
An Introduction to

Scilab
from a Matlab User’s Point of View

Version 2.6-1.0

Eike Rietsch

Copyright c©2001, 2002 by Eike Rietsch

Permission is granted to anyone to make or distribute verbatim copies of this document as received,
in any medium, provided that the copyright notice and permission notice are preserved, and that
the distributor grants the recipient permission for further redistribution as permitted by this notice.

IBM r© and RS/6000 r© are registered trademarks of IBM Corp.
MacsymaTM is a trademark of Macsyma Inc.
MapleTM is a trademark of Waterloo Maple Inc.
MatlabTM is a trademark of The Mathworks, Inc.
MathematicaTM is a trademark of Wolfram Research, Inc.
MicrosoftTM and Microsoft WindowsTM are trademarks of Microsoft Corp.
SunTM and SolarisTM are trademarks of Sun Microsystems, Inc.
UNIX r© is a registered trademark of The Open Group.

Scilab c© is copyrighted by INRIA, France

iii

To Antje

iv

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Customizing Scilab for Windows . 4

2.1.1 Startup File . 4
2.1.2 Fonts . 4
2.1.3 Paging . 4
2.1.4 Copy and Paste . 5

2.2 Interruption/Termination of Scripts and Scilab Session 5
2.3 Help . 5
2.4 Emulated Matlab functions . 6

3 Syntax 7
3.1 Arithmetic Statements . 7
3.2 Built-in Constants . 10
3.3 Comparison Operators . 11
3.4 Flow Control . 12
3.5 General Functions . 15

4 Variable Types 19
4.1 Numeric Variables — Scalars and Matrices . 21
4.2 Special Matrices . 24
4.3 Character String Variables . 25

4.3.1 Creation and Manipulation of Character Strings 25
4.3.2 Strings with Scilab Expressions . 32
4.3.3 Symbolic String Manipulation . 34

4.4 Boolean Variables . 35
4.5 Lists . 39

4.5.1 Ordinary lists (list) . 39
4.5.2 Typed lists (tlist) . 43
4.5.3 Matrix-oriented typed lists (mlist) . 49

4.6 Polynomials . 50

v

vi CONTENTS

5 Functions 54
5.1 General . 54
5.2 Functions that Operate on Scalars and Matrices . 56

5.2.1 Basic Functions . 56
5.2.2 Elementary Mathematical Functions . 59
5.2.3 Special Functions . 62
5.2.4 Linear Algebra . 63
5.2.5 Signal-Processing Functions . 64

5.3 File Input and Output . 66
5.3.1 Opening and Closing of Files . 66
5.3.2 Functions mgetl and mputl . 67
5.3.3 Functions read and write . 70
5.3.4 Functions load and save . 73
5.3.5 Functions mput and mget/mgeti . 74
5.3.6 Functions input and disp . 75
5.3.7 Function xgetfile . 75

5.4 Utility Functions . 76

6 Scripts 78

7 User Functions 84
7.1 Functions in Files . 90
7.2 In-line Functions . 91
7.3 Functions for operator overloading . 92
7.4 Translation of Matlab-4 m-files to Scilab Format . 97

8 Function Libraries 98

9 Gotchas 101

A Matlab functions and their Scilab Equivalents 102

List of Tables

3.1 List of arithmetic operators . 8
3.2 Built-in constants . 10
3.3 General functions . 16

4.1 Variable types . 19
4.2 Utility functions for managing/classifying of variables 20
4.3 Integer conversion functions . 22
4.4 Special matrices . 24
4.5 Functions that manipulate strings . 26
4.6 Functions that operate on, or output, boolean variables 38
4.7 Functions that create, or operate on, lists . 40
4.8 Functions related to polynomials and rational functions 51

5.1 Basic arithmetic functions . 57
5.2 Elementary transcendental functions . 60
5.3 Matrix functions . 61
5.4 Special functions . 62
5.5 Functions for sparse matrices . 62
5.6 Linear algebra . 63
5.7 Functions for signal processing . 64
5.8 Functions that open, querry, manipulate, and close files 67
5.9 Functions that input data from files or keyboard . 68
5.10 Functions that output data to files or to the Scilab window 69
5.11 Utility functions . 76

7.1 Functions/commands/keywords relevant for user functions 85
7.2 Operator codes used to construct function names for operator overloading 94

vii

viii

Chapter 1

Introduction

For almost 10 years I have been a heavy user of Matlab; this manual is the result of my effort to
learn Scilab. Consequently, it is written from the point of view of someone who is familiar with
Matlab and wants to use this knowledge to ease his entry into Scilab. Thus features that are the
same in both systems are “glossed over” to some degree and more space is devoted to those features
where the two differ. As a result, this manual is not really suited for someone who is not familiar
with either Matlab or Scilab (unless he is desperate or brilliant). Documentation more suitable for
a novice is available on-line or in bookstores.

Initially, I planned to organize the material ordered by Matlab functions since this was the way I
approached the problem of converting Matlab functions to Scilab. However, there is not always
an exact correspondence between Matlab and Scilab functions and syntax; furthermore, Scilab
has features not available in Matlab, and so I reconsidered. Hence, this manual explains Scilab’s
functionality by drawing on the experience and expectations of a Matlab user.

To aid in the conversion of Matlab functions the table in Appendix A lists Matlab functions and
their functional equivalents. Furthermore, there are three separate indexes: a general index, an
index of Scilab functions and an index of Matlab functions. So one can look up quite a number of
Matlab function to find out what means there are to achieve the same end in Scilab. A user trying
to figure out how to implement, say, a Matlab structure will be directed to Scilab lists. Someone
who wants to understand the difference in the definition of workspace—which has the potential to
trip up the unsuspecting—will need to look in the general index which points to those pages that
describe this difference.

Incidentally, there is a subdirectory of a subdirectory in the Scilab directory with Scilab functions
that “emulate” Matlab functions. As explained more fully in Section 2.4 I do not advocate their
use. Using such emulations deprives the user of the flexibility and power Scilab offers. In most
cases it is a concept one needs to emulate not a function.

This manual is organized in a number of chapters, sections, and subsections. Obviously, this
is arbitrary and reflects my own choices. Several sections have tables of functions or operators
pertinent to the subject matter discussed. Due to some overlap one and the same function may
show up in several different tables.

1

2 CHAPTER 1. INTRODUCTION

It was tempting to use unadulterated screen dumps as examples. However Scilab wastes screen real
estate the same way format loose does in Matlab — except, in Scilab, there is no equivalent to
format tight, which suppresses the extra line-feeds. Hence, to conserve space, most examples
are reproduced without some of these extra empty lines.

In compiling this manual I used Scilab 2.6 and the standard Scilab documentation.
Introduction To Scilab - Users Guide by the Scilab Group
Une Introduction à Scilab by Bruno Pinçon
Scilab Bag of Tricks by Lydia E. van Dijk and Christoph L. Spiel
All three can be downloaded from the INRIA web site (http://www-rocq.inria.fr/scilab/), which
also has manuals in languages other than English and French. I also drew freely on newsgroup
discussions (comp.soft-sys.math.scilab), in particular contributions by Bruno Pinçon, Alexander
Vigodner, Enrico Segre, Lydia van Dijk, and Helmut Jarausch.

From newsgroup discussions I got the impression that most users run Scilab on Unix (particularly
Linux) machines. I, on the other hand, use Matlab and Scilab on Windows PC’s. I do have
a Scilab installation on a Sun workstation running Solaris, but use it only occasionally for quick
calculations in a Unix environment. While I do not expect significant differences in the use of Scilab
on different platforms, this pattern of use does color this manual. However, I am not completely
Windows-centric: affected by many years of Unix use, I tend to favor the Unix term “directory”
over the PC term “folder”.

Every now and then this manual contains judgements regarding the relative merits of features in
Matlab and Scilab. They represent my personal biases, experiences, and — presumably — a lack
of knowledge as well.

Obviously, I cannot claim to cover all Matlab functions or Scilab functions. The selection is largely
based on the subset of functions and syntactical features that I have been using over the years.
But among all the omissions one is glaring. I do not discuss plotting. Were I unaware of Matlab, I
would consider Scilab’s plotting facility superb. But now I am spoiled. However, I understand that
a new object-oriented plot library is under development, and I am looking forward to its release.
Furthermore, plotting is such an important and extensive subject that it deserves a manual of its
own (as is the case for Matlab).

Finally, the typographic conventions used are:
Red typewriter font is used for Scilab commands, functions, variables, ...

Blue slanted typewriter font is used for Matlab commands, functions,

variables, ...

Black typewriter font is used for general operating system-related terms and

filenames outside of code fragments.

Keyboard keys, such as the Return key, are written with the name enclosed in angle brackets:
<RETURN>. In the section on operator overloading angle brackets are also used to enclose
operand types and operator codes.

Acknowledgment

Special thanks go to Glenn Fulford who was kind enough to review this manuscript and offer

3

suggestions and critique and, in particular, to Serge Steer who not only provided a list of corrections
but also an extensive compilation of the differences between Scilab and Matlab; I used for my own
education and included what I learned.

Chapter 2

Preliminaries

2.1 Customizing Scilab for Windows

2.1.1 Startup File

Commands that should be executed at the beginning of a Scilab Session can be put in the startup
file .scilab (the dot “.” as the first character of the file name betrays the Unix heritage of Scilab).
On a PC running Windows this start-up file must be in directory bin of the Scilab directory.

2.1.2 Fonts

Screen fonts can be set in two different ways. Either click on the Edit Button and then on Choose

Font in the drop-down menu. Alternatively, click the right mouse button in the Scilab window and
select Choose Font. To save the selected font, click the right mouse button in the Scilab window
and select Update scilab.ini.

The Help Window comes with a proportional font preselected. However, in general a fixed-width
font produces a more readable display, in particular with matrices. The fonts in the Help Window
can be set by clicking the Format Button of the Help Window and selecting Font in the drop-down
menu. In this case the selected font is saved automatically.

2.1.3 Paging

By default, display of a long array or vector is halted after a number of lines have been printed to
the screen, and the message [More (y or n) ?] is displayed. The number of lines displayed
can be controlled via the lines command. Paging (and that message) can be suppressed by means
of the command lines(0). If this appears desirable, this command can be put in the startup file
.scilab to be run at start-up.

4

2.2. INTERRUPTION/TERMINATION OF SCRIPTS AND SCILAB SESSION 5

2.1.4 Copy and Paste

The standard Windows keyboard shortcuts for Copy and Paste do not work in the Scilab window
(they do work in the Help window). However, the drop-down menu of the Scilab window’s Edit
Button has Copy to Clipboard and Paste commands. The same commands can also be found in
the menu that opens up when one clicks the right mouse button in the Scilab window.

2.2 Interruption/Termination of Scripts and Scilab Session

Scilab has a feature that is sorely missed in Matlab: a reliable facility to interrupt or terminate a
running program. The command abort allows one to terminate execution of a function or script,
e. g. in debugging mode after a pause has been executed and continuation of the execution is not
desired. In Matlab the usual way to achieve this goal is to clear all variables and thus to force a fatal
error with the return command — and even this does not work every time. The abort command
can also be invoked from the Control Menu and does what it says: it aborts any running program.
A less drastic intervention is Interrupt, also available from the Control Menu. It interrupts a
running program to allow keyboard entry (note that a program interruption in Scilab creates a new
workspace; what this means is explained on page 15). Execution of the program can be resumed
by typing resume or return. The same objective can be achieved by means of the Resume menu
item in the Control Menu or its keyboard shortcut <Alt c> followed by <Alt e> (press down the
<Alt> key and hit <c> and then <e>). There are keyboard shortcuts for all commands in this
menu.

The commands quit and exit can be used to terminate a Scilab session. Both commands exist in
Matlab as well, and exit behaves like its Matlab counterpart. The quit command is somewhat
different. If called from a higher workspace level it reduces the level by 2 (see the discussion of
pause on page 15). If called from level 0 it terminates Scilab. In this case quit also executes a
termination script, scilab.quit, located in the Scilab root directory (on a PC running Windows
something like C:\Program Files\Scilab). This script can be modified by the user and is comparable
to finish in Matlab. Of course, one can also terminate Scilab by clicking on Exit in the File

menu or the close box in the right upper corner of the Scilab window.

2.3 Help

The help facility is similar to Matlab’s. Typing help sin, for example, brings up a separate help
window with information about sin. Typing help symbols brings up a table of symbols and the
corresponding alphabetic equivalent to be used in the help command. For example, to find out
what .* does type help star. Unfortunately, in some instances, one has to type in misspelled
words such as “tilda” (for “tilde”) or “semicolumn” (for “semicolon”).

The command apropos, somewhat equivalent to Matlab’s lookfor, performs a string search and
lists the result in a separate window. Selecting a command in this list and clicking on OK brings

6 CHAPTER 2. PRELIMINARIES

up the help window for that command. Both, help and apropos, can also be invoked from the
Help Menu on the menu bar (menu items Topic and Apropos). The third item, Help Dialog, on
the Help Button’s Drop-Down Menu opens a window with two sections. One of them lists some
25 topics such as “Input/Output Functions”, “Linear Algebra”, “Character String Manipulation”,
etc. Clicking on a topic brings up, in the second section, a one-line-per-function list of relevant
Scilab functions—a nice help to get started. It is particularly convenient that selecting a function
and clicking the “Show” button opens a window with the help file for this function.

2.4 Emulated Matlab functions

As already mentioned in the Introduction, the Scilab distribution comes with a directory,
SCIDIR\macros\mtlb, where SCIDIR denotes the Scilab root directory (in Windows something like
C:\Program Files\Scilab). In this directory there are some 80 function that “emulate” Matlab
functions; only four of them have help files. For several reasons I do not advocate their use. First
of all, this kind of “translation” of a Matlab object to Scilab may prevent a user from fully exploiting
powerful features Scilab offers. An example is mtlb cell (most of the functions in the directory
mtlb start with the prefix mtlb), which emulates the Matlab function cell by means of a typed
list. But there are many different ways a Matlab cell array can be expressed in Scilab. If all cell
entries are strings then a string matrix is the appropriate “translation” in Scilab. Using mtlb cell

instead deprives one of the benefits string matrices offer (such as the overloaded + operator and
the functionality of length). In other situations a ordinary list or a list of lists may be more
appropriate.

A second reason for not using the functions in this directory is that careless use may lead to
wrong results. An example is Matlab function diff and its Scilab “emulation” mltb diff. With
only one argument these two functions produce the same result; but with two arguments this is
not necessarily the case since the second argument in diff serves a different purpose than in
mtlb diff. For example, in Matlab

>> diff([1:10].̂2,2)
ans =

2 2 2 2 2 2 2 2

whereas in Scilab

-->mtlb diff([1:10].̂2,2)
ans =

! 8. 12. 16. 20. 24. 28. 32. 36. !

This just illustrates why it is better to stay away from these functions—at most use them as
suggestions for implementing something in Scilab.

Chapter 3

Syntax

3.1 Arithmetic Statements

Scilab syntax is generally quite like Matlab syntax. This means that someone familiar with Matlab
knows how to write basic Scilab commands such as

// These are simple examples

-->a = 3; b = 7.2;

-->c = a + b̂2 - sin(3.1415926/2)

c =

53.84

As shown in this example the Scilab prompt is -->, and any statements following it represent user
input. Comments are indicated by two slashes (//): everything to the right of the slashes is ignored
by the interpreter/compiler. Like in Matlab, several statements can be on one line as long as they
are separated by commas or semicolons. Semicolons suppress the display of results, commas do
not.

Names of Scilab variables and functions must begin with a letter or one of the following special
characters %, #, !, $, ?, and the underscore . Subsequent characters may be alphanumeric or
the special characters #, !, $, ?, and . Thus % is only allowed as the first character of a variable
name. Variables starting with % generally represent built-in constants or functions that overload
operators. Variable names may be of arbitrary length, but all except the first 24 characters are
disregarded (Matlab uses the first 31 characters).

-->a12345678901234567890123456789012345678901234567890 = 34

a12345678901234567890123 =

34.

7

8 CHAPTER 3. SYNTAX

Variable names are case-sensitive (i. e. Scilab distinguishes between upper-case and lower-case
letters). A semicolon (;) terminating a statement indicates that the result should not be displayed
whereas a comma or a <RETURN> prompts a display of the result.

To create expressions, Scilab uses the same basic arithmetic operators Matlab does, but with two
options for exponentiation.

+ Addition
− Subtraction
∗ Matrix multiplication
.∗ Array multiplication

. ∗ . Kronecker multiplication
/ Division
\ Left matrix division
./ Array division
.\ Left array division
./. Kronecker division
.\. Kronecker left division

̂ or ** Matrix exponentiation
.̂ Array exponentiation
′ Matrix complex transposition
.′ Array transposition

Table 3.1: List of arithmetic operators

Statements can continue over several lines. Similar to Matlab’s syntax, continuation of a statement
is indicated by two or more dots, .. (Matlab requires at least three dots).

Numbers can be used with and without decimal point. Thus the numbers 1, 1., and 1.0 are equiv-
alent. However, in both Scilab and Matlab, the decimal points does double duty. In conjunction
with the operators *, /, and ̂ it indicates that operations on vectors and matrices are to per-
formed on an element-by-element basis. This leads to ambiguities that can cause problems for the
unsuspecting.

-->x = 1/[1 2 3] 1a

x =

! .0714286 !

! .1428571 !

! .2142857 !

-->x = 1./[1 2 3] 1b

x =

! .0714286 !

! .1428571 !

3.1. ARITHMETIC STATEMENTS 9

! .2142857 !

-->x = 1 ./[1 2 3] 1c

x =

! 1. .5 .3333333 !

Statements 1b and 1c look very similar and yet they produce quite different results. The reason
for the difference is the space between the zero and the dot in 1c where the dot is interpreted as
part of the operator ./ whereas in 1b it is interpreted as the decimal point of the number 1. In
Matlab, on the other hand, statements 1b and 1c produce the same result (the one produced in
Scilab by 1c), and 1a causes an error message. In Scilab, on the other hand, a is a solution of
a’*[1 2 3]’ = 1. More general, if

xT AT = bT (3.1)

where the superscripted T denotes transposition, then x = b’/A’ computes the unknown xT .
Since Eq. 3.1 is equivalent to

Ax = b (3.2)

x can also be computed from x = A\b. Hence, (b’/A’)’ is equivalent to A\b. The latter is also
Matlab syntax. Thus

-->x = [1 2 3]’\ 1

x =

! .0714286 .1428571 .2142857 !

In addition to single-variable assignments, Scilab has tuple assignments in which multiple variables
are assigned values in a single statement. An example is

--> [u,v,w] = (1,2,3)

w =

3.

v =

2.

u =

1.

Note that the commas on the right-hand and the left-hand side are required; they cannot be
replaced by blanks). This construct bears some similarity with Matlab’s deal function, but it is
less powerful. For example, the number of Scilab objects on the right-hand side must equal that
on the left hand side. Even if one wanted to assign the same value to all three variables one would
still have to write it out three times; thus [u,v,w] = (1) is not allowed.

A feature peculiar to Scilab is the order (from right to left) in which variables in a left-hand
bracketed expression are displayed; as shown in the example above the rightmost variable, w, is
displayed first, followed by u and, finally, v.

A handy use of the tuple assignment is swapping of values. With variables u and v defined above

10 CHAPTER 3. SYNTAX

-->[u,v] = (v,u)

v =

1.

u =

2.

3.2 Built-in Constants

Scilab Matlab Description
%i i, j Imaginary unit (

√−1)
%e e Euler’s constant (e = 2.7182818 · · ·)
%pi pi Ratio of circumference to diameter of a circle; (π = 3.1415926 · · ·)
%eps eps Machine ε (≈ 2.2 · 10−16); smallest number such that 1 + ε > 1
%inf inf Infinity (∞)
%nan NaN Not a number
%s Polynomial s=poly(0,’s’)
%z Polynomial z=poly(0,’z’)
%t logical(1) Boolean variable: logical true
%f logical(0) Boolean variable: logical false
%io Two-element vector with file identifiers for standard I/O

Table 3.2: Built-in constants

Table 3.2 lists Scilab’s special, built-in constants together with their Matlab equivalents (where
they exist). Unlike constants in Matlab they are protected and cannot be overwritten. This has
benefits; in Matlab a variable such as i can be overwritten inadvertently if it is redefined by, for
example, its use as an index.

In many respects, keyboard (standard input) and Scilab window (standard output) are treated like
files, and %io(1) (usually 5) is the file identifier for the keyboard and %io(2) (usually 6) is the
file identifier for the Scilab window.

3.3. COMPARISON OPERATORS 11

3.3 Comparison Operators

Scilab uses the same comparison operators Matlab does, but with two choices for the “not equal”
operator.

< less than
> greater than

<= less than or equal to
>= greater than or equal to
== equal to

<> or ∼= not equal to

The result of a valid expression involving any of these operators — such as a > 0 — is a boolean
variable (%t or %f) or a matrix of boolean variables. These boolean variables are discussed later in
section 4.4.

In Scilab the first four operators are only defined for real numbers; in Matlab complex numbers are
allowed but only the real part is used for the comparison.

The last two operators compare objects. Examples are

-->[1 2 3] == 1 2a

ans =

! T F F !

-->[1 2 3] == [1 2] 2b

ans =

F

-->[1 2] == [’1’,’2’] 2c

ans =

F

In Matlab 2a produces the same result, 2b aborts with an error message, and 2c creates the
boolean vector [0 0].

12 CHAPTER 3. SYNTAX

3.4 Flow Control

Scilab’s flow control syntax mirrors that used by Matlab.

Scilab Matlab

break break Force exit from a loop
case case Start clause within a select block
elseif elseif Start a conditional alternative in an if block
else else/otherwise Start the alternative in an if or select block
end end Terminate for, if, select, and while blocks
errcatch try/catch Traps error and with several possible actions
for for Start a loop with a generally known number of repetitions
if if Start a conditionally executed block of statements
select switch Start a multi-branch block of statements
while while Start repeated execution of a block while a condition is satisfied

But there is more than the semantic difference between keywords switch and otherwise in
Matlab and select and else, respectively, in Scilab. The following comparison illustrates this
difference. With function foobar defined as:

function foobar(a)

// Scilab

select a

case [’foo’,’pipo’]

disp(’ok’)

case ’foo’

disp(’not ok’)

else

disp(’invalid case’)

end

endfunction

we get

-->foobar([’foo’,’pipo’])

ok

-->foobar(’foo’)

not ok

-->foobar(’pipo’)

invalid case

3.4. FLOW CONTROL 13

The variable a following the keyword select can be any Scilab data object.

The analogous Matlab function

function foobar(a)

% Matlab

switch a

case {’foo’,’pipo’}
disp(’ok’)

case ’foo’

disp(’not ok’)

otherwise

disp(’invalid case’)

end

on the other hand, leads to

>>foobar({’foo’,’pipo’})
??? SWITCH expression must result in a scalar or string constant.

>>foobar(’foo’)

ok

>>foobar(’pipo’)

ok

The variable a following the keyword switch can only be a scalar or string constant. On the other
hand, a case can represent more than one value of the variable. The strings ’foo’ and ’pipo’

satisfy the first case and so the second case is never reached.

In an if clause Scilab has the optional keywords then and do as in

-->if a >= 0 then a=sqrt(a); end

-->if a >= 0 do a=sqrt(a); end

but then and do can be replaced by a comma, a semicolon, or a <RETURN>. Hence, both
statements are equivalent to

-->if a >= 0, a=sqrt(a); end

Likewise, the for loop can be written with the optional keyword do as in

for i = 1:n do a(i)=asin(2*%pi*i); end

14 CHAPTER 3. SYNTAX

and again do can be replaced by a comma, a semicolon, or a <RETURN>. The same is true for
the while clause.

Matlab uses the try/catch syntax to trap errors. Its functionality can be emulated by means the
combination of errcatch and iserror. This is illustrated in the following code fragment1. For
the sake of clarity it is shown here the way it would look in a file.

errcatch(-1,’continue’,’nomessage’); // Start error trapping 3

a=1/0 4a

if iserror() // Check for error

disp(’A division by zero has occurred’)

errclear(-1)

end

a=1/0 4b

b=1

errclear(-1)

errcatch(-1) // Error trapping toggled off

a=1/0 4c

Statement 3 starts error trapping with the system error message suppressed. Statements 4a ,
4b , and 4b represent errors. Execution of these statements produces the following result:

-->errcatch(-1,’continue’,’nomessage’); // Start error trapping 3

-->a=1/0 4a

-->if iserror() // Check for error

--> disp(’A division by zero has occurred’)

A division by zero has occurred

--> errclear(-1)

-->end

-->

-->a=1/0 4b

-->b=1

b =

1.

1errcatch is considered “fragile”, and thus this construct should be used only for debugging; for more robust

code the use of execstr(· · ·,’errcatch’) is preferable.

3.5. GENERAL FUNCTIONS 15

-->errclear(-1)

-->errcatch(-1) // Error trapping toggled off

-->a=1/0 4c

!--error 27

division by zero...

Clearly, the three identical “division by zero” errors are treated differently. The first one, 4a , is
trapped and the user-supplied message is printed; the second, 4b , is trapped and ignored; the
third division by zero, 4c , occurs after error trapping has been turned off and creates the standard
system error message.

Other commands can be considered as at least related to flow control. They include pause which
interrupts execution similar to Scilab’s keyboard command, but with some important differences
explained beginning on page 15.

Another function, halt, can be used to temporarily interrupt a program or script. Execution of a
function or script will stop upon encountering halt() and wait for a key press before continuing.

3.5 General Functions

Table 3.3 lists Scilab’s low-level functions and commands (commands are actually functions used
with command-style syntax; see Section 5.1). Some, like date, are essentially the same as in Matlab,
others have slightly different names (exists vs. exist), some may have the same name but may
give slightly different output (in Scilab length with a matrix argument returns the product of
the number of rows and columns, in Matlab length returns the larger of the number of rows and
columns), and many are quite different.

In this list of functions the command pause deserves special attention. It is equivalent to Matlab’s
keyboard command in that it interrupts the flow of a script or function and returns control to the
keyboard. However, a Matlab function/script stays in the workspace of the function. In Scilab the
pause command creates a new workspace. The prompt changes from, say, --> to -1-> where the
number 1 indicates the workspace level. All variables of all lower workspace are available at this
new workspace as long as they are not shadowed (a variable in a lower workspace is shadowed if a
variable with the same name is defined in a higher workspace). This is an example:

-->a = 1, b = 2 // Variables in original workspace

a =

1.

b =

2.

16 CHAPTER 3. SYNTAX

-->pause // Creates new workspace (level 1)

-1->disp([a,b])

! 1. 2. !

-1->c = a+b

c =

3.

-1->a = 0

a =

0.

-1->return // Return to original workspace 5a

-->a, c

a =

1.

!--error 4

undefined variable : c

Scilab Description
$ Index of last element of matrix or (row/column) vector
apropos Keyword search for a function
clear Clear unprotected variables and functions from memory
clearglobal Clear global variables from memory
date Current date as string
disp Display input argument
getdate Get date and time in an 8-element numeric vector
global Define variables as global
halt Stop execution and wait for a key press
help On-line help
inttype(a) Output numeric code representing type of integer a
pause Interrupt execution of function or script
timer Ouputs time elapsed since the preceding call to timer()

type(a) Output numeric code representing type of variable a
typeof(a) Output string with type of variable a
whereis Display name of library containing function
who Displays/outputs names of current variables
whos Displays/outputs names and specifics of current variables

Table 3.3: General functions

3.5. GENERAL FUNCTIONS 17

The command pause creates a new workspace (the level of this workspace becomes part of the
prompt); the display function disp shows that the variables a and b are available in this new
workspace, and the new variable c is computed correctly. However, upon returning to the original
workspace we find that a still has the value 1 (in spite of being changed in the level-1 workspace)
and that the variable c is not available anymore. This is not what we would have found with
Matlab’s keyboard command.

In order to get these new values to the original workspace they have to be passed on by the return
command. In Scilab the return command can have input and output arguments!

-->a = 1, b = 2

a =

1.

b =

2.

-->pause // Create new workspace (level 1)

-1->disp([a,b])

! 1. 2. !

-1->c = a+b

c =

3.

-1->a = 0

a =

0.

-1->[aa,c] = return(a,c) // Return to original workspace 5b

-->aa,c

aa =

0.

c =

3.

The above two code fragments are identical except for the return statements 5a and 5b . State-
ment 5b returns variables a and c created in the level-1 workspace renaming a to aa. Without
this change, the existing variable a would have overwritten by the value of a created in the level-1
workspace. A more complicated use of the return function is illustrated in statement 29 on page
82.

18 CHAPTER 3. SYNTAX

The command resume is equivalent to the return command (we could have used resume instead
of return in the two examples above).

Unlike its Matlab counterpart, the display function disp, which has already been used above,
allows more than one input parameter:

-->disp(123,’The result is:’)

The result is:

123.

It shows the same behavior noted previously: the input arguments are printed to the screen begin-
ning with the last.

Chapter 4

Variable Types

The only two variable types a casual user is likely to define and use are numeric variables and
strings; but Scilab has many more data types — in fact, it has more than Matlab. Hence, it is
important to be able to identify them. Unlike Matlab, which uses specific functions with boolean
output for each variable type (e. g. iscell, ischar, isnumeric, issparse, isstruct), Scilab
uses essentially two functions, type and typeof: the former has numeric output the other outputs
a character string. The following table lists variable types and the output of type and typeof.
The last column of this table, with heading “Op-type”, defines the abbreviation used to specify the
operand type for operator overloading (see Section 7.3).

Type of variable type typeof Op-type
real or complex constant matrix 1 ’constant’ s
polynomial matrix 2 ’polynomial’ p
boolean matrix 4 ’boolean’ b
sparse matrix 5 ’sparse’ sp
sparse boolean matrix 6 ’boolean sparse’ spb
Matlab sparse matrix 7 ? msp
matrix of integers stored in 1, 2, or 4 bytes 8 Depends on type of integer i
matrix of character strings 10 ’string’ c
function (un-compiled) 11 ’function’ m
function (compiled) 13 ’function’ mc
function library 14 ’library’ f
list 15 ’list’ l
typed list (tlist) 16 Depends on type of list tl
matrix-like typed list (mlist) 17 Depends on type of list ml
pointer 128 ? ptr
index vector with implicit size 129 ’size implicit’ ip

Table 4.1: Variable types

19

20 CHAPTER 4. VARIABLE TYPES

In addition, there is a special function (see Table 4.2) for variables of type integer (see Table 4.3).
For variables of type integer the function typeof outputs a character string identical to the name
of the function that creates it (see Table 4.3). Thus

-->i8=uint8(16) // i8 is an unsigned 8-bit integer

i8 =

16

-->typeof(i8)

ans =

uint8

The output of typeof for typed lists (tlist) and matrix-like typed lists (mlist) is discussed in
Section 4.5.

Function typeof affords a straightforward simulation of Matlab function isa:

>> i8=uint8(11);

>> isa(i8,’uint8’)

ans =

1

and

-->i8=uint8(11);

-->typeof(i8) == ’uint8’

ans =

T

are equivalent.

Scilab Description
inttype(a) Output numeric code representing type of integer a
type(a) Output numeric code representing type of variable a
typename Associate a variable type name with a numeric avariable type
typeof(a) Output string with type of variable a
who Displays/outputs names of current variables
whos Displays/outputs names and specifics of current variables

Table 4.2: Utility functions for managing/classifying of variables

4.1. NUMERIC VARIABLES — SCALARS AND MATRICES 21

4.1 Numeric Variables — Scalars and Matrices

Scilab knows matrices. This term includes scalars and vectors. Scalars and the elements of vectors
and matrices can be real or complex. The statements

-->a = 1.2;

-->b = 1.0e3;

-->cx = a+%i*b

cx =

1.2 + 1000.i

define three 1 × 1 matrices, i.e. scalars. There is no function like complex in Scilab. Defining a
complex number, such as cx above, is done via an arithmetic statement.

Vectors and matrices can be entered and accessed in much the same way as in Matlab.

-->mat=[1 2 3; 4 5 6]

mat =

! 1. 2. 3. !

! 4. 5. 6. !

-->mat2=[mat;mat+6]

mat2 =

! 1. 2. 3. !

! 4. 5. 6. !

! 7. 8. 9. !

! 10. 11. 12. !

-->mat(2,3)

ans =

6.

-->mat(2,:)

ans =

! 4. 5. 6. !

-->mat($,$)

ans =

6.

-->mat($)

ans = 6.

22 CHAPTER 4. VARIABLE TYPES

There is a difference in the way the last element of a vector or matrix is accessed. Scilab uses
the $ sign as indicator of the last element whereas Matlab uses end. The $ represents, in fact, a
somewhat more powerful concept and can be used to create an implied-size vector, a new variable
of type ’size implicit’.

-->index=2:$

index =

2:1:$

-->type(index)

ans =

129.

-->typeof(index)

ans =

size implicit

-->mat2(2,index)

ans =

! 5. 6. !

There is no equivalent in Matlab for this kind of addressing of matrix elements.

By default, Scilab variables are double-precision floating point numbers. However, like Matlab,
Scilab also knows integers. Conversion functions are shown in Table 4.3. Function iconvert,
which takes two input arguments, does essentially what the seven other conversion functions listed
in this table do.

Scilab Description
double Convert integer array of any type/length to floating point array
iconvert Convert numeric array to any integer or floating point format
int8(a) Convert a to an 8-bit signed integer
int16(a) Convert a to a 16-bit signed integer
int32(a) Convert a to a 32-bit signed integer
uint8(a) Convert a to an 8-bit unsigned integer
uint16(a) Convert a to a 16-bit unsigned integer
uint32(a) Convert a to a 32-bit unsigned integer

Table 4.3: Integer conversion functions

Matlab allows no mathematical operations for such integers. Scilab is more lenient and lets the
user worry about wrap-around and possibly other problems.

4.1. NUMERIC VARIABLES — SCALARS AND MATRICES 23

-->u = int8(100), v = int8(2)

u =

100

v =

2

-->u*v

ans =

-56

The result is wrapped (200-256). Unsigned integers give an analogous result.

-->x = uint8(100), y = uint8(2), z= uint8(3)

idxuint8

x =

100

y =

2

z =

3

-->x*y

ans =

200

-->x*z

ans = 44

Again, the last result is wrapped (300-256). Operations between integers of different type are not
allowed, but those with standard (double precision) floating point numbers are, and the result is a
floating point number.

-->typeof(z)

ans =

uint8

-->typeof(2*z)

ans =

constant

The variable z, defined in the previous example, is an unsigned one-byte integer. Multiply it by 2
and the result is a regular floating point number for which typeof returns the value constant.

24 CHAPTER 4. VARIABLE TYPES

4.2 Special Matrices

Like Matlab, Scilab has a number of functions that create “standard” matrices. Many of them have
the same or a very similar names. The arguments or the output may be slightly different.

The empty matrix [] in Scilab behaves slightly different than the corresponding [] in Matlab; in
Scilab, for example,

-->a = []+3 6a

a =

3.

whereas in Matlab

>>a = []+3 6b

a =

[].

Scilab Description
[] Empty matrix
companion Companion matrix
diag Create diagonal matrix or extract diagonal from matrix
eye Identity matrix (or its generalization)
grand Create random numbers drawn from various distributions
ones Matrix of ones
rand Matrix of random numbers with uniform or normal distribution
sylm Sylvester matrix (input two polynomials, output numeric)
testmatrix Test matrices: magic square, Franck matrix, inverse of Hilbert matrix
toeplitz Toeplitz matrix
zeros Matrix of zeros

Table 4.4: Special matrices

While 6a is the default result, Scilab’s behavior in this situation can be changed by invoking
Matlab-mode.

-->mtlb mode(%t)

-->a = []+3 6c

a =

[]

4.3. CHARACTER STRING VARIABLES 25

With Matlab-mode true, Scilab 6c produces the same result Matlab 6b does.

The standard syntax with two arguments to define dimensions works for functions zeros, ones,
rand, eye the same way it does for Matlab.

-->rand mat = rand(2,3)

rand mat =

! .2113249 .0002211 .6653811 !

! .7560439 .3303271 .6283918 !

However, the syntax used in the following example

-->a=[1 2 3; 4 5 6];

-->rand mat = rand(a) 7

rand mat =

! .2113249 .0002211 .6653811 !

! .7560439 .3303271 .6283918 !

has been deprecated in Matlab; it expects 7 written as rand mat = rand(size(a)).

4.3 Character String Variables

4.3.1 Creation and Manipulation of Character Strings

Character strings can be defined with single quotes or double quotes, but the opening quote must
match the closing quote. Thus 8a and 8b below are equivalent.

-->test = "This is a test"; 8a

-->test = ’This is a test’; 8b

Function length produces a familiar result—the number of characters in the string.

-->length(test)

ans =

14.

However, a character string in Scilab is not a vector but rather akin to a Matlab cell. Thus

-->size(test)

ans =

! 1. 1. !

26 CHAPTER 4. VARIABLE TYPES

This is the same result size would give in Matlab if test were a Matlab cell. Thus it is not
surprising that strings can be elements of matrices.

-->sm = [’This is’,’a’,’matrix’;

--> ’each element’,’is a’,’string’]

sm =

!This is a matrix !

! !

!each element is a string !

-->size(sm)

ans = ! 2. 3. !

Not surprisingly, function size again gives the same result size would give for a Matlab cell array.
In other words: in order to get an analogous representation in Matlab one would have to use a
cell array. However, there is no analog in Matlab for the behavior of length; nevertheless, it is a
straight-forward generalization of its behavior for an individual string.

Scilab Description
ascii Convert ASCII codes to equivalent string and vice versa
convstr Convert string to lower or upper case
date Current date as string
emptystr Create a matrix of empty strings
grep Find matches of strings in a vector of strings
gsort(a) Sort elements/rows/columns of a
intersect(str1,str2) Returns elements common to two vectors str1 and str2

length Matrix of lengths of the strings in a string matrix
msprintf Convert, format, and write data to a string
msscanf Read variables from a string under format control
part Extract substrings from a string or string vector
pol2str Convert polynomial to a string
sci2expr Convert a variable into a string representing an expression
size Size/dimensions of a Scilab object
strcat Concatenate character strings
strindex(str1,str2) Return starting index/indices where string str2 occurs in str1

string Convert numbers to strings
stripblanks Remove leading and trailing blanks from a string
strsubst(s1,s2,s3) Substitute string s3 for s2 in s1

union(a,b) Extract the unique common elements of a and b

unique(a) Return the unique elements of a in ascending order

Table 4.5: Functions that manipulate strings

4.3. CHARACTER STRING VARIABLES 27

-->length(sm)

ans =

! 7. 1. 6. !

! 12. 4. 6. !

The output of length is a matrix with the same dimension as sm; each matrix entry is the number
of characters of the corresponding entry of sm. For many purposes this output is so useful that one
misses it in Matlab.

A handy function for many string manipulations is ascii which converts character strings into
their ASCII equivalent (e.g. ’A’ to 65, ’a’ to 97) and vice versa. In fact, beginning with Scilab
2.6, it even supports the 8-bit ASCII standard (including the Euro which recently replaced the
“international currency symbol”). Function ascii does in Scilab what the pair char and double

does in Matlab.

Below is an example where ascii is used to emulate Matlab function isletter.

function bool=isletter(str)

// Function creates a boolean vector bool the length of which is

// equal to the number of characters in string str.

// An element of bool is true if the corresponding character in

// str is a letter and false if it is not not.

// INPUT

// str character string

// OUTPUT

// bool boolean vector

temp = ascii(str);

bool = (temp >= 65 & temp <= 90) | (temp >= 97 & temp <= 122);

endfunction

With this function

-->isletter(’abc123 END.’)

ans =

! T T T F F F F T T T F !

Strings can be concatenated by means of the + sign

-->s1 = ’Example’;

-->s2 = ’of ’;

-->s3 = ’concatenation’;

28 CHAPTER 4. VARIABLE TYPES

-->ss1 = s1+’ ’+s2+s3’ 9a

ss1 =

Example of concatenation 10a

-->length(ss1)

ans = 24.

The following is also a legal Scilab statement; it creates a string matrix.

-->ss2 = [s1,’ ’,s2,s3] 9b

ss2 =

!Example of concatenation ! 10b

-->length(ss2)

ans =

! 7. 1. 3. 13. !

In Scilab, statement 9a does what 9b would do in Matlab; in Scilab the variable ss2 is a 4-
element string vector, and Scilab’s build-in function strcat can be used to convert string vector
ss2 to string ss1. Note the difference in the display of ss1 10a and ss2 10b . The exclamation
marks in 10b indicate that ss2 is a string vector. In Matlab, strings in cell arrays are in quotes.

The operator + works for string matrices the same way it works for numeric matrices. As illustrated
below, a single string “added” to a string matrix is prepended (or appended) to every element.

-->cost = [’10’ ’100’ ’1000’; ’1’ ’13’ ’-22’]

cost =

!10 100 1000 !

! !

!1 13 -22 !

-->new cost= ’$’+cost+’.00’

new cost =

!$10.00 $100.00 $1000.00 !

! !

!$1.00 $13.00 $-22.00 !

With this kind of indexing the question is how one would access individual characters in a string.
As far as extracting characters is concerned this can be done with function part.

-->test = ’This is a test’;

-->part(test,1) // Select the first character

4.3. CHARACTER STRING VARIABLES 29

ans =

T

-->part(test,1:4) // Select the first 4 characters

ans =

This

-->str1 = part(test,11:20) 11a

str1 =

test

-->length(str1)

ans =

10.

The second argument of part is a vector of indices. For every index that exceeds the length of
the string a blank is appended to the output of part. This is illustrated in 11a ; str1 consists of
the requested 10 characters, and 11b below shows that the last six characters of str1 are indeed
blanks (ASCII code 32).

-->ascii(str1) 11b

ans =

! 116. 101. 115. 116. 32. 32. 32. 32. 32. 32. !

This property provides one way to emulate Matlab’s function blanks and create a string of blanks
by extending the empty string

-->blanks = part(emptystr(),1:10) // Create a string of 10 blanks

blanks =

-->ascii(blanks)

ans =

! 32. 32. 32. 32. 32. 32. 32. 32. 32. 32. !

Scilab’s stripblanks command is not quite like Matlab’s deblank in that the latter only removes
trailing blanks. A quick and dirty, but vectorized, implementation of deblank — at least for single
strings — would be

function strout = deblank(str)

// Function removes trailing blanks from input string

index = find(ascii(str) ˜= 32);

strout = part(str,1:index($));

endfunction

30 CHAPTER 4. VARIABLE TYPES

which again uses functions part and ascii. This example again illustrates the use of $ to denote
the last element of a vector — analogous to the use of end in Matlab as the last index. The simple
modification required in the last statement to remove leading blanks (or leading and trailing blanks)
is obvious.

It is worth reviewing a few more of the functions shown in Table 4.5.

emptystr() returns an empty string or string matrix very similar to the function cell in Matlab.

-->length(emptystr(2,5))

ans =

! 0. 0. 0. 0. 0. !

! 0. 0. 0. 0. 0. !

grep(vstr1,str2) searches for occurrence of string str2 in string vector vstr1; returns a vector
of indices of those elements of vstr1 where str2 has been found or an empty vector if str2 does
not exist in any element of vstr1.

strindex(str1,vstr2) looks for the position in string str1 of the character string(s) in string
vector vstr2. Function strindex differs from grep in that its first input argument is a string
whereas the first argument of grep can be a string vector. The index vector output by grep refers
to elements of the string vector vstr1 whereas the index vector output by strindex refers to the
position of the elements of vstr2 in string str1. This is illustrated by the following example.

-->str1 = ’abcdefghijkl’;

-->idx1 = grep(str1,’jk’) //String ’jk’ is in str1(1)

idx1 =

1.

-->idx2 = strindex(str1,’jk’) //String ’jk’ is in str at position 10

idx2 =

10.

-->str2 = [’abcdefghijkl’,’xyz’,’jklm’];

-->idx3 = grep(str2,’jk’) //String ’jk’ is in str2(1) and str2(3)

idx3 =

! 1. 3. !

-->idx4 = grep(str2,[’jk’,’y’]) //Strings ’jk’ or ’y’ are in str2(1)

//str2(2), and str2(3)

idx4 =

! 1. 2. 3. !

4.3. CHARACTER STRING VARIABLES 31

This means that grep with some additional checking can be used to emulate the Matlab function
ismember for string arguments (see page 39).

Like its Matlab equivalent the function msscanf can be use to extract substrings separated by
spaces and numbers from a string.

-->str=’ Weight: 2.5 kg’;

-->[a,b,c] = msscanf(str,’%s%f%s’)

c =

kg

b =

2.5

a =

Weight:

-->typeof(a)

ans =

string

-->typeof(b)

ans =

constant

The format types available are %s for strings, %e, %f, %g for floating-point numbers, %d, %i for
decimal integers, %u for unsigned integers, %o for octal numbers, %x for hexadecimal numbers,
and %c for a characters (white spaces are not skipped). For more details see the help file for
scanf conversion.

In the context of the next subsection the function sci2exp may come in handy. It converts a
variable into a string representing a Scilab expression. An example is

-->a=[1 2 3 4]’

a =

! 1. !

! 2. !

! 3. !

! 4. !

-->stringa = sci2exp(a)

stringa =

[1;2;3;4]

32 CHAPTER 4. VARIABLE TYPES

4.3.2 Strings with Scilab Expressions

Like Matlab, Scilab allows execution of strings with Scilab statements and expressions. There are
three possible functions with slightly different features

Scilab Matlab

eval eval Evaluate string vector with Scilab expressions
evstr eval Evaluate string vector with Scilab expressions
execstr eval Evaluate string vector with Scilab expressions or statements

While there is a Scilab function eval, the best functional equivalent to Matlab’s eval is execstr.
Thus

-->execstr(’a=1+sin(1)’)

-->a

a =

1.841471

Note that the execstr does not echo the result even though there is no semicolon at the end of
the statement. A more elaborate use of execstr is

-->ier = execstr([’a=2’,’b=3ˆa’],’errcatch’,’n’)

ier =

0.

-->a,b

a =

2.

b =

9.

This code fragment illustrates that the first input argument of execerr can be a string vector.
Since the second input argument ’errcatch’ is given, an error in one of the statements of the first
argument does not issue an error message. Instead, execstr aborts execution at the point where
the error occurred, and resumes with ier equal to the error number. In this case the display of
the error message is controlled by the third input argument (’m’ ==> error message, ’n’ ==>

no error message).

An example of this use of execstr with the errcatch option is the simulation of a search path
for the execution of a Scilab script on page 81.

In Scilab eval evaluates a vector of Scilab expressions. Thus

-->c = eval([’1+sin(1)’;’1+cos(1)’]) 12a

4.3. CHARACTER STRING VARIABLES 33

c =

! 1.841471 !

! 1.5403023 !

Note that eval(’a=1+sin(1)’) produces the error message

Warning: obsolete use of = instead of ==

%h = a=1+sin(1)

!

at line 2 of function %eval called by :

line 16 of function eval called by :

eval(’a=1+sin(1)’)

!--error 4

undefined variable : b

at line 2 of function %eval called by :

line 17 of function eval called by :

eval(’a=1+sin(1)’)

Scilab expects an expression and interprets the = as a typo, assumes that the user really means ==,
and then finds that b is undefined.

The Scilab command evstr is very similar to eval; it, too, only works with expressions. However,
while eval has no provisions to allow user-defined error handling, evstr will trap errors if used
with two output arguments.

-->[c,ier] = evstr([’1+sin(1)’;’1+cos(1)’]) 12b

ier =

0.

c =

! 1.841471 !

! 1.5403023 !

If an error occurs, ier is set to the error number, but the function does not abort. The following
is an example where the second expression of the of the argument has a syntax error.

-->[c,ier] = evstr([’1+sin(1)’;’1+-cos(1)’])

ier =

2.

c =

[]

The function does not abort, but ier is set to 2.

Note: since all the variables of the whole workspace (that are not shadowed) are available to these
three functions there is generally no need for an equivalent to Matlab function evalin.

34 CHAPTER 4. VARIABLE TYPES

4.3.3 Symbolic String Manipulation

Scilab has several function that treat strings as variables and perform symbolic operations. An
examples is trianfml which converts a symbolic matrix to upper triangular form.

-->mat = [’a’,’b+c’,’d’;’-b*a’,’0’,’a+b’;’b’,’1’,’-1’]

mat =

!a b+c d !

! !

!-b*a 0 a+b !

! !

!b 1 -1 !

-->tri = trianfml(mat)

tri =

!b 1 -1 !

! !

!0 b*a b*(a+b)-b*a !

! !

!0 0 b*a*(b*d+a)-(b*(b+c)-a)*(b*(a+b)-b*a) !

A symbolic matrix can be evaluated by means of the function evstr discussed above.

-->a = 1,b = -1,c = 2,d = 0

a =

1.

b =

- 1.

c =

2.

d =

0.

-->nummat = evstr(tri)

nummat =

! - 1. 1. - 1. !

! 0. - 1. 1. !

! 0. 0. 1. !

There are several functions such as solve and trisolve that operate on symbolic matrices and
addf, subf, mulf, ldivf, and rdivf that operate on symbols representing scalars. What exactly
they do can be found by looking at their help files.

4.4. BOOLEAN VARIABLES 35

4.4 Boolean Variables

Boolean variables are represented by %t (true) and %f (false). Since Scilab’s main initialization file
equates the corresponding upper-case and lower-case variables they can also be used with capital
letters (%T, %F). This is different from Matlab where boolean variables, while intrinsically different
from arithmetic numbers, are represented by 1 and 0. This analogy is illustrated in the following
table which shows a line-by-line comparison of corresponding Scilab and Matlab statements.

Scilab Matlab
-->n = [1 1] >> n = [1 1]

n = n =

! 1. 1. ! 1 1

-->b = [%t,%t] >> b = logical([1,1])

b = b =

! T T ! 1 1

-->a = [1 2] >> a = [1 2]

a = a =

! 1. 2. ! 1 2

-->a(n) >> a(n)

ans = ans =

! 1. 1. ! 1 1

-->a(b) >> a(b)

ans = ans =

! 1. 2. ! 1 2

When displayed on the screen in Matlab, vectors n and b look exactly the same. Nevertheless, they
are different

>> islogical(n)

0

>> islogical(b)

1

and, when used as indices for the vector a, they produce different results. But, fortunately, these
results agree with those obtained with Scilab.

There are three operators, well known from Matlab, that operate on boolean variables.

36 CHAPTER 4. VARIABLE TYPES

& Logical AND
˜ Logical NOT
| Logical OR

In the proper context, both Scilab and Matlab treat numeric variables like logical variables; any
real numeric variable 6= 0 is interpreted as true and 0 is interpreted as false. Thus

-->if -1.34

--> a=1;

-->else

--> a=2;

-->end

-->a

a =

1.

Interestingly, Scilab itself is not very consistent regarding the use of boolean variables . The two
functions exists and isdef do the same thing: they check if a variable exists. However, isdef
outputs T if the variable exists and F otherwise, whereas exists outputs 1 and 0, respectively.
In this sense the function bool2s can be considered as having boolean output. If a is a numeric
matrix, then b = bool2s(a) creates a matrix b where all non-zero entries of a are 1. If a is
boolean then b is 1 where a is %t and 0 where a is %f. The same result — even without an
execution-time penalty — can be achieved by adding 0 to the boolean matrix a.

Since there is no Scilab function analogous to zeros or ones a similar trick must be used to create
a boolean matrix or vector.

-->false = ˜ones(1,10)
false =

! F F F F F F F F F F !

-->true = ˜˜ones(1,10)
true =

! T T T T T T T T T T !

One could, in principle, define true as true=˜zeros(1,10), i. e. without the double negation,
but in Scilab-2.6 function zeros is much slower than functions ones. This is expected to change
in Scilab-2.7.

In Matlab all this would work as well but logical(ones(n,m)) is faster.

Like in Matlab, boolean variables can be used in arithmetic expressions where they act as if they
were 1 and 0, respectively.

-->5*%t

4.4. BOOLEAN VARIABLES 37

ans =

5.

-->3*%f

ans =

0.

Table 4.6 lists a number of functions that output or use boolean variables.

Functions and and or are functional equivalents of Matlab’s functions all and any, respectively.1

Function and(a) returns the boolean variable %t if all entries of a are %t (for a boolean matrix)
or non-zero (for a numeric matrix).

a =

! 0. 1. !

! 2. 3. !

-->and(a)

ans =

F

-->and(a,’r’) 13

ans =

! F T !

In the example above a has a zero entry in the upper left corner; hence, the answer is false. With
the optional second argument ’r’ (line 13), and analyzes the columns of a and outputs a row
vector. The first column contains a zero; hence the first element of the output vector is f. Matlab’s
all would output an analogous logical vector.

Function or(a) returns the boolean variable %t if at least one entry of a is %t (for a boolean
matrix) or non-zero (for a numeric matrix). Hence, for the same matrix a

-->or(a)

ans =

T

-->or(a,’c’)

ans =

! T !

! T !

1See also the discussion of max, min, etc. on page 56

38 CHAPTER 4. VARIABLE TYPES

Scilab Description
MSDOS Variable is %t if computer is PC and %f otherwise
and(a) Output %t if all entries of the boolean matrix a are true
bool2s Replace %t (or non-zero entry) in matrix by 1 and %f by zero
exists(a) Test if variable a exists
find(a) Find the indices for which boolean matrix a is true
isdef(a) Test if variable a exists
iserror Test if error has occurred
isglobal(a) Test if a is a global variable
isinf(a) Test if a is infinite
isnan(a) Output boolean vector with entries %t where a is %nan
isreal(a) Test if a is real (“or if its imaginary part is “small”)
mtlb mode Test for (or set) Matlab mode for empty matrices
or(a) Output %t if at least one entry of the boolean matrix a is true
simp mode Test for (or set) simplification mode for rational expressions

Table 4.6: Functions that operate on, or output, boolean variables

With the second argument ’c’ function or analyzes the rows and puts out a column vector. Since
each row has at least one non-zero element, all entries of the output are %t. The analog to Matlab’s
any is or with the second input argument ’r’.

Like Matlab, Scilab always evaluates all terms of a logical expression; it does not, say, evaluate
an expression from left to right and stop as soon as the result is no longer in question. Thus the
statement

bool = exists(’a’) & a > 0

will fail with an error message if the variable a does not exist even though the fact that exists(’a’)
is false also means that bool is false. This statement needs to be split up.

bool = exists(’a’)

if bool

bool = a > 0;

end

Some of the constructs discussed above are used in the following example of an emulation — but
only for string vectors/matrices — of the Matlab function ismember. For example, the Matlab
statements

>>vstr = {’abcd’,’abc’,’xyz’,’uvwx’};
>>str = ’abc’;

>>index = ismember(vstr,str)

index =

0 1 0 0

4.5. LISTS 39

produce the same result as the analogous Scilab statements

-->vstr = [’abcd’,’abc’,’xyz’,’uvwx’];

-->str = [’abc’,’xy’];

-->index = ismember(vstr,str)

index =

! F T F F !.

if the function ismember is defined as

function bool=ismember(strv1,strv2)

// Function outputs a boolean vector the same size as strv1.

// bool(i) is set to %t if the string strv1(i) is equal to

// one of the strings in strv2

bool = ∼ones(strv1); // Create a boolean vector %f

[idx1,idx2]=grep(strv1,strv2); // Find indices of strv1 and strv2

// for which there is a match

if idx1 == []

return

end

// Eliminate indices for which an element of strv2 is only

// a substring in strv1

temp1 = strv1(idx1);

temp2 = strv2(idx2);

bool(idx1(temp1(:) == temp2(:))) = %t;

endfunction

4.5 Lists

Lists are Scilab data objects and come in three flavors: ordinary lists, list, which behave like
Matlab cell vectors (one-dimensional cell arrays), typed lists, tlist, and matrix-oriented typed
lists, mlist. The latter two can be used to emulate Matlab structures.

4.5.1 Ordinary lists (list)

A list is a collection of data objects. Its Matlab equivalent is a vector of cells. Like Matlab cell
arrays these objects need not be of the same type. They can be scalars, matrices, character strings,
string matrices, functions, as well as other lists. An example is (remember that both single quotes
(’) and double quotes (”) can be used to denote strings in Scilab):

40 CHAPTER 4. VARIABLE TYPES

-->a list=list(’Test’,[1 2; 3 4], ...

[’This is an example’; ’of a list entry’])

a list =

a list(1)

Test

a list(2)

! 1. 2. !

! 3. 4. !

a list(3)

!This is an example !

! !

!of a list entry !

Individual elements can be accessed with the usual index notation. Thus

-->a list(1)

ans =

Test

This is different from the way Matlab works. If a list were a Matlab cell array the same result
would be achieved by a list{1} — note the curly brackets — whereas a list(1) would be a
one-element cell array which contains the string ‘test’.

Using the index 0 one can prepend an element to the list

-->a list(0)=%eps;

Scilab Description
getfield Get a data object from a list
length Length of list
list Create a list
lstcat Concatenate lists
mlist Create a matrix-oriented typed list
null Delete an element of a list
setfield Set a data object in a list
size Size of a list or typed list (but not matrix-oriented typed list)
tlist Create a typed list

Table 4.7: Functions that create, or operate on, lists

4.5. LISTS 41

This pushes all elements of a list back. Hence

-->a list(2)

ans =

Test

What used to be the first element is now the second one. The Matlab equivalent would be
a list=[{eps},a list]; it is more flexible since any number of elements (not just one) could
be prepended and the augmented cell array could be saved under a new name; e.g.

a list1=[{eps},a list]

However, in Scilab the same functionality could be created by overloading (see Section 7.3).

Appending elements works the same way.

-->a list(8)=’final element’;

assigns the string ’final element’ to element 8 of the list a list. Elements 5 to 7 are undefined.
Thus

-->a list(5)

!--error 117 List element 5 is Undefined

The null function can be used to delete an elements of a list. For example,

-->aa=list(1,2,3,4,5);

-->aa(3)=null()

aa =

aa(1)

1.

aa(2)

2.

aa(3)

4.

aa(4)

5.

The third element has been removed from the list. The list has now only four elements. It is not
possible to delete more than one element at a time in this way; e.g. the attempt to delete elements
2 and 4 via aa([2,4])=null() generates an error message.

Lists allow tuple assignments, i. e. more than one variable can be assigned a value in a single
statement. With the list aa defined above

42 CHAPTER 4. VARIABLE TYPES

-->[u,v]=aa(2:3)

v =

4.

u =

2.

This kind of tuple assignment can also be used with typed lists.

The functions size and length have been appropriately overloaded for lists.

-->blist = list(’abcd’,’efg’,1.3,[1 2; 3 4],list(’1’,1))

blist =

blist(1)

abcd

blist(2)

efg

blist(3)

1.3

blist(4)

! 1. 2. !

! 3. 4. !

blist(5)

blist(5)(1)

1

blist(5)(2)

1.

-->length(blist)

ans =

5.

-->size(blist)

ans =

5.

Note that length and size give the same result — one number. Lists are inherently one-
dimensional objects. But this last example illustrates how one can emulate a two-dimensional
cell array, i. e. a multi-dimensional object where an element is defined by two indices (this may be

4.5. LISTS 43

desirable for tables where some columns have alphanumeric entries while others are purely numeric).
One can write it as a list of lists. The following is an example.

-->cell=list(list(),list());

-->cell(1)=[’first’,’second’,’third’];

-->cell(2)=[1,2,3];

-->cell(1)(3)

ans =

third

-->cell(2)(3)

ans =

3.

Nevertheless,

-->length(cell)

ans =

2.

Thus cell is still a one-dimensional data object.

4.5.2 Typed lists (tlist)

A typed list is a special kind of list. Typed lists allow the user to set up special kinds of data
objects and to define operations on these objects (see Section 7.3). Examples are linear systems
(type ’lls’) or rational functions (type ’rational’; see page 53).

The first element of a typed list must be a string (the type name or type) or a vector of strings.
In the latter case the type name is the first element of the string vector; the other elements of this
string vector are names (field names) for the other entries of the typed list. An example is

-->a tlist=tlist([’example’,’first’,’second’], 1.23,[1,2])

a tlist =

a tlist(1)

!example first second !

a tlist(2)

1.23

44 CHAPTER 4. VARIABLE TYPES

a tlist(3)

! 1. 2. !

-->type(a tlist)

ans =

16.

-->typeof(a tlist)

ans =

example

Here the first element of the list is a three-element vector of character strings whose first element,
’example’, identifies the type of list (type name). While this type name can consist of almost any
number of characters (definitely more than 1024), it must not have more than 8 if one intends to
overload operators for this typed list.

From a Matlab user’s perspective the fact that typed lists can be used to represent Matlab structures
is of greatest relevance here, and in this case the type as represented by the first element of the
first string vector can, in principle, be ignored2. The other elements of the first string vector play
the role of the field names of the structure. The elements of a tlist can be accessed in the usual
way via indices.

-->a tlist(1)

ans =

!example first second !

-->a tlist(2)

ans =

1.23

-->a tlist(3)

ans =

! 1. 2. !

-->a tlist(1)(2)

ans =

first

Displays of lists can become quite lengthy and confusing. Here, for display purposes a function
show is used (it is not part of the Scilab distribution, but too long to be reproduced here) which

2As shown above, the display of lists can be rather unwieldy. Fortunately, the way a typed list (or matrix-oriented

typed list) is displayed can be overloaded to create, for example, a Matlab-like look. If this is desired then the type

name plays a key role.

4.5. LISTS 45

displays data objects in a more compact form and, for typed lists, is patterned after the format
Matlab uses for structures. Thus

-->show(a tlist)

LIST OF TYPE "example"

first: 1.23

second: 1 2

Section 7.3 shows how this kind of display can be made the default for displaying a particular type
of a typed list.

Elements of the typed list other than the first can be accessed in various ways. For example

-->a tlist(’first’)

ans =

1.23

-->a tlist(’second’) 14a

ans =

! 1. 2. !

Thus the second and third element of a tlist(1) can be used as “names” for the second and
third element, respectively, of a tlist. But there is another way of using these names. It is the
representation of structures familiar to Matlab and C users.

-->a tlist.first

ans =

1.23

-->a tlist.second 14b

ans =

! 1. 2. !

Thus a typed list can be accessed like a Matlab structure . Once it is defined, different values can
be assigned to it in the same way they would be assigned to a Matlab structure.

-->a tlist.second = ’A new value’;

-->a tlist.second

ans =

A new value

One advantage of 14a over 14b is that the field name need not satisfy requirements for a variable;
it may contain white spaces and special characters not allowed for variable names. But more

46 CHAPTER 4. VARIABLE TYPES

importantly, the field name may be computed by concatenating strings or it could be the element
of a string vector.

In principle, the typed list a tlist could have been defined as

-->a tlist = tlist([’example’,’first’,’second’]);

-->a tlist.first = 1.23;

-->a tlist.second = [1,2];

In contrast to Matlab, where the fields of a structure need not be defined before they are used, in
Scilab one must define them. If a tlist were to have one more element, it would have to be added
first — e.g via (remember that $ means “last element” equivalent to end in Matlab);

-->a tlist(1)($+1) = ’new’;

-->a tlist.new = ’value of new field’; 15a ;

-->show(a tlist)

LIST OF TYPE "example"

first: 1.23

second: 1 2

new: value of new field

The statement 15a above could have been written as

a tlist($+1) = ’value of new field’; 15b

Generally speaking, the kth element of the first-element character string vector of a typed list is
the field name of the kth element of the typed list.

Lists can have other lists as elements. For example

-->record=tlist([’record’,’patient’,’invoice’]);

-->record.patient=tlist([’patient’,’address’,’city’,’phone’]);

-->record.patient.phone=’123.456.7890’;

-->record.invoice=1234.33;

-->record

record =

4.5. LISTS 47

record(1)

!record patient invoice !

record(2)

record(2)(1)

!patient address city phone !

record(2)(2)

Undefined

record(2)(3)

Undefined

record(2)(4)

123.456.7890

record(3)

1234.33

With function show this reads:

-->show(record)

LIST OF TYPE "record"

patient: LIST OF TYPE "patient"

address: Undefined

city: Undefined

phone: 123.456.7890

invoice: 1234.33

An element of a typed list can be removed the same way an element of an ordinary list is removed.
However, the index or the name can be used. Thus, for the typed list record defined above the
following four Scilab statements

-->record.patient.phone = null();

-->record.patient(4) = null();

-->record(2)(4) = null();

-->record(2).phone = null();

are equivalent.

A combination of list and tlist can be used to create the Scilab equivalent of a structure array.

48 CHAPTER 4. VARIABLE TYPES

-->seis1 =

tlist([’seismic’,’first’,’last’,’step’,’traces’,’units’],0,[],4,[],’ms’);

-->seismic = list(seis1,seis1,seis1);

-->for ii=1:3

--> seismic(ii).last=1000*ii;

--> nsamp = (seismic(ii).last-seismic(ii).first)/seismic(ii).step+1;

--> seismic(ii).traces=rand(nsamp,10);

-->end

-->show(seismic)

List element 1:

LIST OF TYPE "seismic"

first: 0

last: 1000

step: 4

traces: 251 by 10 matrix

units: ms

List element 2:

LIST OF TYPE "seismic"

first: 0

last: 2000

step: 4

traces: 501 by 10 matrix

units: ms

List element 3:

LIST OF TYPE "seismic"

first: 0

last: 3000

step: 4

traces: 751 by 10 matrix

units: ms

Thus seismic is a list with three seismic data sets with the same start times but different end
times, that can be individually addressed.

-->show(seismic(3))

LIST OF TYPE "seismic"

first: 0

last: 3000

step: 4

traces: 751 by 10 matrix

4.5. LISTS 49

units: ms

It is also straight forward to access fields of individual data sets. For example,

-->seismic(2).last

ans =

2000.

4.5.3 Matrix-oriented typed lists (mlist)

Help file and manuals provide only very sketchy information about matrix-oriented typed lists. An
mlist is defined like a regular typed list discussed above. This is illustrated by an example. The
statement

-->an mlist=mlist([’VVV’,’name’,’value’],[’a’,’b’,’c’],[1 2 3])

an mlist =

an mlist(1)

!VVV name value !

an mlist(2) 16a

!a b c !

an mlist(3)

! 1. 2. 3. !

creates a matrix-like typed list, and the statements

-->an mlist.name

ans = !a b c !

-->an mlist(’name’)

ans =

!a b c !

-->an mlist.value

ans =

! 1. 2. 3. !

-->an mlist(’value’)

ans =

! 1. 2. 3. !

50 CHAPTER 4. VARIABLE TYPES

work as expected. However, elements cannot be accessed by index the way elements of a typed list
can.

-->an mlist(2) 16b

!--error 4

undefined variable : %l e

This is in spite of the fact that 16b looks exactly like 16a , the output created by function mlist.
Also, the size function does not work with mlists. In practical terms, this implies more options
for operator overloading. And, indeed, matrix-oriented typed lists appear to be better suited for
operator overloading.

4.6 Polynomials

If polynomials are a data type available with standard Matlab (there is, of course, the Symbolic
Toolbox based on the Maple kernel) then, at least, I am not aware of them. In Scilab they can be
created by means of function poly.

-->p = poly([1 2 3],’z’,’coeff’)

p =

2

1 + 2z + 3z

-->typeof(z)

ans =

polynomial

-->typeof(p)

ans =

polynomial

In this example the first argument of poly is a vector of polynomial coefficients. Alternatively, it
is also possible to define a polynomial via its roots.

4.6. POLYNOMIALS 51

Scilab Description
bezout Compute greatest common divisor of two polynomials
clean Round to zero small entries of a polynomial matrix
cmndred Create common-denominator form of two polynomial matrices
coeff Compute coefficints of a polynomial matrix
coffg Compute inverse of a polynomial matrix
colcompr Column compression of polynomial matrix
degree Compute degree of polynomial matrix
denom Compute denominator of a rational matrix
derivat Compute derivative of the elements of a polynomial matrix
det Compute determinant of a polynomial or rational matrix
determ Compute determinant of a polynomial matrix
detr Compute determinant of a polynomial or rational matrix
diophant Solve diophantine equation
factors Compute factors of a polynomial
gcd Compute greatest common divisor of elements of polynomial matrix
hermit Convert polynomial matrix to triangular form
horner Evaluate polynomial or rational matrix
hrmt Compute greatest common divisor of polynomial row vector
inv Invert rational or polynomial matrix
invr Invert rational or polynomial matrix
lcm Compute least common multiple elements of polynomial matrix
lcmdiag Least common multiple diagonal factorization
ldiv Polynomial matrix long division
pdiv Elementwise polynomial division of one matrix by another
pol2str Convert polynomial to a string
residu Compute residues (e. g. for contour integration) of ratio of two polynomials
roots Compute roots of a polynomial
rowcompr Row compression of polynomial matrix
sfact Spectral factorization of polynomial matrix
simp Rational simplification of elements of rational polynomial matrix
simp mode Test for (or set) simplification mode for rational expressions
sylm Sylvester matrix (input two polynomials, output numeric)

Table 4.8: Functions related to polynomials and rational functions

52 CHAPTER 4. VARIABLE TYPES

-->p = poly([1 2 3],’z’,’roots’)

p =

2 3

- 6 + 11z - 6z + z

-->roots(p)

ans =

! 1. !

! 2. !

! 3. !

The default for the third argument is actually ’roots’ and so it could have been omitted. It is
also possible to define first the symbolic variable and then create polynomials via standard Scilab
expressions.

-->s = poly(0,’s’) // This is a polynomial whose only zero is 0

s =

s

-->p = 2 - 3*s + ŝ2
p =

2

2 - 3s + s

-->q = 1 - s

q =

1 - s

-->simp mode(%f) // Do not simplify ratios of polynomials

-->r = p/q

r =

2

2 - 3s + s

1 - s

-->simp mode(%t) // Simplify ratios of polynomials

-->simp(r)

ans =

2 - s

4.6. POLYNOMIALS 53

1

-->type(r)

ans =

16.

-->typeof(r)

ans =

rational

The result of type indicates that r is a typed list and typeof tells us that it is a list of type
rational.

Table 4.8 lists functions available in Scilab for manipulating polynomials and ratios of polynomials.

One difference between computer algebra packages such as Mathematica, Maple, or Macsyma and
this implementation of polynomial algebra is the precision. Scilab evaluates expression to its normal
precision while the above packages maintain infinite precision unless requested to perform numerical
evaluations.

Chapter 5

Functions

5.1 General

For someone coming from Matlab Scilab functions are familiar entities. One difference is that
parentheses are generally required even if a function has no input arguments. There are two
exceptions:

• The function is treated as a variable

• The function has at most one output argument and all input arguments are strings (command-
type syntax).

Command-style Syntax: For any function that has at most one output argument and whose
input arguments are character strings, the calling syntax may be simplified by dropping the paren-
theses. Thus

-->getf(’fun1.sci’)

-->getf ’fun1.sci’

-->getf fun1.sci // Command-style syntax

are equivalent. The last form represents the command-style syntax (a command, possibly followed
by one or more arguments; Matlab has a similar feature). More generally, if function funct accepts
three string arguments then

funct(’a’,’total’,’of three strings’)

is equivalent to

funct a total ’of three strings’

54

5.1. GENERAL 55

Here the quotes around the last argument are required to prevent it from being interpreted as three
individual strings. It even seems to work if the function accepts non-string arguments provided
that these arguments are optional. In order to run a script, say script.sce, the command
exec(’script.sce’) must be executed. The function exec has one required and two optional
arguments (one of which is numeric). Nevertheless,

exec(’script.sce’)

exec ’script.sce’

exec script.sce

give all the same result.

Scilab provides one way of passing parameters to a function that is not available in Matlab: named
arguments. This method of passing arguments is especially practical with function that have many
input parameters with good default values — plot functions are typical examples. For example,
the built-in function plot2d can be called as follows

plot2d([logflag],x,y,[style,strf,leg,rect,nax])

The first argument is an optional string that can be used to set axis graduation (linear or logarith-
mic). The next two arguments are the x-coordinate and y-coordinate of the function to be plotted.
The last five arguments are optional again. Now suppose one wants to use the default values for
all optional parameters except the curve legend (parameter leg). The parameter logflag is not
a problem. If the first input argument is not a string the program knows it is not given as a
positional parameter. But the defaults of style and strf would have to be given so that leg is
at the correct position in the argument list. Hence, the statement would read as follows

-->plot2d(x,y,1,’161’,’Curve legend’)

This, of course means that one has to figure out what the default values are. The simpler solution
to this problem is to use named parameters

-->plot2d(x,y,leg=’Curve legend’)

Note that the name of the argument, leg is not quoted — it is not a string. The order of named
parameters is arbitrary, but any positional parameters must come before named parameters. It is
for example possible to specify the parameter logflag after all. For example,

-->plot2d(x,y,leg=’Curve legend’,logflag=’ll’)

creates the same plot, but with log-log axes. Of course, the same could be achieved by

-->plot2d(’ll’,x,y,leg=’Curve legend’)

56 CHAPTER 5. FUNCTIONS

In principle, any input argument could be supplied as a named parameter.

-->plot2d(x=x,y=y,leg=’Curve legend’)

but plot2d has internal checks that do not allow that. Also, named parameters are not compatible
with variable-length input argument lists varargin.

5.2 Functions that Operate on Scalars and Matrices

5.2.1 Basic Functions

Quite a number of functions in Table 5.1 below, while having the same name, behave differently for
matrices than their Matlab counterparts. The following example illustrates this difference. Scilab
has an edge here.

-->mat = matrix([1:20],4,5) // Create a matrix by rearranging a vector

mat =

! 1. 5. 9. 13. 17. !

! 2. 6. 10. 14. 18. !

! 3. 7. 11. 15. 19. !

! 4. 8. 12. 16. 20. !

-->[maxa,index] = max(mat) // Find largest element and its location

index =

! 4. 5. !

maxa =

20.

-->[maxr,idx] = max(mat,’r’)

idx =

! 4. 4. 4. 4. 4. !

maxr =

! 4. 8. 12. 16. 20. !

-->maxc = max(mat,’c’)

maxc =

! 17. !

! 18. !

! 19. !

! 20. !

5.2. FUNCTIONS THAT OPERATE ON SCALARS AND MATRICES 57

Scilab Description
abs(a) Absolute value of a, |a|
bool2s Replace %t (or non-zero entry) in matrix by 1 and %f by zero
ceil(a) Round the elements of a to the nearest integers ≥a
clean “Clean” matrices; i.e. small entries are set to zero
conj Complex conjugate
cumprod Cumulative product of all elements of a vector or array
cumsum Cumulative sum of all elements of a vector or array
fix(a) Rounds the elements of a to the nearest integers towards zero
floor(a) Rounds the elements of a to the nearest integers ≥ a

gsort(a) Sort elements/rows/columns of a
imag Imaginary part of a matrix
intersect(str1,str2) Returns elements common to two vectors str1 and str2

lex sort Sort rows of matrices in lexicographic order
linspace Create vector with linearly spaced elements
logspace Create vector with logarithmically spaced elements
max Maximum of all elements of a vector or array
maxi Maximum of all elements of a vector or array
mean Mean of all elements of a vector or array
median Median of all elements of a vector or array
min Minimum of all elements of a vector or array
mini Minimum of all elements of a vector or array
modulo(a,b) a-b.*fix(a./b) if b∼=0; remainder of a divided by b

pmodulo(a,b) a-b.*floor(a./b) if b∼=0; remainder of a divided by b

prod Product of the elements of a matrix
real Real part of a matrix
round(a) Round the elements of a to the nearest integers
sign(a) Signum function, a/|a| for a 6= 0
sqrt(a)

√
a

st deviation Standard deviation
sum Sum of all elements of a matrix
union(a,b) Extract the unique common elements of a and b

unique(a) Return the unique elements of a in ascending order

Table 5.1: Basic arithmetic functions

There is no equivalent in Matlab for the behavior of max(mat). It is particular the easy way of
getting the indices of the largest element of a matrix that I consider extremely useful. The Matlab
version of max behaves just like max(mat,’r’) does — it computes a row vector representing the
maxima of every column. Likewise, max(mat,’c’) computes a column vector with the maximum
element in each row (equivalent to max(mat,[],2) in Matlab).

The analogous behavior is found for Scilab functions cumprod, cumsum, maxi, mean, median, min,
mini, prod, sum, and st deviation. The functions max and maxi are equivalent as are min and
mini.

58 CHAPTER 5. FUNCTIONS

Scilab has two functions for sorting: gsort and sort. The latter is not only buggy (BOT, Chapter
6.1.3.3.6) but also less powerful. Hence, it is only gsort that is discussed here. Unlike its Matlab
counterpart, gsort sorts in decreasing order by default. It also behaves differently for matrices.
While Matlab sorts each column, Scilab sorts all elements and then stores them columnwise as
shown in the example below.

-->mat = [-1 4 -2 2;1 0 -3 3]

mat =

! - 1. 4. - 2. 2. !

! 1. 0. - 3. 3. !

-->smat = gsort(mat)

smat =

! 4. 2. 0. - 2. !

! 3. 1. - 1. - 3. !

-->smatc = gsort(mat,’c’) // Rows are sorted 17

smatc =

! 4. 2. - 1. - 2. !

! 3. 1. 0. - 3. !

In the help file 17 is called a “columnwise” sort; this appears to be somewhat misleading since
— as described later in the help file — the rows are the ones that are being sorted. The first
column contains the largest element of each row, the second column the second largest, etc. Thus
smatc(:,i) ≥ smatc(:,j) for i < j.

A third input parameter allows the user to select the sort direction (decreasing or increasing) of
gsort. In order to get what Matlab’s sort would do one needs to set it to increasing (’i’) and
also choose “row sorting” (’r’).

-->smatri = gsort(mat,’r’,’i’) // Matlab-like result

smatri =

! - 1. 0. - 3. 2. !

! 1. 4. - 2. 3. !

This way the elements of each column are sorted in increasing order.

Function gsort also has an option to perform a lexicographically increasing or decreasing sort.
This corresponds to Matlab’s sortrows command and is illustrated below for sorting of rows

-->mat1 = [3 4 1 4; 1 2 3 4; 3 3 2 1; 3 3 1 2]

mat1 =

! 3. 4. 1. 4. !

! 1. 2. 3. 4. !

5.2. FUNCTIONS THAT OPERATE ON SCALARS AND MATRICES 59

! 3. 3. 2. 1. !

! 3. 3. 1. 2. !

// Lexicographically increasing sorting of rows

-->[smat1,index] = gsort(mat1,’lr’,’i’)

index =

! 2. !

! 4. !

! 3. !

! 1. !

smat1 =

! 1. 2. 3. 4. !

! 3. 3. 1. 2. !

! 3. 3. 2. 1. !

! 3. 4. 1. 4. !

The first column is sorted first. Rows that have the same element in the first column are sorted by
the entries of the second column. If two or more of those are the same as well the entries of the
third column are used to determine the order, etc. The optional second output argument gives the
sort order (thus smat1 = mat1(index,:)).

Changing input argument ’lr’ to ’lc’ changes row sorting to column sorting.

While shown here for numeric arrays, string arrays can be sorted the same way.

5.2.2 Elementary Mathematical Functions

Except for cotg the names of all the elementary transcendental functions listed in Table 5.2 agree
with those of their Matlab counterparts. Furthermore, atan can be called with one or with two
arguments. With one argument it equivalent to Matlab’s atan; with two arguments it corresponds
to Matlab’s atan2. Thus, for x > 0, atan(y,x) == atan(y/x).

If the argument of any of these functions is a matrix, the function is applied to each entry separately.
Thus

-->a = [1 2; 3 4]

a =

! 1. 2. !

! 3. 4. !

-->b = sqrt(a)

b =

! 1. 1.4142136 !

! 1.7320508 2. !

60 CHAPTER 5. FUNCTIONS

-->b.*b 18a

ans =

! 1. 2. !

! 3. 4. !

Scilab Description
acos Arc cosine
acosh Inverse hyperbolic cosine
asin Arc sine
asinh Inverse hyperbolic sine
atan Arc tangent
atanh Inverse hyperbolic tangent
cos Cosine
cosh Hyperbolic cosine
cotg Cotangent
coth Hyperbolic cotangent
exp Exponential function
log Natural logarithm
log10 Base-10 logarithm
log2 Base-2 logarithm
sin Sine
sinh Hyperbolic sine
tan Tangent
tanh Hyperbolic tangent

Table 5.2: Elementary transcendental functions

The functions listed in Table 5.3 are “true” matrix functions; they operate on a matrix as a whole.
Thus the matrices have to satisfy certain requirement, the minimum being that they must be
square. So, the example above, with same matrix a but for sqrtm, looks like this

-->b = sqrtm(a)

b =

! .5536886 + .4643942i .8069607 - .2124265i !

! 1.2104411 - .3186397i 1.7641297 + .1457544i !

-->b*b 18b

ans =

! 1. + 5.551E-17i 2. !

! 3. + 2.776E-17i 4. !

5.2. FUNCTIONS THAT OPERATE ON SCALARS AND MATRICES 61

clean(b*b) 19

ans =

! 1. 2. !

! 3. 4. !

Obviously, the matrix b is complex and so rounding errors lead to small imaginary parts of some
of the entries in the product b*b. Expression 19 illustrates how function clean can be used to
remove such small matrix entries.

The important difference between these two examples is that in 18a corresponding entries of b
are multiplied (the . in front of the *) whereas in 18b the matrices are multiplied.

The list of functions in Table 5.3 is longer than it would be in Matlab; on the other hand Scilab
lacks an equivalent for Matlab’s funm function which works for any user-specified functions; for
good accuracy, matrices should be symmetric or Hermitian.

Scilab Description
acoshm Matrix inverse hyperbolic cosine
acosm Matrix arc cosine
asinhm Matrix inverse hyperbolic sine
atanhm Matrix inverse hyperbolic tangent
atanhm Matrix inverse hyperbolic tangent
coshm Matrix hyperbolic cosine
cosm Matrix cosine
expm Matrix xponential function
logm Matrix natural logarithm
sinhm Matrix hyperbolic sine
sinm Matrix sine
sqrtm Matrix square root
tanhm Matrix hyperbolic tangent
tanm Matrix tangent

Table 5.3: Matrix functions

62 CHAPTER 5. FUNCTIONS

5.2.3 Special Functions

Table 5.4 lists so-called special functions of mathematical physics available in Scilab.

Scilab Description
%asn Jacobian elliptic function, sn(x,m) =

∫ x
0 dt/

√
(1− t2)(1−mt2)

%k Complete elliptic integral, K(m) =
∫ 1
0 dt/

√
(1− t2)(1−mt2)

%sn Jacobian elliptic function, sn
amell Jacobian function am(u, k)
besseli Modified Bessel function of the first kind, Iα(x)
besselj Bessel function of the first kind, Jα(x)
besselk Modified Bessel function of the second kind, Kα(x)
bessely Bessel function of the second kind, Yα(x)
delip Elliptic integral, u(x, k) =

∫ x
0 dt/

√
(1− t2)(1− k2)

dlgamma Digamma function, ψ(x) = d ln(Γ(x))/dx

erf Error function, erf(x) = 2/
√

π
∫ x
0 exp(−t2)dt

erfc Complementary error function, erfc(x) = 2/
√

π
∫∞
x exp(−t2)dt

erfcx Scaled complementary error function, erfcx(x) = exp(x2)erfc(x)
gamma Gamma function, Γ(x) =

∫∞
0 tx−1 exp(−t)dt

gammaln Logarithm of the Gamma function, ln(Γ(x))

Table 5.4: Special functions

Scilab Description
bandwr Band-width reduction of a sparse matrix
chfact Sparse Cholesky factorization
chsolve Use sparse Cholesky factorization to solve linear system of equations
full Convert sparse to full matrix
lufact Sparse LU factorization
luget Sparse LU factorization
lusolve Solve sparse linear system of equations
nnz Number of nonzero elements of a sparse matrix
sparse Create sparse matrix
spchol Sparse Cholesky factorization
speye Sparse identity matrix
spget Retrieve entries of a sparse matrix
spones Replace non-zero elements in sparse matrix by ones
sprand Create sparse random matrix
spzeros Sparse zero matrix

Table 5.5: Functions for sparse matrices

5.2. FUNCTIONS THAT OPERATE ON SCALARS AND MATRICES 63

5.2.4 Linear Algebra

Tables 5.5 and 5.6 list functions for linear-algebra operations. Functions for full matrices work on
sparse matrices as well.

Scilab Description
balanc Balance matrix to improve condition number
bdiag Block diagonalization of matrix
bdiag(M) Block diagonalization/generalized eigenvectors of M
chol(M) Choleski factorization; R’*R = M

colcomp(M) Column compression of M
cond Condition number of M
det Determinant of a matrix
fullrf(M) Full-rank factorization of M
fullrfk(M) Full-rank factorization of MK

givens Given’s rotation
hess(M) Hessenberg form of M
householder Householder orthogonal reflection matrix
inv(M) Inverse of matrix M

kernel(M) Nullspace of M
linsolve Linear-equation solver
norm(M) Norm of M (matrix or vector)
orth(M) Orthogonal basis for the range of M
pinv(M) Pseudoinverse of M
polar(M) Polar form of M, M=R*expm(%i*Theta)
qr(M) QR decomposition of M
range(M) Range of M
rank(M) Rank of M
rcond(M) Reciprocal of the condition number of M; L-1 norm
schur(M) Schur decomposition
spaninter(M,N) Intersection of the span of M and N

spanplus(M,N) Span of M and N

spec Eigenvalues of matrix
sva(M) Singular-value approximation of M for specified rank
svd(M) Singular-value decomposition of M
trace(M) Trace (sum of diagonal elements) of M

Table 5.6: Linear algebra

64 CHAPTER 5. FUNCTIONS

5.2.5 Signal-Processing Functions

Scilab proper and the Signal-Processing Toolbox offer quite a number of functions for signal pro-
cessing. The three functions shown here in table 5.7 have been chosen because they are frequently
used and have Matlab-equivalents. Furthermore, the Fast Fourier Transform (FFT) fft may need
some explanation. After all, it does what fft, ifft, fft2, and ifft2 do in Matlab.

Scilab Description
convol Convolution
fft Forward and inverse Fast Fourier Transform
mfft Multidimensional Fast Fourier Transform

Table 5.7: Functions for signal processing

The basic Fourier transform is performed as shown in the example below

-->x = rand(100,1);

-->y = fft(x,-1); 20a

-->z = fft(y,1); 20b

-->norm(x-z)

ans =

1.532E-15

where

ym =
N∑

n=1

xn e−2πi(n−1)(m−1)/N for m = 1, · · · , N (5.1)

with N denoting the number of elements xn. The second argument, -1, in 20a corresponds to the
minus sign in front of the exponent in (5.1). The operation performed in 20b ,

zm =
1
N

N∑

n=1

yn e2πi(n−1)(m−1)/N for m = 1, · · · , N,

is the inverse of 20a .

If xx is a matrix then f(xx,-1) performs the two-dimensional Fourier transform. It is thus
equivalent to Matlab’s fft2. Matlab’s fft, on the other hand, performs a one-dimensional FFT
on each column of a matrix. In order to achieve the same result with Scilab one has to write fft
in the form 21

5.2. FUNCTIONS THAT OPERATE ON SCALARS AND MATRICES 65

-->n = 100; m = 20;

-->xx = rand(n,m);

-->yy1 = zeros(xx);

-->for i=1:m

--> yy1(:,i) = fft(xx(:,i),-1);

-->end

-->yy2 = fft(xx,-1,n,1); 21

-->norm(yy1-yy2) 22

ans =

0.

-->zz = fft(yy2,1,n,1); 23

-->norm(xx-zz) 24

ans =

3.368E-15

Expression 22 shows that yy1 and yy2 are identical. Likewise, expression 24 shows that the
inverse Fourier transform 23 works as expected with this syntax.

Furthermore, with yy2 computed in 21 , statement 25 computes the two-dimensional FFT of xx:

-->uu1 = fft(xx,-1); // Two-dimensional FFT of xx

-->uu2 = fft(yy2,-1,m,n); 25

-->norm(uu1-uu2)

ans =

0.

Obviously, uu1 and uu2 are identically.

66 CHAPTER 5. FUNCTIONS

5.3 File Input and Output

There are quite a few functions for formatted and unformatted reading and writing of text and
numeric data. Some have Matlab equivalents. They are summarized in tables 5.9 (reading), 5.10
(writing), and 5.8 (ancillary functions). Many I/O functions come in pairs — one is designed to
read what the other one writes. The special-purpose routines for, say, writing and reading audio
files fall into this category. Some of the following pairs represent my own way of grouping. This
grouping does not imply that no other function can read what one of these functions writes and
vice versa; rather, these pairs appear similar in terms of design philosophy and input arguments.

5.3.1 Opening and Closing of Files

Before one can read from, or write to, a file the file needs to be “opened”. This is transparent
for I/O functions, such as fprintfMat or fscanfMat, that only use a file name to specify which
file to read from (write to). They open the requested file, read/write the data and close the file
without the user being aware of it. But whenever there is a need to incrementally read or write
data it is up to the user to open files. A situation like that occurs, for example, with big data sets.
One might read a piece of the data from file A, process it, and write it out to file B; then read in the
next piece of data from file A, process it, and write it to file B, etc. In this case files A and B must
be opened before anything can be read from respectively written to them. Scilab has two functions
for opening a file, mopen and file, and Scilab functions that allow incremental I/O require one
or the other. For this reason the subsequent discussion of specific I/O functions mentions, where
appropriate, which one of the two functions needs to be used for opening a file. Function mopen is
quite similar to Matlab’s fopen whereas file reminds one of the Fortran equivalent.

Functions mopen and file output a file identifier (Matlab terminology). Scilab help files call it
“file descriptor” or ”logical unit descriptor”; in Fortran it is called “Logical Unit Number”. It is
this file identifier, and not the file name, that is then used to specify from which file to read (to
which file to write). File identifiers are numbers which range from 1 to 19 in Scilab-2.6 for Windows.
File identifier 1 is used for the history file scilab.hist, file identifiers 5 and 6 (%io(1) and %io(2),
respectively) are reserved for keyboard (input) and Scilab window (output), respectively. Hence, a
maximum of 16 file identifiers are available to users; this limits to 16 the number of user files that
can be open at any one time.

Files that have been opened with mopen must be closed with mclose, and file with the ’close’
option must be used to close files that have been opened with file. Examples of the use of mopen,
mclose, and file are part of the discussion of specific I/O functions below.

5.3. FILE INPUT AND OUTPUT 67

Scilab Description
dispfiles Display properties of opened files
file Open/close a file, define file attributes
fileinfo Get information about a file
getio Get Scilab’s standard logical input/output units
mclearerr Reset binary-file access errors
mclose Close (all) open file(s)
meof Check if end-of-file has been reached
mopen Open a file
mseek Set position in a binary file
mtell Output the current position in a binary file
newest Find newest of a set of files
xgetfile Open dialog box for file selection

Table 5.8: Functions that open, querry, manipulate, and close files

5.3.2 Functions mgetl and mputl

Function mputl writes a vector of strings to an ASCII file in form of a sequence of lines, and mgetl

can retrieve one or more of these lines. This is a simple example:

-->text = [’This is line 1’;’Line 2 ’;’Line 3 (last)’]

text =

!This is line 1 !

! !

!Line 2 !

! !

!Line 3 (last) !

-->mputl(text,’C:\temp\dummy.txt’)
-->

-->all = mgetl(’C:\temp\dummy.txt’) // Get the whole file

all =

!This is line 1 !

! !

!Line 2 !

! !

!Line 3 (last) !

With only one input argument, mgetl reads the whole file. If only the first few lines are required
the number of lines can be specified via the second input parameter:

68 CHAPTER 5. FUNCTIONS

Scilab Description
auread Read a .au audio file from disk
excel2sci Read ASCII file created by MS Excel
fscanf Read numeric/string variables from ASCII file under format control
fscanfMat Read matrix from ASCII file
input Read from keyboard with a prompt message to Scilab window
load Load variables previously saved with save

loadwave Read a .wav sound file
mfscanf Read data from file (C-type format)
mget Read numeric data (vector) from binary file (conversion format)
mgeti Read data from binary file, converts to Scilab integer format
mgetl Read a specified number of lines from ASCII file
mgetstr Read bytes from binary or ASCII file and interpret as character string
mscanf Read data from keyboard (C-type format)
mtlb load Load variables from file with Matlab-4 format
read Read matrix of strings/numbers from ASCII file under format control
read4b Read Fortran binary file (4 bytes/word)
readb Read Fortran binary file (8 byte/word)
readc Read a character string from a file/keyboard
save Save current Scilab variables in binary file
wavread Read a .wav sound file

Table 5.9: Functions that input data from files or keyboard

-->only2 = mgetl(’C:\temp\dummy.txt’,2) // Read first 2 lines only

only2 =

!This is line 1 !

! !

!Line 2 !

If more lines are requested than are available, the function aborts with an error message. If the
second argument is -1, all lines are read (equivalent to no second input argument).

In the examples above the file to use is identified by it name. In a case like this mgetl does three
things. It opens the file for reading, reads the lines requested, and closes the file again. This
convenience comes at a price. It is not possible to read a file a few lines at a time. If this is
necessary you must open the file yourself and use the file identifier created by mopen to specify the
file to mgetl. Finally, once you are done reading, you need to close the file again.

fid = mopen(’C:\temp\dummy.txt’,’r’) // Open file for reading

fid =

3.

-->one = mgetl(fid,1) // Read one line

one =

5.3. FILE INPUT AND OUTPUT 69

Scilab Description
auwrite Write a .au audio file to disk
diary Write screen output of a Scilab session to a file
disp Write input argument to Scilab window
fprintf Write formatted data to file (like C-language fprintf function)
fprintfMat Write matrix to ASCII file under format control
mfprintf Write data to ASCII file (C-type format)
mprintf Writes data to Scilab window (C-type format)
mput Write numeric data to file in user-specified binary representation
mputl Write string vector to ASCII file (one line per vector element)
mputstr Write character string to an ASCII file
mtlb save Save variables to file in Matlab-4 format
print Print variables to file in the format used for Scilab window
printf Print to Scilab window (emulation of C-language printf function)
savewave Write a .wav sound file
wavwrite Write a .wav sound file
writb Write matrix in to a Fortran binary file (4 bytes/word)
write Write matrix of strings/numbers to ASCI file (Fortran-type format)
write4b Write matrix in to a Fortran binary file (8 bytes/word)

Table 5.10: Functions that output data to files or to the Scilab window

This is line 1

-->twomore = mgetl(fid,2) // Read two more lines

twomore =

!Line 2 !

! !

!Line 3 (last) !

-->mclose(fid) // Close the file

ans =

0.

An analogous procedure can be used to write a file one line (or several lines) at a time.

It is important to note that mputl puts each string in a string matrix in a separate line. Thus a
string matrix with more than one column — when read in — will become a one-column matrix.
This is illustrated in the next example. 26a

-->textlines = [’This is line 1a’,’Line 1b’;

--> ’This is line 2a’,’Line 2b’]

textlines =

!This is line 1a Line 1b !

! !

!This is line 2a Line 2b !

70 CHAPTER 5. FUNCTIONS

-->mputl(textlines,’C:\temp\dummy.txt’)

-->allnow = mgetl(’C:\temp\dummy.txt’) // Get the whole file

allnow =

!This is line 1a !

! !

!This is line 2a !

! !

!Line 1b !

! !

!Line 2b !

The function matrix can be used to reshape (no pun on Matlab intended) allnow into the original
2 by 2 string matrix.

-->matrix(allnow,2,2) 27

ans =

! This is line 1a Line 1b !

! !

! This is line 2a Line 2b !

It is a nice feature of matrix that only one of the dimensions needs to be given; the other can be
replaced by -1. Thus statement 27 is equivalent to either of the two statements

matrix(allnow,-1,2)

matrix(allnow,2,-1)

The parameter not specified is computed from the dimension of the matrix to be reshaped.

5.3.3 Functions read and write

Functions write and read do what mputl and mgetl do — and more. The following statements
are equivalent to those in 26a above.

-->textlines = [’This is line 1a’,’Line 1b’;

--> ’This is line 2a’,’Line 2b’]

textlines =

!This is line 1a Line 1b !

! !

!This is line 2a Line 2b !

-->write(’C:\temp\dummy.txt’,textlines)

5.3. FILE INPUT AND OUTPUT 71

-->all = read(’C:\temp\dummy.txt’,-1,1,’(A)’) // Get the whole file

all =

! This is line 1a !

! !

! This is line 2a !

! !

! Line 1b !

! !

! Line 2b !

While the write statements only needs the file name and the data the read statement also wants the
size of the array to read and a format in FORTRAN syntax. The dimension are in input arguments
2 and 3, the -1 simply instructs read to read the whole file; in this example it could have been
replaced by 4 since there are 4 strings in the file. Like mputl function write writes a string array
one column to a line.

Functions read and write, when used with a file name as first argument, open the file and close
it again after the I/O operation. To read or write incrementally, one needs to open the file oneself.
However, this cannot be done with function mopen used above. Rather, the file must be opened
(and closed) with function file. This is illustrated in the example below where the file created
above is read again.

-->fid = file(’open’,’C:\temp\dummy.txt’,’unknown’) // Open file

fid =

4.

-->one = read(fid,1,1,’(A)’) // Read one line

one =

This is line 1a

-->twomore = read(fid,2,1,’(A)’) // Read two more lines

twomore =

! This is line 2a !

! !

! Line 1b !

-->file(’close’,fid) // Close the file

Function file above opens the file C:\temp\dummy.txt for read and write access. By default
the file is a sequential-access file for ASCII data. Other file types can be chosen by setting the
appropriate input parameters.

Sequentially writing to a file is completely analogous.

Functions read and write can also be used to read and write numeric data.

72 CHAPTER 5. FUNCTIONS

-->fid = file(’open’,’C:\temp\numeric.txt’,’unknown’); // Open file

-->a = rand(3,5,’normal’)

a =

! - .7460990 .1023021 - .3778182 - .6453261 1.748736 !

! - 1.721103 - 1.2858605 2.5749104 .0116391 .1645912 !

! - 1.7157583 .6107784 - .4575284 - 1.4344473 .9182207 !

-->write(fid,a)

-->file(’close’,fid) // Close the file

The 3 by 5 matrix a is written to file in ASCII format (as a string) and unformatted and can be
retrieved as shown below.

-->[fid,ierr] = file(’open’,’C:\temp\numeric.txt’,’old’)
// Open file

ierr =

0.

fid =

4.

-->if ierr ˜= 0 then error(’ Problem opening file’), end

-->newa = read(fid,2,3)

newa =

! - .7460990 .1023021 - .3778182 !

! - 1.721103 - 1.2858605 2.5749104 !

-->file(’close’,fid) // Close the file

Function file is used here with two output arguments; the second provides the error status. If an
error occurs while opening a file function file does not abort but rather saves the error number
in this second output argument and leaves it to the user to handle the error. Function read only
requests the first two columns of the first two rows, and that is what is output. Furthermore, the
file status is set to ’old’. After all, the file must already exist in order to be read. Of course,
’unknown’ would have been an option too.

The next example shows how a can be written to a file under format control. It also shows that the
“file” can be the Scilab window — as mentioned earlier, %io(2) is the file identifier for the Scilab
window.

-->write(%io(2),a,’(5f10.5)’) .51633 .64507 -.54852 -1.38505

5.3. FILE INPUT AND OUTPUT 73

-1.10499 1.04225 -.44840 1.13162 -1.62805 .76045 2.49761 -.72190

-1.36674 .77577 -.65881

Matrix a is written to the file in 5 columns, each of which is 10 characters wide, with 5 digits to
the right of the decimal point. Incidentally, write can also be used to write a string vector (but
not a matrix) to the Scilab window without the “almost blank” lines.

textlines(:)

ans =

!This is line 1a !

! !

!This is line 2a !

! !

!Line 1b !

! !

!Line 2b !

-->write(%io(2),textlines)

This is line 1a

This is line 2a

Line 1b

Line 2b

-->write(%io(2),textlines,’(a20)’)

This is line 1a

This is line 2a

Line 1b

Line 2b

Without a format the strings are left-justified. With format a20 they are right justified; the total
number of characters per line is 20.

5.3.4 Functions load and save

Functions save and load perform the same function they perform in Matlab: save writes one, or
more, or even all variables of the workspace to a file. The file can be defined either by its name (in
this case opening and closing is done automatically) or by a file identifier. In the latter case the
file needs to be opened with mopen with parameter wb (write binary). But variables can be saved
incrementally to the same file. An example is below.

-->a = 3;

-->fid = mopen(’C:\Temp\saved.bin’,’wb’);

74 CHAPTER 5. FUNCTIONS

-->save(fid,a)

-->b = 5; c = ’text’;

-->save(fid,b,c)

-->mclose(fid);

Note that variable names in the save command are not in quotes. In Matlab they would be.

To recall variables saved earlier, possibly in another session,

-->clear a, clear b

-->load(’C:\Temp\saved.bin’,’a’,’b’)

-->a,b

a =

3.

b =

5.

Here, as in Matlab’s load function, the variable names must be in quotes.

5.3.5 Functions mput and mget/mgeti

The two input functions allow one to read blocks of 1, 2, 4, or 8 bytes from a binary file and
convert them into either double-precision floating point numbers (mget) or into integers (mgeti)
(see rightmost column of the table below). The type of conversion is controlled by a type parameter
which can take the following values

Type in file in Scilab
c 8-bit integer int8

s 16-bit integer int16

i 32-bit integer int32

l 64-bit integer double

uc Unsigned 8-bit integer uint8

us Unsigned 16-bit integer uint16

ui Unsigned 32-bit integer uint32

ul Unsigned 64-bit integer double

f 32-bit floating-point number double

d 64-bit floating-point number double

5.3. FILE INPUT AND OUTPUT 75

The functions can incrementally read/write files that have been opened with mopen.

With binary files the questions of byte ordering has to be addressed. Intel CPU’s, and thus PC’s,
use “little-endian” byte ordering whereas so-called workstations (Sun Sparc, SGI, IBM RS/6000)
use “big-endian” byte ordering. In Matlab byte ordering is specified when a file is opened with
fopen. Function mopen in Scilab has no such option; instead, byte ordering is specified together
with the variable type by appending a b or l to the type parameter. Thus the statement for reading
6 big-endian, 32-bit integers from a file with file identifier fid is

-->from file = mget(6,’ib’,fid)

Had the b been omitted the “natural” byte ordering of the computer on which the program runs
would have been used (e.g. little-endian for a PC). As long as one reads files written on the same
type of computer byte ordering is generally not a problem. It needs attention when one reads a file
created on a computer with different byte ordering.

5.3.6 Functions input and disp

Function input is completely equivalent to Matlab’s input:

-->response = input(’Prompt user for input’)

Prompt user for input-->3

response =

3.

The user response (3 in this example) can also be an expression involving variables in the workspace.
Furthermore, by adding a second argument, ’string’ or simply ’s’, the user response can be
interpreted as a string. There is no need to put it in quotes.

Function disp has a close Matlab analog as well. Unlike its Matlab counterpart it can take more
than one argument. However, as illustrated out earlier (page 18) the arguments are displayed in
reverse order.

5.3.7 Function xgetfile

Generally, functions whose name starts with an “x” have some connection to graphics (proba-
bly some reference to Xwindows). This is also true for xgetfile which opens a dialog box for
interactive file selection. It works essentially like Matlab’s uigetfile. An example is

-->file name = xgetfile(filemask=’*.sgy’,dir=’D:\Data\Seismic’, ...

title=’Read SEG-Y file’);

which opens a file selection window with the title “Read SEG-Y file”. The initial directory shown in
the window is D:\Data\Seismic, and only files with file name extension .sgy are shown initially.

76 CHAPTER 5. FUNCTIONS

5.4 Utility Functions

This chapter describes some of the functions that are not directly necessary to run or debug Scilab
functions, that are more peripheral to Scilab and do not fit well in any other topic discussed
previously. Table 5.11 shows the functions I chose to put into this category.

Scilab Description
diary Write screen output of a Scilab session to a file
getversion Display version of Scilab
host Execute Unix/DOS command; outputs error code
lines Specify number of lines to display and columns/line
pol2tex LATEX representation of a polynomial
stacksize Determine/set the size of the stack
texprint LATEX representation of a Scilab object
timer Ouputs time elapsed since the preceding call to timer()

unix Execute Unix/DOS command; outputs error code
unix g Execute Unix/DOS command; output to variable
unix s Execute Unix/DOS command; no output (silent)
unix w Execute Unix/DOS command; output to Scilab window
unix x Execute Unix/DOS command; output to a new window

Table 5.11: Utility functions

Of the two functions that create LATEX code pol2tex appears to be superfluous since it is more
specialized and texprint does what it does (in fact, pol2tex produces sets of unnecessary braces).

The LATEXcode function texprint generates may require the amsmath package:

-->mat = [.2113249 .3303271 .8497452 .0683740 .7263507;

.7560439 .6653811 .6857310 .5608486 .1985144;

.0002211 .6283918 .8782165 .6623569 .5442573];

-->texprint(mat)

ans =

{\pmatrix{ .2113249& .3303271& .8497452& .068374& .7263507\cr
.7560439& .6653811& .685731& .5608486& .1985144\cr
.0002211& .6283918& .8782165& .6623569& .5442573}}

The diary function causes a copy of all subsequent keyboard input and the resulting Scilab output
to be copied to the file in the argument. Is more limited than Matlab’s diary, which only creates
a new file if the named file does not exist. Otherwise, it appends the output to the existing file.
Also, diary recording can be turned off and on. In Scilab the diary file always creates a new file and

5.4. UTILITY FUNCTIONS 77

aborts with an error message if the file already exists. Furthermore, diary(0) turns the recording
off and closes the file. Recording cannot be toggled on and off.

Quite a few functions are available to execute UNIX or DOS commands from the Scilab command
line. Those accustomed to the ways of Matlab will not be surprised to use a function that has
unix in it to execute DOS commands. The choice among the various functions beginning with
unix depends on the desired output which is indicated in Table 5.11. Functions host and unix

are interchangeable.

Since operating system commands are generally different for DOS and UNIX, a function that is
expected to run on both must have different branches for the two. The built-in variable MSDOS (see
Table 4.6) can be used to determine the type of operating system.

-->if MSDOS

--> files=unix g(’dir D:\MyScilab\Experimental’);
-->else

--> files=unix g(’ls -l ∼/MyScilab/Experimental’);
-->end

-->write(%io(2),files)

Volume in drive D has no label

Volume Serial Number is 18F2-2730

Directory of D:\MyScilab\Experimental

. <DIR> 12-29-01 1:33p .

.. <DIR> 12-29-01 1:33p ..

READ S 1 SCI 25,811 01-06-02 9:22p read segy file.sci

READ S 1 M 23,103 02-21-01 8:17p read segy file.m

2 file(s) 48,914 bytes

2 dir(s) 858.80 MB free

Chapter 6

Scripts

A script is a sequence of Scilab commands stored in a file (while a script file may have any extension,
the Scilab Group suggests the extension .sce). Scripts have neither input arguments nor output
arguments. Since they do not create a new level of workspace all variables they create are available
once the execution of the script is completed.

To invoke a script in Matlab its name without extension, say script file, is typed on the
command line. Furthermore, the file can be in any directory of the search path. Scilab, on the
other hand, uses the concept of a working directory familiar from Unix. The command pwd (Print
Working Directory) can be used to find out what it is. If a script, say script file.sce, is in the
working directory it can be executed by the command

-->exec(’script file.sce’) 28a

A Scilab script can also be stored as a vector of strings; in this case it is executed by means of
function execstr.

The function exec has two optional arguments: the string ’errcatch’ and the variable mode;
the former allows a user to handle errors during execution of the script, the latter allows one to
control the amount of output. It does not appear to really do what the documentation says. The
following table is taken from the help file:

Value Meaning
0 the default value
-1 print nothing
1 echo each command line
2 print prompt −− >

3 echo + prompt
4 stop before each prompt
7 stop + prompt + echo : useful mode for demos

The following are several examples of the mode parameters. Let test.sce be the following script

78

79

// Test script to illustrate the mode parameter

a = 1

b = a+3;

disp(’mode = ’+string(mode()))

Then, without setting the mode parameter, i.e.
mode not specified:

-->exec(’D:\MyScilab\test.sce’)

-->// Script to explain mode parameter

-->a=1

a =

1.

-->b=a+3;

-->disp(’mode = ’+string(mode()))

mode = 3

-->disp(’mode = ’+string(mode()))

mode = 2

In this case exec echoes every line of the script and displays the results of every statement without
a terminating semicolon. Here and in the following examples spaces between lines output by test

have been preserved to more accurately reflect the output of the script. Obviously, the default is
for exec to set mode to 3. But once exec has run mode reverts to 2.

mode = 0:

-->exec(’D:\MyScilab\test.sce’,0)
a =

1.

mode = 0

This value of mode produces the result one would expect from Matlab.

mode = 1:

-->exec(’D:\MyScilab\test.sce’,1)

80 CHAPTER 6. SCRIPTS

-->// Script to explain mode parameter

-->a = 1

a =

1.

-->b = a+3;

-->disp(’mode = ’+string(mode()))

mode = 1

This is the same information displayed with mode = 0 but in a somewhat more compact form
(fewer blank lines).

mode = -1:

-->exec(’D:\MyScilab\test.sce’,-1)

mode = -1

In this case the result of expressions is not displayed even if they are not terminated by a semicolon.

mode = 2:
Displays the same information as mode = 1 but with more empty lines.

mode = 3:
Default mode (mode parameter not given).

mode = 4:
Prints step-by-step mode: enter carriage return to proceed

but then behaves like mode = 0.

mode = 7:

-->exec(’D:\MyScilab\test.sce’,7)
step-by-step mode: enter carriage return to proceed

>>

-->// Script to explain mode parameter

>>

-->a = 1

a =

1.

>>

-->b = a+3;

>> -->>disp(’mode = ’+string(mode()))

mode = 7

81

This mode works as advertised. It prompts the user for a <RETURN> after each statement.mode

Function exec satisfies the requirements of the command-style syntax (see Section 5.1). Thus 28a
and 28b , 28c below are equivalent statements.

-->exec ’script file.sce’ 28b

and

-->exec script file.sce 28c

Furthermore, for all three variants, a trailing semicolon will suppress echoing the commands exec
executes.

As in Matlab, Scilab scripts can include function definitions. However, Scilab is more flexible in
the way functions can be defined within a script (or within another function). This is explained
below in Section 7.2.

If a file with a Scilab script is not in the working directory then either the working directory needs
to be changed (with function chdir) or the full filename of the script must be given. Scilab does
not provide for a search path the way Matlab does or the way Unix provides for executables.

A bare-bones simulation of a search path for the execution of a Scilab script is afforded by the
following function.

function myexec(filename,mod)

// Function emulates use of a search path for the execution of a script

//

// INPUT

// filename filename of the script to be executed; the

// extension .sce is added if the file name

// of the script has no extension

// mod mode parameter(determines amout of printout;

// see help file for exec); default: mod = 1.

//

// EXAMPLES: myexec(’test’)

// myexec test 1

global PATH

if PATH == [] // Set search path if it is not defined globally

path=[’D:\MyScilab\Experimental\’, ’D:\MyScilab\tests\’, ...

’D:\MyScilab\General\’, ’D:\MyScilab\Sci files\’];
else

path=PATH;

82 CHAPTER 6. SCRIPTS

end

if argn(2) == 1 //Set default for mod, if not given

mod=0;

end

// Add extension to file name if necessary

tempname = filename;

lf=length(tempname);

if lf > 3

if part(tempname,lf-3:lf) ∼= ’.sce’

tempname=tempname+’.sce’;

end

else

tempname=tempname+’.sce’;

end

// Test the filename with directories in path

for ii=1:size(path,’*’);

testfile = path(ii)+tempname;

[fid,ierr]=file(’open’,testfile,’old’);

if ierr == 0

file(’close’,fid)

oldvars=who(’local’); // Variables before execution of script

exec(testfile,mod); // Execute the script

// Return variables created in script to the level from which

// myexec was called

newvars=who(’local’); // Variables after execution of script

newvars=newvars(1:size(newvars,’*’)-size(oldvars,’*’)-1);

str1 = strcat((newvars+’,’)’);

str1 = part(str1,1:length(str1)-1); // Comma-separated list of

// variables to return to lower level

execstr(’[’+str1+’]=return(’+str1+’)’) // Return to lower level 29

end

if ierr ∼= 240

break

end

end

83

if ierr == 240 // File not found in any of the directories

write(%io(2),’File ’+tempname+ ’ not found. Directories searched:’)

write(%io(2), ’ ’+path)

end

endfunction

The four directories of the search path are defined in the string vector path. One directory after
the other is concatenated with the file name filename of the script to be executed. If a file by this
name does not exist in the folder then file aborts with error 240 (File filename does not exist or
read access denied) and the next directory is tried. If file is successful it is closed again and exec

is executed with the file in that directory. In the next step any variables that have been created by
the script are returned to the calling program.

If the file is in none of the directories the function prints an error message, lists the directories in
the search path, and terminates.

Chapter 7

User Functions

While functions in Scilab are variable and not files they have many features in common with those
in Matlab. They consist of a function head and the function body. The function head has the form

function [out1,out2,· · ·] = function name(in1,in2,· · ·)

familiar from Matlab. The ... indicate that the number of input and output arguments is
arbitrary. A function may have no input and/or no output arguments. For functions with one
output argument, the brackets are optional. For functions with no input arguments the parentheses
are optional when it is defined, but not when it is called. No characters other than white spaces
— not even comments — are allowed after the closing parenthesis. The function head can extend
over more than one line with the usual continuation indicator (...).

The function body consists of a number of Scilab statements. Functions can be either in separate
files (one or more functions per file and the name of the file is not necessarily related to the names of
the functions) or they can be created within scripts or other functions (in-line functions). Functions
can be used recursively, i.e. a function can call itself.

An example of a simple function is

function [r,phi] = polcoord(x,y)

// Function computes polar coordinates from cartesian coordinates

r = sqrt(xˆ2+yˆ2);

phi = atan(y,x)*180/%pi;

endfunction

This function looks much like a Matlab function except for:

• the two slashes preceding the comment;

• the use of the function atan rather than its Matlab equivalent atan2;

• the use of special constant %pi rather than its Matlab equivalent pi

84

85

• the use of endfunction which can be omitted (but would be required if polcoord were
defined in-line).

Scilab Description
argn Number of imput/output arguments of a function
endfunction Indicate end of function
error Print error message and abort
function Identify header of function definition
halt Stop execution and wait for a key press
mode Control amount of information displayed by function/script
pause Interrupt execution of function or script
resume Return from a function or resume execution after a pause

return Return from a function or resume execution after a pause

varargin Variable number of input arguments for a function
varargout Variable number of output arguments for a function
warning Print warning message
where Output current instruction calling tree
whereami Display current instruction calling tree
whereis Display name of library containing function

Table 7.1: Functions/commands/keywords relevant for user functions

The following example computes the Chebyshev polynomial Tn(x) by means of the recurrence
relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

to illustrate the recursive use of functions (functions calling themselves).

function ch = cheby(x,n)

// Compute Chebyshev polynomial of order n for argument x

if n == 0

ch = 1;

elseif n == 1

ch = x;

else

ch = 2*x*cheby(x,n-1)-cheby(x,n-2);

end

endfunction

In Scilab, variables can be passed to functions in three different ways:

• as a variable in the input argument list

86 CHAPTER 7. USER FUNCTIONS

• as a global variable

• as a variable not local to the function, i.e. a variable that is not initially defined in the
function

The first two ways of input and output are also used by Matlab. The third one is not. It essentially
means that any variable defined in the calling workspace of a function is available to that function
as long as it is not defined there. Even if the statement endfunction were omitted the function

function y = func1(x) 30a

a = (a+1)ˆ2

y = x+a;

endfunction

would not work in Matlab since the variable a is not defined prior to its first use in func1. In
Scilab the following code fragment works:

-->a = 1; 31a

-->y = func1(3)

y =

7.

-->disp(a)

1.

Since the variable a (set to 1) is available in the calling workspace, it is also available in func1. The
new value of a created in func1 (a is changed to 4) is not passed on to the calling workspace. This
approach works across an arbitrary number of levels. Assume funcB(x), which uses a variable a

without first defining it, is called by funcA(x) which does not use a variable a. Then

a = 5; funcA(10);

still works: a in func2B is taken to be 5 since a is part of the calling workspace not only of funcA
but also of funcB. So one might wonder about the purpose of the global statement if variables
are passed to functions even if they are not in the argument list or defined as global. The answer is
simply that the global statement allows one to ”export” variables from a function. Thus changing
line 31a by defining a as global has no effect on the result

-->global a, a = 1; 31b

-->y = func1(3)

y =

87

7.

-->disp(a)

1.

However, if function func1 30a is changed to func1g which also includes a global statement

function y = func1g(x) 30b

global a

a = (a+1)ˆ2

y = x+a;

endfunction

then

-->global a 31c

-->a = 1;

-->y = func1g(3)

y =

7.

-->disp(a)

4.

The variable a at the end of code fragment 31c is 4, the value computed in func1g. If the global
a is dropped from 31c then

-->a = 1; 31d

-->y = func1g(3)

y =

7.

-->disp(a)

1.

Thus 31a , which uses func1, and 31d , which uses func1g, leave the variable a unchanged in
the calling program where it is not defined as global.

Scilab — like Matlab — has variable-length input argument and output argument lists. They even
have the same names, varargin and varargout, and work the same way. If specified together
with regular (positional) arguments, they must be last in the argument list. An example is

88 CHAPTER 7. USER FUNCTIONS

function sizes(varargin)

// Arguments must be numeric or string matrices

for ii = 1:length(varargin)

[nrows,ncols] = size(varargin(ii));

disp(’Input argument no ’+string(ii)+’ has ’+string(nrows)...

+’ row(s) and ’+string(ncols)+’ column(s)’)

end

endfunction

which can be called with any number of input arguments and prints the number of rows and columns
for each input argument (provided the input arguments are not lists and the like for which size

has fewer than 2 or more than 2 output arguments). Thus

-->sizes(1:10,’test’,[’a’,’ab’;’abc’,’abcd’])

Input argument no 1 has 1 row(s) and 10 column(s)

Input argument no 2 has 1 row(s) and 1 column(s)

Input argument no 3 has 2 row(s) and 2 column(s)

The number (in) of actually defined input arguments and the number (out) of output arguments
of a function is provided by function argn as follows

[out [,in]]=argn()

out=argn(1)

in=argn(2)

This function does what nargin and nargout do in Matlab. However, there is a slight twist.
It is not possible to determine if a function has been called without an explicit output argument
(left-hand side) since there is always the implied left-hand side ans. Thus argn(2) will never be
0.

In Scilab variables can be output in three different ways as well:

• as a variable in the output argument list

• as a global variable

• as the argument of the resume or return command

The first two are familiar from Matlab; furthermore, the above discussion of global variables has
also touched on the role of global variables as means to output data from a function. So it is only
the third item that needs an explanation.

In order to explain how the third way of returning parameters works it is necessary discuss a differ-
ence between the Matlab keyboard command and the Scilab pause command. Both commands
interrupt the execution of a function or script. In Matlab one ends up in the workspace of the

89

interrupted function (or script). Any variable created in this workspace is available to the inter-
rupted function once execution resumes. Scilab, on the other hand, creates a new workspace. As
with functions, all variables defined in the higher workspaces are available. But, upon return to
the workspace above (Scilab command resume, all newly created variables (or any modifications
of variables of the higher workspaces) are not available to this workspace.

Before I go on to the next section it is appropriate to shed some light on this section’s opening
statement that functions in Scilab are variables. The following sequence of Scilab statements is
meant to illustrate this somewhat abstract statement.

-->a = 1;

-->typeof(a)

ans =

constant

-->convstr(’AbCdE’)

ans =

abcde

-->typeof(convstr)

ans =

function

-->a = convstr;

-->typeof(a)

ans =

function

-->a(’UvWxY’)

ans =

uvwxy

Initially, the variable a is assigned the value 1 and is of type constant. On the other hand,
the function convstr, which converts upper case characters to lower case, is of type function.
Obviously, like a, convstr is used as an argument of function typeof. Now I set a equal to
convstr (note, that convstr is used without parentheses or argument). This turns a into a
function and, as shown in the last statement, makes it an alias for convstr.

The fact that functions are variables has number of advantages not the least of which is that they
can input or output arguments of other functions (in Matlab on needs to pass the function name
as a string and use feval to evaluate it).

90 CHAPTER 7. USER FUNCTIONS

7.1 Functions in Files

Scilab does not come with an integrated text editor. Thus files with Scilab functions are usually
created with a text editor of the user’s choosing. For Windows, PFE is a good choice, for Unix
systems it is frequently emacs or nedit. The former is the default for the edit command (which is
not implemented in the Windows version). Scilab function files generally have the extension .sci

though, in principle, any other extension or no extension could be used as long as these files are
loaded into Scilab with the getf command. However, some functions, like genlib and getd use
the extension to identify files with Scilab functions. Hence, it is a good idea to comply with this
convention.

Like in Matlab, there can be more than one function in a file. But in Matlab the file name is
actually the function name, and the second, third, etc. function in a file is only visible to the
first function. In Scilab the file name is immaterial and all functions in a file are “visible” to any
function loaded, command-line statement, or script.

In order to be able to use a function defined in a file it has to be loaded first (this means a
significant departure from the approach Matlab uses where the interpreter searches the directories
of the search path for the function and loads and compiles the function in the first file encountered
with the name).

A function can be loaded via the getf(’filename’) command. Here filename is the name of
the file containing the function; if this file is not in the working directory the full path must be
given. Thus

-->getf(’polcoord.sci’)

is sufficient to load the file polcoord.sci if it is in the working directory. If this is not the case
then something like

-->getf(’D:\MyScilab\Filters\polcoord.sci’)

must be used. It is important to note that the filename must include the extension (whereas Matlab
implies the extension .m). Once getf is executed the functions in the file are immediately available.
This differs from the load command discussed below. Also, see the “gotcha” regarding getf on
page 101.

Functions can also be collected in libraries. This is discussed in Chapter 8. It is important to
remember, however, that loading a library does not mean that the functions in it are loaded but
rather that they are marked as available to be loaded when called—provided they are undefined
at that time. If the name of a function happens to be that of an already defined function or a
built-in function it will never be loaded. One can use getf to force loading of a function (provided
it does not have the same name as a protected built-in function).

This last condition points to one of the challenges of writing a function: choosing its name. It is
important that a name reflects the purpose of the function, is easy to remember, and is not already

7.2. IN-LINE FUNCTIONS 91

used. The set of names that satisfy these criteria is surprisingly small — significantly smaller than
in Matlab. And there are three reasons:

1. Variable names are shorter (24 vs 31 characters in Matlab)

2. In Matlab a second, third, etc. function in a single file is only visible to the first function in
the file. So there is no conflict with any other function in Matlab’s search path.

3. Matlab has the concept of “private functions”. These are functions that reside in a subdi-
rectory named private and that are only visible to functions in the parent directory: when
a function in a directory that has a subdirectory private calls another function the subdi-
rectory private is searched first to check if the function is there; only if it is not found the
standard search path is checked.

It is particularly the lack of the “private directory” concept that makes writing a program package
that peacefully coexists with other packages more challenging than it needs be.

7.2 In-line Functions

Functions need not be set-up in files. They can also be created “on the fly”. There are two ways
to do so; one of them has already been used for examples in previous chapters (see e. g. function
ismember on page 39). The function can be typed into the Scilab window as if it were typed in a
file editor; the important thing to remember is that the statement endfunction is required to tell
the interpreter that the function definition is complete. While the function statements are typed
in, the usual double-spaced display format is replaced by single spacing.

The other way of inputting a function uses the function deff. A simple example of its use is

-->deff(’y = funct(x)’,’y = x̂2’)

-->funct(3.5)

ans =

12.25

-->typeof(funct)

ans =

function

-->type(funct)

ans =

13.

The first argument of deff is a character strings with the function header, the second is a string
or a string vector which contains the body of the function. An optional third argument specifies if

92 CHAPTER 7. USER FUNCTIONS

the function should be compiled ’c’ or not ’n’. The former is more efficient than the latter and
is the default. Thus, in the example above, funct is compiled. This is also proven by the fact that
funct has type 13 (see Table 4.1). On the other hand, with

-->deff(’y = funct(x)’,’y = x̂2’,’n’);

-->typeof(funct)

ans =

function

-->type(funct)

ans =

11.

The variable funct has type 11 (uncompiled function), while the output of typeof is unchanged.

With more complicated functions or functions that contain string definitions the first version of
in-line function definition is generally easier to read.

It is important to note that inline functions can be defined not just in the command window. They
can also be included in Scilab scripts and functions.

7.3 Functions for operator overloading

Operator overloading refers to the ability to give operators that are used for one kind of data object
a new meaning for another one. An example mentioned before is the use of the + to concatenate
two strings or string matrices. But not only operators can be overloaded; The way a data object is
displayed can be overloaded as well. For typed lists and matrix-oriented typed lists it is the type
name, the first string in the first entry of a typed list, that defines the type of data object. The
typed list seismic data has type seismic; it simulates a seismic data set with 10 seismic traces,
each consisting of 251 samples; hence, in the following, it is generally referred to as “seismic data
set”

-->seismic data = tlist([’seismic’,’first’,’last’,’step’, ...

’units’,’traces’],0,1000,4,’ms’);

-->nsamp = (seismic data.last-seismic data.first)/seismic data.step+1;

-->seismic data.traces=rand(nsamp,10);

-->seismic data

seismic data(1)

7.3. FUNCTIONS FOR OPERATOR OVERLOADING 93

!seismic first last step units traces !

seismic data(2)

0.

seismic data(3)

1000.

seismic data(4)

4.

seismic data(5)

ms

seismic data(6)

column 1 to 5

! .3914068 .2173720 .4883297 .4061224 .9985317 !

! .8752304 .4418458 .9141346 .9613220 .1959695 !

! .5266080 .9798274 .6645192 .8956145 .9872472 !

! .9856596 .5259225 .5468820 .0717050 .4248699 !

[More (y or n) ?]

The default display of such a typed list is needlessly long; for this reason the function show had
been introduced to provide a more compact display for typed lists (see page 44). It would be highly
desirable to use show as the default display of typed lists of type seismic. This can be done
surprisingly easily by means of the function

function %seismic p(seis)

// Function displays the typed list seis of type ’seismic’ much like

// a Matlab structure

show(seis)

endfunction

The result is

-->seismic data =

LIST OF TYPE "seismic"

first: 0

last: 1000

step: 4

units: ms

traces: 251 by 10 matrix

94 CHAPTER 7. USER FUNCTIONS

Operator Op-code Operator Op-code
’ t \. w

+ a [a,b] c
- s [a;b] f
∗ m () extraction e
/ r () insertion i
\ l == o
̂ p <> n
.* x | g
./ d & h
.\ q .̂ j
.*. k ∼ 5
./. y .’ 0
.\. z < 1
: b > 2
∗. u <= 3
/. v >= 4

Table 7.2: Operator codes used to construct function names for operator overloading

Overloading the way a variable is displayed is possible because the typed list seismic looks for a
function with the name %seismic p. As shown in this example the function name consists of the
% sign followed by the type name, seismic, an underscore as a separator, and the letter p which
indicates display (the fact that the underscore serves as a separator between the list type and the
“p” does not mean that there cannot be an underscore in the type name).

In principle, any operator that is not predefined for given types of operands can be overloaded. The
name of the overloading function is constructed according to certain rules. For unary operators (-,
’, and ∼), for example, it has the form %<operand type> <op code>. An example is the use of the
minus sign in front of the seismic-typed list seismic data to change the sign of the entries of the
matrix seismic data.traces. As shown in Table 7.2 the operator code for the minus sign is s.
Thus

function seismic = %seismic s(seismic)

// Function defines the unary negation for a seismic structure

seismic.traces=-seismic.traces;

endfunction

With the seismic data set seismic data defined above

-->seismic data.traces(1,1)

ans =

.2113249

7.3. FUNCTIONS FOR OPERATOR OVERLOADING 95

-->seismic data = -seismic data;

-->seismic data.traces(1,1)

ans =

- .2113249

The function name for overloading binary operators has the form
%<first operand type> <op code> <second operand type>. In this definition <operand type>

is code for the type of variable the operator of type <op code> is operating on. Operand types,
i.e. codes for the various Scilab variables, are listed in the rightmost column of Table 4.1 on page
19. An example is the following function which defines the operation of adding a scalar to a seismic
data set.

function seismic = %seismic a s(seismic,c)

// Function adds a constant to the matrix "seismic traces"

seismic.traces = seismic.traces + c;

endfunction

Here <first operand type> is seismic and the <second operand type> is s. A quick look at
Table 4.1 shows that s is the operand type of a constant. As shown in Table 7.2, a is the operator
code for + (addition). Thus

-->seismic data.traces(1,1)

ans =

.2113249

-->seismic data = seismic data + 1;

-->seismic data.traces(1,1)

ans =

1.2113249

It is important to note that overloading the operator + via %seismic a s(seismic,c) is only
defined for this specific sequence of operands. The expression 1 + seismic data causes an error
message as does, for example, seismic data - 1; but seismic data + (-1) works.

Some primitive functions can also be overloaded if they are not defined for the data type. In this
case the function name has the form %<type of argument> <function name>. The function below
takes the absolute value of the traces of a seismic data set.

function seismic = %seismic abs(seismic)

// Function takes the absolute value of the entries of the

// matrix ‘‘seismic.traces’’

seismic.traces = abs(seismic.traces);

endfunction

96 CHAPTER 7. USER FUNCTIONS

Thus, for the seismic data set seismic data defined above,

-->seismic data.traces(1,1)

ans =

.2113249

-->seismic data = abs(-seismic data);

-->seismic data.traces(1,1)

ans =

.2113249

Extraction of object elements can be overloaded by means of a function the name of which has the
form %<operand type> e(i1,...,in,operand). A somewhat simplified example is

function seis = %seismic e(i,j,seis)

// Function extracts rows i and columns j of the ...

// matrix "seis.traces"; i and j can be vectors

seis.traces = seis.traces(i,j);

seis.last = seis.first+(i($)-1)*seis.step;

seis.first = seis.first+(i(1)-1)*seis.step;

endfunction

which outputs a seismic data set where seis.matrix consists only of the elements i,j of the input
matrix. An example is

-->seismic data.traces(5,10)

ans =

.1853351

-->temp = seismic data(5,10)

temp =

LIST OF TYPE "seismic"

first: 16

last: 16

step: 4

traces: .1853351

units: ms

It is important to keep in mind that typed lists have extraction (component extraction) defined for
one index. Hence, extraction with one index cannot be overloaded, and

7.4. TRANSLATION OF MATLAB-4 M-FILES TO SCILAB FORMAT 97

-->seismic data(4)

ans =

4.

produces the fourth element of typed list seismic, step, which is 4 (remember that the first
element is the string vector [’seismic’,’first’,’last’,’step,’traces’].

It is also possible to extract data object elements to more than one output objects. Furthermore,
the insertion syntax and row and column concatenation can also be overloaded.

7.4 Translation of Matlab-4 m-files to Scilab Format

A function, mfile2sci, is available to translate Matlab m-files to Scilab. This function is still being
worked on by someone in the Scilab team (it is likely to be a never-ending task) but the existing
version greatly simplifies this kind of conversion. It relieves the user of a lot of drudgery and
lets him concentrate on the thornier problems: instances where Matlab and Scilab functions may
differ slightly, possibly depending on parameters in the argument list, where functions unknown to
mfile2sci are used, etc. mfile2sci allows individual files or whole directories to be converted.
In the process it creates a *.sci file, a “compiled” *.bin file, and a *.cat file (help file). The latter
is generated from the comment lines at the beginning of the m-file, those lines that are also used
by Matlab’s help facility. An example is

mfile2sci(’D:\MyScilab\Geophysics\read las file.m’, ...

’D:\MyScilab\Geophysics’)

Details about the conversion can be found in file SCIDIR\macros\m2sci\README; SCIDIR denotes
the Scilab root directory (in Windows something like C:\Program Files\Scilab).

Another useful function is translatepaths which translates all Matlab m-files in a set of direc-
tories to Scilab. It uses mfile2sci to translate the individual files.

Chapter 8

Function Libraries

This is a topic that has no analog in Matlab. Libraries are collections of compiled functions that
can be loaded automatically upon startup or that can be loaded on demand. There are several
ways of creating libraries; the one described in the following appears to be the least painful.

Say, C:\MyScilab is a directory/folder with two Scilab functions (file extension .sci).

-->unix w(’ls C:\MyScilab’)
lower.sci

upper.sci

Then a possible procedure to create a library is as follows;

-->genlib(’Mylib’,’C:\MyScilab’)
Function genlib compiles every Scilab function (file with extension .sci) in directory C:\MyScilab
and saves it in a file with the same root but extension .bin. It also creates the text file names with
the names of all functions, and a library file lib. Hence, directory C:\MyScilab now contains the
following files

-->unix w(’ls C:\MyScilab’)
lib

lower.bin

lower.sci

names

upper.bin

upper.sci

In addition the variable Mylib of type library (type 14) is created in the workspace and all Scilab
functions in C:\MyScilab are now available for use.

It is important to note that this does not create help files. This has to be done separately. Fur-
thermore, the statement

98

99

load(’D:\MyScilab\lib’);

in the startup file .scilab will load the library Mylib every time Scilab is started. Note that the
library name Mylib is not mentioned in the load statement. Nevertheless, the variable Mylib of
type library shows up in the workspace (the library lib “knows” that its name in the workspace
is Mylib).

There are a few things to keep in mind with regard to loading libraries. This is illustrated in the
following.

-->clear // Remove all unprotected variables from the workspace

-->who // Show all variables

your variables are...

%helps scicos pal MSDOS home PWD TMPDIR

plotlib percentlib soundlib xdesslib utillib tdcslib

siglib s2flib roblib optlib metalib elemlib commlib

polylib autolib armalib alglib intlib mtlblib WSCI

SCI %F %T %z %s %nan %inf

$ %t %f %eps %io %i %e

using 5517 elements out of 10000000. and 41

variables out of 1791

-->lc = lower(’ABC’)

!--error 4

undefined variable : lower

Since all unprotected variables have been removed the function lower is not available. To get it
back one can load the library Mylib, and the command who shows that the variable Mylib is now
in the workspace.

-->load(’D:\MyScilab\lib’) // Load library containing function lower

-->who

your variables are...

Mylib %helps scicos pal MSDOS home

PWD TMPDIR plotlib percentlib soundlib

xdesslib

utillib tdcslib siglib s2flib roblib optlib metalib

elemlib commlib polylib autolib armalib alglib intlib

mtlblib WSCI SCI %F %T %z %s

%nan %inf $ %t %f %eps %io

%i %e

100 CHAPTER 8. FUNCTION LIBRARIES

using 5553 elements out of 10000000.

and 42 variables out of 1791

It is important to note, however, that loading a library does not mean that the functions in it are
loaded into the workspace; they are only marked as available to be loaded when called. Hence,
lower is not listed yet. Nevertheless, we can now execute the function lower and expect it to be
loaded.

-->lc = lower(’ABC’)

lc =

abc

-->who

your variables are...

lc lower Mylib %helps scicos pal

MSDOS home PWD TMPDIR plotlib percentlib

soundlib xdesslib utillib tdcslib siglib s2flib roblib

optlib metalib elemlib commlib polylib autolib armalib

alglib intlib mtlblib WSCI SCI %F %T

%z %s %nan %inf $ %t %f

%eps %io %i %e

using 5650 elements out of 10000000.

and 44 variables out of 1791

This statement adds two more variables to the workspace: the string variable lc and the function
lower.

Functions in libraries are actually loaded only if they are still undefined and their name is encoun-
tered during execution! Thus a potential problem exists if the library function name is the same
as that of a built-in function or an already defined user function. In this case it would not be
loaded. A related problem would come up if one found a bug in, say, lower, fixed it, and rebuilt
and reloaded the library. If lower is executed again one would not get the corrected version in the
rebuild library Mylib but rather the one in variable lower. Hence, in order to get the corrected
version it is not only necessary to rebuild and load the new library but also to remove the variable
lower from the workspace; in other words: it is necessary to execute the command

-->clear lower

An alternative is to bring the corrected version of lower into the workspace via

-->getf(’C:\MyScilab\lower.sci’)

Chapter 9

Gotchas

This chapter deals with unexpected problems I encountered during my travails.

Function getf

Function getf reads and compiles a function from a file (see page 90). In case it encounters an
error while compiling it aborts with an error message. When one corrects the error and wants to
save the file to repeat the call to getf one finds out that this is not possible since getf has not
closed the file. The sledge-hammer approach to this problem is to close all user files with mclose

all. A more nimble approach is to find the offending file’s identifier by executing dispfiles()

and then close only that specific file. This is illustrated below

-->dispfiles()

|File name |Unit|Type|Options |

|---|

|D:/PROGRAM FILES/SCILAB-2.6/scilab.hist |1 |F77 |unknown formatted |

|D:\MyScilab\Tests\read segy file.sci |2 |C |r b |

|Input |5 |F77 |old formatted |

|Output |6 |F77 |new formatted |

-->mclose(2);

Line numbers in error messages

Line numbers displayed with error messages all too frequently do not agree with the line numbers
of the offending statement in the function file. Apparently, there are various reasons for that. If
there are comment lines prior the function header those lines are not counted. Other irregularities
seem to be associated with expressions that continue over two or more lines.

101

Appendix A

Matlab functions and their Scilab

Equivalents

The following table is an alphabetic list of Matlab functions and their Scilab functional equivalents.
The third column contains one-line descriptions that pertain to the Scilab function and not to the
Matlab function (in case there is a difference). In some instances the term ”equivalent” is defined
rather loosely; parameters may be different or the output may be somewhat different in certain
circumstances (an example is the Scilab function length which for numeric matrices or string
matrices produces a different result than the Matlab function length). In other cases functions
provide the same functionality, but in a somewhat different way. For this reason it is not generally
sufficient to replace a Matlab function by the equivalent listed here; it is necessary to check the
Scilab help file before using one of these equivalents.

Matlab Scilab

[] [] Empty matrix
abs(a) abs(a) Absolute value of a, |a|
acos acos Arc cosine
acosh acosh Inverse hyperbolic cosine
all and Logical AND of the elements of boolean or real numeric matrix a

all(a) and(a) Output %t if all entries of the boolean matrix a are true
any or Logical OR of the elements of boolean or real numeric matrix a

asin asin Arc sine
asinh asinh Inverse hyperbolic sine
atan atan Arc tangent
atan2 atan Arc tangent
atanh atanh Inverse hyperbolic tangent
balance balanc Balance matrix to improve condition number

102

103

Matlab Scilab

besseli besseli Modified Bessel function of the first kind, Iα(x)
besselj besselj Bessel function of the first kind, Jα(x)
besselk besselk Modified Bessel function of the second kind, Kα(x)
bessely bessely Bessel function of the second kind, Yα(x)
break break Force exit from a for or while loop
case case Start clause within a select block
ceil(a) ceil(a) Round the elements of a to the nearest integers ≥a
char ascii Convert ASCII codes to equivalent string
chol(M) chol(M) Choleski factorization; R’*R = M

clear clear Clear unprotected variables and functions from memory
clear global clearglobal Clear global variables from memory
compan companion Companion matrix
cond cond Condition number of M
cond cond Condition number of a matrix
conj conj Complex conjugate
conv convol Convolution
cos cos Cosine
cosh cosh Hyperbolic cosine
cot cotg Cotangent
coth coth Hyperbolic cotangent
cumprod cumprod Cumulative product of all elements of a vector or array
cumsum cumsum Cumulative sum of all elements of a vector or array
date date Current date as string
dbstack whereami Display current instruction calling tree
dbstack where Output current instruction calling tree
deblank stripblanks Remove leading and trailing blanks from a string
det det Determinant of a matrix
diag diag Create diagonal matrix or extract diagonal from matrix
diary diary Write screen output of a Scilab session to a file
disp disp Display input argument
double double Convert integer of any type/length to floating point
double ascii Convert string to equivalent ASCII codes
echo mode Control amount of information displayed by function/script
eig bdiag Block diagonalization of matrix
eig spec Eigenvalues of matrix
ellipj %sn Jacobian elliptic function, sn
else else Start an alternative in an if or case block

104 APPENDIX A. MATLAB FUNCTIONS AND THEIR SCILAB EQUIVALENTS

Matlab Scilab

elseif elseif Start a conditional alternative in an if block
end [loop] end Terminate for, if, select, or while clause
end [matrix] $ Index of last element of matrix or (row/column) vector
erf erf Error function, erf(x) = 2/

√
π

∫ x
0 exp(−t2)dt

erfc erfc Complementary error function, erfc(x) = 2/
√

π
∫∞
x exp(−t2)dt

erfcx erfcx Scaled complementary error function, erfcx(x) = exp(x2)erfc(x)
error error Print error message and abort
eval execstr Evaluate string vector with Scilab expressions or statements
exist(a) exists(a) Test if variable a exists
exp exp Exponential function
expm expm Matrix xponential function
eye eye Identity matrix (or its generalization)
fclose mclose Close (all) open file(s)
fft fft Forward and inverse Fast Fourier Transform
fft2 fft Forward and inverse Fast Fourier Transform
figure xset Set defaults for current graphics window
find spget Retrieve entries of a sparse matrix
find(a) find(a) Find the indices for which boolean matrix a is true
findstr strindex Find starting position(s) of a string in an other string
fix(a) fix(a) Rounds the elements of a to the nearest integers towards zero
floor(a) floor(a) Rounds the elements of a to the nearest integers ≥ a

fopen mopen Open a file
for for Start a loop with a generally known number of repetitions
fprintf fprintf Write formatted data to file (like C-language fprintf function)
full full Convert sparse to full matrix
function function Identify header of function definition
gamma gamma Gamma function, Γ(x) =

∫∞
0 tx−1 exp(−t)dt

gammaln gammaln Logarithm of the Gamma function, ln(Γ(x))
getfield getfield Get a data object from a list
global global Define variables as global
help help On-line help
hess(M) hess(M) Hessenberg form of M
if if Start a conditionally executed block of statements
ifft fft Forward and inverse Fast Fourier Transform
ifft2 fft Forward and inverse Fast Fourier Transform
imag imag Imaginary part of a matrix
input input Prompt for user (keyboard) input

105

Matlab Scilab

int16(a) int16(a) Convert a to 16-bit signed integer
int32(a) int32(a) Convert a to 32-bit signed integer
int8(a) int8(a) Convert a to 8-bit signed integer
intersect intersect Returns elements common to two vectors
inv(M) inv(M) Inverse of matrix M

isempty(a) a==[] Check if variable a is empty
isglobal(a) isglobal(a) Test if a is a global variable
isinf(a) isinf(a) Test if a is infinite
isnan(a) isnan(a) Output boolean vector with entries %t where a is %nan
isreal(a) isreal(a) Test if a is real (or if its imaginary part is “small”)
keyboard pause Interrupt execution of function or script
length length Length of list; product of no. of rows and columns of matrix
linspace linspace Create vector with linearly spaced elements
log log Natural logarithm
log10 log10 Base-10 logarithm
log2 log2 Base-2 logarithm
logm logm Matrix natural logarithm
logspace logspace Create vector with logarithmically spaced elements
lookfor apropos Keyword search for a function
lower convstr Convert string to lower or upper case
max maxi Maximum of all elements of a vector or array
max max Maximum of all elements of a vector or array
mean mean Mean of all elements of a vector or array
median median Median of all elements of a vector or array
min min Minimum of all elements of a vector or array
min mini Minimum of all elements of a vector or array
mod(a,b) pmodulo(a,b) a-b.*floor(a./b) if b∼=0; remainder of a divided by b

more lines Specify number of lines to display and columns/line
nargin argn Number of input/output arguments of a function
nargout argn Number of imput/output arguments of a function
nnz nnz Number of nonzero elements of a sparse matrix
norm(M) norm(M) Norm of M (matrix or vector)
null(M) kernel(M) Nullspace of M
num2str string Convert numbers to strings
ones ones Matrix of ones
orth(M) orth(M) Orthogonal basis for the range of M
pause halt Stop execution and wait for a key press

106 APPENDIX A. MATLAB FUNCTIONS AND THEIR SCILAB EQUIVALENTS

Matlab Scilab

pinv pinv(M) Pseudoinverse of M
planerot givens Given’s rotation
prod prod Product of the elements of a matrix
qr(M) qr(M) QR decomposition of M
rand rand Create random numbers with uniform or normal distribution
randn rand Create random numbers with uniform or normal distribution
rank(M) rank(M) Rank of M
rcond(M) rcond(M) Reciprocal of the condition number of M; L-1 norm
real real Real part of a matrix
rem(a,b) modulo(a,b) a-b.*fix(a./b) if b∼=0; remainder of a divided by b

reshape matrix Reshape a vector or a matrix to a different-size matrix
return resume Return from a function or resume execution after a pause

return return Return from a function or resume execution after a pause

rmfield null Delete an element of a list
round(a) round(a) Round the elements of a to the nearest integers
schur(M) schur(M) Schur decomposition
select select Start a multi-branch block of statements
setfield setfield Set a data object in a list
sign(a) sign(a) Signum function, a/|a| for a 6= 0
sin sin Sine
sinh sinh Hyperbolic sine
size size Size/dimensions of a Scilab object
sort(a) gsort(a) Sort the elements of a
sortrows(a) gsort(a) Sort elements/rows/columns of a
spalloc spzeros Sparse zero matrix
sparse sparse Create sparse matrix
speye speye Sparse identity matrix
spones spones Replace non-zero elements in sparse matrix by ones
sprand sprand Create sparse random matrix
sqrt(a) sqrt(a)

√
a

sqrtm sqrtm Matrix square root
sscanf msscanf Read variables from a string under format control
std st deviation Standard deviation
strrep strsubst Substitute one string for another in a third string
sum sum Sum of all elements of a matrix
svd svd Singular value decomposition
tan tan Tangent

107

Matlab Scilab

tanh tanh Hyperbolic tangent
tic timer() Ouputs time elapsed since the call to timer()

toc timer Ouputs time elapsed since the preceding call to timer()

toeplitz toeplitz Toeplitz matrix
trace trace Trace (sum of diagonal elements) of a matrix
tril tril Extract lower-triangular part of a matrix
triu triu Extract upper-triangular part of a matrix
try errcatch Trap error
uigetfile xgetfile Open dialog box for file selection
uint16(a) uint16(a) Convert a to 16-bit unsigned integer
uint32(a) uint32(a) Convert a to 32-bit unsigned integer
uint8(a) uint8(a) Convert a to 8-bit unsigned integer
union union(a,b) Extract the unique common elements of a and b

unique(a) unique(a) Return the unique elements of a in ascending order
unix unix w Execute Unix/DOS command; output to Scilab window
upper convstr Convert string to lower or upper case
varargin varargin Variable number of input arguments for a function
varargout varargout Variable number of output arguments for a function
version getversion Display version of Scilab
warning warning Print warning message
which whereis Display name of library containing function
while while Start repeated execution of a block while a condition is satisfied
who who Displays/outputs names of current variables
whos whos Displays/outputs names and specifics of current variables
zeros zeros Matrix of zeros

Index

arguments
named, 55
variable-length list of, 56, 87

ASCII codes, 27

boolean operators, 35
boolean variables, 35

cell array, 6, 25, 26, 39–42
character string, see string
command-style syntax, 15, 54, 81
comments, 7
complex number, 21
constants, built-in, 10
continuation of a statement, 8
convolution, 64, 103
copy, 5

date, 16
directory

private, see private directory
DOS, see MS-DOS

end of file, 67
error trapping, 12, 14, 15, 32, 33, 72, 78, 82

Fast Fourier Transform, 64–65, 104
FFT, see Fast Fourier Transform
file, 66–75

opening, closing, 66
flow control, 12
font, 4
format

loose, 2
tight, 2

function
as argument, 89
as variable, 89

inline, 91, 92
library, 90
loading, 90
overloading, 95
private, see private function
Scilab, 54–77
user, 84–97

help, 5, 6

integer, 74
interrupt, see pause

Kronecker
product, 8
division, 8

last element
of vector or matrix, 22, 30

LATEX, 76
length

list, 42
numeric matrix, 15
string, 25, 26, 30

library, 98–100
lines displayed, 4
list, 39

matrix-like typed, 49–50
ordinary, 39–43
polynomials, 50–53
typed, 6, 42–49, 96

Matlab
m-file conversion, 97
emulation, 6

Matlab-mode, 24
matrix, 21, 22, 24, 107

companion, 24, 103

108

INDEX 109

empty, 24, 102
Frank, 24
Hilbert, 24
identity, 24, 104
of ones, 24, 105
of zeros, 24, 107
polynomial, see polynomial matrix, 51
random, 24, 106
rational, 51
reshape a, 106
sparse, 62
sparse identity, 62, 106
sparse random, 62, 106
Toeplitz, 24, 107

MS-DOS, 77

operator
binary, 95
code, 94, 95
overloading, 19, 44, 50, 92–97
unary, 94

overloading
operator, see operator, overloading
variable display, see variable, display over-

loading

paging, see lines displayed
paste, 5
path, 81
polynomial, 50–53, 76

division, 51
matrix, 51

private directory, 91
private function, 91
program

exit, 5
interrupt, 5, 15
quit, 5
resume, 5

Scilab
syntax, 7, 8

script, 78–83
search path, 32, 81

size
list, 42
string, 25–27

sorting, 58–59
startup file, 4, 99
string

concatenation, 27, 92
extraction, 28

structure, 1, 39, 44–47

termination script, 5
time, 16
tuple assignment, 9, 41
type name, 43, 44, 92, 94
type of variable, 19, 20

boolean matrix, 19
boolean sparse matrix, 19
compiled function, 19
constant, 19
function library, 19
implied-size vector, 19, 22
integer, 20
list, 19
Matlab sparse matrix, 19
matrix-like typed list, 19
pointer, 19
polynomial matrix, 19
rational, 38, 51, 53
sparse matrix, 19
string, 19
typed list, 19
un-compiled function, 19

typed list, see list, typed

UNIX, 77

variable
conversion into an expression, 31
display overloading, 93, 94
global, 16, 87, 88, 104
name, 7, 8, 91
type, see type, variable

working directory, 78

110 INDEX

workspace, 1, 5, 15–17, 33, 73, 78, 86, 88, 89,
98–100

Index of Scilab Functions
and Variables

[], 24, 102
$, 16, 22, 29, 30, 46, 104
%asn, 62
%io, 77
%k, 62
%sn, 62, 103

a==[], 105
abort, 5
abs, 57, 102
acos, 60, 102
acosh, 60, 102
acoshm, 61
acosm, 61
amell, 62
and, 37, 38, 102
apropos, 5, 6, 16, 105
argn, 85, 88, 105
ascii, 26, 27, 29, 30, 103
asin, 60, 102
asinh, 60, 102
asinhm, 61
atan, 59, 60, 102
atanh, 60, 102
atanhm, 61
auread, 68
auwrite, 69

balanc, 63, 102
bandwr, 62
bdiag, 63, 103
besseli, 62, 103
besselj, 62, 103
besselk, 62, 103
bessely, 62, 103
bezout, 51
blanks, 29
bool2s, 38, 57

break, 12, 103

case, 12, 103
ceil, 57, 103
chdir, 81
chfact, 62
chol, 63, 103
chsolve, 62
clean, 51, 57, 61
clear, 16, 99, 100, 103
clearglobal, 16, 103
cmndred, 51
coeff, 51
coffg, 51
colcomp, 63
colcompr, 51
companion, 24, 103
cond, 63, 103
conj, 57, 103
convol, 64, 103
convstr, 26, 89, 105, 107
cos, 60, 103
cosh, 60, 103
coshm, 61
cosm, 61
cotg, 60, 103
coth, 60, 103
cumprod, 57, 103
cumsum, 57, 103

date, 16, 26, 103
deff, 91, 92
degree, 51
delip, 62
denom, 51
derivat, 51
det, 51, 63, 103
determ, 51
detr, 51
diag, 24, 103
diary, 69, 76, 103
diophant, 51
disp, 16, 18, 69, 75, 103
dispfiles, 67, 101

INDEX 111

dlgamma, 62
double, 22, 103

edit, 90
else, 12, 103
elseif, 12, 104
emptystr, 26, 29, 30
end, 12, 104
endfunction, 85
erf, 62, 104
erfc, 62, 104
erfcx, 62, 104
errcatch, 12, 14, 15, 107
errclear, 14, 15
error, 85, 104
eval, 32
evstr, 32–34
excel2sci, 68
exec, 79, 81
execstr, 32, 78, 82, 104
exists, 15, 36, 38, 104
exit, 5
exp, 60, 104
expm, 61, 104
eye, 24, 104

factors, 51
fft, 64, 104
file, 66, 67, 71, 72, 82, 83
fileinfo, 67
find, 38, 104
fix, 57, 104
floor, 57, 104
for, 12, 104
fprintf, 69, 104
fprintfMat, 69
fscanf, 68
fscanfMat, 68
full, 62, 104
fullrf, 63
fullrfk, 63
function, 85, 104

gamma, 62, 104

gammaln, 62, 104
gcd, 51
genlib, 90, 98
getd, 90
getdate, 16
getf, 90, 100, 101
getfield, 40, 104
getio, 67
getversion, 76, 107
givens, 63, 106
global, 16, 81, 86–88, 104
grand, 24
grep, 26, 30
gsort, 26, 57–59, 106

halt, 15, 16, 85, 105
help, 5, 6, 16, 104
hermit, 51
hess, 63, 104
horner, 51
host, 76, 77
householder, 63
hrmt, 51

iconvert, 22
if, 12, 13, 104
imag, 57, 104
input, 68, 75, 104
int16, 22, 105
int32, 22, 105
int8, 22, 23, 105
intersect, 26, 57, 105
inttype, 16, 20
inv, 51, 63, 105
invr, 51
isdef, 36, 38
iserror, 14, 38
isglobal, 38, 105
isinf, 38, 105
isletter, 27
ismember, 39
isnan, 38, 105
isreal, 38, 105

112 INDEX

kernel, 63, 105

lcm, 51
lcmdiag, 51
ldiv, 51
length, 6, 26, 40, 42, 105
lex sort, 57
lines, 76, 105
linsolve, 63
linspace, 57, 105
list, 19, 39, 40
load, 68, 73, 74, 90, 99
loadwave, 68
log, 60, 105
log10, 60, 105
log2, 60, 105
logm, 61, 105
logspace, 57, 105
lstcat, 40
lufact, 62
luget, 62
lusolve, 62

matrix, 70, 106
max, 56, 57, 105
maxi, 57, 105
mclearerr, 67
mclose, 66, 67, 69, 101, 104
mean, 57, 105
median, 57, 105
meof, 67
mfft, 64
mfprintf, 69
mfscanf, 68
mget, 68, 74, 75
mgeti, 68, 74
mgetl, 67–70
mgetstr, 68
min, 57, 105
mini, 57, 105
mlist, 19, 39, 40, 49
mode, 78–81, 85, 103
modulo, 57, 106
mopen, 66–68, 71, 73, 75, 104

mprintf, 69
mput, 69, 74
mputl, 67, 69–71
mputstr, 69
mscanf, 68
MSDOS, 38, 77
mseek, 67
msprintf, 26
msscanf, 26, 31, 106
mtell, 67
mtlb cell, 6
mtlb diff, 6
mtlb load, 68
mtlb mode, 24, 38
mtlb save, 69

newest, 67
nnz, 62, 105
norm, 63, 105
null, 40, 41, 106

ones, 24, 36, 105
or, 37, 38, 102
orth, 63, 105
otherwise, 12

part, 26, 29, 82
pause, 5, 15–17, 85, 88, 105
pdiv, 51
pinv, 63, 106
pmodulo, 57, 105
pol2str, 26, 51
pol2tex, 76
polar, 63
poly, 50
print, 69
printf, 69
prod, 57, 106

qr, 63, 106
quit, 5

rand, 24, 106
range, 63
rank, 63, 106

INDEX 113

rcond, 63, 106
read, 68, 70, 71
read4b, 68
readb, 68
readc , 68
real, 57, 106
reshape, 70
residu, 51
resume, 5, 18, 85, 88, 106
return, 5, 16–18, 82, 85, 88, 106
roots, 51
round, 57, 106
rowcompr, 51

save, 68, 73, 74
savewave, 69
scanf conversion, 31
schur, 63, 106
sci2exp, 31
sci2expr, 26
select, 12, 106
setfield, 40, 106
sfact, 51
sign, 57, 106
simp, 51
simp mode, 38, 51, 52
sin, 60, 106
sinh, 60, 106
sinhm, 61
sinm, 61
size, 25, 26, 40, 42, 106
spaninter, 63
spanplus, 63
sparse, 62, 106
spchol, 62
spec, 63, 103
speye, 62, 106
spget, 62, 104
spones, 62, 106
sprand, 62, 106
spzeros, 62, 106
sqrt, 57, 106
sqrtm, 61, 106
st deviation, 57, 106

stacksize, 76
strcat, 26, 28
strindex, 26, 30, 104
string, 26, 105
stripblanks, 26, 29, 103
strsubst, 26, 106
sum, 57, 106
sva, 63
svd, 63, 106
sylm, 24, 51

tan, 60, 106
tanh, 60, 107
tanhm, 61
tanm, 61
testmatrix, 24
texprint, 76
timer, 16, 76, 107
tlist, 19, 39, 40, 43, 46
toeplitz, 24, 107
trace, 63, 107
tril, 107
triu, 107
type, 16, 19, 20, 91, 92
typename, 20
typeof, 16, 19, 20, 23, 31, 89, 92

uint16, 22, 107
uint32, 22, 107
uint8, 20, 22, 107
union, 26, 57, 107
unique, 26, 57, 107
unix, 76
unix g, 76, 77
unix s, 76
unix w, 76, 98, 107
unix x, 76

varargin, 56, 85, 107
varargout, 85, 107

warning, 85, 107
wavread, 68
wavwrite, 69
where, 85, 103

114 INDEX

whereami, 85, 103
whereis, 16, 85, 107
while, 12, 107
who, 16, 20, 99, 107
whos, 16, 20, 107
writb, 69
write, 69–73, 77
write4b, 69

xgetfile, 67, 75, 107
xset, 104

zeros, 24, 36, 107

Index of Matlab Functions
and Variables

[], 102

abs, 102
acos, 102
acosh, 102
all, 37, 102
any, 37, 38, 102
asin, 102
asinh, 102
atan, 59, 102
atan2, 59, 102
atanh, 102

balance, 102
besseli, 103
besselj, 103
besselk, 103
bessely, 103
blanks, 29
break, 12, 103

case, 12, 103
catch, 12, 14
ceil, 103
cell, 6, 30
char, 27, 103
chol, 103
clear, 103

clear global, 103
compan, 103
complex, 21
cond, 103
conj, 103
conv, 103
cos, 103
cosh, 103
cot, 103
coth, 103
cumprod, 103
cumsum, 103

date, 103
dbstack, 103
deal, 9
deblank, 29, 103
det, 103
diag, 103
diary, 76, 103
diff, 6
disp, 103
double, 27, 103

echo, 103
eig, 103
ellipj, 103
else, 12, 103
elseif, 12, 104
end, 22
end [loop], 12, 104
end [matrix], 46, 104
erf, 104
erfc, 104
erfcx, 104
error, 104
eval, 32, 104
evalin, 33
exist, 15, 104
exp, 104
expm, 104
eye, 104

fclose, 104

INDEX 115

feval, 89
fft, 64, 104
fft2, 64, 104
figure, 104
find, 104
findstr, 104
finish, 5
fix, 104
floor, 104
fopen, 66, 75, 104
for, 12, 104
fprintf, 104
full, 104
function, 104
funm, 61

gamma, 104
gammaln, 104
getfield, 104
global, 104

help, 5, 104
hess, 104

if, 12, 104
ifft, 64, 104
ifft2, 64, 104
imag, 104
input, 75, 104
int16, 105
int32, 105
int8, 105
intersect, 105
inv, 105
isa, 20
iscell, 19
ischar, 19
isempty, 105
isglobal, 105
isinf, 105
isletter, 27
ismember, 31, 38
isnan, 105
isnumeric, 19

isreal, 105
issparse, 19
isstruct, 19

keyboard, 17, 88, 105

length, 105
linspace, 105
load, 74
log, 105
log10, 105
log2, 105
logical, 35, 36
logm, 105
logspace, 105
lookfor, 5, 105
lower, 105

max, 57, 105
mean, 105
median, 105
min, 105
mod, 105
more, 105

nargin, 105
nargout, 105
nnz, 105
norm, 105
null, 105
num2str, 105

ones, 105
orth, 105
otherwise, 12

pause, 105
pinv, 106
planerot, 106
prod, 106

qr, 106

rand, 106
randn, 106
rank, 106

116 INDEX

rcond, 106
real, 106
rem, 106
reshape, 106
return, 106
rmfield, 106
roots, 52
round, 106

save, 73
schur, 106
select, 106
setfield, 106
sign, 106
sin, 106
sinh, 106
size, 26, 50, 106
sort, 58, 106
sortrows, 58, 106
spalloc, 106
sparse, 106
speye, 106
spones, 106
sprand, 106
sqrt, 106
sqrtm, 106
sscanf, 31, 106
std, 106
strrep, 106
sum, 106
svd, 106
switch, 12

tan, 106
tanh, 107
tic, 107
toc, 107
toeplitz, 107
trace, 107
tril, 107
triu, 107
try, 12, 14, 107
type, 53
typeof, 50, 53

uigetfile, 75, 107
uint16, 107
uint32, 107
uint8, 20, 107
union, 107
unique, 107
unix, 107
upper, 107

varargin, 107
varargout, 107
version, 107

warning, 107
which, 107
while, 12, 107
who, 107
whos, 107

zeros, 107

