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New Methodology for Analytical and Optimal Design
of Fuzzy PID Controllers
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Abstract—This paper describes a new methodology for the
systematic design of fuzzy PID controllers based on theoretical
fuzzy analysis and genetic-based optimization. An important
feature of the proposed controller is its simple structure. It
uses a one-input fuzzy inference with three rules and at most
six tuning parameters. A closed-form solution for the control
action is defined in terms of the nonlinear tuning parameters.
The nonlinear proportional gain is explicitly derived in the
error domain. A conservative design strategyis proposed for
realizing a guaranteed-PID-performance (GPP) fuzzy controller.
This strategy suggests thata fuzzy PID controller should be able
to produce a linear function from its nonlinearity tuning of the
system. The proposed PID system is able to produce a close
approximation of a linear function for approximating the GPP
system. This GPP system, incorporating with a genetic solver
for the optimization, will provide the performance no worse
than the corresponding linear controller with respect to the
specific performance criteria (i.e., response error, stability, or
robustness). Two indexes, linearity approximation index (LAI)
and nonlinearity variation index (NVI), are suggested for eval-
uating the nonlinear design of fuzzy controllers. The proposed
control system has been applied to several first-order, second-
order, and fifth-order processes. Simulation results show that
the proposed fuzzy PID controller produces superior control
performance than the conventional PID controllers, particularly
in handling nonlinearities due to time delay and saturation.

Index Terms—Fuzzy logic control, genetic algorithms, nonlin-
ear control, optimal control, PID control.

I. INTRODUCTION

FUZZY logic control (FLC) technique has found many
successful industrial applications and demonstrated sig-

nificant performance improvements [7], [9], [12], [18], [35].
However, fuzzy controller design remains a fuzzy process
due to the fact that there is insufficient analytical design
technique in contrast with the well-developed linear control
theories. Although the functions of fuzzy systems have the
advantage of being relatively easy to understand, the sys-
tems become complex or nontransparent due to many design
parameters involved. Considering fuzzy PID-like controllers,
we summarize the design parameters within two groups:
structural parameters and tuning parameters (Table I). While
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the structural parameters are determined during off-line design,
tuning parameters can be calculated during on-line adjustments
of the controller to enhance the process performance, as well as
to accommodate the adaptive capability to system uncertainty
and process disturbance. Some parameters can be called either
structural or tuning parameters depending on their usage. The
optional design parameters are marked by an asterisk (*) in
Table I.

A wide variety of fuzzy PID-like controllers have been
developed. Only a few of the designs are listed in Table II to
highlight the significant differences in the design parameters
and structures. In most cases, fuzzy controller design is accom-
plished by trial-and-error methods using computer simulations.
Significant studies based on the closed-form analysis of fuzzy
PID-like controllers started with the work of Ying, Siler, and
Buckley [34], [39], [40], where they have used a simple
four-rule controller similar to that of Murakami and Maeda
[28]. More analytical work in this regard was subsequently
reported for the four-rule controllers [6], [23], [38], and
linear-like fuzzy controllers [3], [5]. Palm has analytically
demonstrated the equivalence between the fuzzy controller
and sliding-mode controllers [29]. It is possible to build
a fuzzy controller which provides better performance than
a conventional PID controller, but a fundamental question
remains—Is a fuzzy PID controller guaranteed to outperform
a conventional PID controller for any type of process? It has
been reported that a specific fuzzy controller is not necessarily
better than a conventional PI controller [5]. This raises another
question—Under what conditions can a fuzzy PID system
provide better performance than a linear PID controller? To
date, no satisfactory formal techniques have been developed to
solve these problems. Moreover, in a study of optimal design
for fuzzy controllers, two relationships must be established:
1) design parameters and control nonlinearity, and 2) control
nonlinearity and process performance.

This work is an attempt to undertake the development of a
new analytical approach to the optimal design of fuzzy con-
trollers. We propose a new methodology for the optimal design
of fuzzy PID controllers. While an analytically based study is
conducted for the first relationship, the second relationship is
solved by using a genetic method. A simple controller applying
a single variable, three rules, and six design parameters is
developed. The properties of the control action are discussed
in terms of the design parameters. The nonlinear proportional
gain is explicitly derived in an error domain. The issues of
nonlinear controller design are discussed, and a conservative
design strategy is suggested for a guaranteed-PID-performance
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TABLE I
DESIGN PARAMETERS OF A FUZZY PID CONTROLLER. (* OPTIONAL DESIGN PARAMETERS)

TABLE II
COMPARISON OF FUZZY PID-LIKE CONTROLLERS. (NOTE: SOME DESIGN PARAMETERS MIGHT BE APPLIED

BUT NOT GIVEN IN THE REFERENCES. MF’s = MEMBERSHIP FUNCTIONS, RM = RELATION MATRIX)

fuzzy controller. Two indexes are proposed for the evaluation
of nonlinear controller designs. For an optimal system design
using genetic algorithms, an overall performance index is
proposed including several individual performance indexes.
Finally, numerical studies are performed on several processes
including nonlinearities due to time delay and saturation.

II. NEW METHODOLOGY

A new methodology is proposed for the analytical design
of a fuzzy PID controller. Fig. 1 shows the proposed method-
ology with respect to the data or parameter flow in off-line
design. In Step 1, the structure of a fuzzy PID controller is
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Fig. 1. Proposed methodology with respect to the data or parameter flows for optimal design of fuzzy PID controllers.

Fig. 2. Structure of the proposed fuzzy PID controller.

designed and the structural parameters are set for the prelim-
inary design. The tuning parameters are identified in Step 2,
while in Step 3 an analytical fuzzy calculation is performed,
which produces a closed-form relationship between the design
parameters and control action for the fuzzy inference. In Step
4, numerical simulation (or control theory) is used to obtain the
control performance data. In Step 5, genetic-based optimiza-
tions are carried out to produce optimal design parameters.
This also provides useful information for the redesign of the
original system. Finally, if necessary, redesign is undertaken
using the designer’s expertise for further improvement to the
control system. Note that the theoretical study in Step 3 makes
the fuzzy controller transparent. This step is important since
it will establish a close link between fuzzy control design
technique and classical/modern control theory.

Simplicity is a key principle of this design methodology. The
reason is obvious if we see that fuzzy logic controllers are
systems which simulate human control exercise. For many
everyday control tasks, people initially try to apply sim-
ple rules. Three rules used in this work are very common
in a feedback set-point control problem. If a satisfactory
control process can be achieved by applying simple rules,
the use of complex rules, which is often associated with
a higher cost of computation, becomes unnecessary. Sim-
plicity is the best and direct way to maintain a clearly
physical insight into the control laws. It also makes high-
dimensional fuzzy systems tractable for using simple math-
ematical expressions for describing functionality between de-
sign parameters and nonlinearity. The simplicity of a system
can be assessed by examining the structure of the infor-
mation flow and the total number of design parameters.
It is preferable for a system to include high modularity,
parallelism, concurrency, and normality for implementation in
both software and hardware. To simulate the simplest control
exercise of human beings, we develop a one-input/three-
rule fuzzy PID controller associated with at most six design
parameters. This system, having a simple structure to form
a control curve, is closely analogous to a linear PID con-
troller.

Fig. 3. A single input fuzzy PID controller.

III. STRUCTURE OFFUZZY PID CONTROLLER

Compatible with the cascade structure of a conventional
PID controller, a one-input fuzzy PID controller is proposed
(Fig. 2). An error signal is defined by ;
with being a reference input, and a plant response
at time instant . The controller output (or, control input to
a plant) is denoted by . The scaled discrete-time output

is the sum of three terms (Fig. 3), represented by

(1)

where we define as a defuzzified proportional output; and
its change is for the sampling period, .

and are the normalized proportional, integral,
and derivative gains, respectively. They are all normalized
within a range of . Three rules used for the fuzzy control
are

R1: if is NB then is NB

R2: if is PB then is PB

R3: if is AZ then is AZ

(2)

where is the scaled error signal. The fuzzy variable “NB”
stands for “negative big”, “PB” for “ positive big” and “AZ” for
“approximate zero”. The membership functions for and
are shown in Fig. 4. For simplicity, we use triangular mem-
bership functions. While the membership functions forare
fixed, the membership functions for may change according
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TABLE III
PARAMETERS FOR THEPROPOSEDOPTIMAL FUZZY AND OPTIMAL LINEAR PID-TYPE CONTROLLERS

Fig. 4. Membership functions of a three-rule fuzzy controller.

to the parameters and , which will be discussed in the
next section. For a set-point process control, we normalize the
crisp input data into scaled data using the following
transformation:

(3a)

Two operations are performed in the normalization. The scal-
ing factor is calculated as

(3b)

where and are the initial values of reference input
and response , respectively. The second
operation is a saturation function as expressed by (3a). We
have noted that the selection of a universe of discourse is
usually arbitrary; this may cause an additional complexity in
the selection of the scaling factor. The saturation operation
in (3a) provides a standard calculation of. The normalized
error falls within the range . Denormalization of the
scaled output is expressed in the form

(4)

where is a crisp output without saturation operation, and
is a denormalized factor.

Saturation is considered in the control structure (Fig. 2) for
true control action analysis. The final controller output is

(5)

where and are the minimum and maximum allow-
able inputs to the plant.

IV. I DENTIFICATION OF DESIGN PARAMETERS

In this work, as few parameters as possible are included. The
first two tuning parameters are associated with the allocation of
membership functions for (Fig. 4), where is associated

with “AZ,” and with “PB” and “NB.” Each parameter
changes the width of the associated triangular membership
function. For effective application of tuning parameters from
a fixed number of design parameters, we suggest assigning
them to consequent fuzzy sets rather than to antecedent fuzzy
sets. Otherwise, the undesired output may result when no rule
or a single rule fires (refer to “rule completeness” in [9]).

For a conventional (or linear) PID controller, the gains
and are independent tuning parameters. Without

a priori knowledge, they could take any nonnegative value.
This arbitrary range usually causes trouble in determining the
universe of discourse of the gains in a fuzzy PID controller
design. In order to avoid this difficulty, we propose applying
the normalized control gains denoted in (1). An additional
parameter, , is used to scale the overall values of the gains.
The universe of discourse of this parameter can be easily
obtained from the maximum absolute value of . Therefore,
a total of six tuning parameters for the generalized fuzzy PID
controller is included in the system. The range for each design
variable is given by

(6)

Three normalized gains, and together with
the output scale factor are interdependent. The reason for
adding is to provide a standard approach in the controller
design.

As a generalized method, this three-gain fuzzy PID con-
troller is ready to change into a two-gain fuzzy PI or PD
controller. At least one parameter can be eliminated for the
two-gain controller. If a fuzzy PI controller is selected for
use, only four independent tuning parameters are employed
for the condition suggested in [37]

(7)

Based on thisa priori knowledge, we remove as a variable
and define it as a unity; i.e., . Table III lists the tuning
parameters for the optimal fuzzy PID-type as well as optimal
linear PID-type controllers proposed in this work. Note that
the normalization technique is also applied to a linear PID
controller (Table III).

V. ANALYTICAL FUZZY CALCULATIONS

In this fuzzy PID controller, we apply the “max-min-
gravity” fuzzy reasoning method, known as Zadeh–Mamdani’s
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(a)

(b)

(c)

(d)

(e)

Fig. 5. Two cases for fuzzy output aggregation. (a) Case 1:x1 � x2. (b)
Case 2:x1 > x2. Range A:0 � jêj � êd. (c) Case 2:x1 > x2. Range B:
êd < jêj � 1� êd. (d) Case 2:x1 > x2. Range C:1� êd < jêj � 1. (e)
Case 2:x1 > x2. Three ranges with respect tôe.

method. The hatched areas in Fig. 5 represent the combination
of consequents of each rule, or aggregation, in the fuzzy
inference system. The center of area method (COA) is used
as the defuzzification procedure [7]

(8)

where is the defuzzified control action, and is the
membership function of a control inference with its support
set given by

(9)

Two cases are given for the defuzzification. While Case 1
[Fig. 5(a)] has two separated areas due to its nonoverlapping
adjacent membership functions, a continuous area results in
Case 2 because of the overlapping of the adjacent membership
functions [Fig. 5(b)–(d)]. In Case 2, three ranges [Fig. 5(e)]
are distinguished with respect to for derivation of the
defuzzified output. The three different ranges are determined
by (which point is calleddivision point)

(10)

In fact, this value is also equal to the height of the crossing
point between two adjacent membership functions of the
consequent fuzzy sets [Fig. 5(b)]. The following expressions
have been derived for the defuzzified output by taking the
center of the hatched area(s). For convenience, the time instant
notation is dropped for both and .
Case 1 (Nonoverlapping):

(11a)

Case 2 (Overlapping):
Range A:

(11b)

Range B:

(11c)

Range C:

(11d)

in which the intermediate variables are defined as

(11e)

VI. COMPARISON BETWEEN FUZZY PID
AND CONVENTIONAL PID CONTROLLERS

Equation (11) gives a closed-form solution to the proposed
fuzzy proportional action. Further analysis of the fuzzy PID
gains compared to a conventional cascade PID controller can
be made. The present linear PID controller in its digital form
is represented as

(12)

where and are constant gains, and we impose the
initial condition . Analogous to above, nonlinear
PID gains can be obtained for the fuzzy PID controller.
Rewriting (1), we get

(13)

where we define , , and to be theequiv-
alent proportional, integral, and derivative gains to a con-
ventional PID controller, respectively. Note that the scalar

is not included for the equivalence since this factor does
not change the nonlinear behavior of the controllers. The
equivalent proportional and derivative gains are readily found
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Fig. 6. “ê versus ûp” plots of linear and fuzzy PID controllers.A:
x1 = 0:0079, x2 = 0:630. B: x1 = 0:874, x2 = 0:945. C: x1 = 0:466,
x2 = 0. D: x1 = �(2� �)=4, x2 = 1� � (�, an arbitrarily small value,>0).

Fig. 7. Membership functions of a two-rule fuzzy controller.

from (11) and (13). However, the equivalent integral gain can
be explicitly obtained only when is a known function with
respect to time.

A conventional PID controller can be implemented using
a simple fuzzy controller. Fig. 6 shows different “ versus
” plots describing linear and fuzzy PID controllers. If a plot

shows a linear relationship

(14)

a linear PID controller can be constructed by substituting
this relationship into (13). Using rules of R1 and R2 in (2)
with the membership functions shown in Fig. 7, we realize
a linear relationship using the smallest of maximum (SOM)
defuzzification method [16]. This method is a simplified
version of the mean of maxima (MOM) defuzzification method
[7]. Instead of finding the mean point of all, where is an
element giving the maximal grade of membership in (9b), the
SOM is selected as the point that corresponds to the shortest
distance to the origin (Fig. 7)

such that
such that

(15)

where and are the left and right points of . This two-
rule fuzzy PID-type controller using SOM defuzzification will
result in a linear PID controller. For this linear realization,
an infinitive number of rules have to be used for linear-like
fuzzy controllers in [3], [5], and [40] by using the COA
defuzzification method. It is reported in [27] that, using the
product-sum-gravity reasoning method, linear PD controllers
have been realized by four rules and linear PID controllers by
eight rules.

Fig. 8. Four types of simple nonlinear curves.�L: angle corresponding to
fitting a linear function. (a) Type I(�0 < �L; �1 > �L). (b) Type II
(�0 > �L; �1 < �L). (c) Type III (�0 > �L; �1 > �L). (d) Type IV
(�0 < �L; �1 < �L).

VII. PROPERTIES OFFUZZY PROPORTIONAL ACTIONS

In this section, we will discuss properties of the proportional
action, in error domains. The nonlinearities of
the present three-rule fuzzy PID controller are produced by
two design parameters: and . We call them “nonlinear
tuning parameters.” The analysis of fuzzy proportional actions
is essential because the actions are a direct output from the
fuzzy inference, and they also influence the fuzzy integral
and derivative actions. Several properties of the relationship
between and are summarized below to provide some
useful design guidelines for fuzzy PID controller design.

1) limits the magnitude of normalized propor-
tional action to be less than or equal to one.

2) is a necessary condition for a zero
steady-state error.

3) indicates a
maximum proportional controller output for a fast rise-
up response when error is at an extreme. (Note that
is not totally normalized because of ).

4) is a continuous function with respect to.
5) provides a monotonic proportional action with

respect to . It presents a nonlinear, one-to-one, mapping
relationship between and .

6) gives an antisymmetric proportional
control action with respect to.

7) can form three types (Type I, II, and III) of
nonlinear (or control) curves shown in Fig. 8.

8) cannot exhibit a linear function. A close approx-
imation of the linear relationship (CurveC in Fig. 6) is
obtained when and .

9) . The slope for the function is
always positive. This indicates that there is no flat zones

in the control curve.
10) can be viewed as a Normalized Sensitivity (NS)

function. The higher the value, the more sensitive the
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controller to error. Note that for a linear PID controller,
. This function can be used to compare the

normalized sensitivities of fuzzy PID and linear PID
controllers. A complete sensitivity comparison should
include the proportional gain and denormalized factors.

11) For the overlapping case (Case 2), the normalized
sensitivity at the zero error pointNS is controlled
by (16). In the nonoverlapping case (Case 1), NS
is the function of both and .

NS (16)

12) Both and , in (17), can affect the sensitivityNS
at the extreme error points.

NS

(17)

13) The sensitivity variations for NSand NS are partially
interdependent. Suppose NSis any given value within
the range from to , i.e., . Then, the limited
ranges for NS are

NS

(18a)

where

NS NS (18b)

Thus the variations in NSand NS at the two extreme
points are

NS NS ’s range when

NS NS when
(19)

The significant feature of the proposed controller is the
application of a single-input scheme,, to evaluate the fuzzy
proportional action. Most other researchers have used the two-
input scheme (Table II), and , to produce the coupled PD
actions, or coupled PI actions by two-to-one mappings. Due to
this coupling effect, the change of error will also alter the
proportional action which may amplify any spurious signal or
noise significantly. Therefore, the present controller has less
sensitivity to the noisy data than a conventional two-input
fuzzy controller.

VIII. N ONLINEAR CONTROLLER DESIGN

AND CONSERVATIVE DESIGN STRATEGY

Fig. 6 demonstrates that the fuzzy PID controller is a nonlin-
ear system. Therefore, three issues are related to the design of

the system: 1) the type of nonlinearity of proportional actions,
2) the inclusion of a linear function, and 3) the evaluation of
nonlinearity variations for a given fuzzy controller. The issues
are addressed below respectively.

Four simple types of nonlinear, or control, curves are
identified in Fig. 8. These fundamental curves are defined
within a positive region, and . Types
I and II exhibit monotonic convexand concavecurves, re-
spectively. Two other simple types are Types III and IV
(Fig. 8(c), (d)), corresponding tosingle-convex-plus-single-
concavecurves. Only three types of curves, Types I, II, and
III can be realized by the proposed controller. The need for
fast rising of the proportional action in the middle range of,
like Type IV curve in Fig. 8(d), may not be required for many
applications. In general, if the nonlinear functions are more
complex than those four types of curves, additional nonlinear
tuning parameters are required. If a plant is lower order or with
monotonic or essentially monotonic characteristics for a set-
point control, a simple nonlinear curve may be sufficient for
the controller without employing a complex nonlinear action.
As a rule of thumb, in general nonlinear design, a controller
having complex nonlinear-action behavior should have the
flexibility to produce a simple action so as to adapt to those
simple control situations.

Considering the issues of stability, controllability, and op-
timization of fuzzy systems [18], [36], we propose a conser-
vative design strategy for fuzzy PID controllers—A fuzzy PID
controller should be able to perform a linear, or approximately
linear, PID function such that the system performance is no
worse than its conventional counterpart. If the controller is
able to include a perfect linear function as its property, we call
it a guaranteed-PID-performance(GPP) system. We suggest
that this GPP system should incorporate with an optimal solver
for the specific performance index of interest, say, response
error, stability, or robustness. Therefore, the system will pro-
duce the performance no lower than the corresponding linear
PID system. This conservative design strategy is particularly
important when we know that stability is guaranteed for a
linear PID. In this case, we know immediately that the GPP
fuzzy system will offer a safe performance bound with respect
to the stability criterion. The performance analysis of a linear
counterpart will provide a useful reference for the GPP fuzzy
system design. In order to evaluate the confidence in using a
GPP bound, we propose alinearity approximation index(LAI)

LAI (20)

where is a linear function from using a least square method
of data . This function is imposed to pass through the origin
point to satisfy Property B). Since the Euclidean distance error
norm does not sensibly represent nonlinearity, the maximum-
distance error norm is used. This index, representing the
most linearity approximations which can be produced by the
controller, is normalized within a range of . The larger
the value of LAI, the higher degree of linearity approxima-
tion included by the fuzzy controller. The index provides a
relatively quantitative measure of confidence in using a GPP
bound for a fuzzy PID controller.
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As shown later in the numerical studies, good performance
of fuzzy PID controllers is attributed to their associated
nonlinearities. The greater the nonlinearity variations, the
greater the possibility of a high-performance controller. In
order to evaluate a fuzzy PID controller according to its
nonlinearity freedom, we propose anonlinearity variation
index (NVI), NVI where and are the total
number of input variables associated with the fuzzy control
action and the total number of nonlinear tuning parameters to
tune the control action, respectively. The present controller has

and . NVI is defined as a process-independent
measure and should be normalized within the range
for a consistent comparison between different controllers. For
the present controller, we propose the following definition for
NVI :

NVI (21)

where is theadmissible areafor and of the present
controller, and and are the angles in radians correspond-
ing to NS and NS, respectively. Any point beyond this area
cannot be realized by the present controller. For a linear PID (a
unity line in Fig. 6), and are constants. This results in a
point area only, and it gives NVI . If NVI ,
which is the maximum value for the index, it means that both

and can be varied independently within . For the
present controller, and are not totally independent. From
Property M), we can suppose has a range of , and
then the ranges of can be found from (18)

NS
NS

(22)

Based on (22), we obtain the admissible area of a nonlinear-
ity diagram for and (Fig. 9), which consists of AreaA
(gray area) from the nonoverlapping case, and AreaB (hatched
area) from overlapping case. Equation (19) then becomes

s range when

when
(23)

The admissible area is calculated based on the two enclosure
curves in (22)

NVI
NS

(24)

Based on the admissible area of the nonlinearity diagram in
Fig. 9, we now can find a point within the area which gives
the best approximation to a linear PID controller. This point
can be found mathematically using the least square method,

Fig. 9. Admissible area of nonlinearity diagram for�0 and�1. A: gray area
for nonoverlapping case.B: hatched area for overlapping case.C: point for
approximation of a linear PID, corresponding to CurveC in Fig. 6. D: point
corresponding to CurveD in Fig. 6. E: point calculated from (25).

but it involves a complex derivation. As an approximation, we
suppose this point should satisfy the conditions

NS NS (25)

This means that this point gives identical values forand .
The identical values are not equal to a unity due to the partial
normalization of (See Property C). The solution of (25)
shows this point, PointE in Fig. 9, where
(Note that for a full normalization of , NS NS ,
and ). This point (E) is outside the admissible
area for and . Consequently, pointC, which is closest to
the E, is chosen as the best approximation point to a linear
function. In Fig. 6, curveC, corresponding to pointC when

and , illustrates this linear approximation.
The linear regression line goes through the extreme point of

. Thus the linear approximation index for
the present controller is

LAI (26)

This indicates that a good approximation of a linear relation-
ship is included in the present fuzzy PID controller.

Three important observations can be obtained from this
nonlinearity investigation. First, for any point within the
admissible area, the further away from pointC, the greater
nonlinearity the “ versus ” curve represents. Therefore, the
nonoverlapping case generally produces higher nonlinearity
than the overlapping case. Second, four regions, Regions I, II,
III, and IV, are approximately divided by pointE (Fig. 10).
Each region maps to the same number of curve type (say,
Region I maps to Type I curve) in Fig. 8. Because there is
no admissible area located in the Region IV, Type IV curve
is unavailable from the present controller. Third, the tuning
mechanism for the nonlinear tuning parameters is clearly
described by the contour plot with respect to and as
shown in Fig. 10. The incremental value for contour curves is
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Fig. 10. Four regions for four types of simple nonlinear curves, and contour
plot with respect tox1 andx2 in admissible area of nonlinearity diagram for
�0 and�1. �x = 0:1. Dashed curves forx1 and solid curves forx2.

. Given and , the nonlinearity of
the corresponding point is decided by the region number. The
associated region number maps the type of nonlinear curve
directly.

For a simple understanding of the tuning action with respect
to the nonlinear tuning parameters, an example is given for
the case when , which corresponds to a touching
case of the adjacent membership functions. The system, now
to be a single-nonlinear-tuning-parameter controller, results
in a single admissible line in the nonlinearity diagram (see
the boundary between the overlapping and nonoverlapping in
Fig. 9). Fig. 11 shows the nonlinear tuning for this system.
When the tuning parameter is increased, the associated
nonlinear curve change from Type II to Type III, and finally
to Type I. The best linear situation is when
[Fig. 11(b)]. The slope of the control curve corresponds to
the normalized sensitivity. While this slope is fixed for a
linear controller, it will change with error for a fuzzy PID
controller. The desired property for this control curve is usually
considered when is close to zero. A low value of NS
is preferred for a low degree of sensitivity to suppress the
broadband noise from measurement around the set-point. On
the other hand, a high degree of sensitivity is suggested in [7]
and [9] for a fine tuning around this point by arranging denser
membership functions around the zero-error point. In our case,
this can be realized by allocating the small value ofto the
consequent membership functions.

For a nonlinearity comparison study of different designs
of a three-rule fuzzy PID controller, an alternative controller
is developed in the Appendix. This study aims to display an
analytical method for exploring the potentials and limitations
of the fuzzy systems as a nonlinear approximator. The initial
difference between the proposed controller and the alternative
controller results from the membership functions of. The
alternative controller has symmetric membership functions of
the consequent fuzzy sets (Fig. 22 in the Appendix). Then,
a fully normalized range of is offered to the alternative
controller , while the proposed controller

has only partially normalized range as shown in Property C )
.

The nonlinearity diagrams of admissible areas between two
controllers are significantly different. The admissible area
of the alternative controller (Fig. 23) is fully covered by
the admissible area of the proposed controller (Fig. 9). This
means that any nonlinear function produced by the alternative
controller can be realized by the proposed controller, but not
vice versa. Therefore, it is reasonable to consider that the
proposed controller shows better design for its greater degree
of nonlinearity variation. Table IV shows the nonlinearity
comparison between the two controllers. It is interesting to
find out that, while a minor change is made to the membership
functions of fuzzy controllers, their corresponding nonlinearity
variations may change significantly.

The investigation of the controller in regard to its associated
NVI is of great help to demonstrate the potential and limita-
tion of the controller. For example, a diagram of admissible
areas/lines/points can explain the reason why a fuzzy PID
controller may fail to provide better performance than a con-
ventional PID controller. Suppose that a specific process needs
a perfect linear function for the high-performance control.
If those admissible areas/lines/points produced by a fuzzy
controller do not cover the point for a perfect linear function,
the fuzzy controller, of course, presents poorer performance
than a linear PID controller. Using the NVI as a process-
independent measure, designers are able to improve the design
in the selection of the fuzzy rules, membership functions,
inference schemes, etc.

IX. GENETIC-BASED OPTIMAL DESIGN

Controller design decisions should be made based on the
specific performance criteria. Suppose is the overall per-
formance index of the system, which is in a form for a fuzzy
PID controller

MF’s SF’s (27)

where MF’s are the membership functions for the fuzzy rules,
and SF’s are scaling factors. Usually, there is a nonlinear
relationship between the overall performance index and the
design parameters. In addition, may have multimodal
characteristics, and the standard gradient-descent optimization
may trap into a local optimization. In this work, we apply
genetic algorithms (GA’s) for high-performance controller
design. By mimicking the principles of natural selection, GA’s
are able to evolve a solution to real-world problems. Unlike
the gradient algorithms, GA’s are not mathematically guided
solvers. The advantage of the GA’s is its global optimization
solution even for nonlinear, high-dimensional, multimodal,
and discontinuous problems [10]. Although there are many
variations of off-line and on-line approaches [21], [22], we
focus on the simple genetic algorithm developed in [10].
In this study, the GA parameters are given by: number of
generations ; population size ; crossover factor

; mutation factor ; and binary bits of
parameters . The generalized optimization problem for the
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Fig. 11. Nonlinear tuning with respect tox (=x1 = x2). (a) Type II (smallx). (b) Type III (smallx = 0:316). (c) Type I (bigx).

TABLE IV
DIFFERENCES ANDNONLINEARITY COMPARISON BETWEEN THE PROPOSEDCONTROLLER AND THE ALTERNATIVE CONTROLLER

controller is described as

maximize

subject to (6) (28)

where is a fitness function and is a constraint function
from the performance requirement (say, the restraint for the
normalized sensitivity). The objective function using fitness
value produces uniformity from its normalized range . It
relates to the overall performance index from a sum of the
weighted individual performance indexes

(29)

where is a weight associated with theth individual
performance index . Weighting is used in the case that
indexes have large difference in their magnitudes; and it can
also emphasize some specific performance indexes over others.
In order to be compatible with the normalization technique,
each individual performance index should be dimensionless
and represented in terms of error for consistency. As a result,
the smaller , the better the performance. This shows that a
high value of corresponds to good performance.

Performance assessment based on response error signals is
conducted but it is difficult for optimal control due to the

conflicting performance requirements between static accuracy
(steady-state error) and dynamic responsiveness (speed of
response). Most studies have applied a single-error criterion for
representing overall performance [17], [30], [42]. However, we
find that a single performance index may lead to poor design
with respect to other performance indexes (see Example 6 in
the numerical studies). In this work, three individual indexes

are applied

ISE
POS (30)

where ISE is integral of the square of the error over the total
simulation time ; is settling time, and the POS is the
percent overshoot [8]. For a unit step response, we assume
that .

X. NUMERICAL STUDIES

In this section, numerical studies are conducted to exam-
ine the performance of the proposed fuzzy PID controllers.
Comparisons are made with the conventional linear PID, and
heuristically rule-tuned PID controllers. For a fair comparison,
the conventional linear PID are also designed using the same
optimal criteria for the testing. The present genetic-based
optimization usually does not give the same results for each
calculation. (The fitness results are close but may have distinct
design parameters.) This phenomenon implies two indications:
the method is a near-optimization approach, and the sets of
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TABLE V
PERFORMANCE COMPARISON IN EXAMPLE 1

the distinct searching parameters represent the multimodal
property in the optimization problem.

The proposed fuzzy PID system, like other fuzzy control
systems, assumes no mathematical model of a control process.
Without knowledge of a plant, the system searches for the
optimal tuning parameters automatically (this is also true for
the proposed optimal linear PID controller). As a preliminary
study, the validity of the proposed system is tested only on
a single-input and single-output process for set-point control
tasks. Two basic low-order processes are initially investigated,
followed by a fifth-order process. For each plant, all initial
conditions are set to be zero and saturation is included at the
plant input. Six examples are studied using Matlab’s Fuzzy
Logic Toolbox [16]. The Runge–Kutta third-order method
is used for all simulations. A unit step response is studied
to simulate set-point control. The sampling time is set at
0.02 s unless otherwise specified. In calculation of the overall
performance (29), an even weighting value is given
for each individual index from Examples 1 to 5. The different
weighting is tested in Example 6. In order to better interpret
the mathematical models of the processes, some examples are
related to the physical systems in common industrial appli-
cations. After the implementation of the controller system, a
simple analysis is made based on the conventional control
theory to verify the design.

Example 1. A First-Order Process Without Time Delay:
Many industrial processes, such as temperature, pressure,H
value, and fluid-level controls, can be approximated by a first-
order model. A three-term model of a first-order process is
generally given by

(31)

where , , and are time constant, time delay, and the
steady-state gain of the plant, respectively. A temperature
control process without time delay is assumed for this example
[23]. For a heater plant, a nonnegative range has defined for.

The step responses of the two optimal controllers are shown
in Fig. 12. The three gains are automatically determined by
the genetic search for two optimal controllers. The conclusion
obtained from this example for both controllers is that this
process does not require a derivative action with respect to

the present performance requirement (30), that is, .
Note that a fuzzy PD controller was used for the same process
in [23]. The selection of PI-type controllers from the present
system can be understood by a simple analysis in examining
the transfer function of the closed-loop process (without
the controller) [8]

Two characteristics of the process explain the optimal results.
First, the steady-state error of the process is nonzero

, which suggests a requirement for an integral law in the
process. The integral term is sometimes called aresetbecause
it is associated with setting a steady offset in the control
input. Here, an integral action is a necessary condition for
a zero steady-state error of the process. The constant control
input to a heater is calculated by this law for maintaining
a unit temperature to the plant. Second, remains to be
a first-order process which has no oscillation. It is known
that a derivative law has a damping effect on oscillation but
results in a sluggish response. Since the present closed-loop
temperature plant does not exhibit oscillatory behavior, the
derivative action is unnecessary for the response error criteria.

The results of the performance indexes for each controller
are listed in Table V, where the rise time , and the
integral of time multiplied by the squared error (ITSE) [8]
are also presented for a broader comparison of individual
performance indexes. It is clear that the fuzzy controller
gives better overall performance. However, if the ISE is used
for single-index optimization, a different conclusion—that the
linear PID produces better performance than the fuzzy PID
controller—is reached. A careful selection of performance
indexes is important for optimal design. In Example 6, we will
demonstrate more results for the different index selections.

The two controllers show a small difference (6.58 %)
in terms of the fitness function (Table V). However, there
is a significant difference in the response curves around
the controlling ZoneA as illustrated in Fig. 12.While the
conventional PI controller reaches the set-point smoothly, a
fuzzy controller is able to produce a sharp-curve-like response.
This characteristic is attributed to the nonlinearities of fuzzy
systems. While CurveA in Fig. 6 shows a Type-II nonlinear
proportional action, Fig. 13 clearly illustrates the nonlinear
tuning actions for two gains of the system in the error domain.
Both gains are symmetric with respect to[Fig. 13(a) and
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Fig. 12. Step responses of optimal PID and optimal fuzzy PID in Example 1.

(c)]. The plot of Fig. 13(a) is obtained from the closed-form
solution, but the plots in Fig. 13(b) and (c) are obtained from
numerical simulations. While the conventional PID gains are
constant, the fuzzy controller exhibits self-tuning capability
with respect to variations in and/or . When the tem-
perature of the plant approaches the set point, the equivalent
gains of and are increased to realize a sharp-curve-
like action (but this action is sensitive to the noise around
the set point). This is why a fuzzy controller shows a better
performance than a linear controller. Heuristic knowledge can
be extracted from the optimal tuning actions from the gain
plots in Fig. 13 for manual tuning. This operation is usually
based on an error domain [Fig. 13(a) and (c)], rather than on
a sum-of-error domain [Fig. 13(b)]. Therefore, we will show
the gain plots only with respect to error in the later examples.

Example 2. A First-Order Process with a Time Delay:The
time delay occurs when a sensor (e.g., a thermocouple) and an
actuator (e.g., a heater) are installed with a physical separation.
The effect of the time delay in the first-order process in
Example 1 is examined next. The process parameters in (31)
are chosen as

A comparison is made with PI/PID controllers tuned using
the Ziegler–Nichols (Z–N) approach [2]. The Z–N gains are
calculated from the three terms of the process [2]

Z–N tuned PI:

Z–N tuned PID:

The step responses of four controllers are shown in Fig. 14.
As in Example 1, the GA optimization results in PI-type
systems again for both linear and fuzzy controllers. Both
optimal controllers produce significant improvements over
the Z–N PI/PID controllers. The difference of the fitness
between optimal PI and optimal fuzzy controllers becomes
larger ( 14.0%, Table VI) than that observed in Example 1,
which is due to the nonlinearity introduced by the time delay.
While the linear PID controller has no self-tuning function
for process nonlinearity, the present fuzzy controller has the
capacity to self adjust. These two examples demonstrate that
fuzzy controllers may present a significant improvement in
control performance for a time-delayed process.

Fig. 15 shows the nonlinearity variations of the two gains
in this delayed first-order process. The main difference with

(a)

(b)

(c)

Fig. 13. Gain plots for the optimal fuzzy PI in Example 1. (a) “(KP )eq=K̂P

versusê” plot from a closed-form solution. (b) “(KI)eq=K̂I versus ê”
plot from a numerical simulation. (c) “(KI)eq=K̂I versusê” plot from a
numerical simulation.

Fig. 14. Step responses of “Z–N tuned” PI/PID, optimal PI, and optimal
fuzzy PI in Example 2.

Example 1 can be observed from the proportional actions.
When a time delay is added, a Type I nonlinear curve is
selected (CurveB in Fig. 6), while changing the tuning actions
of two gains accordingly (Fig. 15). The overall magnitudes of
both gains are decreased compared with those in Example 1
(Fig. 13) since the sluggish characteristics have been added to
the process. It is also interesting to see that the highest mag-
nitudes for both gains move to the extreme points of the error.
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TABLE VI
PERFORMANCE COMPARISON IN EXAMPLE 2

TABLE VII
PERFORMANCE COMPARISON IN EXAMPLE 3

(a)

(b)

Fig. 15. Gain plots for the optimal fuzzy PI in Example 2. (a) “(KP )eq=K̂P

versusê” plot from a closed-form solution. (b) “(KI)eq=K̂I versusê” plot
from a numerical simulation.

Example 3. A Second-Order Process Having a Zero Steady-
State Closed-Loop Error:This example follows the work in
[19] and [2, Example 11.2]. The plant is a second-order process

such as position control of an ac motor [8]. The saturation
range is given as (see [19, fig. 8])

Fig. 16. Step responses of optimal PD and optimal fuzzy PD in Example 3.

Based on the optimization, both the linear and fuzzy con-
trollers arrive at the same results regarding integral action (i.e.,

). This differs from the results of [19], where a fuzzy
PI controller was used. Fig. 16 shows the step responses of
both optimal linear PD and optimal fuzzy PD controllers. A
detailed comparison of performance is listed in Table VII. The
transfer function reveals the oscillation property inherent in
the closed-loop process

The closed-loop model is equivalent to a damped vibration
system with a natural frequency of rad/s with the asso-
ciated damping ratio of . A derivative term is required
to suppress the vibrations of the closed-loop process. The
steady-state closed-loop error of this process is zero .
The self-regulating property of the system suggests that there is
no need to employ integral action for the process. The physical
interpretation is that the motor is controlled to move by a
unity angle and then to stop. When a steady state is reached,
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TABLE VIII
PERFORMANCE COMPARISON IN EXAMPLE 4

Fig. 17. Step Response of a controller including an integral law in Example 3.

the process requires no control input, that is, . If an
integral law is applied, the response will be forced to undergo
an overshoot before reaching the steady state in order to com-
pensate for the negatively accumulated error (Fig. 17). There-
fore, any integral action will decrease the performance by in-
cluding overshooting and possible oscillation from unbalanced
compensation. From this simple analysis, the heuristic design
guideline required is that a PD-type controller will produce
an optimal performance [in the sense of (29)] for a closed-
loop zero steady-state error process (or the “Type 1 or higher
systems” [8] with the unity negative feedback for a step input).

Example 4. A Second-Order Process with Overdamping:
Many temperature control plants can also be modeled by a
second-order process with overdamping. The fourth example
is a process with a transfer function of [23]

In this example, we examine the saturation effect on the
process performance. Three fuzzy controllers, namely,C1,
C2, and C3, are investigated. While the lower bounds of
saturation are always kept the same, , for the three
controllers, the upper bounds are given different values.C1
has , and C2 and C3 have , for the
heater input. BothC1 and C3 are independently designed
to take account of the different associated saturation ranges
(Table VIII). However, the response ofC2 is evaluated using
the same design parameters asC1, but has the same saturation
range asC3.

A fuzzy PI controller is initially investigated. Four tuning
parameters are selected according to Table III, and remaining

(a)

(b)

Fig. 18. Plots ofC1, C2, andC3 controllers (Fuzzy PI) in Example 4. (a)
Step responses(y). (b) Controller’s output(u).

two parameters are and . Comparing the
fitness value of each controller in Table VIII, as well as
the step responses in Fig. 18(a), we findC2 has the poorest
performance although it has the same design parameters as
C1. The deteriorated performance is caused by an integral
windup [2] that keeps integrating even though the control
input has been saturated. Sometimes, an antiwindup gain
with a feedback to the control input or additional rules are
added to solve this problem [19]. Other schemes using fuzzy
systems are found in [13]. In this process, the controller
output curve ofC3 in Fig. 18(b) is dropped automatically at
the beginning of the process for preventing the windup. The
simulation results suggest that the genetic-based optimization
methods perform the antiwindup function without adding extra
design parameters for antiwindup. This is understandable that
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TABLE IX
PERFORMANCE COMPARISON IN EXAMPLE 5

TABLE X

Fig. 19. Step responses of optimal PID and optimal fuzzy PID controllers
in Example 5.

if we consider the method, which is based on a principle of
performance selection, removes the candidate solution that
is deteriorated by the windup. Further investigation is also
made using a fuzzy PID controller for the same process.
The response performance is improved due to the inclusion
of derivative actions (The closed-loop process has a natural
frequency rad/s with the associated damping ratio of

). Again, the simulation results confirm the finding
of antiwindup functions of the proposed fuzzy controllers.

Example 5, A Second-Order Process with a Small Damping
Ratio: A second-order process with a small damping ratio is
examined. The general form of the process is

where and are the natural frequency and damping ratio
of the process, respectively. This example is similar to a mass-
spring-damper system and we take the following parameters:

This process requires all three gains, , , and , due
to the oscillation and nonzero steady-state error in the closed-
loop process. The optimal fuzzy PID controller is compared
with the optimal linear PID controller (Fig. 19). The detailed
comparison of performance is listed in Table IX. Due to the
small damping ratio, the process puts more weight on the
derivative action than on the integral action in this example.
The difference between the optimal PID and optimal fuzzy
PID controllers is significant ( 19.2%) although the process
is linear. In the interest of gaining heuristic tuning knowledge
for tuning this process, the plots of three gains are presented
in Fig. 20. Generally, all three gains reach their maxima when
the error is small.

Example 6. A Fifth-Order Process:In this example, a fifth-
order process is studied. The transfer function of the process
is [42]

Since this model did not give the saturation ranges, we initially
make a calculation on and . If the sim-
ulation results show , the saturation range can be in-
creased for a better performance. The sampling time is chosen
as 0.5 s. The purpose of this study is to show the applicability
of the proposed fuzzy PID system to a high-order process.
Table X presents the detailed comparison results of optimal
fuzzy PID with the Ziegler–Nichols,̊Aström–Ḧagglund (̊A–H)
[1], and Zhuang–Atherton (Z–A) [42] rule-tuned PID systems.
Significant improvement in performance is obtained compared
with other approaches (Table X). It should be noted that all
other rule-tuned PID controllers [1], [2], [42] are implemented
with less effort and by using simple calculations based on
heuristic rules. However, the three times differences in the
settling time as well as in the overshoot in this example suggest
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TABLE XI
PERFORMANCE COMPARISON IN EXAMPLE 6

(a)

(b)

(c)

Fig. 20. Gain plots for the optimal fuzzy PID in Example 5. (a)
“(KP )eq=K̂P versuŝe” plot from a closed-form solution. (b) “(KI)eq=K̂I

versus ê” plot from a numerical simulation. (c) “(KI)eq=K̂I versusê”
plot from a numerical simulation.

a worthwhile application of an optimal fuzzy PID system,
although an extra computing cost is added in the design.

Further investigation is made on the selection of the perfor-
mance index and its associated weighting for the optimal linear

Fig. 21. Step responses of optimal PID (P1–P3) and optimal fuzzy PID-type
controllers in Example 6.

PID systems. In addition to the original, two different fitness
functions, and , are also employed for the optimization

ISE ISE POS

Note that the , including a single-performance index, is in
principle the same as used in [42], where they have used the
ITSE as the single-performance index. The is adding a
higher weighting value to the settling time for the original.
As we can see, a single-index performance using the error
sum, likeP2 curve in Fig. 21, may produce a large overshoot
and a long settling time. A multiple-index performance, say,
P1 and P3 curves, are preferred in applications.

Nonlinearity Comparison Among the Six Numerical Ex-
amples: Six numerical examples were investigated. Within
those examples, the fuzzy PID controllers always present
the best performance results. For a better comparison of the
nonlinearity selected by the optimal method corresponding to
each process, we list the related data in Table XII. Out of
the four basic nonlinear curves, only Types I and II nonlinear
curves, corresponding to the simplest, are selected from the
optimization. None of the controller systems selects Type III.
It is also interesting to know that all curves correspond to
a nonoverlapping case . All systems resort to a
great degree of nonlinearityLAI for high
performance of the processes.
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TABLE XII
NONLINEARITY COMPARISON AMONG THE SIX NUMERICAL EXAMPLES

Fig. 22. Membership functions of an alternative three-rule fuzzy controller.

XI. SUMMARY

This paper describes a novel methodology to study fuzzy
systems analytically. A closed-form solution to the fuzzy infer-
ence is pursued to bridge the fuzzy theory and classical/modern
control theory. This investigation has clearly displayed that
fuzzy control techniques are possible to present a general
framework for linear/nonlinear controllers. We believe that
the study of fuzzy controllers should be exploded in the light
of nonlinear control principle and reinforced by integrating
traditional and modern control theories.

One significant contribution of this work is the development
of a simple fuzzy PID controller using a single input variable
with three rules and at most six design parameters. Comparing
with a linear PID controller, the proposed fuzzy system
adds only two more parameters for nonlinear tuning. This
structure simplifies the system design significantly from the
generation of a control curve, rather than a control surface. The
nonlinearity is explicitly defined for fuzzy proportional actions
in the error domain. Important properties of the fuzzy PID
system are derived for providing the guidelines of nonlinear
designs. Moreover, the physical meaning of the nonlinear
tuning parameters becomes clear for tuning actions from the
admissible area of a nonlinearity diagram.

Another contribution of this work is the suggestion of two
indexes for nonlinear controller design. The first is a LAI
for a guaranteed-PID performance fuzzy system based on a
conservative design strategy. This strategy suggests a fuzzy
PID controller can replace conventional PID controller by
augmenting the linear function. The proposed fuzzy system
produces a close approximation of linearity. Therefore, the

Fig. 23. Admissible area of nonlinearity diagram for�0 and�1 of the alter-
native controller.C: point for approximation of a linear PID, corresponding
to x1 = 0, andx2 = 1. E: point calculated from (24).

performance analysis of linear PID systems will provide
approximately a lower performance bound of the specific
performance criteria (for example, the response error in this
work) for the proposed fuzzy systems. The second index,
NVI, is proposed for evaluating the degrees of freedom for
producing nonlinearities in a fuzzy PID system. Using these
indexes and nonlinearity diagram proposed in this work, the
control designer can immediately interpret the controllers in
regard to its nonlinearity abilities on the following aspects:
1) the classes of nonlinear curves possibly produced by the
controllers; 2) the range of nonlinearity variation encompassed
for each class of nonlinear curves; and 3) the capability to
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NS (A.8)

approximate a linear function. A comparative study from
the viewpoint of nonlinear designs was made between the
proposed system and an alternative system. This comparative
study clearly demonstrates that an in-depth analytical approach
is a useful tool for an efficient fuzzy controller design.

The present system can operate as both fuzzy PID (including
an approximate linear PID function), or linear PID versions on
an optimal basis. The work results in a standard implementa-
tion methodology for the design. These include normalizing
error and three gains, using normalized fitness function from
the multiple performance indexes, and considering actuator
saturation ranges.

Numerical studies are reported on several processes having
different response characteristics. For all six processes, com-
parisons of the control performance are made between conven-
tional PID and the proposed fuzzy PID controllers. Genetic-
based optimization solvers are used for fair comparisons. The
proposed system always provides the best control performance.
In comparison of the optimal linear PID controller with
heuristic methods, the Ziegler–Nichols,̊Aström–Ḧagglund,
and Zhuang–Atherton rule-tuned PID controllers were also
tested for a fifth-order plant. Significant improvement of
performance suggests it worthwhile to apply the proposed
fuzzy controllers.

APPENDIX

AN ALTERNATIVE THREE-RULE FUZZY PID CONTROLLER

An alternative three-rule fuzzy PID controller is developed
for a comparison with the proposed controller in Fig. 4. The
membership functions of for the alternative controller are
extended to a range of , as shown in Fig. 22.
The change, making the to be fully normalized, is for
noninfluence to the when is adjusted. The change also
simplifies the closed-form derivation of fuzzy proportional
actions.

Based on the same fuzzy reasoning method, the fuzzy pro-
portional action of the alternative controller is also represented
by two cases as below.

Case 1 (Nonoverlapping):

(A.1)

Case 2 (Overlapping):
Range A:

(A.2)

Range B:

(A.3)

Range C:

(A.4)

where some intermediate variables are defined as

(A.5)

and , a division point, is calculated by

(A.6)

The normalized sensitivities at two points are

NS (A.7)

The differences of the properties of this controller from the
proposed controllers are given in (A.8) at the top of the page.
A fully normalized proportional control output is obtained;
that is, . Fig. 23 shows the admissible area
for and . While the nonoverlapping case results in an
admissible curve (curveA–D–B), the overlapping forms an
admissible area adjoined by curveA–D–B. The most linear
approximation point is atC, which corresponds to and

. It has LAI and NVI .
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