative difference between the two membership variables as
For this simple analysis, we consider a three-rule fuzzhown in Fig. 13. The common membership heightat this
controller [38] with triangular membership functions for bothntersection is given by
antecedent and consequent variables. All membership func-
tions are assumed to be triangular and symmetrical. The input sq=(s1—s2)/(1+ 51 — s2). (44)
membership functions are assumed to be uniformly distributed
over the input universe of discourse with a 50% overlap tbthe final expressions for the defuzzified output are obtained
satisfy the rule completeness [39] during the inference. Thy taking the center of the gray areas shown in Fig. 13. The
output membership positions (support sets) are varied whilases wherns; < 0 constitutes similar relationships to those
keeping a symmetrical partitioning of the output universe @fiven below. Leté, = [é| and zp = 1 — so.
discourse about zero. Fig. 12 shows the membership distribuCase I—Nonoverlappings; < s,
tion where the fuzzy variables are labeled with “NB,” “ZE,” ) ) 2
and “PB” to represent “negative big,” “zero,” and “positive apy = 22 S3(1+ 52) — 35260 — 2265 ) (453)
big,” respectively. The knowledge base design parameters are 3 [2s1 + 22280 — (251 + 22)€3

and

D. Output Solution of a Simplest One-Input
Nonlinear Like Fuzzy Controller
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(a) Case I (non-overlapping)

NB ZE PB NB ZE PB

~€

g N
\A

N

>
0 ¢ 1 gep -1 3251 o

(b) Case II (overlapping)

II\IB ZE PB lNB « ZE PB
N B -
i i 1 ]
! i ! i
] i 1 t
/NN
-1 0é 1 Gep 11 0% silap ey
II-a. 0<é[<s,
NB ZE PB

-1 0 ¢ 1 gep 151 -s08 51 I%P:GU
I-b. sa<ie1 -54
II\IB ZE PB NB ZE

Fig. 13. Fuzzy outputs (shaded areas) corresponding to different input ¢

ditions.

I-c.1-s4<18<1

Case II—Overlapping:s; > s2 AND

a) [(81 —82) <1AND 0 <L ¢, < Sd] OR [(81 —82) >1

AND 0

< &, < 0.5]

e[3(1—s3)+ s3(3eq — €2)

Uppn = = (45b)

31281+ 2(1 — Sl)éa — Slég ’

b) [(s1 —s2) < 1AND s4 <&, < (1 —s4)]

é +(s? — 223)¢&
éa (1 + 51 + 82) - 282611 - Slég

(81 — $2)(38451 + 28422 — 451 + $2)84

+éa22(3 + 350 — 36,82 — 226(21)

251 — (81 — 82)8d + 2228, — (281 + 22)E2

(45¢)

(350 + 23 — 57) — 3838, + 32362

a

AND (1—-s4) £ é, < 1]OR[(s1—52) >

. (45d)

A He
| max(|p,|)
A =
B YA
C !
2P
0 —= 2
PO gt
., D E
’ Ild".
N Yy
1
' ‘_r',' Rt é
o1 e >
-1 0 -1

Fig. 14. Effect of membership parameters on nonlinear fuzzy propor-
tional action, A:sy = 0.1,s2 = 0, B: sy = 0.3,s2 = 0.3,

C: 1 = 0.566,s2 = —02, D: 51 = 095,20 = 0.9, and E:

s = 0.8, 50 = 0.8.

Equations (45a)—(45d) allow the nonlinearity of the propor-
tional actions to be changed using the membership parameters
s; and s,. Different curves corresponding to the values of
s; and s2 are shown in Fig. 14. Curve C shows the most
approximate linear function of this fuzzy system.

V. Fuzzy PID GAIN ANALYSIS

Any fuzzy PID structure together with its fuzzy knowledge
base usually results in nonlinear PID actions. In many fuzzy
adaptive controllers, the nonlinearity has been adjusted on-
line via modifying rules [13], [17] or membership functions
[18]. Computational or numerical search techniques [9], [30],
[38], [40], [41] are commonly used to produce optimum
Mbnlinear controllers using fuzzy paradigms. An attempt has
been made to investigate this nonlinear behavior by identifying
the nonlinear proportional action in [38]. In this part we derive
the fuzzy PID gains for each structure in order to identify
the two-levels of tuning [33]. The first level of tuning relates
to the normalized nonlinear characteristicand is usually
obtained by changing the knowledge base parameters of the
fuzzy system (rules, membership functions or support sets). We
define apparent nonlinear gain (ANG) terms for all structures
to identify the first tuning level. The second level of tuning
is related to scale factors and other gain parameters used in
constructing the fuzzy PID system. These parameters provide
desired magnifications to the control surface in the directions
of state axes. Therefore the second tuning level determines the
overall characteristicsof the controller. For this purpose we
define PID apparent linear gain (ALG) terms.

A. Apparent Nonlinear Gains

Better understanding of nonlinear tuning in various fuzzy
structures requires an analysis of FLC's in terms of the
variables including the knowledge base parameters. This is
a complex task due to high dimensionality in FLC systems
and moreover the higher dimensionality may leads to non-
transparency of the fuzzy output. In practical fuzzy controller
designs, design experience usually reduces the dimensionality
due to the availability ofa priori knowledge. This is also a
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TABLE V
ANG TeRMs OF DIFFERENT Fuzzy PID STrRUCTURES
Type | ANG-Proportional 12,,a (n) ANG-Integral Iela(n) ANG - Derivative kDa(n)

I IR ((2~Aé(q))Aé(q)J ! i[z(z—é(q»é(q)J 13 [(6—A2é(q))A2é(q)J

én) 1 3P(q) Z 8(g) =0 3P(q) Aé(n) 4 3P(q)

g=0

1 & 4Aéq) 1 & 4é@ " 25

I e Z[—A—J " Z[ ] 1 4A”e(q)
én) ;5 5—(Ae(q))2 3 é(q) *° 5—(é(q))2 Aé(n)g, 5 (Az é(q))z
g=0

12)}::) - (42+Qe(f:)’)) 1 i ((4+é(q))é(q)] (4 - Aé(n))

. | Sap P9 20(n)
nol s ((4~Ae<q»Ae(q)] b
Tem SN 2009
4 1 [ 48(q) ] 4
v 5-é&(n)? u aq) 5-8(q)° 5-(Aé(n)?
q=0
A 1 & 4ég 2
; — e 08
(g) B
Vi In D) (Z}Z}"‘) N NCORS ——d’;“;fz";”‘”
5( )q=0 le(n

question for inner loop controllers where the availability obe described by

such controller experience is minimal [11]. In many cases, the n n n

nonlinear tuning is carried out arbitrarily by changing rules anbm (n) = > Adp(q) + > Ad;™(g) + Y AdpP(g).
membership function parameters, and observing the effect in q=0 q=0 =0

computer simulations. A generic analysis is extremely difficult ) ) (47)
particularly for coupled three-input or two-input rule bases. Akhe equivalent form with ANG terms are then arranged as
we are primarily interested in comparing fuzzy PID structures, . . . n . )

a simplest LLFLC rule base structure is assumed for deriving?™ (") = Kra(n)é(n) + Kra(n) > éla) + Kpadsé(n).

ANG terms of controller structure types 1-V. The ANG terms =0 (48)

of type VI controller are shown with respect to the non"neaéubstituting the terms in (39) to (47), the ANG terms that

like fuzzy controller. _ correspond to the arrangement in (48) are thus obtained.
The nonlinear PID gains (ANG terms) related to normalized 2) ANG for Type II: The normalized control action corre-

PID actions are defined as sponding to (7) can be described by

ipp(n) = > Aip(g)+ Y Adr(g) + Y Aiip(g). (49)
=0 =0

Kpa(ﬂ) =1ip(n)/e(n) q=0
Kra(n) :a’(n)/Zé(q) The expression of the ANG terms arrangement for (49) is
P identical to (48). Substituting one-input element outputs in (42)
and to (49), the ANG terms that correspond to the arrangement in

(48) are thus obtained.

3) ANG for Type llI: Using the dissociated form given in
(41), the normalized output corresponding to (9) in the disso-
ciate form can be described by

Kpe(n) =ip(n)/Aé(n) (46)

whereK p,, K., andK p, are the apparent nonlinear propor
tional, integral, and derivative gains, respectively. The ANG  dipip(n) = Kpp (45" (n) + 435" (n))
terms obtained for each structure type are listed in the Table V n n
and the steps followed are described as follows. + Kpr <Z AU )+ Aa?(q))

1) ANG for Type I: Using the dissociated form given in q=0 q=0
(39), the normalized control action corresponding to (5) can (50)
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The equivalent form with ANG terms is then arranged as The normalized output corresponding to (15) can be expressed

e (n) = Ko (KE2 (0)i(n) + K pa(n)Aé(n)) 2
+ Kpr <K1I;£(”)é(”) + Kla(”) Z é(‘])) wpin(n) = Kpipi(n) + K En: Up2(q)
q=0 =0
(51) + KD(apg(TL) — ﬁ,pg(ﬂ - 1)) (56)

Using the dissociated outputs for two-input element in (41)
and substitutir_lg to (50), the ANG te_rms that correspond to the,o expression of the ANG terms arrangement for (56) is
arrangement in (51) are thus obtained. identical to (53). Substituting (55) into (56), the ANG terms
4) ANG for Type IV:In this decoupled rule structure, théy,; ¢orrespond to the arrangement in (53) are thus obtained.
normalized output corresponding to (11) can be expressed §yijar 1o the type V, the small sampling time is assumed for
n obtaining the derivative ANG term.
QPID(TL) = Kpﬁ,p(ﬂ) + Ky Z ﬁ,p(q) + KDQD(TL). (52)
7=0 B. Apparent Linear Gains

The equivalent form with ANG terms can be arranged as  The overall tuning of fuzzy controllers is generally achieved
n by the second-level tuning, where scale factors and other gains
apn(n) =Kpf(pa(n)é(n) +K1f(1a(n) Z &(q) are a}djustgd.to optam the desired or optimum response. In
practice this is a trial and error procedure. Some tuning rules

for these linear gains are reported in [44] for the two-input
Pl structure. The use of genetic algorithms to select these
Substituting the one-input element outputs in (42) to (52), ﬂ?@ms glgesc_rlbed n d[3f*_3] adn;j [ﬁ]' ]!n th|sp?gal)t/5|si apparTehnt
ANG terms that correspond to the arrangement in (53) akrl)@ear. gains are defined for the fuzzy FIL structures. 1he
ehavior of those gains is expected to be linearly equivalent

thus obtained. ¢ tional PID qai | der for th t oai
5) ANG for Type V:In this one-input structure, the normal-© conventiona 0 gains. In order for he apparent gains
to be functional, without loss of generality, we impose the

ized output corresponding to (13) can be expressed by following constraints

n Constraint 1: Assume the universe of discourse of all in-

q=0

+ KpKpa(n)Aé(n). (53)

dpm(n) = Kpip(n) + K1 Y _ ip(q) put variables are uniformly partitioned and the membership
¢=0 functions are placed with 50% overlap support sets. The rules
+ Kp(ip(n) — dp(n —1)). (54) are defined in the linear form. Nonlinearity is allowed by

) changing positions of output membership functions. Let the
The expression of the ANG terms arrangement for (54) isiform input membership spacing be given &y, a.., and
identical to (53). Substituting one-input element output fq{m respectively for the inputs, Ae, and AZe.
up in (42)~(54), the ANG terms that correspond to the constraint 2: The defuzzified output value is scaled to
arrangement in (53) are thus obtained. For small sampliggs range £1, 1] by modifying the defuzzified output as;
time intervals the equivalent nonlinear derivativg gain hgs _ i1/t smax WHere || max is the maximum defuzzified
b(?en furt[]er simplified while using the relatiohp, = gytput when the normalized error input terms are maximum.
divp(n)/de(n). ) ) ~ Constraint 3: For set point control problems, the scale

6) ANG for Type VI:Since type V structure is a speciakactor for error is fixed, i.e.5. = 1/eiax Where e,y is the

case of type VI, with the simplest LLFLC rule bases both typ&gaximum error signal during the transient. As the set point
are identical. A practical high performance fuzzy controllefs ies this value also varies.
requires the knowledge base to have a nonlinear-like structurérne Constraint 1 is defined for obtaining rule completeness
However, fo.r thg normalized proportional controller output tf39)  Also, this allows one to define a particular controller
be monotonic with respect to error, the rules must be arrangg@t would be linearly closest to the nonlinear fuzzy controller
in the linear form, as in (34). In such circumstances, thgnyt. Alternatively, a linear surface equivalent to an existing
membership functions are placed nonuniformly to obtain theg,njinear fuzzy output can be determined by linear regression
nonlinear tuning. In order to illustrate this, the solution Ofinalysis. Since this work is of a more general nature, this
the simplest nonlinear like fuzzy controller shown by (45) igonstraint is imposed so that the equivalent representation
used. Letx = {s1, s2}, be the vector containing nonlinearcan pe justified. As the ELC is derived from LLFLC and
tuning parameters of the one-input fuzzy knowledge basg maximum output is normalized within-fL,1], the Con-
Then we can define three separate proportional actions Wifpgint 2 is imposed so that any skewed output shapes are

three differentx terms as normalized to this compact region. The Constraint 3 provides
N N a a standard procedure for determining the scale factor for the
L =Upn (¢, X1) error in
A A X put.
ipy =1pn(8, X2) In the following analysis the superscript’“denotes the
fipg =tpn(é, X3) (55) equivalent linear actions. After substituting the scale factors
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TABLE VI

ALG TERMS OF DIFFERENT Fuzzy PID STRUCTURES

383

VI. COMPARISON OF FUzzy PID STRUCTURES
Comparison of the PID structures should address two issues:

Type Kp, K, Kpa Tur}irtl’% 1) the adjustme_nt of fuzzy PID gains with respect to two-
vanapes levels of tuning;
I SuSceds SuSeds | SuSwedsTy |Su.ScesSpee 2) the assessment of the effect of these gains in the plant
Gce a, T, Aree performance and tuning criterion related to PID gains.
II 8,8, SuSe S8l | SusSeesSwce The second issue is a process dependent problem and also
I it relates to the stability properties of each structure. This
See Kt is a future area of research, and in this section we attempt
a SuScedZKPdTy M Su’Sce’KPD H . . . .
m |dys,| e T o7 (Ko 1) to provide a comparative assessment of the first issue. It is
5K e o " known that linear PID controllers have independent control
e of the three control actions in a linear form, and that is
| sk S.5.K, 5.5 KoT, SusSee- Ky accomphsh.e(.j by the tuning of three I_mealr gain terms. Fuzzy
T (Kp=Kp=1) control exhibits better performance primarily due to its higher
Sk S.S.K, < s x| KeKoKp level tuning, or the nonllngar gain tur?llng. A bett.er' .fuz'zy
v ule P T WP (s =) controller should allow maximum versatility and flexibility in
: tuning these nonlinear gains to achieve superior performance
VI S,S.Kp 8,8, K, S8 KpT, | Kp:Ki.Kp over linear control. Therefore the functional behaviors are
T, S, =D considered with respect to the two levels of tuning.

and assigningr. = a1, a.. = aq, anda,... = az, the ELC

A. High-Level Tuning
When the FLC system is known, the variations of ANG

outputs shown in (29), (33), and (37) are rewritten as followgs o with respect to the error response are also known. In

For three-input elements

optimal designs this is usually achieved by varying the fuzzy

knowledge base parameters, which directly affects the nonlin-

Aﬁ'lPID (n) = d35e e(n) + % Ae(n) + m AZe(n). ear characteristics of the control surface or curve with respect
Qe Gee Gree to normalized state variables. In the recent developments the

(57) nonlinear function approximation properties of fuzzy systems

have been exploited to train or approximate highly nonlinear

. dynamical systems [40], [45]. However, in most cases the

For two-input elements . : : )
doS doS nonlinear function that requires for control is unknown. The
thp(n) = Athy(n) = 27¢ e(n) + 2ce Ae(n). (58) same is true for fuzzy PID control action. Also the changing

plant dynamics or environmental effects are unknown and
unpredictable during the control. The fuzzy systems have the
capabilities to produce these nonlinear functions either in cou-
pled form [40] or in decoupled form [46]. The tuning heuristics
and rules for gain adjustments of linear PID controller are
usually available in the decoupled form [11], [43]. As an
example, when there is a steady state offset in the response, the
tuning is performed to increase the integral gain and the other
In order to define the linear apparent PID gains, the outputgo gains are kept unaltered [43]. In addition to this linear
corresponding to each PID structure is written in the followingining the fuzzy PID controllers can produce local control
form: by changing the ANG terms. Hence, these tuning rules can
be used to approximate the unknown nonlinear functions in
ubip(n) = Kpee(n) + Kiq Z ()T, + KpaAc(n)/T, @ ;ingle dimension to pro.duce decoypled and independent
=0 tuning for ANG terms. To illustrate this effect more clearly
(60) for PID structures, the characteristics of the high-level tuning
whereKp,, K1,, and K p,, are the linear apparent PID gainsin coupled and decoupled rule bases are discussed with respect
Substituting the linear outputs in (57)—(59) (or ELC terms) ttm three functional behaviors, namely, action association, input
the output expressions given in (5), (7), (9), (11), (13), arwbupling, and gain dependency.
(15), the ALG terms corresponding to each structure can bel) Action Association:The basic difficulty in coupled rule
arranged as (60). The final expressions for ALG terms dbpases is the identification of those nonlinear tuning parameters
shown in Table VI. In order to be analogues with linear PlPelating to the nonlinear PID gains. In types | and Il structures,
systems, some linear terms have been assigned a value of uthiy output actions are in the associated form. Rution
to simplify the overall tuning a three-term tuning problemAssociationrefers to the singular nature of the output of
The three corresponding tuning parameters of each structtire three PID actions. In coupled rule bases it is difficult to
are shown in the same table. dissociate the nonlinear tuning parameters with respect to each

For one-input elements
ilp(n) = Aip(n) = See(n)
ity (n) = Atls(n) = Se.Ae(n)
A&b(n) = STCGAQC(TL)

(59)

n
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control action. The basic dissociation that has been done tt@pendency can be described by the following nonlinear
the simplest LLFLC structure [see (37) and (39)] is an attemgifferential equation

to identify the individual PID actions in dissociated form. A N

similar approach has been employed in [6] to identify ANG K, + 1 de‘l é— Kpy, = 0. (63)
terms of a simplest fuzzy PI controller using different inference 2 de

methods. This is quite artificial since the algebraic decomposi-c) Dependency between P and D controllefEhe depen-
tion of nonlinear terms may not show the true representation@ncy that exist in the type V controller output is given
the individual fuzzy PID outputs. Furthermore, when the rula$yi,,(n) = ip(n) — 4p(n — 1). With ANG terms this gain

are highly nonlinear and memberships are nonuniform, actigapendency in the type V controller can be expressed by
identification in a dissociated form will become an extremely

difficult mathematical task. The nonlinear PID gains becomd{pa(n)Aé(n) = Kpo(n)é(n) — Kpa(n — 1)é(n —1). (64)
nontransparent for independent nonlinear tuning. The action .~ _
association is one of major reasons why no satisfactory i%_onader_mg small_sampllng intervals, the abqve can .be de-
depth analysis has been done in identifying nonlinear tuniré%'bed na cor_mn.uous form by the following nonlinear
parameters in an explicit form for the most common Mamdani- erential equation:
type two-input fuzzy PID controllers. R dKp, . -
2) Input Coupling: In the coupled rule bases we again see Kpo+ —7=¢— Kpa =0. (64)
input coupling in the ANG terms. In the type | controller, ) ) o
all the gains are highly coupled by all three error terms. THE'€ 9ain dependency has the disadvantage of obtaining op-
advantage of input coupling is the inclusion of generalizdf"um nonlinear tuning of individual ANG terms. As an
damping [47], which gives each nonlinear gain term the effeg¥@mPple, in the type V controller, both integral and derivative
of error derivatives. The disadvantage is that the proportior@ins follow the nonlinear proportional action in terms of
and integral actions are unnecessarily complicated by the effé@plinear tuning. In case of optimum nonlinear tuning, this
of damping and this results in a more sluggish response. E8fluires a compromise for achieving best performance. The
example, when a process is responding slowly, the couplg@fventional type Il controller shows a highly complex gain
action of error rates tends to produce low equivalent gafifPendency. The independent nonlinear gain control in types
for the apparent nonlinear proportional action. This can Beand VI controllers allows the design to achieve the best
numerically verified by comparing the maximum proportiondidependent nonlinear tuning in terms of ANG values.
ANG values when all the error derivatives are forced to zero.
This is one of the reasons why in [7] the conventional (typ8. Low-Level Tuning
1) fuzzy PI structure was unable to perform better than an Thijs tuning level is described by the apparent linear PID
optimally designed linear PI controller. gains (ALG). The nonlinear tuning has a direct effect on
3) Gain DependencyThis functional behavior can be seenrthe normalized controller surface or curve, whereas the ALG
when one fuzzy action is generated by another fuzzy actiontasms adjust the overall magnifications, similar to a linear
in type 11I-V structures and can be described mathematicayD controller. From a practical point of view, the behavior
by the following analysis. of the linear gains is expected to be similar to the three
a) Dependency between coupled Pl and PD controllergains of a linear PID controller. In coupled structures, these
The dependency that exist in the type Ill controller outputs iains provide magnifications for all dimensions in the error
given bydpi(n) = 3°/_, tirp(q). Replacing the normalized state space. Therefore, any increase of a single ALG term
terms with ANG terms, the gain dependency can be expressgsh indirectly affects the overall magnification of the other

by two ANG values as well. In the common two-input coupled
n structure, the complex nature of the linear proportional gain
KB (n)e(n) 4+ Kra(n) Z é(q) can be compared with other linear gain terms. Practically, the

q=0 overall gains are controlled by the tuning variables provided in

no R Table VI. The coupled nature of tuning variables in the linear
=> (KII;aD(Q)é((J) +KDa(Q)Aé(Q))' (61) proportional gain of type Il controller makes it difficult for

q=0 designers to adapt linear PID tuning heuristics. Even the low

b) Dependency between P and | controllefEhe  de- level tuning heuristics developed in [44] are applicable only for
pendency that exists in the types IV and V controller outputs {a€ P! version of a type Il controller. The design of low-level

given by, i;(n) = EZ:o ap(q). Substituting the normalized gain terms of two-input fuzzy controllers using a sliding mode

terms with ANG terms the gain dependency can be descritdProach [29] is limited only to PD type controllers. In [35]
by and [36], this proportional action complexity was avoided by

having a separate one-input fuzzy integral controller connected
to a two-input coupled fuzzy PD controller. Again, decoupled
rule structures or one-input fuzzy PID controllers provide
better individual overall tuning, enabling the control engineer
By assuming the continuous form for small sampling intervalsy use accumulated PID tuning knowledge to obtain optimum
the above expression can be further simplified. The gaiwerall tuning of the fuzzy PID controllers.

n

Kra(n) Y &) = Kpaé(g). (62)

q=0 q=0



MANN et al. FUZZY PID CONTROLLER STRUCTURES 385

VIl. SUMMARY AND CONCLUSIONS have shown that the final overall tuning task can be simplified

This paper describes research to provide control enginel& three term tuning problem. Therefore one can find suitable
with fundamental information about the design aspects Bf1ing heuristics for the ALG tuning terms by correlating

fuzzy PID controllers and a selection procedure by evaluatiﬁé(fltlmg In:egr PID tunlnrg]; met::occif. d £ usi |
the functional behaviors of structures. This systematic anal- coupled structures have the disadvantage of using a large

ysis has facilitated the identification of different fuzzy P”jﬁumber of rules compared to decoupled structures. Since the

controller structures, particularly decoupled and one-input ty&g‘nllneanty tuning parameters are associated with the rules,

controllers, which have not been commonly used in previo € rpf;lrr;\mertelr %rowth lal;o tlpcrtea;ses \erth ti?e rgl/e n%rOWth'
applications. It is known that the curse of dimensionali% erelore, rule decoupled structures are quite advantageous

terms of using the least number of nonlinearity tuning

is a major problem in fuzzy controller design today [45]. . -
) . P arameters, thus enabling one to perform efficient and easy
In controller designs, the identification of fuzzy controlleﬁ.

. : igh level tuning for attaining optimum performance.
parameters relating the plant dynamics or performance | ) : -
: : : he design of a fuzzy controller requires the building
particularly challenging. In most cases extensive computer . e : :
aegnowledge based system with the specific nonlinearity

simulations or exhaustive numerical search techniques are us Iy
. s . -0 generate a specific performance of the process response.
for solving the multidimensional problem. In our work, thi

hiah di ional desi identified wo-level t Sthe variation of tuning parameters is always related to the
\gh dimensional design was 1dentiied as a o-leve! WniNG, . ance, Therefore, development of a suitable tuning

Eroblgm. Tthe chf(?_|c_e of an); ftL;]zzy PtID _stru?:turtT Sh(ﬂd be dl?‘ Eheme for fuzzy PID controllers requires consideration of the
ased on the etficiency of these tuning levels while Seekifg,, tuning levels, where one level matches the plant dynamics

superior pe_rformar?ce. Our stu_dy also has shown the e)_(pl'ﬁﬁd the nonlinear behavior and the second level provides the
representation of high-level tuning by ANG terms. For °pt'mq'|ecessary magpnifications to PID control actions.

design one has to choose the nonlinear tuning parameters fo,grom this study it can be concluded that the Mamdani-

varying the ANG terms. type conventional two-input fuzzy PID structure produces an

The type V controller is the simplest, with the nonlineafyferior performance in terms of functional behaviors. These
tuning accomplished through the fuzzy proportional actiogy,swbacks can be summarized as follows.
However, the gain dependency in this controller avoids in-

dependent tuning of integral and derivative nonlinear gains.
The rule decoupled structures and one-input fuzzy structures
have the advantage of identifying individual PID actions in )
terms of their nonlinear tuning parameters. Types Il and VI
structures offer independent gain control for both of the tuning
levels. The type VI controller is more analogous to a linear
PID controller, where each control action is nonlinearly related 3)
to the error. The system can be made exactly like a linear

PID controII.er by seIepting nonlinear tuping pgrameters to fuzzy variables is limited [33]. Therefore any nonlin-
produce a linear function for the proportional signal. As an earity tuning for better control performance requires an

example, the proper selection sf and s, in the one-input exhaustive search of large numbers of rules for obtaining
nonlinear like fuzzy controller element allows the fuzzy output 5, optimum control surface.

to be almost linear (curve C in Fig. 14). Therefore proper

selection of nonlinea_r tuning parameters can produce the ”n%fution procedure for the output of a general three-input
cont.roller as a special case of the fuzzy PID controller. ThIﬁ_FLC system. The input transformation procedure reduces
pgrucular feature makes the fuzzy _controller always Pe”“’rfﬂe number of nonlinear expressions required to represent
elth%r bitter than or ?qual to a anarfPlD controlllelzr arMulti—phase solutions for any LLFLC structure. The LLFLC
avoids the poorer performance of the fuzzy controllers @g,cyyre can be used as the basic controller structure to com-

expe_rlenced in [7]. The s_cah_ng fact_ors for th_e error can bgsre the dynamic characteristics of different fuzzy controller
readily computed by knowing its maximum deviation, which i§;,ctures.

usually available with the response data. With proper choice of

nonlinear tuning, the type Il controller also can be made with a APPENDIX

perfect incremental (velocity) type PID controller. Due to the DERIVATION OF THE NONLINEAR TERM 33

derivative error inputs, this structure is sensitive to noise [48]. For this derivation, assume the incremental input values
However the error derivatives provide additional infOfmatiOﬂ'om the reference modal positions given in Step 3 of the so-

and enhance the generalized damping of the control systRiflon procedure shown in Section IV-B satisfy the following
[47]. Thus the type Il structure may make the controller morgondition:

1) The coupled rules produce an associated PID action and
therefore identifying nonlinear tuning parameters for the
nonlinearity (or high-level) tuning is difficult.

The complex and coupled nature of both linear and non-
linear gains makes the tuning of fuzzy PID controllers an
extremely a difficult task, and therefore its applications
are limited to either the Pl or PD versions.

With linear rules, [see (17)] the nonlinearity obtained
by changing membership functions of the consequent

In this paper, we have also described a new analytical

robust than the type VI controller. Oxa ) _ Ox2; _ bxy
' i - — < —= < —=<05
In this study we have proposed an equivalent linear con- as — ax — a1 ~
troller analysis to identify second level or overall tuning termsr
The ALG terms derived from the ELC analysis have the same bua,u bw2j | 0%i o

effect as the three PID gains of a linear PID controller. Also we as as a1
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a, a, a,
1 1 1
1 1 1
05 |3x, | |6xy,| |8,
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Fig. 15. Relative positions of inputs.
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ds

Case I: 6x; 2 0,8x, ; >0 and 6x3, 2 0.

Uips Uz Uger Usp

Wik

Case II: &x;; <0,8x, ; <0 and 8x;;, <0.

Usir U Uy Uz

A \
'-'A-V."-‘- H

ijk

u' u'y+l

Case III: 6x; 2 0,6x, ; <0 and x5, 20.

Upz Upa Up  Usn

ik

Case IV: 8x;; <0,8x, ; 20 and 8x;, <0.
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p/ N AN
k
s W,
p’]ﬂ p'i+l
My
€3k _’|5xz,k € _>| ssz €Li i—p| 6x|,
< >
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TABLE VII
RULE IMPLICATION AND Fuzzy OuTPUTS FORCASE |

Ruld & A és a h Pimax

Rl | By | B2y | Esx | Uik Hi i

R2 | By Eay | Esx | Ujigr | pasr
R3 | Evi | Ezj4a| Bsx | Uk | g1 | g1
R4 | Ev; | Bo; | Esrt1 Uijrs1 | Bt

R3 | Eris1| Eoje1| Ese | Uijrye | #i01
R6 | Eriv1| B2y | Eaev1] Uit | srv1 | 41
R7 | Evi | Eoj+1| E3x+1 Uijrrz | pta

R8 | Eyrit1| B2 41| Esps1| Uijres | Ma+1 | Hat1

TABLE VI
RULE IMPLICATION AND Fuzzy OuTPUTS FORCASE Il

Rud &, |é& |é& |4 h B
Rl | B | Eoy | Ese | Ui i Hi

R2 | Eyi1| B2y | Ezx | Ujr—1 | pica
R3 | B | Eog-1| Bsr | Ugr—1 | p5-1 | i1
R4 | B1i | By | Esp—1| Uijr—1 | g1

RS | Evi-1| Eoj-1) Esx | Uijk—2 | -1

)

R6 | Eri 1| Eaj | Ese—a| U2 | -1 | 51
R7 | Ey; By | Ezp—1| Ujr—2 | pe—1

)

R8 | Eyi-1| E2j-1| E3 k-1 Uije—-3 | k-1 | thr—1

in the incremental input space is then transformed to this space
by the input transformation shown in Step 4 of the solution
procedure in Section IV-B. Consider the linear rule base given
for the general three-input case by (17) in Section IV-A. For
given crisp inputs{é;, é3, ¢35} the final control decision

U’ is determined by applying the Z—M min—max reasoning
(compositional rule of inference) as described in [11]. It is
given by

NU’(Q’) = ?la)’f min [I’LEl,i(éT)7 I’LEZ,j(é;)7 HE3 4 (é;’)] .

EReE]

The fuzzy inference will fire a maximum of eight fuzzy rules to
produce eight nonzero fuzzy outputs (clipped outputs) against
any arbitrary three fuzzy singleton input values. The clipped
fuzzy output produced by a single rule inference is a trapezoid.
After the union of all clipped outputs, the final fuzzy sé&f,

can have four different shapes with respect to the reference
crisp output positioni,;+;+%. The reference output is when
all crisp inputs are at membership modal positions. The input
conditions and the resultant fuzzy outputs corresponding to
each case are shown in Fig. 16. For convenience the subscript
i 4+ j + k is represented byjk. The membership functions

Fig. 16. Fuzzy output shapes corresponding to different input conditioissed for each rule fired and the height$ 6f the trapezoids
The incremental inputs are measured from the modal positions. The subscrjp@duced for each rule are shown in Table VII-X. As an

ijk = i+j+k

example, the rule R1 shown in Table VIII reads d6 (é;
is By ; andéy is E» ; andés is E's i) then 4 is U1 j41." The

The shaded areas in Fig. 15 show these relative input condiles having the same output fuzzy labels are combined by the
tions. This particular region is selected to give a simple arithax” operation. Thus the maximum height of the trapezoids
concise expression for the nonlinear tefg Any other region having the same support sets is describedy.{).
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TABLE IX
RULE IMPLICATION AND Fuzzy OuTPuTS FORCASE Il

Rule él é2 é3 7 h hmax

Rl { By | Eoja| Ezx | Ugr-1 | -1 | M52
R2 | By | Eoy | Bax | Uk i
R3 El,i+l E2,j—1 E3,k Uijk Hi—1 Hi
R4 | Evi | E2j—1| E3 ey Uijr HEr1

RS | Fiiv1| F2, -1 Es v Uijrs1 | pes
R6 | Ev: | Eoy | Esktd| Ugrdr | g1 | Hita
R7 | Eri41| B2 | Eap | U1 | i

R8 | Eriva| E2; | Esw+a| Uijriz | prt+1 | Het1

TABLE X
RULE IMPLICATION AND Fuzzy OuTtpPuTS FORCASE IV

Rule é1 éz é3 ’ll h hmax

Rl | Eyi1| B2 | Ezp—tf Ugr—2 | pr—1 | Hz—1

3

R2 | Eyi1| B2y | Bz | Uyr—1 | pi-1

R3 | E1i | Eajy1| Esk—1| Uije—1 | pr—1 | -1
R4 | By | By | Eza—1| Uje—1 | pa—1

i

RS | B | E2; | Eax | Uije i

R6 | Evioa| Eagia| Bz | Uije | #ye1 |
R7 El,i E2,j+1 Es 1 Uijk Hik—1

3

R8 | By | Ezja1| Esp | Uik | g1 | i1

TABLE Xl
THE NONLINEAR OUTPUT TERM

Case | I II (m| v

B3 a1 | —a1 | ax | —a

Defuzzification: The COA based defuzzified value can be

expressed as [11]

/ gty () du

uel

/ i (1) du
uClU

where the membership functiobi” with its support set is

U=

387

and « are given by (27) with

|(5$1 z|
[ma| =—==
a1
1o
|m2| — | ‘T27J|
a2
|0z3, |
[ma| = ——.
as

Table Il given in Section 1V-B shows 8 cases with respect to

the sign of the incremental inputs. The extra four cases shown
have been transformed to the region shown in Fig. 15 by
modifying the modal position and thus changing the direction

of the maximum incremental input. This procedure would

eliminate the use of an excessive number of formulae for
representing different input conditions.
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