dynoptim a Scilab toolbox for discrete time optimal
control

S.Berthaud, J.P. Chancelier, M. Cohen de Lara
March 30, 2001

Contents

1 Introduction 1

2 Discrete optimal control problems 2

3 The dynoptim primitive of the control toolbox 4
3.1 Asmallexampleo 6

4 Taking into account state constraints 8
4.1 Augmented Lagrangian for inequality constraints 8
4.2 Augmented Lagrangian for state constraints 9
4.3 dynoptimsc Lo 11

5 Starts model 11

1 Introduction

The dynoptim package is a Scilab toolbox for solving discrete optimal control problems
with possibly state constraints of the form z, < z; < ;. It involves Scilab code and C
coded functions. Scilab code consists of macros which control the steps of each algorithm: a
descent method for dynoptim which solves the unconstrained case and an Uzawa algorithm
for dynoptimsc which solves the state constrained case. A set of C coded Scilab primitives
are used to compute the cost function and its derivatives with respect to the control. The
control problems to be solved are coded in Scilab through the definition of a set of functions
and the C code which computes the cost and its derivatives can access to these Scilab function
by internally calling Scilab interpreter.

This toolbox is a first step in developing a set of tools for deterministic and stochastic
control in Scilab. It could be improved by adding translation facilities of the Scilab coded
problems to C coded function for improving running efficiency. And, since the user must
provide the derivatives of the functions which specify his problem, the use of the toolbox
could be simplified by adding the possibility to differentiate Scilab code automatically.

1

2 Discrete optimal control problems

The dynoptim function aims at solving discrete time optimal control problem (with possibly
bounds constraints on the control) by a descent method. dynoptim in this case will build an
“oracle” which will be devoted to the computation of the gradient of the objective function.
Then the standard optim primitive of Scilab will perform a gradient algorithm using this
“oracle”.

Problems to be solved are of the following type:

T—1
mmJ (x,u) ZL Ty, ug, t) + @(xr, T) (1)
0
UthUtSUht, tIO,T—l (2)
Ti1 = Fxy,ug,t), t€40,....,T—1}, xp given (3)
where X; € R” and u € R™. For a given control trajectory (uo, ..., ur_1), since xo is known,

the dynamics can be used to compute the state trajectory. Thus we can consider that the
value function J only depends on u (and we shall note it .J(u)). Thus the optim function
will have for a given set of Scilab functions (i.e L, F, ® and their derivatives) to compute the
value function and its derivative as a function depending on w only.

A classical way to compute the derivative of J is to use an auxiliary variable called the
adjoint state, named A, which can be computed given a control and the associated state by
solving a backward equation:

vt € {T-1,...,0}

At—l - (g_};(utaxt?)) At+((utvxtat))/'

In the sequel 9f - will denote the matrix whose (i, j) entry is a L and we will denote the

transpose of x as x’. Using adjoint state the derivatives of J can be computed as follows:

oJ OF

, oL
8uk = A a (xk,uk,k) + —(:ck,uk,k) (5)

ou
we first start the proof with an easy lemma

Lemme 1 Let dx; be the solution of the discrete dynamics:

drgyr = apdrg + Beduy, (6)
d.TO = 0
and G defined as follows
T-1
G=> oy + 6rdor (7)
k=0

Then, introducing the discrete backward dynamics:

Yk—1 = QY+ 0},
nyl - é"u

G can be rewritten as follows

v

G=) (ypbeduy). 9)

e
Il

proof:

~
=

T-1

G = (5kd$k) + dpdzp = Z(yk_l - a;cyk)/dmk + (Séwde
k=1

T
_

T-2 T-1

= (y;_ldxk — y,;akdxk) + Opdxr = Z y,;dxkﬂ — Z y,;ozkdxk + drdxr
k=0 k=1

i
I

T-2

= y()dxl + Z y;g (dkarl — akdxk) + —y'T,laT_lme_l + érdxr
k=1

y6Poduo Brdug, Y1 (Br—1dur_1)

71
= > yiBedui
k=0

A a small variation of control will lead to the following cost variation

AJ = J(u+dou)— J(u)

— tT:’Ol %(ut, Xy, t)0my + g—i(ut, Xy, t)ouy + %(xT, T)oxr

where dx; is the solution of the system

51’,54.1 = g—};(l't,ut,t)(;l't + g—i(l't,ut)(sut (11)
51’0 = 0

The previous lemma applied to the previous equations gives the result using :

OF

ap = 8—x(xk’uk’k)’ k=0,....T—1
O = g—i(xk,uk,k:), k=0,....,T—1
op = g—i(:pk,uk,k), k=0,....,T—1
or = g_i(fETaT)

3 The dynoptim primitive of the control toolbox

We will call primitive a function callable from Scilab but not written in Scilab language and
we will call macro a Scilab coded function.

Since the computation of the derivatives of J is quite time consuming and since we will
have to compute it a lot of time in the course of a descent algorithm we have chosen to write
the corresponding code in C. The cost and cost derivative computation will be performed by
a primitive called doc_J.

[J,grd,statel=doc_J(u,x0)

Note that the functions which characterize the optimal control problem do not appear in
the calling sequence of doc_J. doc_J performs the computation for a current problem and
we shall see in a next paragraph how to specify a current problem.

The whole computation is organized in the macro dynoptim

[uopt ,xopt,vopt,gradopt]=dynoptim(L,f,phi,ub,u0,uh,X0 [,stopl)

which initialize the current problem using the parameters L, f, phi (which are string
matrices) then iterate a descent method using optim and the oracle function doc_J.

In the C coded function doc_J the functions which characterize the problem to be solved
have canonical names. For example, the discrete dynamics evolution is obtained by calling
the C function f with is coded as:

static void f(double* cmd,double* etat,int* temps,
double* res,int* n_cmd,int* n_etat)
{
int pass;
pass=sciex3(f_name,cmd,etat,temps,res,n_cmd,n_etat,n_etat);

}

Since the dynamics of the program to be solved is coded by a Scilab macro the function
f must find the dynamics macro name, convert C arguments to Scilab data, call the Scilab
interpreter and convert the Scilab results back to C data types.

The first step is easy. As pointed out the relevant names are transmitted to optim as
arguments and during its initialization phase optim copies the Scilab names which describe
the current optimal control problem into C global string variables. This is performed by a
C interface which code a Scilab primitive called doc_setf.

The next step is more tricky and the heart of the code is coded in sciex3:

#define MySciString(ibegin,name,mlhs,mrhs) \
if(! C2F(scistring) (ibegin,name,mlhs,mrhs,strlen(name))) \
{ longjmp(Jcenv,-1) ;return 0; }
int sciex3(char fct[nlgh+1],double* cmd,double* etat,int* temps,

4

double* res,int* n_cmd,int* n_etat, int* n_res)

static int 16,17,18; /* we will use stack poision 6,7 and 8 */
/* we use three arguments and we return one result */

static int ibegin=6,mlhs=1,mrhs=3;

int i,un=1;

CreateVar(6,"d",n_cmd, &un,&l6) ;
for(i=0;i < *n_cmd;i++) stk(16) [i]l=cmd[i];

CreateVar(7,"d" ,n_etat,&un,&l7);
for(i=0;i < *n_etat;i++) stk(17)[i]l=etat[i];

CreateVar(8,"d",&un,&un,&18); stk(18) [0]=*temps;
/* execute la fonction fct */
MySciString(&ibegin,fct,&mlhs,&mrhs) ;

for(i=0;i<n_res[0];i++) res[il=stk(16)[i];
return O;

The code is in fact not so complex. When the doc_J function is called from Scilab it is

called from an interface (called InterfacelJ) and, as explained in the course on interfacing,
a set of functions can be used inside the interface to deal with Scilab stack variables. Let
first take a look at the interface of doc_J:

int interfaceJ(char* fname)

{

static int ierr, static int mi,n1,11,m2,n2,12,m3,n3,13,m4,n4,14,m5,n5,15;
CheckRhs(2,2); CheckLhs(0,3);

GetRhsVar(1,"d",&ml,&n1,&11); /* u(.) command */
GetRhsVar(2,"d",&m2,&n2,&12); /* x(0) initial state */

/* output variables */

n3=1; m3=1; CreateVar(3,"d",&m3,&n3,&13); /*x J */

n4=n1; m4=ml; CreateVar(4,"d",&m4,&n4,&14); /* grad J*/
nb=(n1+1); mb=m2; CreateVar(5,"d",&m5,&n5,&15); /* X opt */

if ((returned_from_longjump = setjmp(Jcenv)) != 0)
{
Scierror(999,"%s: Internal error \r\n'",fname);
return 0;

J_GRAD(stk(11),&n1,&ml,&m2,stk(12),stk(15),stk(14),stk(13),0);

LhsVar(1)=3; /* we return 3,4,5 */
LhsVar(2)=4;

LhsVar(3)=5;

return O;

Five variables are used in the stack. Two are used to get arguments and three are created
to store the return values of doc_J. Thus, when we enter the execution of the C function
J_GRAD we are allowed to use stack positions from position 6 to the end of the stack to
perform local computation.

This possibility is used in sciex3. Stack position 6,7 and 8 are used to create Scilab
variables and to fill them with C data. For example, the statement

CreateVar(6,"d" ,n_cmd,&un,&16) ;
for(i=0;i < *n_cmd;i++) stk(16) [i]l=cmd[i];

creates a Scilab scalar matrix of size n_cmd x1 at position 6 on the stack and fills that matrix
with the C array cmd.

Then we call the Scilab interpreter through the Scilab primitive scistring. scicstring
performs the evaluation of a Scilab function call given the function name and using arguments
stored in the stack at given position. When scicstring returns, the results of the Scilab
computation are also left on the stack at the same starting position as the given arguments.

Thus the simple statement

for(i=0;i<n_res[0];i++) res[i]l=stk(16) [i];

will copy back the result of a Scilab call into the C array res

There’s a last thing to be explained. The setjmp and longjmp calls are just here to
deal with potential Scilab errors during the Scilab evaluation. In case of errors we want to
immediately quit the J_GRAD function and return at Scilab level with an error.

The mechanism that we have explained here for the function f is used for calling all
the functions which characterize our control problem f, f_etat, f_cmd, phi, phi_etat, L,
L_etat, L_cmd.

Since the dynoptim functionality is built as a dynamically loaded interface. It is also
possible to modify the code and provide C coded cost functions and dynamics. This can be
easily done since no modification on the J_GRAD function are involved.

3.1 A small example

min J(z,u) = ug + 1.22,Qx, (12)
10 < up < 10 (13)
Ty = Axy + Buy x9 = (1,2) (14)

This problem can be coded as follows:

e instantaneous cost function and its time and state derivatives

deff (’y=L(u,x,t)’,’y=u"~2’)
deff (’y=L_cmd(u,x,t)’,’y=2%u’)
deff (’y=L_etat(u,x,t)?,’y=[0,0]")

e system dynamics and its derivatives

deff(’y=f (u,x,t)’,)y:B*u+A*X1)
deff (’y=f_etat (u,x,t)’,’y=A)
deff (’y=f_cmd (u,x,t)’,’y=B")

e final cost and its derivatives (we assume here that Q is symmetric)

deff (’y=phi(x,t)’,’y= 0.5% x’’?*Q*x’)
deff (’y=phi_etat(x,t)’,’y= Q*x’)

And the dynoptim computation as follows
exec SCI/contrib/dynoptim/loader.sce // we load the package
x0=[1;2]; // initial state

// control bounds and initial guess

// ub <= u <= uh and u0 initial value for u

ub= -10; // lower bound (could be \verb+- %inf+)
uh= +10; // lower bound (could be \verb-+ %inf-)
u0= 0; // intial guess

Q=diag([1,2]);
B=[3;4];
A=[1,2;3,4];

// coding relevant macros names for dynoptim
nom_L=["L","L_cmd","L_etat"];

nom_f=["f" "f_cmd","f_etat"];
nom_phi=["phi","phi_etat"];

// calling dynoptim

[Uopt,Eopt, Jopt,Gradopt]=dynoptim(nom_L,nom_f,nom_phi,ub,u0,uh,x0) ;

// here we check the results ...

a=1+ 0.5%B’*Q+B ;

b=0.5%(x0’*A’*Q*B + B’*Q*A*x0) ;

¢=0.5% x0?*A’*Q*A*xx0 ;

// solve u~2 a + u*b + c ;

uopt = -b/(2xa);

deff (’y=cost(u)’,’y=L(u,x0,0) + phi(f(u,x0,0))’)
jopt=cost (uopt) ;

if abs(uopt-Uopt) > 1.e-2 then pause,end
if abs(jopt-Jopt) > 1.e-2 then pause,end

4 Taking into account state constraints

In order to take into account state constraints of the form z, < x, < 7; in the problems
exposed in the previous sections we will use augmented Lagrangian techniques.

4.1 Augmented Lagrangian for inequality constraints

We will briefly expose the Augmented Lagrangian techniques for a standard optimization
problem and then we will apply it to optimal control problems with state constraints.
In order to solve

min J(u), (15)

with
u<u<u, (16)

we introduce the associated augmented Lagrangian:

. 1
Le(up) = T (1) + 5llproj gy (0(u) +2) 12 = - lpll* (17)

where 6(u) is the following function

Up — Up
Uo — Uo
O(u) = :) (18)
Up—1 — Up—1
oy =ty

p is the dimension of u and in this case 0(u) is of dimension m = 2p.

8

Standard algorithms can be used to solve the Lagrangian problem and we will use an
Uzawa algorithm whose steps are described in table 1.

Step 1 Initialize (u, p)
with (u°,p%) ; and & is set to zero: k = 0.

Step 2 solve min,, (L(u,p")),
let u* be a solution.

Step 3 update p as follows:
PPl =(1-2)p~+ Lprojg+ym (0" + cO(uFt)) .

Step 4 | If ||u*™! — u*|| + ||p**! — p¥|| is small enough,
stop else go to step 2.

Table 1: Uzawa Algorithm

Note that the convergence of the Uzawa algorithm depends on the choice of two param-
eters p and c.

e To increase the speed of gradient step 3 one can use large p and c.

e But minimisation step 2 can become difficult for large c.

4.2 Augmented Lagrangian for state constraints

We want to solve:

T—1

mmJ (z,u) ZL xy, up, t) + O(xp, T) (19)
0

ubtﬁutﬁuht, tZO,T—l (20)

Tey1 = F(xtuuht)a L e {07 ce 7T - 1}7 Lo (21)

z, <z <7y, te€{0,...,T—1}given (22)

taking into account state constraints through augmented Lagrangian techniques.

We will show here that the step 2 of Uzawa algorithm can be expressed in this case as
an unconstrained optimal control problem. We associate to the state constraint x < x <7
the constraint vector function 6(z):

Ty — To
Lo — Zo
O(x) = : : (23)
Tp—1 — Tp—1
Tn-1 = Tn-1

where n is here the state dimension. Note that since x can be expressed as a function of .
The state constraint vector 6(x) can be considered as a function of u (which will be denoted

also O(u)).
We define now the augmented Lagrangian in the usual way:

T-1
c . P 1
P)= 3 Ko, t) + O(or.T) + 5lproimeye (000 +2) I° = 2ol

This expression can be developed using the definition of #(u) and this leads to:

(2t)

-1
Le(u,p) = Z (L(xt, ug, t) + g (max(O,xt -7+ p—)2

C
0

P 1
+max(0,z =z + ~—)2> - %(p(%) +p(2t“))>

(2T)

+ (CID(J:T, T)+ ‘ (maX(O, Tp — T +

2 >2

p(2T+1) 1
+ maX(O,g —x7r +)2) — _(p(2T) + p(2T+1))) ’

C

c 2c

which can be simplified as

T—1
ZLp xtauta +¢p(xT7)
t=0

where ¢,(u,p) and L, are defined as follows

lp(xt,ut,t) = L(It,ut,t)

c p(20) P2+
+) <max(0, Ty — T +—)% +max(0,z — ; +)2)
c

)
2c

¢p<xT7T) = ¢(IT7uT7T)

2

1

— —(p

(27) (2T+1)
5 +p),

‘ p27) (2T+1)
+ = (maX(O, T — T+)2 + max(0, z — o7 +)2)
c c

(24)

(25)

(26)

(27)

Thus step 2 of Uzawa algorithm for a fixed p is a standard discrete control problem

without state constraints which can be solved by dynoptim

10

4.3 dynoptimsc

The Scilab macro dynoptimsc was developed to solve state constraints control problems using
Uzawa algorithm. As pointed out in the previous paragraphs The step 2 of the algorithm
can be performed by dynoptim. The constraints are taken into account through modified
version of the cost functions L, and ¢,. A new primitive which is devoted to the computation
of O(u) is also added. The algorithm implemented in Scilab fig:dynoptimsc is presented in
Figure 1.

5 Starts model

We present here an economical model belonging to the starts family models (Cired). A
country has to find a new policy which will lead to a reduction of its emissions of green house
effect gazes (for example C'O, emissions) at a specified time horizon. Since the application
of a new policy induces economical costs, the country wants to find an admissible policy
which will minimize a given cost function. The cost function is taken as an actualized sum
of instantaneous costs

S
-

J(a) = C(ag, a;-1,t)

t

e .

Il
o

Where the given instantaneous cost is expressed as
Clag, a—1,t) = aEat”)\(t)W(at, A1)

Here a, is the control and admissible controls must keep the concentration of C'O, (the state
vector noted here M,;) below a specified level.

M, < M. (29)

The state evolution is given by

{ Mt‘t:() = MO

M, Moy + At(BE 11— a,) — oMyt — M)). (30)

where F; are given values. This dynamics is based on the fact that C'O, emissions are
partially absorbed by oceans and earth and partially stored in the atmosphere. The problem
is a discrete time problem, the step size is one year and the time horizon is T = 12.

Many variations on the above problem can be specified according to different economical
modeling hypothesis and the availability of a Scilab toolbox for easily testing modification
(i.e by only modifying Scilab code) in the cost or in the dynamics specifications was of great
interest.

The previous problem can be easily coded in Scilab as follows

e constants and given functions

11

problem functions

deff(Cy=f(u,xt)’, y=1/2*x"2")
deff('f_cmd(u,x,t)’,'y=0")

ub=zero0s(12,1),uh=ones(12,1) ;

xinf=0
Xsup=500

Augmented Lagrangian functions

fonction.sci

deffCy=Ip(ux.t)’y=l(uxt) +....);
deff('y=fp_cmd(u,x,t)’,'y=l_cmd(u,x,t) +...

dynoptimsc.sci

Initialization
k=0, p° u°

i

Step 2

Minimization of Aug.
with dynoptim.

giving uk+1

Lagrangian

y

Step 3

gradient step

PP = (1= 2) p* + projgm)+ (p* + cO(uF*1))

i

Step 4

Stopping test on
fluF+t — g |

and on
lp*+1 — pk||

No

VY%

Step 5

stop with

Figure 1: The Scilab macro dynoptimsc

12

E=[5.9623,6.998,8.4363,9.9111,11.018,12.126,13.233,14.541, . ..
15.848,17.156,18.463,19.771];

alpha=1000; // cost of backstop technology

nu=3;
theta=0.0000526;
M0=360; // initial concentration

Minf=274; // preindustrial concentration
rho=0.05; // actualization cost

sigma=0.01; // rate of sink absorption
delta=10; // step size

beta=0.38; // rate of atmospheric absorption
e=0.0001

Gamma=0.005;

deff (’y=Lambda(t)’,’y=0.25+0.75%exp(-0.01xdelta*t)’);

deff(’y=gama(v)’,’y=1/(2*Gamma*delta)*(v+sqrt (vkv+e))+1’);
deff(’y=gama_v(v)’,’y=1/(2*Gamma*delta)*(1+v/sqrt (vxv+e))’);
deff (’y=psi(ul,u2)’,’y=u2-ul-delta*Gamma’) ;

deff (’y=psi_ul(ul,u2)’,’y=-1?)
deff (’y=psi_u2(ul,u2)’,’y=1’)

e cost function and related derivatives
deff(’y=L(a,x,t)’,’y=(alpha*E(t+1)*a~nu*Lambda(t)*gama(psi(x(1),a)))/(1+rho)~(delta*t)’’
deff (’y=L_cmd(a,x,t)’, ’y=alpha*E(t+1)*(nu*a~(nu-1)*Lambda (t)*gama (psi(x(1) ,a))+a~nu*Lamt
deff (’y=L_etat(a,x,t)’,’y(1)=-alpha*E(t+1)*a~nu*Lambda(t)*gama_v(psi(x(1),a))/(1+rho)~(c

e system dynamics and related derivatives

deff (Cy=f(a,x,t)’,’y(1)=a,y(2)=x(2)+10* (beta*E(t+1)*(1-a)-sigma* (x(2)-Minf))’);

// Warning f_etat must return the matrix M such that

// M(i,j) = dfi/dxj

deff (’y=f_etat(a,x,t)’,’y=zeros(2,2),y(1,1)=0,y(2,1)=0,y(1,2)=0,y(2,2)=1-sigma*delta’);
deff(’y=f_cmd(a,x,t)’,’y(1)=1,y(2)=-beta*xE(t+1)*delta’);

e final cost and its derivatives

deff (’y=phi(x,t)’,’y=0");
deff (’y=phi_etat(x,t)?,’y(1)=0,y(2)=07);

e calling dynoptimsc

13

x0=[0;360]; // initial state x
xinf=[0;0]; // state constraints
xsup=[1;450];

// bounds and initial value on the control a
T=12

ab=zeros(1,T);

ah=zeros(1,T)+1;

a0=rand(1,T);

// names
nom_L=["L","L_cmd","L_etat"];
nom_f=["f","f_cmd","f_etat"];
nom_phi=["phi","phi_etat"];

[Uopt ,Eopt, Jopt ,Gradopt]=dynoptimsc (nom_L,nom_f ,nom_phi,ab,a0,ah,xinf,x0,xsup)
//,’lag’ ,k=zeros(2,1)+1,150,40);

// graphics

years=1990+10%(0:T-1) ;

xset (’window?’,0) ;

xbasc ()

plot2d2(years,Uopt,2)

xstring(2010,0.5,"time evolution of control")

Emax=xsup(2)*ones(1,T) ;

xset (’window’,1);

xbasc()

plot2d2(years,Eopt(2,1:T),5)

plot2d2(years,Emax(1:T),6)

xstring(2030,390,"time evolution of second component of state")

14

