The Python Library Reference
Release 2.6.3

Guido van Rossum

Fred L. Drake, Jr., editor

October 04, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 23
Built-in Constants 25
4.1 Constantsaddedbytege module. 25
Built-in Objects 27
Built-in Types 29
6.1 TruthValueTesting o o 29
6.2 Boolean Operations-and, or ,NOt e e 29
6.3 CoMPariSONS. i i e e e e e e e e e e e e 30
6.4 Numeric Types —int ,float ,long ,complex 30
6.5 lterator TYPeS e e e e e e e 33
6.6 Sequence Types-str ,unicode ,list ,tuple ,buffer ,xrange 34
6.7 SetTypes—set ,frozenset e 44
6.8 Mapping Types —ict e 46
6.9 FileObjects e e 49
6.10 ContextManager TYPES o v i i it e e e e e e e e e e 52
6.11 Other Built-in TYpeS. o e e e e e e 53
6.12 Special Attributes L e 55
Built-in Exceptions 57
7.1 Exceptionhierarchy. e e 61
String Services 63
8.1 string —Commonstringoperations e e 63
8.2 re — Regular expression operations e e e e e 72
8.3 struct — Interpretstrings as packedbinarydata o oL 87
8.4 difflib — Helpers forcomputingdeltas 90
8.5 Stringl0O — Read and write stringsasfiles. 100
8.6 cStringlO — Faster version oBtringlO L 101
8.7 textwrap —Textwrappingandfiling. 102
8.8 codecs — Codecregistryandbaseclasses. o oo 104
8.9 unicodedata —Unicode Database. e 117
8.10 stringprep — Internet String Preparation. e 119
8.11 fpformat — Floating pointconversions. i i i i e 120

9

10

11

12

Data Types 123
9.1 datetime —Basicdateandtimetypes. 123
9.2 calendar — General calendar-related functions. 145
9.3 collections — High-performance container datatypes 149
9.4 heapq — Heap queue algorithm. 158
9.5 bhisect — Array bisectionalgorithm 160
9.6 array — Efficientarraysofnumericvalues. 162
9.7 sets — Unordered collections of uniqueelements. 164
9.8 sched —Eventscheduler. e 167
9.9 mutex — Mutual exclusion support.o e e 169
9.10 queue — Asynchronizedqueueclass. e 170
9.11 weakref —Weakreferences. e 172
9.12 UserDict — Class wrapper for dictionaryobjects 175
9.13 UserList — Classwrapperforlistobjects 176
9.14 UserString — Class wrapper for stringobjects oo 177
9.15 types — Namesfor built-intypes. e 177
9.16 new — Creation of runtime internalobjects. 180
9.17 copy — Shallow anddeepcopyoperations e 181
9.18 pprint — Datapretty printer e 181
9.19 repr — Alternaterepr() implementation. o 184
Numeric and Mathematical Modules 187
10.1 numbers — Numeric abstractbaseclasses. oo 0. 187
10.2 math — Mathematical functions. L 190
10.3 cmath — Mathematical functions for complexnumbers 193
10.4 decimal — Decimal fixed point and floating point arithmetic 196
10.5 fractions —Rationalnumbers. 220
10.6 random — Generate pseudo-randomnumbers. L oL 221
10.7 itertools — Functions creating iterators for efficientlooping. 224
10.8 functools = — Higher order functions and operations on callable objects 236
10.9 operator — Standard operatorsasfunctions e 238
File and Directory Access 245
11.1 os.path — Common pathname manipulations. 245
11.2 fileinput — Iterate over lines from multiple input streams 248
11.3 stat —Interpretingstat() results. 250
11.4 statvfs — Constants used withs.statvfs() 253
11.5 fileecmp — File and Directory ComparisSons o o v i i i 254
11.6 tempfile — Generate temporary filesand directories. 256
11.7 glob — Unix style pathname patternexpansion., 258
11.8 fnmatch — Unix filename pattern matching. 259
11.9 linecache —Randomaccesstotextlines. 260
11.10shutil — High-levelfile operations 260
11.11dircache — Cached directory listings. o o i 263
11.12macpath — Mac OS 9 path manipulation functions. 263
Data Persistence 265
12.1 pickle — Python objectserialization 265
12.2 cPickle —Afasterpickle e 275
12.3 copy _reg — Registempickle supportfunctions. 275
12.4 shelve — Pythonobjectpersistence. 276
12.5 marshal — Internal Python object serialization. 278
12.6 anydbm — Generic access to DBM-styledatabases L. 279
12.7 whichdb — Guess which DBM module created adatabase. 280

13

14

15

16

17

12.8 dbm— Simple “database” interface. e 281

12.9 gdbm— GNU’s reinterpretationofdom. 282
12.10dbhash — DBM-style interface to the BSD database libraty. 283
12.11bsddb — Interface to Berkeley DB library 284
12.12dumbdbm— Portable DBM implementation o 286
12.13sqlite3 — DB-API 2.0 interface for SQLitedatabases 287
Data Compression and Archiving 305
13.1 zlib — Compression compatiblewithzip 305
13.2 gzip — Supportforgzipfiles e 307
13.3 bz2 — Compression compatible withzip2 309
13.4 zipfile — Work with ZIP archives. 311
13.5 tarfile — Read and write tar archivefiles. L o Lo Lo 315
File Formats 323
141 csv — CSV FileReadingand Writing. 323
14.2 ConfigParser = — Configurationfileparser. o oL 330
14.3 robotparser —Parserforrobots.txt. L 335
14.4 netrc —netrcfile processing. e e e 336
145 xdrlib —Encode anddecode XDRdata. 336
14.6 plistlib — Generate and parse Mac OSplist files. 339
Cryptographic Services 343
15.1 hashlib — Secure hashesand messagedigests 343
15.2 hmac — Keyed-Hashing for Message Authentication. 344
15.3 md5— MD5 message digestalgorithm. oo 345
15.4 sha — SHA-1 message digestalgorithm. 346
Generic Operating System Services 349
16.1 os — Miscellaneous operating systemiinterfaces. oL 349
16.2 io — Coretools forworkingwithstreams, 370
16.3 time —Timeaccessand CoONVErSIONS v v v v v v v e e e e e 378
16.4 optparse — More powerful command line optionparser.. 383
16.5 getopt — Parserforcommandlineoptions. L L Lo 407
16.6 logging — Logging facility for Python.409
16.7 getpass — Portable passwordinput. 443
16.8 curses — Terminal handling for character-celldisplays. 444
16.9 curses.textpad — Text input widget for curses programs 459
16.10curses.wrapper ~ — Terminal handler for curses programs 460
16.11 curses.ascii — Utilities for ASCll characters 460
16.12curses.panel ~ — A panel stack extensionforcurses.. L oL 463
16.13platform — Access to underlying platform’s identifyingdata. 464
16.14errno — Standard errno systemsymbols. 467
16.15ctypes — A foreign function library for Python.. 473
Optional Operating System Services 505
17.1 select — Waiting for I/O completion. 505
17.2 threading — Higher-level threadinginterface. 509
17.3 thread — Multiple threadsofcontrol. 518
17.4 dummy_threading — Drop-in replacement for thiareading module 520
17.5 dummy_thread — Drop-in replacement for thdaread module 520
17.6 multiprocessing — Process-based “threading” interface. 520
17.7 mmap— Memory-mapped file support 576
17.8 readline — GNUreadlineinterface. 579

17.9 rlcompleter — Completion function for GNU readline. 581

18 Interprocess Communication and Networking 583

19

20

21

18.1 subprocess — Subprocessmanagement e e 583
18.2 socket — Low-level networkinginterface. o oo 589
18.3 ssl — SSL wrapper forsocketobjects. 600
18.4 signal — Sethandlers forasynchronousevents. 607
18.5 popen2 — Subprocesses with accessible l/Ostreams. 610
18.6 asyncore — Asynchronoussockethandler. 612
18.7 asynchat — Asynchronous socket command/response handler. 615
Internet Data Handling 621
19.1 email — Anemailand MIME handlingpackage 621
19.2 json —JSONencoderanddecoder. i i it 651
19.3 mailcap — Mailcapfilehandling. 656
19.4 mailbox — Manipulate mailboxesinvariousformats 657
195 mhlib —Accessto MH mailboxes e 675
19.6 mimetools — Tools for parsing MIME MeSSages v v v v v i v i i i e e 677
19.7 mimetypes — Map filenamesto MIME types. 678
19.8 MimeWriter — Generic MIME filewriter Lo Lo 680
19.9 mimify — MIME processingof mailmessages. o 681
19.10 multifile — Support for files containing distinctparts. 682
19.11rfc822 — Parse RFC 2822 mailheaders. 684
19.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 688
19.13binhex — Encode and decode binhex4files L oo oL 690
19.14binascii — Convert between binaryand ASCIl. o Lo 691
19.15quopri — Encode and decode MIME quoted-printabledata 692
19.16uu — Encode and decode uuencodefiles o 693
Structured Markup Processing Tools 695
20.1 HTMLParser — Simple HTML and XHTML parser. v v i v v .. 695
20.2 sgmllib — Simple SGML parser. e e e e 697
20.3 htmllib — AparserforHTMLdocuments i it e i 700
20.4 htmlentitydefs — Definitions of HTML general entities 701
20.5 xml.parsers.expat — Fast XML parsingusingExpat 702
20.6 xml.dom — The Document Object Model APL. 710
20.7 xml.dom.minidom — Lightweight DOM implementation. 720
20.8 xml.dom.pulldom — Support for building partial DOMtrees 724
20.9 xml.sax — Supportfor SAX2parsers. i e e e X125
20.10xml.sax.handler — BaseclassesforSAX handlers oo 726
20.11xml.sax.saxutils — SAXUtilities 731
20.12xml.sax.xmlreader — Interface for XML parsers. e 732
20.13xml.etree.ElementTree — The ElementTree XML API. 736
Internet Protocols and Support 743
21.1 webbrowser — Convenient Web-browsercontroller. 743
21.2 cgi — Common Gateway Interface support.. e 745
21.3 cgitb — Traceback managerfor CGlscripts. i 751
21.4 wsgiref — WSGI Utilities and Reference Implementation 752
21.5 urllib — Open arbitrary resourcesby URL oo 761
21.6 urllib2 —extensible library foropeningURLs, 766
21.7 httplib — HTTP protocolclient. 777
21.8 ftplib — FTP protocolclient. 781
21.9 poplib — POP3protocolclient. 784
21.10imaplib — IMAP4 protocolclient 786
21.11nntplib — NNTP protocolclient. e 792

22

23

24

25

26

27

21.12smtplib — SMTP protocolclient. e 796

21.13smtpd — SMTP Server. o e e e e e 800
21.14telnetlib — Telnetclient e 801
21.15uuid — UUID objects accordingto RFC 4122. it 803
21.16urlparse — Parse URLsINto components. o i i i v vt e 806
21.17SocketServer — A framework for networkservers. L o 0oL 809
21.18BaseHTTPServer —BasicHTTP server i e e et 817
21.19SimpleHTTPServer — Simple HTTP requesthandler 820
21.20CGIHTTPServer — CGl-capable HTTP requesthandler 821
21.21cookielib — Cookie handling forHTTP clients. 821
21.22Cookie — HTTP state management. 0 v i i it e e e e e e e e e 830
21.23xmirpclib — XML-RPCclientaccess v i i i i i e e 833
21.24SimpleXMLRPCServer — Basic XML-RPCserver. 840
21.25DocXMLRPCServer — Self-documenting XML-RPC server. 843
Multimedia Services 845
22.1 audioop — Manipulateraw audiodata L 845
22.2 imageop — Manipulaterawimagedata.o 848
22.3 aifc — Read and write AIFFand AIFCfiles. 849
22.4 sunau — Read and write Sun AUfiles L 851
22.5 wave — Read and write WAV files. 854
22.6 chunk —Read IFFchunkeddata., 856
22.7 colorsys — Conversions betweencolorsystems. 857
22.8 imghdr — Determinethetypeofanimage oo 857
22.9 sndhdr — Determine type of soundfile 858
22.100ssaudiodev — Access to OSS-compatible audiodevices. 859
Internationalization 865
23.1 gettext — Multilingual internationalizationservices. 865
23.2 locale — Internationalizationservices 874
Program Frameworks 881
24.1 cmd— Support for line-oriented command interpreters. L. 881
24.2 shlex — Simplelexicalanalysis e 883
Graphical User Interfaces with Tk 887
25.1 Tkinter — Pythoninterfaceto Tcl/Tk. 887
25.2 Tix —ExtensionwidgetsforTK. e 897
25.3 ScrolledText ~ — Scrolled TextWidget. o o 902
25.4 turtle —Turtlegraphicsfor TK 902
255 IDLE e e 931
25.6 Other Graphical User Interface Packages 934
Development Tools 937
26.1 pydoc — Documentation generator and online helpsystem. 937
26.2 doctest — Testinteractive Pythonexamples. 938
26.3 unittest ~—Unittestingframework. 960
26.4 2to3 - Automated Python 2to 3 code translation 972
26.5 test — Regression tests package forPython. oo 973
26.6 test.test_support — Utility functionsfortests. oL 975
Debugging and Profiling 979
27.1 bdb — Debugger framework. 979
27.2 pdb — The Python Debugger e 983
27.3 DebuggerCommands e e e e e e 984

28

29

30

31

32

33

27.4 The Python Profilers 987

27.5 hotshot — High performance logging profiler 994

27.6 timeit — Measure execution time of small code snippets 996

27.7 trace — Trace or track Python statement execution. 999

Python Runtime Services 1001

28.1 sys — System-specific parameters and functions. o oL 1001
28.2 _ builtin__ — Built-inobjects 1010
28.3 future_builtins —Python 3 builtins. 1011
28.4 _ _main__ — Top-level scriptenvironment.o 1011
28.5 warnings —Warningcontrol. e e e 1012
28.6 contextlib — Utilities for with -statementcontexts.. 1016
28.7 abc — Abstract Base Classes. e e 1017
28.8 atexit —Exithandlers. e 1020
28.9 traceback — Printorretrieve astacktraceback. o Lo 1021
28.10 future_ — Future statementdefinitions 1025
28.11gc — Garbage Collectorinterface. e 1026
28.12inspect —Inspectliveobjects. 1028
28.13site — Site-specific configurationhook Lo 1033
28.14user — User-specific configurationhook 1034
28.15fpectl — Floating point exceptioncontrol 1035
Custom Python Interpreters 1037

29.1 code — Interpreterbaseclasses 1037
29.2 codeop — Compile Pythoncode 1039
Restricted Execution 1041

30.1 rexec — Restricted executionframework Lo 1041
30.2 Bastion — Restrictingaccesstoobjects 1044
Importing Modules 1047

31.1 imp —Accessthemport internals. e 1047
31.2 imputil —Importutilities e 1050
31.3 zipimport — Import modules from Zip archives. 1054
31.4 pkgutii — Package extensionutility L L 1056
31.5 modulefinder = — Find modulesusedbyascript 1056
31.6 runpy — Locating and executing Pythonmodules 1058
Python Language Services 1061

32.1 parser — Access Pythonparsetrees. e 1061
32.2 Abstract Syntax TreeS o o i e e e e e e 1070
32.3 symtable — Access tothe compiler'ssymboltables. 1075
32.4 symbol — Constants used with Python parsetrees 1077
32.5 token — Constants used with Python parsetrees 1077
32.6 keyword — Testing for Pythonkeywords, 1077
32.7 tokenize — Tokenizerfor Pythonsource., 1078
32.8 tabnanny — Detection of ambiguousindentation 1079
32.9 pyclbr — Python class browsersupport 1080
32.10py_compile — Compile Pythonsourcefiles 1081
32.11compileall — Byte-compile Pythonlibraries 1081
32.12dis — Disassembler for Pythonbytecode 1082
32.13pickletools — Tools for pickle developers.. 1090
32.14distutils — Building and installing Pythonmodules. 1090
Python compiler package 1093

Vi

34

35

36

37

38

39

33.1 Thebasicinterface e e e e 1093

33.2 LIMItationS. o e e e e 1094
33.3 Python Abstract Syntax. e 1094
33.4 Using Visitorsto Walk ASTS 1099
33.5 Bytecode Generation. e e e e 1099
Miscellaneous Services 1101

34.1 formatter = — Generic outputformatting 1101
MS Windows Specific Services 1105

35.1 msilib — Read and write Microsoft Installerfiles 1105
35.2 msvert — Useful routines from the MS VC++runtime L. 1110
35.3 _winreg —WIindows registry @CCeSS v i i e e e e e e e 1112
35.4 winsound — Sound-playing interface for Windows. 1117
Unix Specific Services 1119

36.1 posix — The mostcommon POSIX systemcalls. 1119
36.2 pwd—The passworddatabase e 1120
36.3 spwd — The shadow password database, 1121
36.4 grp — Thegroupdatabase 1121
36.5 crypt — Functionto check Unix passwords. e 1122
36.6 dI —CallCfunctionsinsharedobjects 1122
36.7 termios — POSIXstylettycontrol. 1124
36.8 tty — Terminal controlfunctions. 1125
36.9 pty — Pseudo-terminal utilities 1125
36.10fcntl — Thefentl() andioctl() systemecalls. 1126
36.11pipes — Interfaceto shellpipelines 1128
36.12posixfile — File-like objects with lockingsupport 1129
36.13resource — Resource usage information. L L0 1131
36.14nis — Interface to Sun’s NIS (Yellow Pages) o oL 1133
36.15syslog — Unix syslog libraryroutines. 1134
36.16 commands — Utilities forrunningcommands 0. 1135
Mac OS X specific services 1137

37.1 ic — Accesstothe Mac OS XInternetConfig. L 1137
37.2 MacOS— Accessto Mac OSinterpreterfeatures 1138
37.3 macostools — Convenience routines for file manipulation. 1140
37.4 findertools — Thefinder's Apple Eventsinterface 1140
37.5 EasyDialogs — Basic Macintoshdialogs., 1141
37.6 FrameWork — Interactive application framework L 1143
37.7 autoGIL — Global Interpreter Lock handling ineventloops. 1147
37.8 Mac OSToolbox Modules e 1147
37.9 ColorPicker —Colorselectiondialog., 1153
MacPython OSA Modules 1155

38.1 gensuitemodule — Generate OSA stubpackages. 1156
38.2 aetools — OSAclientsupport. 1157
38.3 aepack — Conversion between Python variables and AppleEvent data containers. 1158
38.4 aetypes — AppleEventobjects. Lo 1159
38.5 MiniAEFrame — Open Scripting Architecture serversupport. 1160
SGI IRIX Specific Services 1163

39.1 al —Audiofunctionsonthe SGl 1163
39.2 AL — Constants used withthed module Lo 1165
39.3 cd — CD-ROM access on SGISYSteMS v v v i i i e e e e e e e e e e 1165

Vii

39.4 fl — FORMS library for graphical userinterfaces. 1168
39.5 FL — Constantsused withtife module 1173
39.6 flp — Functions for loading stored FORMS designs. 1173
39.7 fm — Font Managerinterface. 1173
39.8 gl — Graphics Libraryinterface e 1174
39.9 DEVICE— Constantsused withttgd module 1176
39.10GL— Constants used withttgg module 1176
39.11imgfile — Support for SGlimglibfiles o 1176
39.12jpeg — Read andwrite JPEGfiles. 1177
40 SunOS Specific Services 1179
40.1 sunaudiodev — AccesstoSunaudiohardware. 1179
40.2 SUNAUDIODEW- Constants used witbunaudiodev 1180
41 Undocumented Modules 1181
41.1 Miscellaneous useful utilities. L 1181
41.2 Platformspecificmodules L 1181
41.3 Multimedia. e 1181
41.4 Undocumented Mac OSmodules. e 1182
415 ODbsolete. 1183
41.6 SGl-specific Extension modules. 1183
A Glossary 1185
B About these documents 1191
B.1 Contributors to the Python Documentation. 1191
C History and License 1193
C.1 Historyofthesoftware e 1193
C.2 Terms and conditions for accessing or otherwise using Python 1194
C.3 Licenses and Acknowledgements for Incorporated Software. 1196
D Copyright 1205
Module Index 1207
Index 1213

viii

The Python Library Reference, Release 2.6.3

Release?2.6
Date October 04, 2009

While The Python Language Referer{c@ The Python Language Referehdescribes the exact syntax and semantics
of the Python language, this library reference manual describes the standard library that is distributed with Python. It
also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file 1/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many

additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so

it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available ffgthdhé ackage
Index

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6.3

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with cliaptem Objects as the remainder

of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.6.3

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all (iterable
Return True if all elements of theerableare true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of thierableis true. If the iterable is empty, return False. Equivalent to:

def any (iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass $or andunicode . It cannot be called or instantiated, but it can be

used to test whether an object is an instancetof or unicode . isinstance(obj, basestring) is
equivalent tdsinstance(obj, (str, unicode)) . New in version 2.3.
bin (x)

Convert an integer number to a binary string. The result is a valid Python expresskas.niét a Pythorint
object, it has to define an index () method that returns an integer. New in version 2.6.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedwés fiilse or omitted, this returns
False ; otherwise it returngrue . bool is also a class, which is a subclassmf . Classbool cannot be
subclassed further. Its only instancesaeése andTrue . New in version 2.2.1.Changed in version 2.3: If no
argument is given, this function returfslse .

The Python Library Reference, Release 2.6.3

callable (objec)
ReturnTrue if the objectargument appears callableglse if not. If this returns true, it is still possible that a
call fails, but if it is false, callingbjectwill never succeed. Note that classes are callable (calling a class returns
a new instance); class instances are callable if they haveall () method.

chr (i)
Return a string of one character whose ASCII code is the intedesr examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusitedpeError will
be raised ifi is outside that range. See alsoichr()

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, S

The @classmethod form is a functiondecorator— see the description of function definitionsFuminction
definitions(in The Python Language Referehéar details.

It can be called either on the class (suchCaK)) or on an instance (such &).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want thosgtseeethod() in this
section.

For more information on class methods, consult the documentation on the standard type hierahghgtan-
dard type hierarchyin The Python Language RefereljcHew in version 2.2.Changed in version 2.4: Function
decorator syntax added.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < y,zeroifx == y and strictly positive ik > vy.

compile (source, filename, mode, [flags, [dont_inheijt]]
Compile thesourceinto a code or AST object. Code objects can be executed byan statement or evaluated
by a call toeval() . sourcecan either be a string or an AST object. Refer todhke module documentation
for information on how to work with AST objects.

The filenameargument should give the file from which the code was read; pass some recognizable value if it

wasn't read from a file’€string>’ is commonly used).

The modeargument specifies what kind of code must be compiled; it caexer’ if sourceconsists of a
sequence of statementsyal’ if it consists of a single expression, @ingle’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something dttwerethat
be printed).

The optional argumenftagsanddont_inheritcontrol which future statements (sSB&P 239 affect the compi-

lation of source If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If tHagsargument is given andont_inheritis not (or is zero) then

the future statements specified by flegsargument are used in addition to those that would be used anyway.

If dont_inheritis a non-zero integer then tflagsargument is it — the future statements in effect around the call

to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmapiler_flag attribute on the Feature

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6.3

instance inthe future_ module.

This function raiseSyntaxError if the compiled source is invalid, antdypeError if the source contains
null bytes.

Note: When compiling a string with multi-line statements, line endings must be represented by a single
newline character\p’), and the input must be terminated by at least one newline character. If line endings
are represented Byr'\n’ | usestr.replace() to change them intdn’ . Changed in version 2.3: The
flagsanddont_inheritarguments were added.Changed in version 2.6: Support for compiling AST objects.

complex ([real, [imag]])
Create a complex number with the valgal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat() . If both arguments are omitted, retui@s.

The complex type is described Mumeric Types — int, float, long, complex

delattr (object, namg

This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar’) is equivalent talel x.foobar

dict ([arg])
Create a new data dictionary, optionally with items taken feogn The dictionary type is described liapping
Types — dict

For other containers see the builtlist , set , andtuple classes, and theollections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method nameddir__ () , this method will be called and must return the list of attributes.
This allows objects that implement a custongetattr () or__getattribute_ () function to cus-
tomize the waydir() reports their attributes.

If the object does not provide dir__ () , the function tries its best to gather information from the object’s
__dict__attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custogetattr ()

The defaultdir() mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

«If the object is a module object, the list contains the names of the module’s attributes.

«If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

«Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> jmport struct
>>> dir () # doctest: +SKIP

[builtins_’, * doc_ ', ' _name__’, 'struct]
>>> dir (struct) # doctest: +NORMALIZE_WHITESPACE
[Struct’, ’__builtins__’, *_doc_’, ' file_ ', ' name_’,

' _package_’, ’_clearcache’, ’calcsize’, ’error, ’'pack’, 'pack_into’,

The Python Library Reference, Release 2.6.3

‘'unpack’, 'unpack_from’]
>>> class Foo(object):
def _ dir__ (self):
return ["kan", "ga", "roo"]

>>> f = Foo()
>>> dir (f)
[ga’, 'kan’, 'ro0’]

Note: Becauselir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply

an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the sam¢aa#/ b, a % b) . For floating point numbers the
resultis(q, a % b) , whereqis usuallymath.floor(a / b) but may be 1 less than that. In any case
*b + a % bisveryclosetm, if a % bis non-zero it has the same signlasand0 <= abs(a % b)
< abs(b) . Changed in version 2.3: Usirjvmod() with complex numbers is deprecated.

enumerate (sequence, [start=0]
Return an enumerate objesequencenust be a sequence, aarator, or some other object which supports iter-
ation. Thenext() method of the iterator returned leyyumerate() returns a tuple containing a count (from
startwhich defaults to 0) and the corresponding value obtained from iteratingtevable enumerate() is

useful for obtaining an indexed seri€B; seq[0]) , (1, seq[1]) . (2, seq[2]) , For example:
>>> for i, season in enumerate ([' Spring ', ' Summer, 'Fall ', ' Winter ']):
print i, season

0 Spring

1 Summer

2 Fall

3 Winter

New in version 2.3.New in version 2.6: Tkeart parameter.

eval (expression, [globals, [locals]]
The arguments are a string and optional globals and locals. If pro\gétdzhlsmust be a dictionary. If provided,
localscan be any mapping object. Changed in version 2.4; formecliswas required to be a dictionary. The
expressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using theglobalsandlocals dictionaries as global and local namespace. Ifdglwbalsdictionary is present
and lacks ‘__builtins__’, the current globals are copied mitthals beforeexpressioris parsed. This means
that expressiomormally has full access to the standardouiltin___ module and restricted environments
are propagated. If thiecalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whext) is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval (" x+1")
2

This function can also be used to execute arbitrary code objects (such as those createtiy()). In
this case pass a code object instead of a string. If the code object has been compilegegith as thekind
argumenteval() ‘s return value will beNone.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for aselfy or
execfile()

execfile (filename, [globals, [locals])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modulé.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If providedocals can be any mapping object. Changed in version 2.4: formedsls was required

to be a dictionary. If théocals dictionary is omitted it defaults to thglobalsdictionary. If both dictionaries

are omitted, the expression is executed in the environment vehexeile() is called. The return value is

None.

Note: The defaultocalsact as described for functidncals() below: modifications to the defadticals
dictionary should not be attempted. Pass an exgdlcials dictionary if you need to see effects of the code
on locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filename, [mode, [bufsizg]]
Constructor function for théle type, described further in sectidiiie Objects The constructor’s arguments
are the same as those of thigen() built-in function described below.

When opening a file, it's preferable to uspen() instead of invoking this constructor directfjle is more
suited to type testing (for example, writimgjnstance(f, file)). New in version 2.2.

filter (function, iterablg
Construct a list from those elementsitdrable for which functionreturns true.iterable may be either a se-
quence, a container which supports iteration, or an iteratdtertible is a string or a tuple, the result also has
that type; otherwise it is always a list.flinctionis None, the identity function is assumed, that is, all elements
of iterablethat are false are removed.

Note thatfilter(function, iterable) is equivalent to[item for item in iterable if
function(item)] if function is notNone and[item for item in iterable if item] if func-
tion isNone.
Seeitertools.filterfalse() for the complementary function that returns elementdterfable for
whichfunctionreturns false.

float ([X])

Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+|-]nan or
[+]-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point
number with the same value (within Python’s floating point precision) is returned. If no argument is given,
returns0.0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying

C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a

leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan,
inf or -inf.

The float type is described iMumeric Types — int, float, long, complex

format (value, [format_sped]
Convert avalueto a “formatted” representation, as controlledfbsmat_specThe interpretation dormat_spec

11tis used relatively rarely so does not warrant being made into a statement.

The Python Library Reference, Release 2.6.3

will depend on the type of thealueargument, however there is a standard formatting syntax that is used by
most built-in typesFormat Specification Mini-Language

Note: format(value, format_spec) merely callsvalue.__format__(format_spec) . New
in version 2.6.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken fitenable The frozenset type is describedSet
Types — set, frozenset

For other containers see the builtdict |, list |, andtuple classes, and theollections module. New
in version 2.4.

getattr (object, name, [defaul)]
Return the value of the named attributedaffject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgplattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The resltue if the string is the name of one of the object’s
attributesFalse if not. (This is implemented by callingetattr(object, name) and seeing whether it
raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace bydire module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, usgédhiehex() method. Changed in
version 2.4: Formerly only returned an unsigned literal.

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw_input(prompt))

Warning: This function is not safe from user errors! It expects a valid Python expression as input;|if the
input is not syntactically valid, &yntaxError will be raised. Other exceptions may be raised if the¢re

is an error during evaluation. (On the other hand, sometimes this is exactly what you need when wyiting a
quick script for expert use.)

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw_input() function for general input from users.

int ([x, [base]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespdesepheameter gives

the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or zero. If
baseis zero, the proper radix is determined based on the contents of string; the interpretation is the same as
for integer literals. (Se&lumeric literals(in The Python Language Referehgelf baseis specified anc is

not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer or a floating point
number. Conversion of floating point numbers to integers truncates (towards zero). If the argument is outside
the integer range a long object will be returned instead. If no arguments are given, feturns

The integer type is described Wumeric Types — int, float, long, complex

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object (new-style class) aobjectis an object of that type or of a
(direct or indirect) subclass thereof.dbjectis not a class instance or an object of the given type, the function
always returns false. Klassinfois neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accapasd)nidis not

a class, type, or tuple of classes, types, and such tuplegeError exception is raised. Changed in version
2.2: Support for a tuple of type information was added.

issubclass (class, classinfp

iter

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entgjassinfowill be checked. In any other
case, alypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

(o, [sentinel)

Return anterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the _iter__ () method), or it must support the sequence protocol (thgetitem__ () method with
integer arguments starting @). If it does not support either of those protocolg,peError is raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equaldentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

list

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

([iterable])

Return a list whose items are the same and in the same ordtrasle's items. iterable may be either a
sequence, a container that supports iteration, or an iterator objéetalfleis already a list, a copy is made and
returned, similar taterable[:] . For instancelist('abc’) returns'a’, 'b’, 'c] andlist(

1, 2, 3)) returns[1, 2, 3] . If no argumentis given, returns a new empty Ijt,

list is a mutable sequence type, as documentegkiquence Types — str, unicode, list, tuple, buffer, xrange
For other containers see the builtditt , set , andtuple classes, and theollections module.

locals ()

Update and return a dictionary representing the current local symbol table.

11

The Python Library Reference, Release 2.6.3

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
variables used by the interpreter.

Free variables are returned lmals() when it is called in a function block. Modifications of free variables
may not affect the values used by the interpreter. Free variables are not returned in class blocks.

long ([x, [base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. Béseargument is interpreted in the same way as for
int() , and may only be given whenis a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, ré&urns

The long type is described iMumeric Types — int, float, long, complex

map(function, iterable, .).
Apply functionto every item ofiterable and return a list of the results. If addition&rable arguments are
passedfunctionmust take that many arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extendedNwitk items. Iffunctionis None, the identity
function is assumed; if there are multiple argumentsp() returns a list consisting of tuples containing the
corresponding items from all iterables (a kind of transpose operation)terablearguments may be a sequence
or any iterable object; the result is always a list.

max(iterable, [args...], [key)
With a single argumeriterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optionakeyargument specifies a one-argument ordering function like that uséidtfeort() . The
keyargument, if supplied, must be in keyword form (for examphax(a,b,c,key=func)). Changed in
version 2.5: Added support for the optiorkalyargument.

min (iterable, [args...], [key)
With a single argumeriterable return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optionalkeyargument specifies a one-argument ordering function like that uséidtfeort() . The
keyargument, if supplied, must be in keyword form (for examphin(a,b,c,key=func)). Changed in
version 2.5: Added support for the optiorkelyargument.

next (iterator, [default])
Retrieve the next item from thigerator by calling itsnext() method. Ifdefaultis given, it is returned if the
iterator is exhausted, otherwiSg¢oplteration is raised. New in version 2.6.

object ()
Return a new featureless objecbject is a base for all new style classes. It has the methods that are common
to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function does not accept
any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]]
Open a file, returning an object of thike type described in sectidfile Objects If the file cannot be opened,
IOError israised. When opening afile, it's preferable to apen() instead of invoking théle construc-
tor directly.

The first two arguments are the same assfolio ‘s fopen() : filenameis the file name to be opened, and
modeis a string indicating how the file is to be opened.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

The most commonly-used valuesrmabdeare’r for reading,w’ for writing (truncating the file if it already

exists), anda’ for appending (which osomeUnix systems means thall writes append to the end of the file
regardless of the current seek position)middeis omitted, it defaults t&r' . The default is to use text mode,

which may converfin’ characters to a platform-specific representation on writing and back on reading. Thus,
when opening a binary file, you should appéid to themodevalue to open the file in binary mode, which will
improve portability. (Appendingp’ is useful even on systems that don't treat binary and text files differently,
where it serves as documentation.) See below for more possible valumeglef The optionabufsizeargument
specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negativgsizemeans to use the system default, which is usually

line buffered for tty devices and fully buffered for other files. If omitted, the system default is tised.

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems
that don't have this distinction, adding th® has no effect.

In addition to the standarfdpen() valuesmodemay be’U’ or’rU’ . Python is usually built with universal
newline support; supplying)’ opens the file as a text file, but lines may be terminated by any of the following:
the Unix end-of-line conventiohin’ , the Macintosh conventiolr’ , or the Windows conventiofr\n’

All of these external representations are seerirds by the Python program. If Python is built without
universal newline supportmodewith ‘U’ is the same as normal text mode. Note that file objects so opened
also have an attribute calleggwlines which has a value dflone (if no newlines have yet been seetw),
v\ , or a tuple containing all the newline types seen.

Python enforces that the mode, after stripgidy , begins with'r ,'w’ or’a’

Python provides many file handling modules includifiginput , 0s, os.path , tempfile , and
shutil . Changed in version 2.5: Restriction on first letter of mode string introduced.
ord (¢

Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’'a’) returns the integed7, ord(u\u2020’) returns8224 . This is the inverse ofhr() for 8-bit

strings and ofinichr() for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and al'ypeError will be raised.

pow(X, y, [z])
Returnx to the powery; if z is present, returix to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The two-argument formpow(x, y) is equivalent to using the power operatet*y .

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result is
delivered. For examplel0**2 returns100, but 10**-2 returns0.01 . (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted. If

is presentx andy must be of integer types, ariydnust be non-negative. (This restriction was added in Python

2.2. In Python 2.1 and before, floating 3-argumeotv() returned platform-dependent results depending on
floating-point rounding accidents.)

print ([object, ...], [sep=""], [end="\n"], [file=sys.stdout])
Print objec(s) to the streanfile, separated bgepand followed byend sep endandfile, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings kkg€) does and written to the stream, separated by

2 Specifying a buffer size currently has no effect on systems that don'tdeivbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

13

The Python Library Reference, Release 2.6.3

sepand followed byend Both sepandend must be strings; they can also Bene, which means to use the
default values. If nmbjectis given,print() will just write end

The file argument must be an object with varite(string) method; if it is not present oNone,
sys.stdout will be used.

Note: This function is not normally available as a builtin since the namiet is recognized as therint
statement. To disable the statement and useitiné) function, use this future statement at the top of your
module:

from _ future import print_function

New in version 2.6.

property ([fget, [fset, [fdel, [doc]]]])
Return a property attribute farew-style class (classes that derive frombject).

fgetis a function for getting an attribute value, likewifsetis a function for setting, anttel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init (self):
self . _x = None

def getx (self):
return self . _Xx
def setx (self , value):
self . _x = value
def delx (self):
del self . _x
X = property (getx, setx, delx, “1"m the

’ 1

X' property. ")
If given, docwill be the docstring of the property attribute. Otherwise, the property will dgpys docstring
(if it exists). This makes it possible to create read-only properties easily psipgrty() as adecorator

class Parrot (object):
def __init (self):
self . _voltage = 100000

@property

def voltage (self):
""" Get the current voltage.""
return self . _voltage

turns thevoltage() method into a “getter” for a read-only attribute with the same name.

A property object hagetter , setter , anddeleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C(object):
def __init__ (self):
self . _x = None

@property
def x(self):

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

"I'm the 'X’ property.
return self . _x

@x setter
def x(self , value):
self . _x = value

@x deleter
def x(self):
del self . _x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original propertyX in this case.)

The returned property also has the attribdtgst , fset , andfdel corresponding to the constructor argu-
ments. New in version 2.2.Changed in version 2.5: fgeés docstring if nodocgiven.Changed in version 2.6:
Thegetter , setter , anddeleter attributes were added.

range ([start], stop, [step)
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If gtepargument is omitted, it defaults ta If the start argument is
omitted, it defaults td. The full form returns a list of plain integefstart, start + step, start
+ 2 * step, ..] . If stepis positive, the last element is the largs&trt + i * step less tharstop
if stepis negative, the last element is the smalksit + i * step greater tharstop stepmust not be
zero (or elsé/alueError s raised). Example:

>>> range (10)

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
>>> range (1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

I

>>> range (1, 0)

I

raw_input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError israised. Example:

>>> g = raw_input (' -->)
--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline module was loaded, themmw_input() will use it to provide elaborate line editing and
history features.

15

The Python Library Reference, Release 2.6.3

reduce (function, iterable, [initializer)

Apply functionof two arguments cumulatively to the itemsitérable from left to right, so as to reduce the
iterable to a single value. For exampteduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calcu-
lates((((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argumgris the
update value from thigerable If the optionalinitializer is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is emjtiidlizer is not given andterablecontains
only one item, the first item is returned.

reload (modulg

Reload a previously importedodule The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
themoduleargument).

Whenreload(module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. Trtie function of extension modules is not
called a second time.

«As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
zero.

*The names in the module namespace are updated to point to any new or changed objects.

«Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesyBimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atatement it can test

for the table’s presence and skip its initialization if desired:

try :
cache

except NameError :
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor
__main__ and__builtin__ . In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usfrgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr{odule*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)

Return a string containing a printable representation of an object. This is the same value yielded by conversions

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val() , otherwise the representation is a string enclosed in angle brackets that contains the name of
the type of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by definingepr__ () method.

reversed (seq
Return a reverséerator. seqmust be an object which has areversed_ () method or supports the
sequence protocol (thelen__ () method and the getitem__ () method with integer arguments starting
at0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custoaversed__ ()
method.

round (x, [n])
Return the floating point valuerounded ton digits after the decimal point. Hiis omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for exampled(0.5) is1.0 and
round(-0.5) is-1.0).

set ([iterable])
Return a new set, optionally with elements are taken fiterable The set type is described $et Types — set,
frozenset

For other containers see the builtdict |, list |, andtuple classes, and theollections module. New
in version 2.4.

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(x, 'foobar’, 123) is equivalent tox.foobar = 123

slice ([start], stop, [step)
Return aslice object representing the set of indices specifiedange(start, stop, step) . Thestart
and steparguments default tblone. Slice objects have read-only data attribuséert , stop andstep
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampglstart:stop:step] or a[start:stop, i . See
itertools.islice() for an alternate version that returns an iterator.

sorted (iterable, [cmp, [key, [reverse]])
Return a new sorted list from the itemsiiarable

The optional argumentamp key, andreversehave the same meaning as those forlistesort() method
(described in sectiollutable Sequence Types

cmpspecifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argumeptnp=lambda x,y: cmp(x.lower(), y.lower()) . The default

value isNone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, thé&eyandreverseconversion processes are much faster than specifying an equisalpfitnction.
This is becausempis called multiple times for each list element whideyandreversetouch each element only
once. To convert an old-stytempfunction to akeyfunction, see th€mpToKey recipe in the ASPN cookbaok
New in version 2.4.

17

http://code.activestate.com/recipes/576653/

The Python Library Reference, Release 2.6.3

staticmethod (function

Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C
@staticmethod
def f(argl, arg2, D &

The @staticmethod form is a functiondecorator— see the description of function definitionskanction
definitions(in The Python Language Referehfer details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierdiehgtan-
dard type hierarchyin The Python Language Refereljclew in version 2.2.Changed in version 2.4: Function
decorator syntax added.

str ([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string itself.
The difference withrepr(object) is thatstr(object) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string. If no argument is given, returns the empty string,

For more information on strings s&equence Types — str, unicode, list, tuple, buffer, xravtgeh describes
sequence functionality (strings are sequences), and also the string-specific methods describ&iringthe
Methodssection. To output formatted strings use template strings ofdbperator described in th8tring
Formatting Operationsection. In addition see tt&ring Servicesection. See alsonicode()

sum(iterable, [start])

Sumsstart and the items of aiterable from left to right and returns the totaktart defaults to0. Theiter-

ablées items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by callirigoin(sequence) . Note thatsum(range(n), m) is equivalent

to reduce(operator.add, range(n), m) To add floating point values with extended precision, see
math.fsum() . New in version 2.3.

super (type, [object-or-typé)]

Return a proxy object that delegates method calls to a parent or sibling clapg ofhis is useful for accessing
inherited methods that have been overridden in a class. The search order is same as thaeiset(by
except that theypeitself is skipped.

The __mro__ attribute of thetypelists the method resolution search order used by betfattr() and
super() . The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance(obj, type) must be true. If the second argument is a tyipsubclass(type2,
type) must be true (this is useful for classmethods).

Note: super() only works fornew-style clases.

There are two typical use cases smper In a class hierarchy with single inheritansepercan be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use fuperin other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method (self , arg):
super (C, self). method(arg)

Note thatsuper() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().__getitem__ (name) . It does so by implementing its own getattribute () method

for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators sustps()[name]

Also note thatuper() is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. New in version 2.2.

tuple ([iterable])
Return a tuple whose items are the same and in the same oiitenabte's items.iterablemay be a sequence, a
container that supports iteration, or an iterator objedtetibleis already a tuple, it is returned unchanged. For
instancetuple(’abc’) returns(’a’, ’b’, 'c) andtuple([1, 2, 3]) returns(1, 2, 3) . If
no argument is given, returns a new empty tuple,

tuple is an immutable sequence type, as documentegkeinuence Types — str, unicode, list, tuple, buffer,
xrange For other containers see the builtdict | list , andset classes, and theollections module.

type (objecd
Return the type of ambject The return value is a type object. Thenstance() built-in function is
recommended for testing the type of an object.

With three argumentsype() functions as a constructor as detailed below.

type (name, bases, dict
Return a new type object. This is essentially a dynamic form ofcthes statement. Th@amestring is
the class name and becomes themame___ attribute; thebasestuple itemizes the base classes and becomes
the __bases _ attribute; and thalict dictionary is the namespace containing definitions for class body and
becomes the dict__ attribute. For example, the following two statements create iderifipal objects:

>>> class X(object):
a=1

>>> X = type (' X, (object), dict (a=1))

New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgmrexamplepunichr(97)
returns the string’'a’ . This is the inverse afrd() for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FBRIEEETor
is raised otherwise. For ASCII and 8-bit strings seg) . New in version 2.0.

unicode ([object, [encoding, [errors]]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowngokupError s raised. Error handling is done accordingetors;

19

The Python Library Reference, Release 2.6.3

this specifies the treatment of characters which are invalid in the input encodiegons$ is 'strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteFFFD to be used to replace
input characters which cannot be decoded. See alsmotliecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselghfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a unicode__ () method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiitt’ mode.

For more information on Unicode strings seequence Types — str, unicode, list, tuple, buffer, xraviieh

describes sequence functionality (Unicode strings are sequences), and also the string-specific methods described
in the String Methodssection. To output formatted strings use template strings ovdbgerator described in

the String Formatting Operationsection. In addition see tH&iring Servicesection. See alssir() . New in

version 2.0.Changed in version 2.2: Support founicode_ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet_ attribute), returns a dictionary
corresponding to the object’'s symbol table.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined?

xrange ([start], stop, [step)
This function is very similar toange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth.

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs (“short” Python inte-
gers), and also requires that the number of elements fit in a native C long. If a larger range is needed,
an alternate version can be crafted using iteetools module: islice(count(start, step),
(stop-start+step-1)//step)

zip ([iterable, ...])
This function returns a list of tuples, where thth tuple contains theth element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same lenigify, is similar tomap() with an initial
argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups usiig(*[iter(s)]*n)

zip() in conjunction with theé operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>>y = [4, 5, 6]
>>> zipped = zip (X, V)
>>> zipped

(1, 4, 2, 5), 3, 6)]

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.3

>>> X2, y2 = zip (*zipped)
>>> x == list (x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formerly() required at least one argument anpl) raised
aTypeError instead of returning an empty list.

__import__ (name, [globals, [locals, [fromlist, [level]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by thenport statement. It can be replaced (by importing boidtins module and
assigning tduiltins.__import__) in order to change semantics of thgport statement, but nowadays
it is usually simpler to use import hooks (seeP 302. Direct use of _import_ () is rare, except in cases
where you want to import a module whose name is only known at runtime.

The function imports the moduleame potentially using the giveglobals andlocals to determine how to
interpret the name in a package context. Tioenlist gives the names of objects or submodules that should be
imported from the module given hyame The standard implementation does not uséoitalsargument at all,
and uses itglobalsonly to determine the package context of import statement.

levelspecifies whether to use absolute or relative imports. The defadlt vghich indicates both absolute and
relative imports will be attempted. means only perform absolute imports. Positive value$feglindicate the
number of parent directories to search relative to the directory of the module callimgort ()

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till
the first dot) is returnedyot the module named bygame However, when a non-empfyomlist argument is
given, the module named Imameis returned.

For example, the statemeniport spam results in bytecode resembling the following code:
spam = _ import (' spam’, globals (), locals (), [, -1)

The statemerimport spam.ham results in this call:

spam = __import (' spam.ham’, globals (), locals (), I, -1)

Note how__import_ () returns the toplevel module here because this is the object that is bound to a name
by theimport statement.

On the other hand, the statemémim spam.ham import eggs, sausage as saus results in
_temp = _ import__ ('’ spam.ham’, globals (), locals (), ['eggs’, ’'sausage’'], -1)
eggs = _temp. eggs

saus = _temp. sausage

Here, thespam.ham module is returned from import () . From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can catlport__ ()
and then look it up irsys.modules

>>> jmport sys

>>> name = ' foo.bar.baz
>>> _ import__ (name)
<module ’'foo’ from ...>
>>> baz = sys.modules[name]

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.3

>>> baz
<module ’foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for parameters
was added.

22 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without concerns
about missing something important.

apply (function, args, [keyword3]
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a sequence. Timectionis called withargsas the argument list; the number of
arguments is the length of the tuple. If the optiok@ywordsargument is present, it must be a dictionary whose
keys are strings. It specifies keyword arguments to be added to the end of the argument list.a@alliflg
is different from just callindunction(args) , since in that case there is always exactly one argument. The
use ofapply() is equivalent tdunction(*args, **keywords) . Deprecated since version 2.3: Use
the extended call syntax wittargs and**keywords instead.

buffer (object, [offset, [size]]
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbhgctargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, rajgeError

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value oiintern() around to benefit from it.

23

The Python Library Reference, Release 2.6.3

24 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of theool type. New in version 2.3.

True
The true value of théool type. New in version 2.3.

None
The sole value ofypes.NoneType . None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Changed in version 2.4: Assignmotetare illegal and
raise aSyntaxError

Notimplemented
Special value which can be returned by the “rich comparison” special methodg (() ,_ It () ,and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with@noption. Assignments to debug are illegal and
raise aSyntaxError . See also thassert statement.

4.1 Constants added by the site module

Thesite module (which is imported automatically during startup, except if-Biecommand-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit

exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code, and when .

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.6.3

26 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN OBJECTS

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choiceSuBemaryin The

Python Language Referender the complete picture on operator priorities.

27

The Python Library Reference, Release 2.6.3

28 Chapter 5. Built-in Objects

CHAPTER

SIX

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not
possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists. The
principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some operations
are supported by several object types; in particular, practically all objects can be compared, tested for truth value,
and converted to a string (with thepr() function or the slightly differenstr() function). The latter function is

implicitly used when an object is written by tipeint() function.

6.1 Truth Value Testing

Any object can be tested for truth value, for use iriffanor while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

 False

« zero of any numeric type, for exampl&,0L, 0.0 , Oj .
« any empty sequence, for example() ,[] .

< any empty mapping, for examplg, .

« instances of user-defined classes, if the class defines@nzero_ () or__len_ () method, when that
method returns the integer zerolayol valueFalse . *

All other values are considered true — so objects of many types are always true. Operations and built-in functions that
have a Boolean result always retrmor False for false andl or True for true, unless otherwise stated. (Important
exception: the Boolean operatioos andand always return one of their operands.)

6.2 Boolean Operations — and, or , not

These are the Boolean operations, ordered by ascending priority:

1 Additional information on these special methods may be found in the Python Reference MBasiabUstomizatio(in The Python Language
Referency.

29

The Python Library Reference, Release 2.6.3

Operation Result Notes

X ory if xis false, thery, elsex ()

X and y if xis false, therx, elsey (2)

not X if xis false, therTrue , elseFalse 3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the firstfealeds .
2. This is a short-circuit operator, so it only evaluates the second argument if the firstione is

3. not has a lower priority than non-Boolean operatorsneb a == b isinterpreted asot (a == b) ,and
a == not b isasyntax error.

6.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for examptey <= z is equivalent tax < y

and y <= z, except thay is evaluated only once (but in both cagds not evaluated at all whexn < y is found

to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
is object identity
is not negated object identity
Notes:

1. !'= can also be writter>, but this is an obsolete usage kept for backwards compatibility only. New code should
always usé= .

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently, ¥he> and>= operators will raise
aTypeError exception when any operand is a complex number. Instances of a class normally compare as non-equal
unless the class defines thecmp__ () method. Refer t®asic customizatiofin The Python Language Referejice

for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don't support proper comparison are ordered by their address. Two more operations with the same syntactic
priority, in andnot in , are supported only by sequence types (below).

6.4 Numeric Types — int , float ,long , complex

There are four distinct numeric typeplain integers long integers floating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justictdigerd are implemented using
long in C, which gives them at least 32 bits of precisisgg.maxint is always set to the maximum plain integer
value for the current platform, the minimum valuesys.maxint - 1). Long integers have unlimited precision.

30 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

Floating point numbers are implemented usitogible in C. All bets on their precision are off unless you happen to
know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementedasiidg in C. To extract these

parts from a complex numberusez.real andz.imag . Numbers are created by numeric literals or as the result

of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain
integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long
integer. Integer literals with ath’ or’l' suffix yield long integers’((’ is preferred becausH looks too much

like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Appending

7 or’'J toanumeric literal yields a complex number with a zero real part. A complex numeric literal is the sum of
areal and an imaginary part. Python fully supports mixed arithmetic: when a binary arithmetic operator has operands
of different numeric types, the operand with the “narrower” type is widened to that of the other, where plain integer is
narrower than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule.The constructorgit() , long() ,float() , andcomplex() can be used to
produce numbers of a specific type.

All builtin numeric types support the following operations. Sd& power operatofin The Python Language Refer-
enceg and later sections for the operators’ priorities.

Operation Result Notes

X +y sum ofx andy

X -y difference ofx andy

X *y product ofx andy

xly quotient ofx andy (2)

x Iy (floored) quotient ok andy 4)(5)

X %y remainder ok / y 4)

-X X hegated

+X x unchanged

abs(x) absolute value or magnitude »f 3)

int(x) x converted to integer (2)

long(x) x converted to long integer (2)

float(x) x converted to floating point (6)

complex(re,im) a complex number with real pan¢, imaginary parim. im defaults to zero.

c.conjugate() conjugate of the complex number(ldentity on real numbers)

divmod(x, Y) the pair(x // 'y, x % vy) (3)(4)

pow(x, Y) x to the powery 3)(7)

X **y X to the powery @)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

2. Conversion from floats usingnt() or long() truncates toward zero like the related function,
math.trunc() . Use the functiormath.floor() to round downward andhath.ceil() to round up-
ward.

3. SeeBuilt-in Functionsfor a full description.

4. Complex floor division operator, modulo operator, atidnod() . Deprecated since version 2.3: Instead
convert to float usingibs() if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

2 As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

6.4. Numeric Types — int ,float ,long , complex 31

The Python Library Reference, Release 2.6.3

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python definepow(0, 0) and0 ** 0 tobel, asis common for programming languages.

All numbers.Real types (nt ,long , andfloat) also include the following operations:

Operation Result Notes
math.trunc(x) x truncated to Integral

round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor(x) the greatest integral float <<

math.ceil(x) the least integral float >x

6.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operationhas the same priority as the other unary numeric operatioasd-).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
X |y bitwise or of x andy
XNy bitwise exclusive oof x andy
X &Yy bitwiseand of x andy
X << n x shifted left byn bits (2
X >>n x shifted right byn bits (1)(3)
~X the bits ofx inverted

Notes:

1. Negative shift counts are illegal and causéaueError to be raised.

2. A left shift by n bits is equivalent to multiplication bpow(2, n) . A long integer is returned if the result
exceeds the range of plain integers.

3. Aright shift by n bits is equivalent to division bgow(2, n)

6.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio 0
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a/alueError ~ on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python's floats are stored internally as
binary numbers, converting a float to or frondacimalstring usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leadigand a trailingp and exponent. New in version 2.6.

32 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

fromhex (9)
Class method to return the float represented by a hexadecimalstiiihg strings may have leading and trailing
whitespace. New in version 2.6.

Note thatfloat.hex() is an instance method, whifat.fromhex() is a class method.
A hexadecimal string takes the form:
[sign] [0x] integer [." fraction] ['p’ exponent]

where the optionasign may by either+ or -, integer andfraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2

of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the oilpiihef() is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings producethafo@isat
character or JavaBouble.toHexString are accepted bfoat.fromhex()

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal stfing.a7p10 represents the floating-point numi@&r
+ 10./16 + 7./16**2) * 2.0**10 ,0r3740.0 :

>>> float . fromhex(' 0x3.a7pl0)
3740.0

Applying the reverse conversion 8740.0 gives a different hexadecimal string representing the same number:

>>> float . hex(3740.0)
'0x1.d380000000000p+11"

6.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

_iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container

supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#toittie slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fivemattie
protocot

_iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used Viéth the

andin statements. This method corresponds totthéter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisettipéteration exception.
This method corresponds to thg iternext slot of the type structure for Python objects in the Python/C
API.

6.5. Iterator Types 33

The Python Library Reference, Release 2.6.3

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratorest() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’sgeneratos provide a convenient way to implement the iterator protocol. If a container objedes ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the _iter__ () andnext() methods.

6.6 Sequence Types — str , unicode ,list ,tuple , buffer , xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the builtdict andset classes, and theollections module. String literals are
written in single or double quotexyzzy’ |, "frobozz" . SeeString literals(in The Python Language Referehce

for more about string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding
‘U’ character:u’abc’ , u"def* . In addition to the functionality described here, there are also string-specific
methods described in thetring Methodssection. Lists are constructed with square brackets, separating items with
commasija, b, ¢] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesasuzh @s or () . A single

item tuple must have a trailing comma, suci{@&3

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don't support slicing, concatenation or repetition, and usingot in , min() or
max() onthem is inefficient.

Most sequence types support the following operations. imhandnot in operations have the same priorities as
the comparison operations. Thend* operations have the same priority as the corresponding numeric operations.
Additional methods are provided fdfutable Sequence Types

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s True if an item ofsis equal tox, elseFalse Q)

X not in s False if anitem ofsis equal tox, elseTrue | (1)

s +t the concatenation afandt (6)
s*n n*s n shallow copies o§ concatenated (2)
s[i] i‘th item of s, origin 0 3
s[i:j] slice ofsfromi toj 3)4)
s[izj:K] slice ofsfromi to j with stepk 3)(5)
len(s) length ofs

min(s) smallest item of

max(s) largest item of

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full detailS@eparisongin The Python Language
Referencgin the language reference.) Notes:

3 They must have since the parser can't tell the type of the operands.

34 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

1. Whensis a string or Unicode string object tlie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyarmday be a string of any length.

2. Values ofn less tharD are treated a8 (which yields an empty sequence of the same typg).aNote also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> |ists = [* 3
>>> |ists

(b 0 0

>>> lists] 0] . append(3)
>>> |ists

(3], [3], [3]]

What has happened is thflf is a one-element list containing an empty list, so all three elemenrf§ of
* 3 are (pointers to) this single empty list. Modifying any of the elementgstsf modifies this single list.
You can create a list of different lists this way:

>>> lists =[] for i in range (3)]
>>> lists] 0] . append(3)

>>> lists] 1] . append(5)

>>> lists] 2] . append(7)

>>> ists

(131, [5], [7]]

3. If i orj is negative, the index is relative to the end of the strieg(s) + i orlen(s) + j is substituted.
But note thatO is still O.

4. The slice ofsfromi to j is defined as the sequence of items with inllesuch that <= k < j . Ifiorjis
greater thaen(s) , uselen(s) . If i is omitted orNone, useO. If j is omitted orNone, uselen(s) . Ifi
is greater than or equal jpthe slice is empty.

5. The slice ofs from i to j with stepk is defined as the sequence of items with index i + n*k such that
0 <= n < (j-)k . In other words, the indices are i+k , i+2*k ,i+3*k and so on, stopping wheris
reached (but never includirj@y If i orj is greater thamen(s) , uselen(s) . If i orj are omitted oNone,
they become “end” values (which end depends on the sidq).oNote, k cannot be zero. Ik is None, it is
treated likel.

6. If sandt are both strings, some Python implementations such as CPython can usually perform an in-place
optimization for assignments of the forsws+t or s+=t . When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For performance
sensitive code, it is preferable to use #igjoin() method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4: Formerly, string concatenation
never occurred in-place.

6.6.1 String Methods
Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python’s strings support the sequence type methods describediacthence Types — str, unicode, list,
tuple, buffer, xrangsection. To output formatted strings use template strings d¥othpgerator described in th&tring
Formatting Operationsection. Also, see thee module for string functions based on regular expressions.
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

6.6. Sequence Types — str , unicode , list ,tuple , buffer , xrange 35

The Python Library Reference, Release 2.6.3

center (width, [fillchar])

Return centered in a string of lengtvidth. Padding is done using the specifiéitchar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sub, [start, [end])

Return the number of non-overlapping occurrences of substtibip the rangeg$tart, end. Optional arguments
startandendare interpreted as in slice notation.

decode ([encoding, [errors]])

Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defdstti’ , meaning that encoding
errors raiséJnicodeError . Other possible values alignore’ |, 'replace’ and any other name regis-
tered viacodecs.register_error() , see sectioltodec Base Classe®New in version 2.2.Changed in

version 2.3: Support for other error handling schemes added.

encode ([encoding, [errors]])

Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The defaultefamrs is

'strict’ , meaning that encoding errors raiséJaicodeError . Other possible values atignore’
replace’ , 'xmlcharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register_error() , see sectioodec Base ClasseBor a list of possible encodings, see section
Standard EncodingsNew in version 2.0.Changed in version 2.3: Supportxaricharrefreplace’ and
‘backslashreplace’ and other error handling schemes added.

endswith (suffix, [start, [end])

ReturnTrue if the string ends with the specifiexiffix otherwise returrralse . suffixcan also be a tuple of
suffixes to look for. With optionastart, test beginning at that position. With optiorezid stop comparing at
that position. Changed in version 2.5: Accept tuplestfix

expandtabs ([tabsize)

find

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsizds not given, a tab size & characters is assumed. This doesn’t understand other non-printing characters

or escape sequences.

('sub, [start, [end])
Return the lowest index in the string where substsnbis found, such thatubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

format (format_string, *args, **kwarg}

Perform a string formatting operation. Tfemat_stringargument can contain literal text or replacement fields
delimited by brace§} . Each replacement field contains either the numeric index of a positional argument, or
the name of a keyword argument. Returns a copfoohat_stringwhere each replacement field is replaced
with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0} ".format(1+2)
'The sum of 1 + 2 is 3’

SeeFormat String Syntafor a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferreédfotimatting
described irString Formatting Operationi new code. New in version 2.6.

index (sub, [start, [end])

Like find() , but raisevalueError when the substring is not found.

isalnum ()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

36

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

For 8-bit strings, this method is locale-dependent.

Isalphgetlg)rn true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle 0
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqeencéhe separator between elements is
the string providing this method.

ljust (width, [fillchar])
Return the string left justified in a string of lengthdth. Padding is done using the specifidtthar (default is
a space). The original string is returnedhiidth is less tharen(s) . Changed in version 2.4: Support for the
fillchar argument.
lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removed chhesargument is a string specifying the set of
characters to be removed. If omittedMdone, thecharsargument defaults to removing whitespace. thars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " Istrip()
'spacious '
>>> ' www.example.com ' . Istrip(' cmowz.’)

'example.com’

Changed in version 2.2.2: Support for ttfearsargument.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 37

The Python Library Reference, Release 2.6.3

partition (sep
Split the string at the first occurrence #p and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings. New in version 2.5.

replace (old, new, [count]
Return a copy of the string with all occurrences of substaltgeplaced byhew If the optional argumertount
is given, only the firstountoccurrences are replaced.

rfind (sub, [start, [end])
Return the highest index in the string where substsinigis found, such thagubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Rettitnon failure.

rindex (' sub, [start, [end])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width, [fillchar])
Return the string right justified in a string of lengthdth. Padding is done using the specifidtthar (default
is a space). The original string is returneavitlth is less tharlen(s) . Changed in version 2.4: Support for
thefillchar argument.

rpartition (sep
Split the string at the last occurrences®p and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep, [maxsplit])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostaxsplit
splits are done, theghtmostones. Ifsepis not specified oNone, any whitespace string is a separator. Except
for splitting from the right,rsplit() behaves likesplit() which is described in detail below. New in
version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. dia@sargument is a string specifying the set of
characters to be removed. If omittedMone, thecharsargument defaults to removing whitespace. Thars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious " rstrip()

’ spacious’

>>> ' mississippi “orstrip(Tipz)
'mississ’

Changed in version 2.2.2: Support for ttiearsargument.

split ([sep, [maxsplit])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostmaxsplit
splits are done (thus, the list will have at mostixsplit+1 elements). limaxsplitis not specified, then there
is no limit on the number of splits (all possible splits are made).

If sepis given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example,1,2".split(’,") returns['l’, ", '2]). Thesepargument may consist of multiple char-
acters (for examplél<>2<>3".split('<>") returns['l’, '2’, '3). Splitting an empty string

with a specified separator returfip .

If sepis not specified or idNone, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with aNone separator returng .

38 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

For example; 1 2 3 .split() returng['l’, '2', '3 ,and’ 1 2 3 '.split(None, 1)
returns['l’, '2 3]
splitlines ([keepends)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix, [start, [end]])
ReturnTrue if string starts with theprefix otherwise returriralse . prefix can also be a tuple of prefixes to
look for. With optionalstart, test string beginning at that position. With optioeald stop comparing string at
that position. Changed in version 2.5: Accept tuplepragix

strip ([chars])
Return a copy of the string with the leading and trailing characters removedchBrsargument is a string
specifying the set of characters to be removed. If omitteName, the charsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious ", strip()

'spacious’

>>> ' www.example.com . strip(' cmowz.’)
‘'example’

Changed in version 2.2.2: Support for ttiearsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

titte ()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they 're bill ’s friends from the UK " title()
"They’Re BIill'S Friends From The UK"

A workaround for apostrophes can be constructed using regular expressions:

>>> jmport re
>>> def titlecase (S):
return re.sub(r'[A-Za-z]+([A-Za-z]+)?",
lambda mo: mo.group(0)[O].upper() +
mo.group(0)[1:].lower(),
s)

>>> titlecase(“they 're bill s friends. ")
"They're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

translate (table, [deletecharg]
Return a copy of the string where all characters occurring in the optional arguialetecharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 39

The Python Library Reference, Release 2.6.3

You can use thenaketrans() helper function in thestring module to create a translation table. For string
objects, set theableargument tdNone for translations that only delete characters:

>>> ' read this short text " . translate(None, ' aeiou ')
rd ths shrt txt’

New in version 2.6: Support forldone tableargument. For Unicode objects, ttranslate() method does

not accept the optionaeletecharsargument. Instead, it returns a copy of #where all characters have been
mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals,
Unicode strings oNone. Unmapped characters are left untouched. Characters mappemh&are deleted.

Note, a more flexible approach is to create a custom character mapping codec usingettee module (see
encodings.cp1251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill - (‘width)
Return the numeric string left filled with zeros in a string of lengfidth. A sign prefix is handled correctly.
The original string is returned Widthis less tharlen(s) . New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric ()
ReturnTrue if there are only numeric characters inf&se otherwise. Numeric characters include digit char-
acters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION
ONE FIFTH.

isdecimal ()
ReturnTrue if there are only decimal characters inlse otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

6.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
stringformattingor interpolationoperator. Giveriormat % values (whereformatis a string or Unicode object),
%conversion specifications fiormatare replaced with zero or more elementsafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentaluesmay be a single non-tuple object. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The’%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for exsompémame)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as & (asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

40 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

5. Precision (optional), given asa (dot) followed by the precision. If specified s (an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in thenstritigclude a paren-
thesised mapping key into that dictionary inserted immediately afteBdhecharacter. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print has % #)03d quote types. "%\
{’ language ': "Python ", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

The value conversion will use the “alternate form” (where defined below).

o The conversion will be zero padded for numeric values.

The converted value is left adjusted (overrides'@he conversion if both are given).
(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
+ A sign charactert’ or’-") will precede the conversion (overrides a “space” flag).

A length modifier f, | , orL) may be present, but is ignored as it is not necessary for Python — $iblél.gs identical
to %d

The conversion types are:

Conver- | Meaning Notes

sion

d’ Signed integer decimal.

T Signed integer decimal.

o’ Signed octal value. (2)

o’ Obsolete type — it is identical td’ . (7

X' Signed hexadecimal (lowercase). (2)

X! Signed hexadecimal (uppercase). (2)

e’ Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). (3)

' Floating point decimal format. 3)

' Floating point decimal format. 3)

g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or no4)
less than precision, decimal format otherwise.

'G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or nqy)
less than precision, decimal format otherwise.

'c’ Single character (accepts integer or single character string).

r String (converts any python object usirepr()). (5)

's’ String (converts any python object usisg()). (6)

"%’ No argument is converted, results irff& character in the result.

Notes:

1. The alternate form causes a leading zé®0 () to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leadily’ or’0X’ (depending on whether thg' or’'X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 41

The Python Library Reference, Release 2.6.3

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
5. The%r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
6. If the object or format provided is@anicode string, the resulting string will also henicode
The precision determines the maximal number of characters used.
7. SeePEP 237
Since Python strings have an explicit lengtbs conversions do not assume thi@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e50 are replaced Bygconversions?® All other errors raise exceptions. Additional string operations are defined
in standard modulestring andre .

6.6.3 XRange Type

Thexrange type is animmutable sequence which is commonly used for looping. The advantagemefithe type
is that anxrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

6.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
X is an arbitrary object):

5 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use
and without having to know the exact precision of floating point values on a particular machine.

42 Chapter 6. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6.3

Operation Result Notes

s[i] = x itemi of sis replaced by

sfizj]] =t slice ofsfromi toj is replaced by the contents of the
iterablet

del s[i:]] same as[i;j] = []

s[i:jk] =t the elements of]i:j:K] are replaced by those bf | (1)

del sJizj:K] removes the elements sffi:j:k] from the list

s.append(x) same as[len(s):len(s)] = [x] (2)

s.extend(x) same as[len(s):len(s)] = x 3)

s.count(x) return number of's for whichs[i] == x

s.index(x[, i[, jlI) return smallesk such thas[k] == andi <= k 4)
<]

s.insert(i, x) same as[iii] = [X] (5)

s.pop([i]) same ax = gJ[i]; del g[i]; return x (6)

s.remove(x) same aglel s[s.index(x)] 4)

s.reverse() reverses the items afin place ©)

s.sort([cmp[, key], sort the items o§in place (M(®d)(9)(10

reverse]]])

Notes:

1.
2.

. RaisesvalueError

. When a negative index is passed as the first parameter bostie()

. Thesort()

. Thesort()

. Starting with Python 2.3, thsort()

t must have the same length as the slice it is replacing.

The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

. X can be any iterable object.

whenx is not found ins. When a negative index is passed as the second or third parameter
totheindex() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previouslyex() didn’'t have arguments for specifying start
and stop positions.

method, the list length is added, as for
slice indices. Ifitis still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

. Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so

that by default the last item is removed and returned.

andreverse() methods modify the listin place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (listitems) which should return a negative, zero or
positive number depending on whether the first argument is considered smaller than, equal to, or larger than the
second argumentmp=lambda x,y: cmp(x.lower(), y.lower()) . The default value idlone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, th&eyandreverseconversion processes are much faster than specifying an equisalpfitnction.
This is becausempis called multiple times for each list element whitey andreversetouch each element
only once. Changed in version 2.3: Supportfme as an equivalent to omittingmpwas added.Changed in
version 2.4: Support fdreyandreversewas added.

method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for

6.6.

Sequence Types — str , unicode , list , tuple , buffer , xrange 43

The Python Library Reference, Release 2.6.3

example, sort by department, then by salary grade).

10. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty for the duration, andais&sror
if it can detect that the list has been mutated during a sort.

6.7 Set Types — set , frozenset

A setobject is an unordered collection of distitetshableobjects. Common uses include membership testing, remov-

ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtdh , list , andtuple classes, and theollections

module.) New in version 2.4. Like other collections, sets suppoirt set ,len(set) , andfor x in set

Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not
support indexing, slicing, or other sequence-like behavior.

There are currently two builtin set typesst andfrozenset . Theset type is mutable — the contents can be
changed using methods lilkeld() andremove() . Since it is mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another set.frfbhenset type is immutable antiashable— its

contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

The constructors for both classes work the same:

classset ([iterable])

classfrozenset ([iterable])
Return a new set or frozenset object whose elements are takeriténainle The elements of a set must be
hashable. To represent sets of sets, the inner sets miistdeeset objects. Ifiterableis not specified, a
new empty set is returned.

Instances ofet andfrozenset provide the following operations:

len(s)
Return the cardinality of set

X in's
Testx for membership irs.

X not in s
Testx for non-membership is.

isdisjoint (othern)
Return True if the set has no elements in common witter. Sets are disjoint if and only if their intersec-
tion is the empty set. New in version 2.6.

issubset (othen)
set <= other ()
Test whether every element in the set ither.

set < other ()
Test whether the set is a true subseotbfer, that is,set <= other and set != other

issuperset (othen
set >= other ()
Test whether every elementatheris in the set.

set > other ()
Test whether the set is a true superseattber, that is,set >= other and set != other

union (other, ..)

44 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

set | other | ... 0
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection (other, ..)

set & other & ... 0
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference (other, ..)

set - other - ... 0
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set ~ other ()
Return a new set with elements in either the seither but not both.

copy ()
Return a new set with a shallow copyof

Note, the non-operator versions ofinion() , intersection() , difference() , and
symmetric_difference() , issubset() , and issuperset() methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions liket('abc’) & ’'cbs’ in favor of the more readable

set('abc’).intersection(’'cbs’)

Bothset andfrozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances ofset are compared to instances dfozenset based on their members. For
example, set(’abc’) == frozenset('abc’) returns True and so doesset(’abc’) in
set([frozenset('abc’)])

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each ottedl,afdhe following returnFalse : a<b, a==b,
ora>b. Accordingly, sets do notimplement thecmp__() method.

Since sets only define partial ordering (subset relationships), the outputlttbert() method is unde-
fined for lists of sets.

Set elements, like dictionary keys, musttmeshable

Binary operations that mixet instances witlirozenset return the type of the first operand. For example:
frozenset('ab’) | set(’bc’) returns an instance éfozenset

The following table lists operations available fat that do not apply to immutable instancedmfzenset

update (other,..)
set |= other | ... 0
Update the set, adding elements frother. Changed in version 2.6: Accepts multiple input iterables.

intersection_update (other, ..)

set &= other & ... 0
Update the set, keeping only elements found in it atiter. Changed in version 2.6: Accepts multiple
input iterables.

difference_update (other, ..)

6.7. Set Types — set , frozenset 45

The Python Library Reference, Release 2.6.3

set -= other | ... 0
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input iter-
ables.

symmetric_difference_update (other)

set A= other ()
Update the set, keeping only elements found in either set, but not in both.

add (elem
Add elemenelemto the set.

remove (elen)
Remove elemerglemfrom the set. RaiseéseyError if elemis not contained in the set.

discard (elem
Remove elemerdglemfrom the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Réisg&rror if the set is empty.

clear ()

Remove all elements from the set.
Note, the non-operator versions of theupdate() |, intersection_update() ,
difference_update() , and symmetric_difference_update() methods will accept any

iterable as an argument.

Note, theelemargument to the contains__ () , remove() , anddiscard() methods may be a set. To
support searching for an equivalent frozenset,dleenset is temporarily mutated during the search and then
restored. During the search, tbeemset should not be read or mutated since it does not have a meaningful
value.

See Also:

Comparison to the built-in set type®ifferences between theets module and the built-in set types.

6.8 Mapping Types — dict

A mappingobject mapsashablevalues to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, ttietionary. (For other containers see the builtiist , set , andtuple classes, and
thecollections module.)

A dictionary’s keys ar@lmostarbitrary values. Values that are matshablethat is, values containing lists, dictionaries

or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal {sarthla)

then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated k&yof value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or {4098: ‘jack’, 4127: ’sjoerd’} , or by thedict
constructor.

classdict ([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argamggsia mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first

46 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary edtahed:

2, "two": 3}

edict(one=2, two=3)
«dict({'one’ 2, 'two: 3})
«dict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionaty

dlkey]
Return the item ofl with key key. Raises &KeyError if keyis not in the map. New in version 2.5:
If a subclass of dict defines a methodmissing_ () , if the key keyis not present, thel[key]

operation calls that method with the kkgyas argument. Thd[key] operation then returns or raises
whatever is returned or raised by themissing__ (key) call if the key is not present. No other
operations or methods invoke missing__ () . If __missing__ () is not definedKeyError is
raised. __missing__ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict

dlkey] = value
Setd[key] tovalue

del d[key]
Removed[key] fromd. Raises &eyError if keyis not in the map.

key in d
ReturnTrue if d has a keykey, elseFalse . New in version 2.2.
key not in d
Equivalent tonot key in d . New in version 2.2.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcliteikeys()
clear ()
Remove all items from the dictionary.
copy ()

Return a shallow copy of the dictionary.

fromkeys (seq, [value]
Create a new dictionary with keys frosegand values set tealue

fromkeys() is a class method that returns a new dictionarglue defaults toNone. New in version
2.3.

get (key, [default)
Return the value fokeyif keyis in the dictionary, elsdefault If defaultis not given, it defaults tdlone,
so that this method never raisegayError

6.8. Mapping Types — dict a7

The Python Library Reference, Release 2.6.3

has_key (key)
Test for the presence &gyin the dictionaryhas_key() is deprecated in favor dfey in d .

items ()
Return a copy of the dictionary’s list gkey, value) pairs.

Note: Keys and values are listed in an arbitrary order which is non-random, varies across Python imple-
mentations, and depends on the dictionary’s history of insertions and deletiatesnd{) , keys() ,
values() , iteritems() , iterkeys() , anditervalues() are called with no intervening mod-
ifications to the dictionary, the lists will directly correspond. This allows the creatiofvaitie,

key) pairs usingzip() : pairs = zip(d.values(), d.keys()) . The same relationship
holds for theiterkeys() and itervalues() methods: pairs = zip(d.itervalues(),

d.iterkeys()) provides the same value fpairs . Another way to create the same lispigirs =

[(v, k) for (k, v) in d.iteritems()]

iteritems ()
Return an iterator over the dictionaryleey, value) pairs. See the note fafict.items()

Usingiteritems() while adding or deleting entries in the dictionary may rais&uatimeError or
fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the notdifdritems()

Usingiterkeys() while adding or deleting entries in the dictionary may raiseuatimeError or
fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the noteiébitems()

Usingitervalues() while adding or deleting entries in the dictionary may raiseuatimeError
or fail to iterate over all entries. New in version 2.2,
keys ()

Return a copy of the dictionary’s list of keys. See the noteifor.items()

pop (key, [default)
If keyis in the dictionary, remove it and return its value, else retlefault If defaultis not given andey
is not in the dictionary, &eyError is raised. New in version 2.3.

popitem ()
Remove and return an arbitrafigey, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, callingopitem() raises &eyError

setdefault (key, [default)
If keyis in the dictionary, return its value. If not, inséetywith a value ofdefaultand returndefault
defaultdefaults toNone.

update ([other])
Update the dictionary with the key/value pairs framher, overwriting existing keys. ReturiNone.

update() accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then is updated with those
key/value pairsd.update(red=1, blue=2) . Changed in version 2.4: Allowed the argument to be

an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the notelfcritems()

48

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

6.9 File Objects

File objects are implemented using @slio package and can be created with the builbjren() function. File
objects are also returned by some other built-in functions and methods, sustpapen() andos.fdopen()

and themakefile() method of socket objects. Temporary files can be created usirigitiigile ~ module, and
high-level file operations such as copying, moving, and deleting files and directories can be achievedshittilthe
module.

When a file operation fails for an 1/0O-related reason, the excepfi@mror is raised. This includes situations where
the operation is not defined for some reason, $§igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a/alueError after the file has been closed. Callicigse() = more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you usewtttle statement. For
example, the following code will automatically cloevhen thewith block is exited:

from _ future import with_statement # This isn't required in Python 2.6
with open (" hello.txt ") as f
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open (" hello.txt ")

try :
for line in f:
print line
finally
f . close()

Note: Not all “file-like” types in Python support use as a context manager fowttie statement. If your code

is intended to work with any file-like object, you can use the functiontextlib.closing() instead of
using the object directly.

flush ()
Flush the internal buffer, liketdio ‘s fflush() . This may be a no-op on some file-like objects.

fileno ()

Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module oros.read() and friends.

Note: File-like objects which do not have a real file descriptor shadtprovide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse .

Note: If a file-like object is not associated with a real file, this method shoolde implemented.

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used as an
iterator, typically in afor loop (for examplefor line in f: print line), thenext() method is
called repeatedly. This method returns the next input line, or r&sgsteration when EOF is hit when

6.9. File Objects 49

The Python Library Reference, Release 2.6.3

the file is open for reading (behavior is undefined when the file is open for writing). In order to rfaakelaop
the most efficient way of looping over the lines of a file (a very common operationjethi€) method uses
a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combit{ing with other file
methods (likeeadline()) does not work right. However, usirsgek() to reposition the file to an absolute
position will flush the read-ahead buffer. New in version 2.3.

read ([size])
Read at mossizebytes from the file (less if the read hits EOF before obtaisizgbytes). If thesizeargument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C furftéad() = more than
once in an effort to acquire as closediaebytes as possible. Also note that when in non-blocking mode, less
data than was requested may be returned, evensfaeparameter was given.

Note: This function is simply a wrapper for the underlyifrgad() C function, and will behave the same in
corner cases, such as whether the EOF value is cached.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete linej. If the sizeargument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is reduaiped
when EOF is encountered immediately.

Note: Unlike stdio ‘s fgets() , the returned string contains null characté\@ () if they occurred in the
input.

readlines ([sizehint])
Read until EOF usingeadline() and return a list containing the lines thus read. If the opticimhint
argument is present, instead of reading up to EOF, whole lines totalling approximsiateyntoytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()

This method returns the same thingites(f) . New in version 2.1.Deprecated since version 2.3: fdse
line in file instead.

seek (offset, [whence)]
Set the file’s current position, liketdio ‘s fseek() . Thewhenceargument is optional and defaults to
0S.SEEK_SET or 0 (absolute file positioning); other values ave.SEEK_CUR or 1 (seek relative to the
current position) ands.SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, 0s.SEEK_CUR) advances the position by two an@lseek(-3,
0s.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mdde or’a+’), anyseek() operations will be undone at
the next write. If the file is only opened for writing in append mode (m@de), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled’@wodg If the file

is opened in text mode (withotlt’), only offsets returned biell() are legal. Use of other offsets causes
undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

tell ()
Return the file’s current position, likedio ‘s ftell()

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

50 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

Note: On Windows tell() can return illegal values (after dgets()) when reading files with Unix-style
line-endings. Use binary model{’) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optionalzeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file's current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Unix variants.

write ('str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to nmatatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redildt g=adline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributejdse() = method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may alSohe, in which case the file
uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/O mode for the file. If the file was created using tipeen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form..> . This is a read-only attribute and may not be present on all file-like
objects.

newlines
If Python was built with the-with-universal-newlines option toconfigure (the default) this read-
only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can také\are , \n’ , \r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newline read mode the value of this attributé\wiiebe

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vautfifpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may

6.9. File Objects 51

The Python Library Reference, Release 2.6.3

be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute.

Note: This attribute is not used to control tpeint statement, but to allow the implementationpoint to
keep track of its internal state.

6.10 Context Manager Types

New in version 2.5. Pythonwith statement supports the concept of a runtime context defined by a context manager.
This is implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

Thecontext management protoamnsists of a pair of methods that need to be provided for a context manager object
to define a runtime context:

__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier indbeclause ofwith statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__ () to allowopen() to be used as the context expression with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext() . These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of thewith statement without affecting code outside thigh statement.

__exit__ (exc_type, exc_val, exc)tb
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body ofWith statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three argumenitoare

Returning a true value from this method will cause With statement to suppress the exception and continue
execution with the statement immediately following thigh statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body ofilin statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (suctcastextlib.nested) to easily detect whether or not anexit__ ()

method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. Seerthextlib module for some examples.

Python’sgeneratos and thecontextlib.contextfactory decoratorprovide a convenient way to implement
these protocols. If a generator function is decorated withtctirgextlib.contextfactory decorator, it will
return a context manager implementing the necessaepter () and__exit_ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

52 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

6.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

6.11.1 Modules

The only special operation on a module is attribute acaessame, wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatppert statement is not, strictly
speaking, an operation on a module objéoport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thet
attribute is not possible (you can write. _dict [a’] = 1 , which definesn.a to bel, but you can't write
m.__dict__ = {}). Modifying__dict__ directly is not recommended.

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>

6.11.2 Classes and Class Instances

SeeObjects, values and typém The Python Language Referehemd Class definitiongin The Python Language
Referencgfor these.

6.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list)

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

SeeFunction definitiongin The Python Language Referehéer more information.

6.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methaas:self is the object
on which the method operates, amdim_func is the function implementing the method. Callingarg-1,
arg-2, ..., arg-n) is completely equivalent to callingn.im_func(m.im_self, arg-1, arg-2,

..., arg-n)

Class instance methods are eitheundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this safe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSg@eError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results/jpe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

6.11. Other Built-in Types 53

The Python Library Reference, Release 2.6.3

class C
def method (self):
pass
c = C(
c. method . im_func . whoami = 'my name is ¢’

SeeThe standard type hierarchjn The Python Language Referehéar more information.

6.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the builtémpile() function and can be extracted from function objects
through theirfunc_code attribute. See also theode module. A code object can be executed or evaluated by
passing it (instead of a source string) to thec statement or the built-iaval() function.

SeeThe standard type hierarchjn The Python Language Referehéa more information.

6.11.6 Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in fiypetipn . There
are no special operations on types. The standard mogotde defines names for all standard built-in types.

Types are written like thisctype ’int’>

6.11.7 The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

6.11.8 The Ellipsis Object
This object is used by extended slice notation (S&eings(in The Python Language Referejicelt supports no
special operations. There is exactly one ellipsis object, neftigtsis (a built-in name).

It is written asEllipsis

6.11.9 Boolean Values

Boolean values are the two constant objdeadse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in functigh can be used to

cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written afalse andTrue , respectively.

6.11.10 Internal Objects

SeeThe standard type hierarchin The Python Language Referehder this information. It describes stack frame
objects, traceback objects, and slice objects.

54 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.3

6.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the() built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since version 2.2: Use the built-in functiofy to get a list of an object’s attributes. This attribute
is no longer available.

__members__
Deprecated since version 2.2: Use the built-in functiofy to get a list of an object’s attributes. This attribute
is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

The following attributes are only supported bgw-style clases.

mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored imro___.

__subclasses__ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int . __ subclasses_ ()
[<type ’'bool>]

6.12. Special Attributes 55

The Python Library Reference, Release 2.6.3

56 Chapter 6. Built-in Types

CHAPTER

SEVEN

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the medafgions . This module never

needs to be imported explicitly: the exceptions are provided in the built-in namespace as welkbasetheons

module. For class exceptions, itrg statement with aexcept clause that mentions a particular class, that clause

also handles any exception classes derived from that class (but not exception classes froiig/dtived). Two

exception classes that are not related via subclassing are never equivalent, even if they have the same name. The
built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. If the exception class is derived from the standard rootRdasException

the associated value is present as the exception instaargs's attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from tlie«ception class and noBaseException . More information on defining excep-
tions is available in the Python Tutorial undgser-defined Exceptior{gn Python Tutoria).

The following exceptions are only used as base classes for other exceptions.

exceptionBaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that
useException). If str() orunicode() is called on an instance of this class, the representation of the
argument(s) to the instance are returned or the empty string when there were no arguments. All arguments are
stored inargs as a tuple. New in version 2.5.

exceptionException
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class. Changed in version 2.5: Changed to inheritFemmException

exceptionStandardError
The base class for all built-in exceptions excepbtoplteration , GeneratorExit
Keyboardinterrupt andSystemExit . StandardError itself is derived fromException

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic €versiowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly lyys.setdefaultencoding()

57

The Python Library Reference, Release 2.6.3

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStemor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available ondtgs attribute. New in version 1.5.2. When an
EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as above, while
the third item is available on tféename attribute. However, for backwards compatibility, dags attribute
contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute iSNone when this exception is created with other than 3 argumentsefifne and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when aassert statement fails.

exceptionAttributeError
Raised when an attribute reference (8éteibute referenceén The Python Language Referejoer assignment
fails. (When an object does not support attribute references or attribute assignmentg gbesror is

raised.)

exceptionEOFError
Raised when one of the built-in functionsifut() orraw_input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: tfig.read() andfile.readline() methods return an empty string
when they hit EOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANT_SIGFPE_HANDLE®mbol is defined
in thepyconfig.h file.

exceptionGeneratorExit
Raise when ajeneratofs close() method is called. It directly inherits froaseException instead of
StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6: Changed to
inherit fromBaseException

exceptionlOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frofinvironmentError . See the discussion above for more information on exception
instance attributes. Changed in version 2.6: Changeé#et.error to use this as a base class.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefiam ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integéiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm&@iytrol-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipait() or raw_input() is waiting
for input also raise this exception. The exception inherits fRaseException so as to not be accidentally

58 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.3

caught by code that catchEgception and thus prevent the interpreter from exiting. Changed in version 2.5:
Changed to inherit fromBaseException

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@afloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This exception is derived froenvironmentError . It is raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). @teo attribute is a numeric error code
from errno , and thestrerror attribute is the corresponding string, as would be printed by the C function
perror() . See the modulerrno , which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (sucktadir() orunlink()), the exception instance will
contain a third attributdjlename , which is the file name passed to the function. New in version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raisgéemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception handling
in C, most floating point operations also aren’t checked.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethieref.proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref.ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by anterator's next() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriinpan statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

Instances of this class have attribufilesname , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to

59

The Python Library Reference, Release 2.6.3

abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version ;itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by theys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froBaseException and notStandardError , since it is not techni-
cally an error.

A call to sys.exit() is translated into an exception so that clean-up handfirally clauses otry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos._exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfook()).

The exception inherits frorBaseException instead ofStandardError or Exception so that it is not
accidentally caught by code that catclieseption . This allows the exception to properly propagate up and
cause the interpreter to exit. Changed in version 2.5: Changed to inheriBfiepException

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BfameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclagsadfrror . New in
version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclalsscofieError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclasscofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsscofleError . New in
version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sucteasrror

exceptionVMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporetrtean
value. Thewinerror andstrerror values are created from the return values of@estLastError()
andFormatMessage() functions from the Windows Platform API. Tlegrno value maps th&inerror

60 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.3

value to correspondingrrno.h values. This is a subclass 6fSError . New in version 2.0.Changed in
version 2.5: Previous versions put tBetLastError() codes inteerrno .

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedimrengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

exceptionimportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exceptionUnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

7.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- Keyboardinterrupt
+-- GeneratorExit
+-- Exception
+-- Stoplteration
+-- StandardError
| +-- BufferError
| ArithmeticError
[+-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
| +-- AssertionError
I
I
I
I
I

I
1
1

AttributeError
EnvironmentError
+-- |OError
+-- OSError
+-- WindowsError (Windows)

- + +
[
[

7.1. Exception hierarchy 61

The Python Library Reference, Release 2.6.3

+-- VMSError (VMS)

I
| +-- EOFError
[+-- ImportError
[+-- LookupError
| | +-- IndexError
| | +-- KeyError
[+-- MemoryError
[+-- NameError
| | +-- UnboundLocalError
[+-- ReferenceError
[+-- RuntimeError
| | +-- NotlmplementedError
| +-- SyntaxError
[| +-- IndentationError
[| +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError
| +-- UnicodeError
[+-- UnicodeDecodeError
[+-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

62

Chapter 7. Built-in Exceptions

CHAPTER

EIGHT

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods describeskigubece Types — str,
unicode, list, tuple, buffer, xrang®ction, and also the string-specific methods described fatthvey Methodsection.
To output formatted strings use template strings or%eperator described in th®&tring Formatting Operations
section. Also, see thee module for string functions based on regular expressions.

8.1 string — Common string operations

Thestring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. In addition, Python’s built-in string classes support the sequence type
methods described in ttigequence Types — str, unicode, list, tuple, buffer, xraegtion, and also the string-specific
methods described in th&ring Methodssection. To output formatted strings use template strings o¥dberator
described in thé&tring Formatting Operationsection. Also, see thee module for string functions based on regular
expressions.

8.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of thascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase lettefabcdefghijklmnopqgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii_uppercase
The uppercase lettet A BCDEFGHIJKLMNOPQRSTUVWXYZhis value is not locale-dependent and will not
change.

digits
The string'0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringsvercase anduppercase described below. The specific value is locale-
dependent, and will be updated whenale.setlocale() is called.

63

The Python Library Reference, Release 2.6.3

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopgrstuvwxyz’ . The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of ASCII characters which are considered punctuation characters@idiele.

printable
String of characters which are considered printable. This is a combinatiodigat , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZhe specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

8.1.2 String Formatting

Starting in Python 2.6, the built-in str and unicode classes provide the ability to do complex variable substitutions and
value formatting via thestr.format() method described iREP 3101 TheFormatter class in thestring

module allows you to create and customize your own string formatting behaviors using the same implementation as
the built-informat() method.

classFormatter ()
TheFormatter class has the following public methods:

format (format_string, *args, *kwargs
format() is the primary APl method. It takes a format template string, and an arbitrary set of positional
and keyword argumentormat() is just a wrapper that call§ormat()

vformat (format_string, args, kwargs
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using thiargs and**kwds syntax.vformat() does the work of breaking up
the format template string into character data and replacement fields. It calls the various methods described
below.

In addition, theFormatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string
Loop over the format_string and return an iterable of tupiesrél_text field_nameformat_spegcconver-
sion). This is used byformat() to break the string in to either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively)it¢nah text

will be a zero-length string. If there is no replacement field, then the valuBislof nameformat_spec
andconversiornwill be None.

get field (field_name, args, kwarlys
Givenfield_nameas returned byarse() (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form define&mn3101 such as

64 Chapter 8. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.6.3

“O[name]” or “label.title”. argsandkwargsare as passed in tdormat() . The return valuaised_key
has the same meaning as Keyparameter tget value()

get_value (key, args, kwargs
Retrieve a given field value. THeesyargument will be either an integer or a string. If it is an integer, it
represents the index of the positional argumertrgs, if it is a string, then it represents a named argument
in kwargs

Theargsparameter is set to the list of positional argumentsftomat() , and thekwargsparameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cayse value() to be called with &eyar-
gument of 0. Thename attribute will be looked up afteget value() returns by calling the built-in
getattr() function.

If the index or keyword refers to an item that does not exist, them@exError or KeyError should
be raised.

check_unused_args (used_args, args, kwarjys
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference tatpeandkwargsthat was passed to vformat. The set
of unused args can be calculated from these parametersk unused_args() is assumed to throw
an exception if the check fails.

format_field (value, format_spgc
format_field() simply calls the globaformat() built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversiaon
Converts the value (returned lt_field()) given a conversion type (as in the tuple returned by the
parse() method.) The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

8.1.3 Format String Syntax
The str.format() method and thé&ormatter class share the same syntax for format strings (although in the
case ofFormatter , subclasses can define their own format string syntax.)

Format strings contain “replacement fields” surrounded by curly bfacefnything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doublifg: and}} .

The grammar for a replacement field is as follows:

replacement_field w= " field_name [""" conversion] [:" format_spec] “}’
field_name n= (identifier | integer) (*.” attribute_name | “[" element_index “]")*
attribute_name n= identifier

element_index n= integer

conversion = e

<described in the next section>

format_spec

In less formal terms, the replacement field starts wiffels_name which can either be a number (for a positional
argument), or an identifier (for keyword arguments). Following this is an optmalersiorfield, which is preceded
by an exclamation poirit' , and aformat_spegcwhich is preceded by a colon

8.1. string — Common string operations 65

The Python Library Reference, Release 2.6.3

Thefield_namaeitself begins with either a number or a keyword. If it's a number, it refers to a positional argument,
and if it's a keyword it refers to a named keyword argument. This can be followed by any number of index or attribute
expressions. An expression of the formame’ selects the named attribute usipgtattr() , while an expression

of the form’[index]’ does an index lookup using getitem__ ()

Some simple format string examples:

" First, thou shalt count to {0} " # References first positional argument
"My quest is {name} " # References keyword argument ’name’
"Weight in tons {0.weight} ! # 'weight’ attribute of first positional arg

"Units destroyed: {players[0]} # First element of keyword argument ’players’.

Theconversiorfield causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format_ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before callifgmat__ ()

the normal formatting logic is bypassed.

Two conversion flags are currently supportesl: which callsstr() onthe value, andr which callsrepr()
Some examples:

"Harold 's a clever {0!s} : # Calls str() on the argument first
"Bring out the holy {name!r} " # Calls repr() on the argument first

The format_spedield contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define it's own “formatting mini-
language” or interpretation of tHermat_spec

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spedield can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before themat_specstring is interpreted. This allows the formatting of a value to be
dynamically specified.

For example, suppose you wanted to have a replacement field whose field width is determined by another variable:
"A man with two {0:{1}} ", format("noses", 10)

This would first evaluate the inner replacement field, making the format string effectively:

"A man with two {0:10}

Then the outer replacement field would be evaluated, producing:

" noses "

Which is substituted into the string, yielding:
"A man with two noses

(The extra space is because we specified a field width of 10, and because left alignment is the default for strings.)

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (seemat String Synta) They can also be passed directly to the builtirmat() function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

66 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

A general convention is that an empty format stritig X produces the same result as if you had calie) on the
value.

The general form of atandard format specifigs:

format_spec [[filalign][sign][#][0][width][.precision][type]

fill = <a character other than ‘}>

align = s e Y

sign e

width = integer

precision = integer

type :: “b” | HCH | Hd” | “eﬂ | “EH | “f” | “FH I HgH | “GH | HnH | “O” | “X” | “X” | “%”

Thefill character can be any character other than ‘} (which signifies the end of the field). The presence of a fill
character is signaled by theextcharacter, which must be one of the alignment options. If the second character of

format_speds not a valid alignment option, then it is assumed that both the fill character and the alignment option are
absent.

The meaning of the various alignment options is as follows:

Op- Meaning

tion

< Forces the field to be left-aligned within the available space (This is the default.)

> Forces the field to be right-aligned within the available space.

= Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields
in the form ‘+000000120’. This alignment option is only valid for numeric types.

W Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

Thesignoption is only valid for number types, and can be one of the following:

Option | Meaning

+ indicates that a sign should be used for both positive as well as negative numbers.

indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The'# option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that
the output will be prefixed biob’ ,’'00’ , or’'0Ox’ , respectively.

widthis a decimal integer defining the minimum field width. If not specified, then the field width will be determined
by the content.

If the width field is preceded by a zer®{) character, this enables zero-padding. This is equivalent &digmment
type of'=" and &fill character of0’

Theprecisionis a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted witf’ and’F’ , or before and after the decimal point for a floating point value formatted with

‘g’ or’'G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. Thmecisionis not allowed for integer values.

Finally, thetypedetermines how the data should be presented.

The available integer presentation types are:

8.1. string — Common string operations 67

The Python Library Reference, Release 2.6.3

Type | Meaning

b’ Binary format. Outputs the number in base 2.

’c’ Character. Converts the integer to the corresponding unicode character before printing.

d’ Decimal Integer. Outputs the number in base 10.

0’ Octal format. Outputs the number in base 8.

X’ Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.

X’ Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.

n’ Number. This is the same &5 , except that it uses the current locale setting to insert the appropria
number separator characters.

None | The same a&l’

(5]

The available presentation types for floating point and decimal values are:

Type

Meaning

o
B
!f!

=
9

le

n

!%!
None

Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the expone
Exponent notation. Same & except it uses an upper case ‘E’ as the separator character.

Fixed point. Displays the number as a fixed-point number.

Fixed point. Same d§

General format. This prints the number as a fixed-point number, unless the number is too large, in V|
case it switches te’ exponent notation. Infinity and NaN values are formattethfs, -inf andnan,
respectively.

General format. Same & except switches ttE’ if the number gets to large. The representations @
infinity and NaN are uppercased, too.

Number. This is the same g8 , except that it uses the current locale setting to insert the appropriate

number separator characters.
Percentage. Multiplies the number by 100 and displays in fied) format, followed by a percent sign.
The same ay'’

vhich

nY

8.1.4 Template strings

Templates provide simpler string substitutions as describ&din 292 Instead of the normé&lsbased substitutions,
Templates suppofi-based substitutions, using the following rules:

» $$ is an escape; it is replaced with a single

* S$identifier names a substitution placeholder matching a mapping kéideftifier" . By default,
"identifier" must spell a Python identifier. The first non-identifier character afte$ tblearacter termi-
nates this placeholder specification.

* ${identifier} is equivalent tdbidentifier . It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, suc¢$amunlification"

Any other appearance 8fin the string will result in &/alueError being raised. New in version 2.4. Th&ing
module provides @emplate class that implements these rules. The methodsafplate are:

classTemplate (templaté
The constructor takes a single argument which is the template string.

substitute (mapping, [**kws)
Performs the template substitution, returning a new strimgppingis any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When bmtppingandkwsare given and there are duplicates, the
placeholders fronkwstake precedence.

safe_substitute (mapping, [**kws)
Like substitute() , except that if placeholders are missing frovappingandkws instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute() , any other appearances of thavill simply return$ instead of raising/alueError

68

Chapter 8. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.6.3

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another setrisesubstitute() may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructteimplateargument. In general, you shouldn’t change it, but read-
only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> s.substitute(who="tim’, what='kung pao’)

'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

[--]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[--]

KeyError: 'what’

>>> Template('$who likes $what’).safe_substitute(d)
'tim likes $what’

Advanced usage: you can derive subclassegecofiplate to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

« delimiter— This is the literal string describing a placeholder introducing delimiter. The default $alidote
that this shouldchot be a regular expression, as the implementation will icaktscape() on this string as
needed.

« idpattern— This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expressigh a-z0-9]*

Alternatively, you can provide the entire regular expression pattern by overriding the class apisitbeita If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

 escaped- This group matches the escape sequence$é.gn the default pattern.

* named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

« braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

« invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

8.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

8.1. string — Common string operations 69

The Python Library Reference, Release 2.6.3

capwords (s, [sep)
Split the argument into words usirggr.split() , capitalize each word usirgjr.capitalize() , and
join the capitalized words usirggr.join() . If the optional second argumesgpis absent oNone, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sepis used to split and join the words.

maketrans (from, to
Return a translation table suitable for passingrémslate() , that will map each character frominto the
character at the same positiont@ from andto must have the same length.

Note: Don't use strings derived fronowercase anduppercase as arguments; in some locales, these
don't have the same length. For case conversions, alwaysiusasver() andstr.upper()

8.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see Seatipihiethods
for more information on those. You should consider these functions as deprecated, although they will not be removed
until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since version 2.0: Use fluait() built-in function. Convert a string to a floating point number.
The string must have the standard syntax for a floating point literal in Python, optionally preceded by+a sign (
or -). Note that this behaves identical to the built-in functitarat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s, [base)
Deprecated since version 2.0: Use thi&) built-in function. Convert string to an integer in the givebase
The string must consist of one or more digits, optionally preceded by a-=sign-(). Thebasedefaults to 10. If
itis 0, a default base is chosen depending on the leading characters of the string (after stripping tb& sign):
0X means 160 means 8, anything else means 10hdkeis 16, a leadin@x or OX is always accepted, though
not required. This behaves identically to the built-in functiorf) when passed a string. (Also note: for a
more flexible interpretation of numeric literals, use the built-in functigal() .)

atol (s, [base)
Deprecated since version 2.0: Use thieg() built-in function. Convert stringto a long integer in the given
base The string must consist of one or more digits, optionally preceded by asign-(). Thebaseargument
has the same meaning as &ipi() . Atrailing!| orL is not allowed, except if the base is 0. Note that when
invoked withoutbaseor with baseset to 10, this behaves identical to the built-in functiomy() when passed
a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s, [tabsize]
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub, [start, [end]]
Return the lowest index irs where the substringub is found such thatsub is wholly contained in
s[start:end] . Return-1 on failure. Defaults foistart andend and interpretation of negative values is
the same as for slices.

rfind (s, sub, [start, [end])
Like find() but find the highest index.

70 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

index (s, sub, [start, [end])
Like find() but raiseValueError when the substring is not found.

rindex (s, sub, [start, [end]]
Like rfind() but raiseValueError when the substring is not found.

count (s, sub, [start, [end])
Return the number of (non-overlapping) occurrences of substtibgn string s[start:end] . Defaults for
startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy 0§, but with upper case letters converted to lower case.

split (s, [sep, [maxsplit])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string. The
optional third argumenmnaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and the
remainder of the string is returned as the final element of the list (thus, the list will have atnevosplit+1
elements).

The behavior of split on an empty string depends on the valisepf If sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s, [sep, [maxsplit])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting list
of words is the same as returned §ylit() , except when the optional third argumenéxsplitis explicitly
specified and nonzero. Whenaxsplitis nonzero, at mosnaxsplitnumber of splits — theightmostones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit+l elements). New in version 2.4.

splitfields (s, [sep, [maxsplit])
This function behaves identically tplit() . (Inthe pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words, [sep)
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. Itis always true teaiing.join(string.split(s, sep), sep) equalss.

joinfields (words, [sep]
This function behaves identically foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ipondields() method on string
objects; use th@in() method instead.

Istrip (s, [chars)
Return a copy of the string with leading characters removethdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3hahgparameter was added.
Thecharsparameter cannot be passed in earlier 2.2 versions.

rstrip (s, [chars)
Return a copy of the string with trailing characters removedhérsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3chEreparameter was added. The
charsparameter cannot be passed in earlier 2.2 versions.

strip (s, [chars)
Return a copy of the string with leading and trailing characters removeHattis omitted omNone, whitespace

8.1. string — Common string operations 71

The Python Library Reference, Release 2.6.3

characters are removed. If given and MNaine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2cBaf$parameter
was added. Theharsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table, [deletechar$]
Delete all characters fromthat are indeletechargif present), and then translate the characters usibip
which must be a 256-character string giving the translation for each character value, indexed by its ordinal. If
tableis None, then only the character deletion step is performed.

upper (9
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new, [maxreplacg]
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxreplacas given, the firstnaxreplacenccurrences are replaced.

8.2 re — Regqular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings
to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash chardtter)(to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression must heand each backslash must be express&d asside a regular Python

string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with . Sor"\n" is a two-character string containiig and'n’ , while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular ExpressionsBook on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

72 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

8.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidB are both regular expressions,
thenAB is also a regular expression. In general, if a stpngatchesA and another string matchesB, the string

pq will match AB. This holds unles# or B contain low precedence operations; boundary conditions betieemn

B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult theRegular Expression HOWT(@n).

Regular expressions can contain both special and ordinary characters. Most ordinary charactafs, like , or

'0’ , are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the stringast’ . (In the rest of this section, we’ll write RE’s ithis special style , usually

without quotes, and strings to be matchied single quotes’ J)

Some characters, likf or’(" , are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using thember notation, e.g.;\x00’

The special characters are:

(Dot.) In the default mode, this matches any character except a newline.DfafiédLLflag has been specified,
this matches any character including a newline.

"N (Caret.) Matches the start of the string, and/ibLTILINE mode also matches immediately after each newline.

'$" Matches the end of the string or just before the newline at the end of the string, BidLiRILINE mode also
matches before a newlindoo matches both ‘foo’ and ‘foobar’, while the regular expresdioo$ matches
only ‘foo’. More interestingly, searching fdioo.$ in 'fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a singfgin 'foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

™ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

'+ Causes the resulting RE to match 1 or more repetitions of the precedirapREvill match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

'?" Causes the resulting RE to match 0 or 1 repetitions of the precedinglREwill match either ‘a’ or ‘ab’.

*?,+?,?? The™ '+ ,and'? qualifiers are algreedy they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE.*> is matched againskH1>title</H1>’ , it will match the entire
string, and not just<H1>" . Adding’'?’ after the qualifier makes it perform the matchrian-greedyor
minimal fashion; asfew characters as possible will be matched. Usit®y in the previous expression will
match only'<H1>’

{m} Specifies that exactlsn copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example{6} will match exactly sixa’ characters, but not five.

{m,n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For exampdg3,5} will match from 3 to 5'a’ characters. Omittingn specifies
a lower bound of zero, and omittingspecifies an infinite upper bound. As an exampld,}b will match
aaaab or athousanda’ characters followed by B, but notaaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

8.2. re — Regular expression operations 73

The Python Library Reference, Release 2.6.3

{m,n}? Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to matcfeas
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string’aaaaaa’ , a{3,5} willmatch5'a’ characters, whila{3,5}? will only match 3 characters.

" Either escapes special characters (permitting you to match charactérs lik&" , and so forth), or signals a
special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it's highly
recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by a. Special characters are not active inside sets. For
exampleJakm$] will match any of the characteta’ ,’k’ ,'m’ ,or'$’ ;[a-z] will match any lowercase
letter, anda-zA-Z0-9] matches any letter or digit. Character classes sut ax \S (defined below) are
also acceptable inside a range, although the characters they match depends onlv@tetiegeor UNICODE
mode is in force. If you wantto include’a ora’-" inside a set, precede it with a backslash, or place it as

the first character. The pattefih will match’] , for example.

You can match the characters not within a rangedyplementinghe set. This is indicated by including’a
as the first character of the s&t; elsewhere will simply match thé’ character. For exampl@)5] will
match any character except , and[™] will match any character except

Note that insidg] the special forms and special characters lose their meanings and only the syntaxes described
here are valid. For example, *, (,) , and so on are treated as literals indide and backreferences cannot be
used insidg] .

I A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by 'the in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separatefl byare tried from left to right. When one pattern completely
matches, that branch is accepted. This means thatdntatchesB will not be tested further, even if it would
produce a longer overall match. In other words,’the operator is never greedy. To match a litefal , use
\| , or enclose it inside a character class, ajg]in.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the lit§falsor’)’ , use\(or\) , or
enclose them inside a character cldés:[)]

(?..) This is an extension notation (& following a’(" is not meaningful otherwise). The first character
after the’?” determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new groug?P<name>...) is the only exception to this rule. Following are the currently supported
extensions.

(?iLmsux) (One or more letters from the s&t ,’L’ ,’'m’ ,’s’ ,’u’ ,’X .) The group matches the empty
string; the letters set the corresponding flagst (ignore case)e.L (locale dependentje.M (multi-line),
re.S (dot matches all)re.U (Unicode dependent), ané.X (verbose), for the entire regular expression.
(The flags are described iModule Content This is useful if you wish to include the flags as part of the
regular expression, instead of passirftag argument to theompile() function.

Note that th€?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the grcammotbe retrieved after performing a match or referenced later
in the pattern.

74 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group naame Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group nénéa the example below can also be referenced
as the numbered group

For example, if the pattern (@P<id>[a-zA-Z_]\w*) , the group can be referenced by its name in argu-
ments to methods of match objects, suchragroup(’id’) or m.end(’id") , and also by name in the
regular expression itself (usirf@P=id)) and replacement text given teub() (using\g<id>).

(?P=name) Matches whatever text was matched by the earlier group naicme
(?#..) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example|saac (?=Asimov) willmatch’lsaac ' only ifit's followed by 'Asimov’

(?!...) Matches if... doesn’t match next. This is a negative lookahead assertion. For exalsqe,
(?'Asimov) will match’lsaac * only ifit's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match.for that ends at the current
position. This is called positive lookbehind assertiof?<=abc)def will find a match inabcdef , since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning tiat or alb are allowed, bua* anda{3,4} are not.

Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use #earch() function rather than thematch() function:

>>> import re

>>> m = re . search(' (?<=abc)def ', ’abcdef ")
>>> m group(0)
‘def’
This example looks for a word following a hyphen:
>>> m = re.search(' (?<=-) \w+ , ’'spam-egg’)
>>> m group(0)
‘egq’
(?<l.) Matches if the current position in the string is not preceded by a match for This is called anegative

lookbehind assertianSimilar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or nameexists, and withho-pattern if it doesn't. no-pattern is optional and can be omitted. For
example(<)?(\Ww+@\w+(?:\.\w+)+)(?(1)>) is a poor email matching pattern, which will match with
'<user@host.com>’ as well asuser@host.com’ , but not with’<user@host.com’ . New in ver-
sion 2.4.

The special sequences consist\bf and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exaiplmatches the charactd

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matchesthe the’ or’55 55 | but not'the end” (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digiloéris 0, ornumber
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octahwaiber
Inside the[" and’]" of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

8.2. re — Regular expression operations 75

The Python Library Reference, Release 2.6.3

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note thiatis defined as the boundary betweéen and\ W, so the precise set of
characters deemed to be alphanumeric depends on the valuesWiIB©DEand LOCALEflags. Inside a
character rangé&b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when itriet at the beginning or end of a word. This is just the opposite of
\b , sois also subject to the settingsLédd CALEandUNICODE

\d When theUNICODEflag is not specified, matches any decimal digit; this is equivalent to th@-€3t . With
UNICODE it will match whatever is classified as a digit in the Unicode character properties database.

\D When theUNICODHETlag is not specified, matches any non-digit character; this is equivalent to tH®-8it
With UNICODE: it will match anything other than character marked as digits in the Unicode character properties

database.

\s When theLOCALEandUNICODHflags are not specified, matches any whitespace character; this is equivalent to
the sef \t\n\r\flv] . With LOCALE it will match this set plus whatever characters are defined as space
for the current locale. IUNICODEIs set, this will match the charactgrs\t\n\r\fiv] plus whatever is

classified as space in the Unicode character properties database.

\S When theLOCALEandUNICODHTlags are not specified, matches any non-whitespace character; this is equivalent
to the sef* \t\n\r\fiv] With LOCALE it will match any character not in this set, and not defined as space
in the current locale. IUNICODHs set, this will match anything other thint\n\r\fiv] and characters
marked as space in the Unicode character properties database.

\w When theLOCALEandUNICODHflags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the s¢h-zA-Z0-9] . With LOCALE it will match the sef0-9_] plus whatever
characters are defined as alphanumeric for the current localé&IiEODEs set, this will match the characters
[0-9] plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theLOCALEandUNICODHilags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the sefta-zA-Z0-9] . With LOCALE it will match any character not in the §&9_] , and not
defined as alphanumeric for the current localéJNICODEHSs set, this will match anything other thii+9_]
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digitis a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

8.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressitatsh checks for a match only at the
beginning of the string, whilsearchchecks for a match anywhere in the string (this is what Perl does by default).

Note that match may differ from search even when using a regular expression beginniriy witt matches

only at the start of the string, or MULTILINE mode also immediately following a newline. The “match” operation
succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting position given by
the optionalposargument regardless of whether a newline precedes it.

76 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

>>> re . match("c", "abcdef ") # No match
>>> re.search("c", "abcdef ") # Match
< sre.SRE_Match object at ...>

8.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern, [flags)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re . compile(pattern)
result = prog . match(string)

is equivalent to
result = re . match(pattern, string)

but usingcompile() and saving the resulting regular expression object for reuse is more efficient when the
expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed.itoatch() , re.search() or
re.compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

|

IGNORECASE
Perform case-insensitive matching; expressions[k«&] will match lowercase letters, too. This is not af-
fected by the current locale.

L

LOCALE
Make\w ,\W,\b ,\B,\s and\S dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chardéter matches at the end of the string and
at the end of each line (immediately preceding each newline). By defdultmatches only at the beginning
of the string, and$’ only at the end of the string and immediately before the newline (if any) at the end of the
string.

S

DOTALL
Make the’.” special character match any character at all, including a newline; without this.flagwill
match anythingxcepta newline.

U

8.2. re — Regular expression operations 77

The Python Library Reference, Release 2.6.3

UNICODE

X

Make\w , \W,\b ,\B,\d ,\D,\s and\S dependent on the Unicode character properties database. New in
version 2.0.

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line céhtaieither in a
character class or preceded by an unescaped backslash, all characters from the leftnig'st shavugh the

end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(\d + # the integral part

\. # the decimal point

\d * # some fractional digits "re LX)
b = re.compile(r* \d+\.\d*")

search (pattern, string, [flags)

Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondingMatchObject instance. Returione if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string, [flags]

split

If zero or more characters at the beginningtwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

(pattern, string, [maxsplit=0}
Split string by the occurrences @iattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(' \W+, ' Words, words, words. ")
[Words’, 'words’, 'words’, "]

>>> re.split(’ (\W+), ' Words, words, words. ")
[Words’, ', ’, 'words’, ', ', 'words’, ", "]

>>> re.split('\W+, ' Words, words, words. 1)

[Words’, 'words, words.’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split(’ (\W+), ' ..words, words... ")

’ 1

[’, ..., 'words’, ', ’, 'words’, ..., "]

That way, separator components are always found at the same relative indices within the result list (e.g., if there’s
one capturing group in the separator, the Oth, the 2nd and so forth).
Note thatsplit will never split a string on an empty pattern match. For example:

>>> re . splitf(' x*’, ' foo)
[foo’]

78

Chapter 8. String Services

The Python Library Reference, Release 2.6.3

>>> re . split(" (?m)*$ ", "foo \n\n bar\n")
[foo\n\nbar\n’]

findall ~ (pattern, string, [flags]
Return all non-overlapping matchesgtternin string, as a list of strings. Thstring is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match. New in version 1.5.2.Changed in version 2.4: Added
the optional flags argument.

finditer (pattern, string, [flags)
Return aniterator yielding MatchObject instances over all non-overlapping matches for thepRernin
string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result unless they touch the beginning of another match. New in version 2.2.Changed in version
2.4: Added the optional flags argument.

sub (pattern, repl, string, [couni)
Return the string obtained by replacing the leftmost non-overlapping occurrenpast@hin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is,converted to a single newline character,
\r is converted to a linefeed, and so forth. Unknown escapes sifhae left alone. Backreferences, such as
\6 , are replaced with the substring matched by group 6 in the pattern. For example:

>>> re . sub(r def\ s+([a-zA-Z_][a-zA-Z_0-9]*) \s*\ (\s*\): 7,
r' static PyObject* \ npy_\1(void) \n{’,

" def myfunc(): ')

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrenceaitern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj):

if matchobj .group(0) == "-": return '~
. else : return -’
>>> re.sub(' -{1,2} ', dashrepl, ' pro----gram-files)

'‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a
RE object, or use embedded modifiers in a pattern; for exaraphg,'(?i)b+", "x", "bbbb BBBB")
returns’x x’

The optional argumerdountis the maximum number of pattern occurrences to be replamrtmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matclsusg'x*, ’'-’, 'abc’) returns-a-b-c-’

In addition to character escapes and backreferences as described \gkoeene> will use the substring
matched by the group namethme, as defined by thé?P<name>...) syntax. \g<number> uses the
corresponding group numbag<2> is therefore equivalent t? , but isn't ambiguous in a replacement such
as\g<2>0 . \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal charactet0’ . The backreferencg<0> substitutes in the entire substring matched by the RE.

subn (pattern, repl, string, [count)
Perform the same operationash() , but return a tuplénew_string, number_of subs_made)

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

8.2. re — Regular expression operations 79

The Python Library Reference, Release 2.6.3

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. Itis
never an error if a string contains no match for a pattern.

8.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string, [pos, [endpos]]
If zero or more characters at the beginningstring match this regular expression, return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

The optional second paramefmsgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; the pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional paramet@ndpodimits how far the string will be searched; it will be as if the stringposchar-
acters long, so only the characters frposto endpos - 1 will be searched for a match. éindposs less than
pos no match will be found, otherwise, iik is a compiled regular expression objent,match(string,

0, 50) is equivalent tax.match(string[:50], 0)

>>> pattern = re . compile("o")

>>> pattern . match("dog") # No match as "0" is not at the start of "dog."
>>> pattern . match("dog", 1) # Match as "o" is the 2nd character of "dog".
< sre.SRE_Match object at ...>

search (string, [pos, [endpos])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturbNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionabosandendpogarameters have the same meaning as fonthieh() method.

split (' string, [maxsplit=0)
Identical to thesplit() function, using the compiled pattern.

findall ('string, [pos, [endpos])
Identical to thefindall() function, using the compiled pattern.

finditer (string, [pos, [endpos])
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string, [count=0)
Identical to thesub() function, using the compiled pattern.

subn (repl, string, [count=0)
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compilédlifaro flags were provided.

groups
The number of capturing groups in the pattern.

80 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

groupindex
A dictionary mapping any symbolic group names definedt8<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

8.2.5 Match Objects

Match objects always have a boolean valuéafe , so that you can test whether ergatch() resulted in a match
with a simple if statement. They support the following methods and attributes:

expand (templatg
Return the string obtained by doing backslash substitution on the templatesiriplate as done by theub()
method. Escapes such\as are converted to the appropriate characters, and numeric backreferdnces X
and named backreferencég<1> ,\g<name>) are replaced by the contents of the corresponding group.

group ([groupl, ...)
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if

there are multiple arguments, the result is a tuple with one item per argument. Without arguynaums,
defaults to zero (the whole match is returned). HraupN argument is zero, the corresponding return value

is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result iSone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re . match(r" (\w+) (\w+)", "lIsaac Newton, physicist ")
>>> m group(0) # The entire match

'Isaac Newton’

>>> m group(1) # The first parenthesized subgroup.

'Isaac’

>>> m group(2) # The second parenthesized subgroup.
'Newton’

>>> mgroup(1, 2) # Multiple arguments give us a tuple.

(lsaac’, 'Newton’)

If the regular expression uses ff#<name>...) syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the patterex&nor
exception is raised.

A moderately complicated example:

>>> m = re. match(r" (?P<first_ name> \w+) (?P<last nhame> \w+)", "Malcom Reynolds ")
>>> m group(' first name)

"Malcom’

>>> m group(' last_ name ')

'Reynolds’

Named groups can also be referred to by their index:

>>> m group(1)
'Malcom’
>>> m group(2)
'Reynolds’

8.2. re — Regular expression operations 81

The Python Library Reference, Release 2.6.3

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (.)+ ", "alb2c3") # Matches 3 times.
>>> m group(1) # Returns only the last match.
'3

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:
>>> m = re.match(r" (\d+)\.(\d+)", "24.1632 ")

>>> m groups()
(24, '1632))

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default thione unless thelefaultargument is given:

>>> m = re.match(r" (\d+)\.?2(\d+)? ", "24")

>>> m groups() # Second group defaults to None.

('24’, None)

>>> m groups(' 0") # Now, the second group defaults to 'O
(24, '0')

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defatsrte. For example:

>>> m = re . match(r' (?P<first_name> \w+) (?P<last_ name> \w+)", "Malcom Reynolds ")
>>> m groupdict()
{first_name’. 'Malcom’, ’last name’: 'Reynolds’}

start ([group])

end ([group])
Return the indices of the start and end of the substring matchedloys group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a group that did contribute to the match, the substring matched by ggqeguivalent tan.group(g))
is

m string[m . start(g):m . end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after
= re.search(’b(c?)’, 'cba’) , m.start(0) is1,m.end(0) is2,m.start(1) andm.end(1)
are both 2, andn.start(2) raises arindexError exception.

An example that will removeemove_thigrom email addresses:

>>> email = "tony@tiremove_thisger.net "
>>> m = re.search("remove_this ", email)
>>> emaill:m . start()] + emaillm . end()]

‘tony@tiger.net’

82 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

span ([group])
For MatchObject m, return the 2-tuplém.start(group), m.end(group)) . Note that ifgroupdid
not contribute to the match, this(sl, -1) . groupdefaults to zero, the entire match.

pos
The value ofposwhich was passed to tteearch() ormatch() method of theRegexObject . This is the
index into the string at which the RE engine started looking for a match.

endpos
The value ofendposvhich was passed to tteearch() ormatch() method of theRegexObject . This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groug\ame if no group was matched at all. For example,
the expression@)b , ((@)(b)) , and((ab)) will havelastindex == if applied to the stringab’
while the expressiofa)(b) will havelastindex == , if applied to the same string.

lastgroup

The name of the last matched capturing grouplNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() orsearch()

8.2.6 Examples

Checking For a Pair

In this example, we’'ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match):
if match is None:
return None
return ' <Match: , groups= > 9% (match . group(), match . groups())

Suppose you are writing a poker program where a player's hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r" [0-9akqj|{5}$ ")

>>> displaymatch(valid . match("ak05q ")) # Valid.
"<Match: 'ak05q’, groups=()>"

>>> displaymatch(valid . match("ak05e ")) # Invalid.
>>> displaymatch(valid . match("ak0")) # Invalid.
>>> displaymatch(valid .match("727ak")) # Valid.

"<Match: '727ak’, groups=()>"

That last hand;727ak"” , contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(" *(.).* \1")

>>> displaymatch(pair . match(" 717ak ")) # Pair of 7s.
"<Match: '717’, groups=(7’,)>"

>>> displaymatch(pair . match(" 718ak ")) # No pairs.

8.2. re — Regular expression operations 83

The Python Library Reference, Release 2.6.3

>>> displaymatch(pair . match(" 354aa")) # Pair of aces.
"<Match: '354aa’, groups=('a’,)>"

To find out what card the pair consists of, one could usggtbeip() method ofMatchObject in the following
manner:

>>> pair . match("717ak"). group(1)
e

Error because re.match() returns None, which doesn’t have a group() method:
>>> pair . match("718ak"). group(1)
Traceback (most recent call last):

File "<pyshell#23>" | line 1, in <module>
re . match(r" .*(.).* \1", "718ak"). group(1)
AttributeError : 'NoneType’' object has no attribute 'group’

>>> pair . match("354aa"). group(1)
‘a

Simulating scanf()

Python does not currently have an equivalergédanf() . Regular expressions are generally more powerful, though
also more verbose, thastanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%c .

%5¢ {5}

%d [-+]?\d+

%e %E %f, %g [-+]1?2(\d+(\d*)?\\d+)([eE][-+]?\d+)?
%i [-+]?(O[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%0 0[0-7]*

%s \S+

%u \d+

%x %X O[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like
lusr/sbin/sendmail - 0 errors, 4 warnings

you would use a&canf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a

RuntimeError exception with the messageaximum recursion limit exceeded. For example,
>>> g = 'Begin ' + 1000*' a very long string "+ "end’
>>> re . match(' Begin (\w|)*? end ', s) .end()
Traceback (most recent call last):
File "<stdin>" | line 1, in?

84 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

File "/usr/local/lib/python2.5/re.py" , line 132, in match
return _compile(pattern, flags) . match(string)
RuntimeError : maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of tte pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recasBegin [a-zA-Z0-9_ [*?end . As a further benefit, such
regular expressions will run faster than their recursive equivalents.

search() vs. match()

In a nutshellmatch() only attempts to match a pattern at the beginning of a string wdeaech() will match a
pattern anywhere in a string. For example:

>>> re . match("0", "dog") # No match as "o" is not the first letter of "dog".

>>> re.search("o", "dog") # Match as search() looks everywhere in the string.

<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created
with re.compile("pattern™) , not the primitives re.match(pattern, string) or

re.search(pattern, string)
match() has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re . compile("o")
>>> pattern . match("dog") # No match as "0" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern . match("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):

>>> pattern . match("dog", 1)

< sre.SRE_Match object at ...>

>>> pattern . match("dog", 2) # No match as "0" is not the 3rd character of "dog."

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:
>>> jnput = """ Ross McFluff: 834.345.1254 155 EIm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place @ ™"

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

n "

>>> entries = re . split(\n +
>>> entries

[Ross McFluff: 834.345.1254 155 EIm Street’,

, input)

8.2. re — Regular expression operations 85

The Python Library Reference, Release 2.6.3

'Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
'Frank Burger: 925.541.7625 662 South Dogwood Way’,
'Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. Wemepesthiz
parameter oplit() because the address has spaces, our splitting pattern, in it:

>>> [re .split((":? ", entry, 3) for entry in entries]
[[Ross’, 'McFluff, '834.345.1254’, '155 Elm Street],

[Ronald’, 'Heathmore’, '892.345.3428', '436 Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662 South Dogwood Way],
[Heather’, 'Albrecht’, '548.326.4584’, '919 Park Place’]]

The:? pattern matches the colon after the last name, so that it does not occur in the result listmitbpdit of
4, we could separate the house number from the street name:

>>> [re .split(":? ", entry, 4) for entry in entries]
[[Ross’, 'McFluff’, '834.345.1254’, '155’, 'ElIm Street],
[Ronald’, 'Heathmore’, '892.345.3428’, '436’, 'Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662’, 'South Dogwood Way'],
[Heather’, 'Albrecht’, '548.326.4584', '919’, 'Park Place’]]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
usingsub() with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner word = list (m. group(2))

random . shuffle(inner_word)

return — m group(1) + "".join(inner_word) + m group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly.

>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potimrpy.’

Finding all Adverbs

findall() matchesall occurrences of a pattern, not just the first oneesch() does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she miglitdsél() in the following manner:
>>> text = "He was carefully disguised but captured quickly by police.

>>> re . findall("\ wtly ", text)
[carefully’, 'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matchedrteier() is useful as it
provides instances dflatchObject instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverland their positionsn some text, he or she would u§editer() in the
following manner:

86 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

>>> text = "He was carefully disguised but captured quickly by police. "
>>> for min re . finditer("\ w+ly ", text):

print ' L : 5 % (m. start(), m . end(), m . group(0))

07-16: carefully

40-47: quickly

Raw String Notation

Raw string notationr(text") keeps regular expressions sane. Without it, every backslash) (in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re . match(r" \W() \1\w, " ff ")

< sre.SRE_Match object at ...>

>>> re . match("\\ W() \\ 1\ W, " ff ")
< _sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
meang™\" . Without raw string notation, one must ud8\" , making the following lines of code functionally
identical:

>>> re . match(r" \\ ", "\ ")
<_sre.SRE_Match object at ...>
>>> re . match("\ \\ ", "\ ")
< sre.SRE_Match object at ...>

8.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringniatises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, .).
Return a string containing the values, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

pack_into (fmt, buffer, offset, v1, v2,)...
Pack the valuesl, v2, ... according to the given format, write the packed bytes into the writiaiiter
starting abffset Note that the offset is a required argument. New in version 2.5.

unpack (fmt, string
Unpack the string (presumably packedgmck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en(string) must equatalcsize(fmt)).

unpack_from (fmt, buffer, [offset=0]
Unpack thebufferaccording to tthe given format. The result is a tuple even if it contains exactly one item. The
buffer must contain at least the amount of data required by the foderatbuffer[offset:]) must be
at leastcalcsize(fmt)). New in version 2.5.

8.3. struct — Interpret strings as packed binary data 87

The Python Library Reference, Release 2.6.3

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python Notes
X pad byte no value

C char string of length 1

b signed char integer

B unsigned char integer

? _Bool bool (1)
h short integer

H unsigned short integer

i int integer

I unsigned int integer or long

I long integer

L unsigned long long

q long long long (2)
Q unsigned long long long (2)
f float float

d double float

s char[] string

p char[] string

P void * long
Notes:

1. The'?" conversion code corresponds to thgool type defined by C99. If this type is not available, it is
simulated using ahar . In standard mode, it is always represented by one byte. New in version 2.6.

2. The’'q and’'Q’ conversion codes are available in native mode only if the platform C compiler supports C
long long ,or,on Windows, int64 . They are always available in standard modes. New in version 2.2,

A format character may be preceded by an integral repeat count. For example, the formadistringeans exactly
the same athhhh'’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the's’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for exampl&0s’ means a single 10-byte string, whil®c’ means 10 characters. For packing,

the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special f&se, means a single, empty string (whilgc’ means

0 characters).

The'p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thatrfpack() ,the’p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthel’ 'L’ ,’q" and’'Q’ format characters, the return value is a Python long integer.

For the’P’ format character, the return value is a Python integer or long integer, depending on the size needed to

hold a pointer when it has been cast to an integer typRUAL pointer will always be returned as the Python integer

0. When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha
and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

88 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

For the'?” format character, the return value is eitieue or False . When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size and alignment
@ native native

= native standard

< little-endian standard

> big-endian standard

! network (= big-endian)| standard

If the first character is not one of thes@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesjnt andlong are 4 bytestong long (__int64 on Windows)is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectiveBpol is 1 byte.

Note the difference betwee@’' and’=" : both use native byte order, but the size and alignment of the latter is
standardized.

The form’"" is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate chdiceoof>’

The'P’ format character is only available for the native byte ordering (selected as the default or wi@ thoyte
order character). The byte order charattér chooses to use little- or big-endian ordering based on the host system.
The struct module does not interpret this as native ordering, S@thdormat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(' hhl ", 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03'’

>>> unpack(' hhl 7, "\x00 \x01 \x00 \x02 \x00 \x00 \x00 \x03)

1, 2, 3)

>>> calcsize(' hhl ")

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. For example, the fortat’ specifies two pad bytes at the end, assuming

longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = ’'raymond \x32 \x12 \x08 \x01 \x08 ’
>>> npame, serialnum, school, gradelevel = unpack(' <10sHHb’ , record)
>>> from collections import namedtuple

8.3. struct — Interpret strings as packed binary data 89

The Python Library Reference, Release 2.6.3

>>> Student = namedtuple(' Student ', ' name serialnum school gradelevel ")
>>> Student . make(unpack(' <10sHHb', s))

Student(name="raymond

, serialnum=4658, school=264, gradelevel=8)

See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

8.3.1 Struct Objects

Thestruct module also defines the following type:

classStruct (formaf)

Return a new Struct object which writes and reads binary data according to the formafimiag Creating

a Struct object once and calling its methods is more efficient than callingjithet functions with the same
format since the format string only needs to be compiled once. New in version 2.5. Compiled Struct objects
support the following methods and attributes:

pack (v1,v2,.)
Identical to thepack() function, using the compiled formatef(result) will equal self.size)

pack_into (buffer, offset, v1, v2,)..
Identical to thepack into() function, using the compiled format.

unpack (string)
Identical to theunpack() function, using the compiled format. lef(string) must equal
self.size).

unpack_from (buffer, [offset=0)
Identical to theunpack _from() function, using the compiled formatlef(buffer[offset:])
must be at leastelf.size).

format
The format string used to construct this Struct object.
size
The calculated size of the struct (and hence of the string) correspondimgrtat .

8.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for example,
for comparing files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see alsofithenp module.

classSequenceMatcher ()

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by

Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

90

Chapter 8. String Services

The Python Library Reference, Release 2.6.3

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer ()
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of aDiffer delta begins with a two-letter code:

Code Meaning
- line unique to sequence 1

'+’ line unigue to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with ?* attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff ()
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ ([tabsize], [wrapcolumn], [linejunk], [charjunk]
Initializes instance oHtmIDiff

tabsizeis an optional keyword argument to specify tab stop spacing and defa8lts to

wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped, de-
faults toNone where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed indtiff() (used byHtmIDIff to
generate the side by side HTML differences). &d#f() documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedromlinesand tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdescandtodescare optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

contextandnumlinesare both optional keyword arguments. $ehtextto True when contextual differ-
ences are to be shown, else the defaukatse to show the full files.numlinesdefaults to5. When
contextis True numlinescontrols the number of context lines which surround the difference highlights.
Whencontextis False numlinescontrols the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedromlinesandtolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fondke file() method.

8.4. difflib — Helpers for computing deltas 91

The Python Library Reference, Release 2.6.3

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use. New in version 2.4.

context_diff (a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)

Comparea andb (lists of strings); return a delta (@neratorgenerating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsetiigh defaults to three.

By default, the diff control lines (those with** or ---) are created with a trailing newline. This is
helpful so that inputs created frofiie.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings filomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returnedtoye.ctime() . If not specified, the strings default to blanks.

>>> sl ["bacon\n’, ’eggs\n’, "hamin’, ’guido \n']

>>> g2 [python \n’, "eggy\n’, ’'hamster \n’, ’guido \n’]

>>> for line in context_diff(sl, s2, fromfile =’ before.py , tofile =’ after.py '):
sys . stdout . write(line) # doctest: +NORMALIZE_WHITESPACE

*** phefore.py
--- after.py

*khkkkkkkkkkkkkk

1

**k% 1,4 *kkk

I bacon

I eggs

I ham
guido

— 1,4 -

I' python

I eggy

I hamster
guido

SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

get_close_matches (‘word, possibilities, [n], [cutoff)

Return a list of the best “good enough” matchegord is a sequence for which close matches are desired
(typically a string), andoossibilitiesis a list of sequences against which to matebrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get _close_matches("appel ', ["ape’, 'apple ', 'peach’, ’puppy’])
[apple’, "ape’]

>>> ijmport keyword

>>> get_close_matches("wheel *, keyword . kwlist)

['while]

92

Chapter 8. String Services

The Python Library Reference, Release 2.6.3

ndiff

>>> get _close_matches("apple ', keyword . kwlist)
I

>>> get_close_matches("accept ', keyword . kwlist)
[except’]

(a, b, [linejunk], [charjunk)

Comparea andb (lists of strings); return ®iffer -style delta (ayeneratorgenerating the delta lines).
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default isNone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE_JUNK() , which filters out lines without visible characters, except for at most one pound character
(#). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which lines
are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level functio8 CHARACTER_JUNK(), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff(’ one\n two \n three \n ' . splitlines(1),
"ore \n tree \n emun ' . splitlines(1))
>>> print '’ . join(diff),
- one

2 A

+ ore

? AN

- two

- three

2 -

+ tree

+ emu

restore (sequence, whigh

Return one of the two sequences that generated a delta.

Given asequence@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiff("’ one\n two\n three \n ' . splitlines(1),

“ore \n tree \n emun ' . splitlines(1))

>>> diff = list (diff) # materialize the generated delta into a list
>>> print ' . join(restore(diff, 1)),

one

two

three

>>> print . join(restore(diff, 2)),

ore

tree

emu

unified_diff (&, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)

Comparea andb (lists of strings); return a delta (@neratorgenerating the delta lines) in unified diff format.

8.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 2.6.3

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with- , +++, or @@are created with a trailing newline. This
is helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fémomfile, tofile, fromfiledate andtofiledate The modification times are normally

expressed in the format returned toye.ctime() . If not specified, the strings default to blanks.

>>> sl = ["bacon\n’, ’'eggs\n’, 'hamin’, ’'guido \n’]

>>> g2 = [’ python \n’, "eggy\n’, ’'hamster \n’, ’guido \n’]

>>> for line in unified_diff(sl, s2, fromfile =" before.py ', tofile =" after.py ')
sys . stdout . write(line) # doctest: +NORMALIZE_WHITESPACE

--- before.py

+++ after.py

0@ -14 +14 0@
-bacon

-eggs

-ham

+python

+eggy
+hamster

guido
SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

IS_LINE_JUNK (line)
Return true for ignorable lines. The lifiee is ignorable ifline is blank or contains a singl&’ , otherwise it
is not ignorable. Used as a default for paramétesjunkin ndiff() before Python 2.3.

IS_CHARACTER_JUNKch)
Return true for ignorable characters. The charachds ignorable ifch is a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published ibr. Dobb’s Journain July, 1988.

8.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk, [a, [b]]])
Optional argumernisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing for isjunkis equivalent
to passindambda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \{t "

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

94 Chapter 8. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.6.3

The optional argumen@andb are sequences to be compared; both default to empty strings. The elements of
both sequences must bashable

SequenceMatcher objects have the following methods:

set_seqs (a,b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequenceseuseq2() to set the commonly used sequence once
and callset_seql() repeatedly, once for each of the other sequences.

set_ seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhj
Find longest matching block ia[alo:ahi] andb(blo:bhi]

If isjunkwas omitted oiNone, find_longest_match() returns(i, j, k) such thag[i:i+k]
is equal tao[j:j+k] ,Wherealo <= i <= i+k <= abhi andblo <= j <= j+k <= bhi . For
all (", j, k) meeting those conditions, the additional conditigns= k' ,i <= i’ , and ifi

,] <= J are also met. In other words, of all maximal matching blocks, return one that starts
earliest ina, and of all those maximal matching blocks that start earliest, ireturn the one that starts
earliest inb.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd ")
>>> s, find_longest_match(0, 5 0, 9
Match(a=0, b=4, size=5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That preeda$ from
matching the abcd’ at the tail end of the second sequence directly. Instead onliatizel’ can
match, and matches the leftmésbed’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x ==" ", " abcd", "abcd abcd ")
>>> s. find_longest_match(0, 5, 0, 9
Match(a=1, b=0, size=4)

If no blocks match, this returrglo, blo, 0) . Changed in version 2.6: This method returmsaned
tupleMatch(a, b, size)

get_matching_blocks 0
Return list of triples describing matching subsequences. Each triple is of the(ifojmn) , and
means thaa[i:i+n] == Db[j:j+n] . The triples are monotonically increasingiiand;.

The last triple is a dummy, and has the vallen(a), len(b), 0) . It is the only triple withn

== 0. If (i, j, n) and(i’, j, n) are adjacent triples in the list, and the second is not the

last triple in the list, them+n = 1’ orj+n != j° ;in other words, adjacent triples always describe
non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always describe
non-adjacent blocks was implemented.

8.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 2.6.3

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> g. get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to tueninto b. Each tuple is of the fornftag, i1, i2,
i1, j2) . The firsttuple hagl == j1 == , and remaining tuples havé equal to tha2 from the
preceding tuple, and, likewisg, equal to the previoug.

Thetag values are strings, with these meanings:

Value Meaning

'replace’ afil:i2] should be replaced Hyj1:j2]

‘delete’ afil:i2] should be deleted. Note thdt == j2 in this case.
'insert’ b[j1:j2] should be inserted afil:il] . Note thatl == i2 in this case.
‘equal’ afil:i2] == b[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "qabxcd "
>>> b = "abycdf "
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s. get opcodes():

print (" a[%d %d (%9 b[%d %d (%9 " %

(tag, i1, i2, afil1:i2], j1, j2, b[j1:j2])
delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return ageneratorof groups with up tan lines of context.

Starting with the groups returned Iyt opcodes() , this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same formajets opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this id.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to computedgket matching blocks() orget opcodes() hasn't already been
called, in which case you may want to tjyick ratio() orreal_quick_ratio() first to get an
upper bound.

quick_ratio ()
Return an upper bound oatio() relatively quickly.

This isn't defined beyond that it is an upper boundato() , and is faster to compute.

real_quick_ratio 0
Return an upper bound oatio() very quickly.

This isn't defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() or quick_ratio()

96

Chapter 8. String Services

The Python Library Reference, Release 2.6.3

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougfuick_ratio() andreal_quick_ratio() are always at least as largeratio()

>>> g = SequenceMatcher(None, "abcd", "bcde")
>>> 5. ratio()

0.75

>>> s, quick _ratio()

0.75

>>> g. real_quick_ratio()

1.0

8.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
" private Thread currentThread;
" private volatile Thread currentThread; ")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuiafip@ value
over 0.6 means the sequences are close matches:

>>> print round (s . ratio(), 3)
0.866
If you're only interested in where the sequences mageh, matching_blocks() is handy:

>>> for block in s. get _matching_blocks():

print "a] %d and b[] match for elements " % block
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 21 elements

a[29] and b[38] match for O elements

Note that the last tuple returned bgt_matching_blocks() is always a dummylen(a), len(b), 0) ,
and this is the only case in which the last tuple element (number of elements matdbed) is

If you want to know how to change the first sequence into the secondetisepcodes()

>>> for opcode in s.get opcodes():

print " a[%d %d b[t%d " % opcode

equal aJ0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See also the functiomet close matches() in this module, which shows how simple code building on

SequenceMatcher can be used to do useful work.

8.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim tomé@imal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer class has this constructor:

classDiffer ([linejunk, [charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

8.4. difflib — Helpers for computing deltas 97

The Python Library Reference, Release 2.6.3

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from theeadlines() method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is viaufielines() method of a file-like object.

8.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

1

>>> textl = 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

o Csplitlines(1)

>>> len (textl)

>>> textl[O] -1]

>>> textz = 1. Beautiful is better than ugly.
3. Simple is better than complex.

4. Complicated is better than complex.

5. Flat is better than nested.

. splitlines(1)

1

Next we instantiate a Differ object:
>>> d = Differ()

Note that when instantiating@iffer object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:
>>> result = list (d.compare(textl, text2))
result s a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint(result)

[1. Beautiful is better than ugly.\n’,

- 2. Explicit is better than implicit.\n’,

- 3. Simple is better than complex.\n’,

"+ 3. Simple is better than complex.\n’,

? ++\n’,

- 4. Complex is better than complicated.\n’,

? N ---- N,
'+ 4. Complicated is better than complex.\n’,

98 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

? ++++ N Nn',
'+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys . stdout . writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.

? ++

- 4. Complex is better than complicated.

? A — A
+ 4. Complicated is better than complex.

? ++++ A A
+ 5. Flat is better than nested.

8.4.5 A command-line interface to difflib

This example shows how to use difflib to creatdifd -like utility. It is also contained in the Python source distribu-
tion, asTools/scripts/diff.py

" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.
* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.
* html: generates side by side comparison with change highlights.
import sys, os, time , difflib , optparse
def main ():
Configure the option parser
usage = "usage: %prog [options] fromfile tofile "
parser = optparse . OptionParser(usage)
parser .add_option("-c", action ="store true ", default =False ,
help =" Produce a context format diff (default) ")
parser .add option("-u", action ="store true ", default =False ,
help =" Produce a unified format diff ")
hip = ' Produce HTML side by side diff (can use -c and -l in conjunction) ’
parser .add_option("-m", action ="store true ", default =False , help =hlp)
parser .add_option("-n", action ="store true ", default =False ,
help =’ Produce a ndiff format diff ")
parser .add option("-I ", "-lines ", type ="int ", default =3,
help =" Set number of context lines (default 3) ")
(options, args) = parser . parse_args()
if len (args) == 0:
parser . print_help()
sys . exit(1)
if len (args) = 2:
parser . error("need to specify both a fromfile and tofile ")

8.4. difflib — Helpers for computing deltas 99

The Python Library Reference, Release 2.6.3

n = options . lines
fromfile, tofile = args # as specified in the usage string

we're passing these as arguments to the diff function

fromdate = time . ctime(os . stat(fromfile) . st_mtime)
todate = time . ctime(os . stat(tofile) . st_mtime)
fromlines = open (fromfile, "U). readlines()

tolines = open (tofile, "U) . readlines()

if options . u:
diff = difflib . unified_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)
elif options . n:
diff = difflib . ndiff(fromlines, tolines)
elif options . m:

diff = difflib . HtmIDiff() . make_file(fromlines, tolines, fromfile,
tofile, context =options . c,
numlines =n)
else :
diff = difflib . context_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)

we're using writelines because diff is a generator
sys . stdout . writelines(diff)

if __name__ == _ main__
main()
8.5 StringlO — Read and write strings as files

This module implements a file-like clasSiringlO , that reads and writes a string buffer (also knownresnmory
fileg. See the description of file objects for operations (sechitm Objecty. (For standard strings, se¢r and
unicode .)

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th#&tringlO will start empty. In both cases, the initial file position starts at
zero.

The StringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised whepgetvalue() is called.

The following methods o6tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShiénglO object'sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer. Attempting to do further operations with a clé#edglO object will raise a
ValueError

100 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

Example usage:

import StringlO

output = StringlO . StringlO()
output . write(’ First line. \n ")
print >>output, " Second line.
Retrieve file contents -- this will be
'First line.\nSecond line.\n’

contents = output . getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output . close()

8.6 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of thetringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the func8timglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. It's not possible to set attributes on it. Use the ofigima|O module in those cases.

Unlike the memory files implemented by tB&inglO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as plain ASCII strings.

Calling StringlO() with a Unicode string parameter populates the object with the buffer representation of the
Unicode string, instead of encoding the string.

Another difference from th&tringlO module is that callingstringlO() with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods. These objects are not
generally visible. They turn up in tracebacksstengl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO() with a string parameter.

OutputType
The type object of the objects returned by callBiginglO() with no parameters.

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import ¢cStringlO

output = cStringlO . StringlO()

output . write(' First line. \n ")
print >>output, * Second line.

)

Retrieve file contents -- this will be
'First line.\nSecond line.\n’
contents = output . getvalue()

Close object and discard memory buffer --

8.6. cStringlO — Faster version of StringlO 101

The Python Library Reference, Release 2.6.3

.getvalue() will now raise an exception.
output . close()

8.7 textwrap — Text wrapping and filling

New in version 2.3. Théextwrap module provides two convenience functiomsap() andfill() , as well as
TextWrapper , the class that does all the work, and a utility functitadent() . If you're just wrapping or filling

one or two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (text, [width, [...]])
Wraps the single paragraph text (a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesofVrapper , documented belowvidth
defaults to70.

fill (text, [width, [...]])
Wraps the single paragraph text and returns a single string containing the wrapped paragté(gh. is
shorthand for

“\n " . join(wrap(text, L)
In particularfill() accepts exactly the same keyword argumentsrap() .
Both wrap() andfill() work by creating arextWrapper instance and calling a single method on it. That

instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unlessxtWrapper.break long_words is set to false.

An additional utility functiondedent() , is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (tex?
Remove any common leading whitespace from every lirtexh

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: thadit@s and
“\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:
def test ():
end first line with \ to avoid the empty line!
s ="\
hello
world
print repr (s) # prints ’ hello\n world\n ’
print repr (dedent(s)) # prints 'hello\n world\n’

102 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

classTextWrapper (...
TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent ="x)
is the same as

wrapper = TextWrapper()
wrapper . initial_indent = "*

You can re-use the samiextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanvidth , TextWrapper guarantees that no output line will be longer thédth
characters.

expand_tabs
(default: True) If true, then all tab characters itext will be expanded to spaces using the
expandtabs() method oftext

replace_whitespace
(default: True) If true, each whitespace character (as definedtoyng.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false andeplace whitespace is true, each tab character will be re-
placed by a single space, whichnistthe same as tab expansion.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though). New in version 2.6:
Whitespace was always dropped in earlier versions.

initial_indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent_indent
(default: ") String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by one bf ,’!" ,or'?" , possibly followed by one of’ or™" , followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’'s monster [...]
and “Spot.” in

[...] See Spot. See Spot run [..]]

8.7. textwrap — Text wrapping and filling 103

The Python Library Reference, Release 2.6.3

fix_sentence_endings is false by default.

Since the sentence detection algorithm relieswimg.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break long_words
(default: True) If true, then words longer thawidth will be broken in order to ensure that no lines
are longer thanvidth . If it is false, long words will not be broken, and some lines may be longer than
width . (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need tasetk_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words. New in
version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (texd
Wraps the single paragraphtiext(a string) so every line is at mostdth characters long. All wrapping
options are taken from instance attributes of Thet\Wrapper instance. Returns a list of output lines,
without final newlines.

fill (texd
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

8.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding hame in all
lower case letters, and returrCadecinfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
«decode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.
The various functions or classes take the following arguments:

encode and decode These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

104 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

incrementalencodeasindincrementaldecoderThese have to be factory functions providing the following inter-
face:

factory(errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder andincrementalDecoder , respectively. Incremental codecs can maintain state.

streamreadeandstreamwriter These have to be factory functions providing the following interface:
factory(stream, errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Slassgs/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors aisrict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, suh as 'ignore’ (ignore malformed data
and continue without further noticexmicharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) andlackslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name definecygiater _error()

In case a search function cannot find a given encoding, it should rstume.

lookup (‘encoding
Looks up the codec info in the Python codec registry and retu@mdecinfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If n@Codecinfo object is found, a.ookupError s raised. Otherwise, theéodecinfo object is
stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHimbkug¢) for
the codec lookup:

getencoder (encoding
Look up the codec for the given encoding and return its encoder function.

Raises d ookupError in case the encoding cannot be found.

getdecoder (encoding
Look up the codec for the given encoding and return its decoder function.

Raises da.ookupError in case the encoding cannot be found.

getincrementalencoder (‘encoding
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises d_ookupError in case the encoding cannot be found or the codec doesn't support an incremental
encoder. New in version 2.5.

getincrementaldecoder (‘encoding
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises d_ookupError in case the encoding cannot be found or the codec doesn't support an incremental
decoder. New in version 2.5.

getreader (encoding
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (‘encoding
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a.ookupError in case the encoding cannot be found.

8.8. codecs — Codec registry and base classes 105

The Python Library Reference, Release 2.6.3

register_error (name, error_handlégr

Register the error handling functiamror_handlerunder the namaame error_handlerwill be called during
encoding and decoding in case of an error, whameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains informa-

tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound anndexError will be raised.

Decoding and translating works similar, excépticodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup_error (namg

Return the error handler previously registered under the meame

Raises a.ookupError in case the handler cannot be found.

strict_errors (exception

Implements thestrict error handling.

replace_errors (- exception

Implements theeplace error handling.

ignore_errors (exception

Implements thégnore error handling.

xmlicharrefreplace_errors (- exception
Implements thexmlicharrefreplace error handling.
backslashreplace_errors (- exception

Implements théackslashreplace error handling.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode, [encoding, [errors, [buffering]]]

Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode’'ts meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid data
loss due to encodings using 8-bit values. This means that no automatic conversion o done on reading
and writing.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultstact’ which causes &alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builtpen() function. It defaults to line buffered.

EncodedFile (file, input, [output, [errors])

Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gt encoding and then written to
the original file as strings using tfeutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput

106

Chapter 8. String Services

The Python Library Reference, Release 2.6.3

errors may be given to define the error handling. It defaultsstact’ , Which cause¥/alueError to be
raised in case an encoding error occurs.

iterencode (iterable, encoding, [errorg)]
Uses an incremental encoder to iteratively encode the input providadraple This function is agenerator
errors (as well as any other keyword argument) is passed through to the incremental encoder. New in version
2.5.

iterdecode (iterable, encoding, [errorg)]
Uses an incremental decoder to iteratively decode the input providédrbaple This function is egenerator
errors (as well as any other keyword argument) is passed through to the incremental decoder. New in version
2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOM_BE

BOM_LE

BOM_UTF8

BOM_UTF16

BOM_UTF16_BE

BOM_UTF16_LE

BOM_UTF32

BOM_UTF32_BE

BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16s eitherBOM_UTF16_BEor BOM_UTF16_LEdepending on the platform’s native byte order,
BOMis an alias forBOM_UTF16 BOM_LEfor BOM_UTF16_LEand BOM_BHor BOM_UTF16_BEThe
others represent the BOM in UTF-8 and UTF-32 encodings.

8.8.1 Codec Base Classes

Thecodecs module defines a set of base classes which define the interface and can also be used to easily write your
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #wecode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

'xmicharrefreplac&eplace with the appropriate XML character reference (only for encoding).

‘backslashreplaceReplace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedrgig@ster _error()

8.8. codecs — Codec registry and base classes 107

The Python Library Reference, Release 2.6.3

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input, [errors])
Encodes the obje@putand returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.gp1252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input, [errors])
Decodes the objedput and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to theencode() /decode() method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to thencode() /decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. ThéncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

classincrementalEncoder ([errors])
Constructor for anncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providingetiners key-
word argument. These parameters are predefined:

*'strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

108 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

’xmlicharrefreplace’ Replace with the appropriate XML character reference
*'backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime ofithementalEncoder
object.

The set of allowed values for thegrors argument can be extended witkgister_error()

encode (object, [final])
Encodesobject (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call tencode() final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects
ThelncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

classincrementalDecoder ([errors])
Constructor for anncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providingetiners key-
word argument. These parameters are predefined:

*’strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.
*replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime ofithementalDecoder
object.

The set of allowed values for thegrors argument can be extended witkgister_error()

decode (object, [final])
Decodesobject (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call talecode() final must be true (the default is false). flhal is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter — andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. &sendings.utf 8 for an example of how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass Gfodec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

8.8. codecs — Codec registry and base classes 109

The Python Library Reference, Release 2.6.3

classStreamWriter (stream, [errors)
Constructor for &treamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are predefined:

*’strict’ RaiseValueError (or a subclass); this is the default.

*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

oxmicharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime 8frtem\Writer object.

The set of allowed values for thegrors argument can be extended wittgister_error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tB&reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

classStreamReader (stream, [errors)
Constructor for &treamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

*’strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character.

110 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it

possible to switch between different error handling strategies during the lifetime 8frteemReader object.
The set of allowed values for thegrors argument can be extended wittgister_error()

read ([size, [chars, [firstline]]])

Decodes data from the stream and returns the resulting object.

charsindicates the number of characters to read from the streaad() will never return more than
charscharacters, but it might return less, if there are not enough characters available.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possiblesizeis intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are

available on the stream, these should be read too. Changed in versich&gargument added.Changed
in version 2.4.2firstline argument added.

readline ([size, [keepends]]
Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streamasline() method.

If keependss false line-endings will be stripped from the lines returned. Changed in versiokezgends
argument added.

readlines ([sizehint, [keepends]]
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if

keependss true.
sizehint if given, is passed as ttsizeargument to the stream’sad() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover

from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide

useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned lopkhg() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tli#reamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

8.8. codecs — Codec registry and base classes 111

The Python Library Reference, Release 2.6.3

StreamReaderWriter instances define the combined interfacesSofeamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkhg() function to construct the instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface. Readey Writer must be factory functions or classes
providing objects of th&treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®@gaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStofamReader andStreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

8.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be preejseJd CODEarrays). Depending

on the way Python is compiled (either vignable-unicode=ucs2 or--enable-unicode=ucs4 , with the

former being the defaulpy UNICODEis either a 16-bit or 32-bit data type. Once a Unicode object is used outside

of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Transforming
a unicode object into a sequence of bytes is called encoding and recreating the unicode object from the sequence
of bytes is known as decoding. There are many different methods for how this transformation can be done (these
methods are also called encodings). The simplest method is to map the codepoints 0-255 to tBeObes .

This means that a unicode object that contains codepoints &bed@FF can’t be encoded with this method (which is
called’latin-1’ or’iso-8859-1’). unicode.encode() will raise aUnicodeEncodeError that looks

like this: UnicodeEncodeError: ’latin-1’ codec can't encode character u\ul234’ in

position 3: ordinal not in range(256)

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the@¥@e8xff . To see how this is done simply open e.qg.
encodings/cpl1252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive bytes.
There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings are called
UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a little endian
machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem: Bytes will
always be in natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have

112 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so called BOM
(the “Byte Order Mark™). This is the Unicode charactérFEFFE This character will be prepended to every UTF-16
byte sequence. The byte swapped version of this chardiIEFFE) is an illegal character that may not appear in

a Unicode text. So when the first character in an UTF-16 byte sequence appearsWie-BERE the bytes have to

be swapped on decoding. Unfortunately upto Unicode 4.0 the chatd¢tEFF had a second purpose aZBRO
WIDTH NO-BREAK SPACHR character that has no width and doesn't allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 usldgFEFFas aZERO WIDTH NO-BREAK SPAGES

been deprecated (witd+2060 (WORD JOINERassuming this role). Nevertheless Unicode software still must be
able to handl®&J+FEFFin both roles: As a BOM it's a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a Unicode striddeRO aWVIDTH NO-BREAK SPACE

it's a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-hit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of
two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to six 1 bits
followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated
give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F OXXXXXXX

U-00000080 ... U-000007FF 120xxxXXX LOXXXXXX

U-00000800 ... U-0000FFFF | 11210xxxX 1OXXXXXX 1OXXXXXX

U-00010000 ... U-001FFFFF | 11110xxX 10xXXXXXX LOXXXXXX 1OXXXXXX

U-00200000 ... U-03FFFFFF | 1111210xx 10xxXxXXXX 1OXXXXXX LOXXXXXX LOXXXXXX
U-04000000 ... U-7FFFFFFF | 11111210x 10xXXXXX LOXXXXXX LOXXXXXX LOXXXXXX 1OXXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and &y-EFFcharacter in the decoded Unicode string (even if
it's the first character) is treated aZBRO WIDTH NO-BREAK SPACE

Without external information it's impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that's not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the re-
liability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls
"utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 en-
coded BOM (which looks like this as a byte sequert>eef , Oxbb , Oxbf) is written. As it's rather improbable that

any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER | WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte sequence.
So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but as a
signature that helps in guessing the encoding. On encoding the utf-8-sig codec wilDxafte Oxbb , Oxbf as the

first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they appear as the first three bytes in
the file.

8.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

8.8. codecs — Codec registry and base classes 113

The Python Library Reference, Release 2.6.3

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

* an ISO 8859 codeset

 a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

« an IBM EBCDIC code page

« an IBM PC code page, which is ASCIl compatible

Codec Aliases Languages
ascii 646, us-ascii English
bigs big5-tw, csbig5 Traditional Chi
big5hkscs big5-hkscs, hkscs Traditional Chi
cp037 IBMO37, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eurof
cp737 Greek
cp775 IBM775 Baltic languag
cp850 850, IBM850 Western Euror
cp852 852, IBM852 Central and Ez
cp855 855, IBM855 Bulgarian, Bye
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwe
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chi
cpl1006 Urdu
cpl026 ibm1026 Turkish
cpl1140 ibm21140 Western Euroy
cpl1250 windows-1250 Central and Ec
cpl251 windows-1251 Bulgarian, Bye
cpl252 windows-1252 Western Eurof
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic
cpl257 windows-1257 Baltic languag
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese

114 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

Table 8.1 — continued from previous page

euc_jisx0213
euc_kr
gh2312

gbk

gbh18030

hz
i502022_jp
i502022_jp_1
i502022_jp_2
i502022_jp_2004
502022 jp_3
i502022_jp_ext
i502022_kr
latin_1
is08859 2
iso8859 3
iso8859 4
is08859 5
iso8859 6
iso8859 7
iso8859 8
is08859 9
iso8859 10
is08859 13
is08859_ 14
is08859_15
johab

koi8_r

koi8 u
mac_cyrillic
mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf_32
utf_32_he

utf_ 32 le
utf_16

utf_16 be
utf_16 le

utf 7

utf 8

utf_8_sig

eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks _¢c-5601-1987, ksx1001, ks_x-1001
chinese, csis058gb231280, euc- cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, i

936, cp936, ms936

gb18030-2000

hzgb, hz-gh, hz-gh-2312
€sis02022jp, is02022jp, iso-2022-jp
i502022jp-1, is0-2022-jp-1
i502022jp-2, is0-2022-jp-2
iI502022jp-2004, is0-2022-jp-2004
i502022jp-3, is0-2022-jp-3
i502022jp-ext, is0-2022-jp-ext
€sis02022kr, is02022kr, iso-2022-kr
iS0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1
iS0-8859-2, latin2, L2

is0-8859-3, latin3, L3

is0-8859-4, latin4, L4

is0-8859-5, cyrillic

is0-8859-6, arabic

is0-8859-7, greek, greek8
is0-8859-8, hebrew

is0-8859-9, latin5, L5

is0-8859-10, latin6, L6

is0-8859-13

is0-8859-14, latin8, L8

is0-8859-15

cpl361, ms1361

maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman

macturkish

csptcplb4, ptl54, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U32, utf32

UTF-32BE

UTF-32LE

U16, utfl6

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

Japanese
Korean
saBimp8fied Chir
Unified Chines
Unified Chines
Simplified Chir
Japanese
Japanese
Japanese, Kor
Japanese
Japanese
Japanese
Korean
West Europe
Central and Ee
Esperanto, Ma
Baltic languag:
Bulgarian, Bye
Arabic
Greek
Hebrew
Turkish
Nordic languac
Baltic languag:
Celtic languag
Western Euroy
Korean
Russian
Ukrainian
Bulgarian, Bye
Greek
Icelandic
Central and Ec
Western Euroy
Turkish
Kazakh
Japanese
Japanese
Japanese
all languages
all languages
all languages
all languages
all languages (
all languages (
all languages
all languages
all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

any bijective function with one argument can be considered as an encoding.

8.8. codecs — Codec registry and base classes

115

The Python Library Reference, Release 2.6.3

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

Codec Aliases Operand Purpose
type
base64_codexse64, base-64 | byte Convert operand to MIME base64
string
bz2_ codec bz2 byte Compress the operand using bz2
string
hex_code¢ hex byte Convert operand to hexadecimal representation, with two digits per
string byte
idna Uni- ImplementsRFC 349Q see als@ncodings.idna
code
string
mbcs dbcs Uni- Windows only: Encode operand according to the ANSI codepage
code (CP_ACP)
string
palmos Uni- Encoding of PalImOS 3.5
code
string
punycode Uni- ImplementsRFC 3492
code
string
quo- quopri, byte Convert operand to MIME quoted printable
pri_codec| quoted-printable, | string
quotedprintable
raw_unicode_escape Uni- Produce a string that is suitable as raw Unicode literal in Python
code source code
string
rot_13 rotl3 Uni- Returns the Caesar-cypher encryption of the operand
code
string
string_escape byte Produce a string that is suitable as string literal in Python source
string code
unde- any Raise an exception for all conversions. Can be used as the system
fined encoding if no automaticoercionbetween byte and Unicode
strings is desired.
uni- Uni- Produce a string that is suitable as Unicode literal in Python source
code_escape code code
string
uni- Uni- Return the internal representation of the operand
code_internal code
string
uu_codec| uu byte Convert the operand using uuencode
string
zlib_codec zip, zlib byte Compress the operand using gzip
string

New in version 2.3: Th&dna andpunycode encodings.

8.8.4 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3. This module implemeritsC 3490(Internationalized Domain Names in Applications) &feC
3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upoputmgcode

116 Chapter 8. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.6.3

encoding andtringprep

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain hame containing
non-ASCII characters (such asvw.Alliancefrangaise.nu) is converted into an ASCII-compatible encoding

(ACE, such asvww.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS querie${$T Tields, and so on.

This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: ifina codec allows to convert between Unicode and the ACE.
Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, sictpés andftplib , accept Unicode host names

(httplib then also transparently sends an IDNA hostname itHib&t field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The modulezncodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version latbel The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII (label)
Convert a label to ASCII, as specifiediti-C 3490 UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specifiediRC 349Q

8.8.5 encodings.utf 8 sig — UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will
be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte
stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

8.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based dyrtivedeData.txt file version 5.1.0 which is publicly available
from ftp://ftp.unicode.org/

The module uses the same names and symbols as defined by the UnicodeData File Format 5.1.0 (see
http://www.unicode.org/Public/5.1.0/ucd/UCD.h)mlt defines the following functions:

lookup (nam§
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr, [default)
Returns the name assigned to the Unicode charantehnr as a string. If no name is definagkfaultis returned,
or, if not given,ValueError s raised.

8.9. unicodedata — Unicode Database 117

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

The Python Library Reference, Release 2.6.3

decimal (unichr, [default)
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError s raised.

digit (unichr, [default)
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definetkfault
is returned, or, if not giveriyalueError is raised.

numeric (unichr, [default)
Returns the numeric value assigned to the Unicode chanawighr as float. If no such value is definedkfault
is returned, or, if not giveriyalueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chauaithir as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaidler as integer. Return8 if no
combining class is defined.

east_asian_width (‘unichr)
Returns the east asian width assigned to the Unicode chaveitér as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode characiehr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanéateas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringinistr. Valid values forform are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn't, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

118 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

unidata_version
The version of the Unicode database used in this module. New in version 2.3.

ucd_3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata . lookup(' LEFT CURLY BRACKEY

u'{

>>> unicodedata .name(u’ /")
'SOLIDUS’

>>> unicodedata . decimal(u 9")
9

>>> unicodedata .decimal(u a’')
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
ValueError : not a decimal
>>> unicodedata . category(u A') # ’'L'etter, 'u'ppercase

L
>>> unicodedata . bidirectional(u’ \u0660 ') # 'A’rabic, 'N'umber
AN’

8.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to compare such
identifications for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow
only identifications consisting of “printable” characters.

RFC 3454defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of thetringprep procedure are part of the profile. One example sfrengprep profile is
nameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using tinekstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a setfiringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in_table_al (code
Determine whetherodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in_table bl (codé
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table_b2 (codg
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

8.10. stringprep — Internet String Preparation 119

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.6.3

map_table_b3 (codg
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normalization).

in_table_cl11 (codg
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in_table c12 (codg
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

in_table c11 c12 (codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in_table c21 (codg
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in_table c22 (codg
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

in_table_c21 c22 (code
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in_table ¢c3 (codg
Determine whethetodeis in tableC.3 (Private use).

in_table_c4 (code
Determine whethetodeis in tableC.4 (Non-character code points).

in_table ¢5 (codé
Determine whethetodeis in tableC.5 (Surrogate codes).

in_table_c6 (code
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in_table ¢c7 (codg
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in_table ¢8 (codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in_table c9 (codé
Determine whethetodeis in tableC.9 (Tagging characters).

in_table d1 (codg
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL").

in_table d2 (codé
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

8.11 fpformat — Floating point conversions

Deprecated since version 2.6: Tiigormat module has been removed in Python 3.0. Tiifermat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done usifgsthiag interpolation operator described in
the String Formatting Operationsection.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digs digits after the point and at least one digit beforedijs <= 0 , the
decimal point is suppressed.

120 Chapter 8. String Services

The Python Library Reference, Release 2.6.3

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.

sci (%, dig9
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifis <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passetht) orsci() asthexparameter does not look like a number. This
is a subclass dfalueError ~ when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat . fix(1.23, 1)
1.2

8.11. fpformat — Floating point conversions 121

The Python Library Reference, Release 2.6.3

122 Chapter 8. String Services

CHAPTER

NINE

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, , list , set (which along withfrozenset
replaces the deprecatedts module), anduple . Thestr class can be used to handle binary data and 8-bit text,
and theunicode class to handle Unicode text.

The following modules are documented in this chapter:

9.1 datetime — Basic date and time types

New in version 2.3. Thelatetime module supplies classes for manipulating dates and times in both simple and
complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member
extraction for output formatting and manipulation. For related functionality, see alstnibe and calendar

modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object has
any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment. Whether a
naivedatetime object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it's up to the program whether a particular number represents metres, miles, or
mass. Naivelatetime objects are easy to understand and to work with, at the cost of ignoring some aspects of
reality.

For applications requiring morejatetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the absniaéd class. Thesézinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that no concretézinfo classes are supplied by thetetime module. Supporting timezones at whatever level

of detail is required is up to the application. The rules for time adjustment across the world are more political than
rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed inlate or datetime object. MINYEARIs 1.

MAXYEAR
The largest year number allowed irdate or datetime object. MAXYEARS 9999 .

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

123

The Python Library Reference, Release 2.6.3

9.1.1 Available Types

classdate ()
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month , andday .

classtime ()
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of “leap seconds” here). Attributesur , minute , second , microsecond
andtzinfo

classdatetime ()
A combination of a date and a time. Attributesiear , month, day, hour , minute , second,
microsecond , andtzinfo

classtimedelta ()
A duration expressing the difference between thate , time , ordatetime instances to microsecond reso-
lution.

classtzinfo ()
An abstract base class for time zone information objects. These are usedibydtime andtime classesto
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.
Objects of thedate type are always naive.

An objectd of type time or datetime may be naive or awared is aware ifd.tzinfo is not None and
d.tzinfo.utcoffset(d) does not returNone. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset(d) returnsNone, d is naive.

The distinction between naive and aware doesn't appiyitedelta objects.
Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

9.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

classtimedelta ([days, [seconds, [microseconds, [milliseconds, [minutes, [hours, [weeks])]
All arguments are optional and default@ Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days secondsndmicrosecondsire stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.

A week is converted to 7 days.

124 Chapter 9. Data Types

The Python Library Reference, Release 2.6.3

and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
*0 <= seconds < 3600*24 (the number of seconds in one day)
*-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated ra@geyflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta

>>> d = timedelta(microseconds =-1)

>>> (d . days, d .seconds, d . microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negativemedelta object,timedelta(-999999999)

max
The most positiveimedelta object,timedelta(days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999)

resolution
The smallest possible difference between non-equal timedelta objects,
timedelta(microseconds=1)

Note that, because of normalizatidimedelta.max > -timedelta.min . -timedelta.max is not repre-

sentable as amedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusjve
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive
Supported operations:
Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 ==t3 andt1-t3 ==t2 are true. (1)
t1 = t2 - t3 Difference oft2 andt3. Afterwardstl ==1t2 - t3 andt2 ==t1 + t3 are true. (1)
t1 =t2 *iortl =i Delta multiplied by an integer or long. Afterwartls// i == t2 is true,
* 12 providedi '= 0
In generalfl *i == t1* (i-1) + tlis true. (1)
tL =t2 /i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns dimedelta object with the same value. (2)
-t1 equivalent taimedelta (-tl.days-t1l.secondstl.microsecondsand to
t1*-1. (1)(4)
abs(t) equivalent to +*t* whert.days >= 0 ,andtotwhent.days < 0 . (2)
Notes:

1. This is exact, but may overflow.

9.1. datetime — Basic date and time types 125

The Python Library Reference, Release 2.6.3

2. This is exact, and cannot overflow.
3. Division by 0 raisegeroDivisionError
4. -timedelta.maxs not representable adienedelta object.

In addition to the operations listed aboveedelta objects support certain additions and subtractions dtie
anddatetime objects (see below).

Comparisons ofimedelta objects are supported with thienedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, whetinaedelta object is compared to an object of a different typgpeError

is raised unless the comparisorris or = . The latter cases retuffelse or True , respectively.

timedelta objects aréhashable(usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta object is considered to be true if and only if it isn’t equatitoedelta(0)

Example usage:

>>> from datetime import timedelta

>>> year = timedelta(days =365)

>>> another_year = timedelta(weeks =40, days =84, hours =23,

minutes =50, seconds =600) # adds up to 365 days
>>> year == another_year
True

>>> ten_years = 10 * year
>>> ten_years, ten_years .days // 365

(datetime.timedelta(3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, hine_years .days // 365
(datetime.timedelta(3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years .days // 365
(datetime.timedelta(1095), 3)

>>> abs (three_years - ten_years) == 2 * three_years + year
True

9.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it's the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

classdate (year, month, day
All arguments are required. Arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*1 <= month <= 12
*1 <= day <= number of days in the given month and year
If an argument outside those ranges is givéalueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalenti&ébe.fromtimestamp(time.time())

126 Chapter 9. Data Types

The Python Library Reference, Release 2.6.3

fromtimestamp (timestamp
Return the local date corresponding to the POSIX timestamp, such as is returinee lbyne() . This may
raiseValueError , if the timestamp is out of the range of values supported by the platfdooaltime()
function. It's common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are igrfovetibyestamp()

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unlesd <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) ==

Class attributes:

min

The earliest representable dadafe(MINYEAR, 1, 1)
max

The latest representable dadate(MAXYEAR, 12, 31)
resolution

The smallest possible difference between non-equal date olijewtslelta(days=1)
Instance attributes (read-only):

year
BetweenVIINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = datel + timedelta dateZ2is timedelta.days days removed frordatel (1)
date2 = datel - timedelta Computesiate?2such thatlate2 + timedelta == datel . (2
timedelta = datel - date2 3)
datel < date2 datelis considered less thatate2whendatelprecedeslate2in time. (4)
Notes:
1. date2 is moved forward in time iftimedelta.days > O , or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days . timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be

smaller tharMINYEARor larger tharMAXYEAR

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where

datel - timedelta does ndimedelta.seconds andtimedelta.microseconds are ignored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

4. In other wordsdatel < date2 if and only if datel.toordinal() < date2.toordinal() . In

order to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raisesTypeError if the other comparand isn’t alsodate object. HoweverNotimplemented

is returned instead if the other comparand hématuple() attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, whieiea object is compared to an object

of a different type,TypeError is raised unless the comparisorsis or = . The latter cases retufralse or

True , respectively.

9.1. datetime — Basic date and time types 127

The Python Library Reference, Release 2.6.3

Dates can be used as dictionary keys. In Boolean context&f@ll objects are considered to be true.
Instance methods:

replace (year, month, day
Return a date with the same value, except for those members given new values by whichever keyword ar-
guments are specified. For examplegif== date(2002, 12, 31) , thend.replace(day=26) ==
date(2002, 12, 26)

timetuple ()
Return aime.struct_time such as returned byme.localtime() . The hours, minutes and seconds
are 0, and the DST flag is -1.d.timetuple() is equivalent totime.struct_time((d.year,
d.month, d.day, 0, 0, O, d.weekday(), d.toordinal() - date(d.year, 1,
1).toordinal() + 1, -1))

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. &aieargbject
d, date.fromordinal(d.toordinal()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For exdatg(2002,
12, 4).weekday() == , @ Wednesday. See alsmweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For exdatg(2002,
12, 4).isoweekday() == , @ Wednesday. See als@ekday() ,isocalendar()

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The 1SO calendar is a widely used variant of the Gregorian calendar. h8pe&/www.phys.uu.nl/
vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so tIme(ZOOS 12, 29). |socalendar() = (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7)

isoformat ()
Return a string representing the date in ISO 8601 format, ‘'YYYY-MM-DD’. For exanga&g (2002, 12,
4).isoformat() == '2002-12-04’

0

Fora dated, str(d) is equivalent tal.isoformat()

ctime ()
Return a string representing the date, for exanga® (2002, 12, 4).ctime() == 'Wed Dec 4
00:00:00 2002' . d.ctime() is equivalent taime.ctime(time.mktime(d.timetuple()))
on platforms where the native Ctime() function (which time.ctime() invokes, but which
date.ctime() does not invoke) conforms to the C standard.

stritime (formatf)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See sedtidtime() Behavior

Example of counting days to an event:

>>> jmport time
>>> from datetime import date

128 Chapter 9. Data Types

http://www.phys.uu.nl/

The Python Library Reference, Release 2.6.3

>>> today = date . today()

>>> today
datetime.date(2007, 12, 5)
>>> today == date . fromtimestamp(time . time())
True
>>> my_birthday = date(today .year, 6, 24)
>>> if my_birthday < today:
my_birthday = = my_birthday . replace(year =today .year + 1)

>>> my_hirthday
datetime.date(2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday . days
202

Example of working withdate :

>>> from datetime import date

>>> d = date . fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date(2002, 3, 11)

>>> t = d. timetuple()

>>> for i in t

print i

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d. isocalendar()

>>> for i in ic:

print i

2002 # 1SO vyear

11 # 1ISO week number

1 # 1SO day number (1 = Monday)
>>> d. isoformat()

'2002-03-11"

>>> d. stritime(" %d %m/%")

'11/03/02’

>>> d. stritime(" %A %d YB %)

'Monday 11. March 2002’

9.1.4 datetime Objects

A datetime object is a single object containing all the information frordede object and g@ime object. Like
adate object,datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, day, [hour, [minute, [second, [microsecond, [tzinfo]j]]]
The year, month and day arguments are requiteidfo may beNone, or an instance of &info subclass.

9.1. datetime — Basic date and time types 129

The Python Library Reference, Release 2.6.3

The remaining arguments may be ints or longs, in the following ranges:
*MINYEAR <= year <= MAXYEAR
*l <= month <= 12
¢l <= day <= number of days in the given month and year
*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is givéalueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None. This is equivalent to
datetime.fromtimestamp(time.time()) . See alsmow() , fromtimestamp()

now([tz])

Return the current local date and time. If optional argunteigtNone or not specified, this is likeoday()
but, if possible, supplies more precision than can be gotten from going throtigle dme() timestamp

(for example, this may be possible on platforms supplying tlye@imeofday() function).
Else tz must be an instance of a clasgzinfo subclass, and the current date
and time are converted totzZs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)) . See alsaoday() , utcnow()

utcnow ()

Return the current UTC date and time, witinfo ~ None. This is likenow() , but returns the current UTC
date and time, as a naidgatetime object. See alsoow() .

fromtimestamp (timestamp, [tZ)
Return the local date and time corresponding to the POSIX timestamp, such as is retutines thyie()
If optional argumentz is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returnedatetime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted to tZs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz))

fromtimestamp() may raiseValueError , if the timestamp is out of the range of values supported by

the platform Clocaltime() orgmtime() functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored byomtimestamp() , and then it's possible to have two timestamps differing by a

second that yield identicalatetime objects. See alsatcfromtimestamp()

utcfromtimestamp (timestamp
Return the UTCdatetime corresponding to the POSIX timestamp,