The Python Library Reference
Release 2.6.4cl

Guido van Rossum

Fred L. Drake, Jr., editor

October 18, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 23
Built-in Constants 25
4.1 Constantsaddedbytege module. 25
Built-in Objects 27
Built-in Types 29
6.1 TruthValueTesting o o 29
6.2 Boolean Operations-and, or ,NOt e e 29
6.3 CoMPariSONS. i i e e e e e e e e e e e e 30
6.4 Numeric Types —int ,float ,long ,complex 30
6.5 lterator TYPeS e e e e e e e 33
6.6 Sequence Types-str ,unicode ,list ,tuple ,buffer ,xrange 34
6.7 SetTypes—set ,frozenset e 44
6.8 Mapping Types —ict e 46
6.9 FileObjects e e 49
6.10 ContextManager TYPES o v i i it e e e e e e e e e e 52
6.11 Other Built-in TYpeS. o e e e e e e 53
6.12 Special Attributes L e 55
Built-in Exceptions 57
7.1 Exceptionhierarchy. e e 61
String Services 63
8.1 string —Commonstringoperations e e 63
8.2 re — Regular expression operations e e e e e 72
8.3 struct — Interpretstrings as packedbinarydata o oL 87
8.4 difflib — Helpers forcomputingdeltas 90
8.5 Stringl0O — Read and write stringsasfiles. 100
8.6 cStringlO — Faster version oBtringlO L 101
8.7 textwrap —Textwrappingandfiling. 102
8.8 codecs — Codecregistryandbaseclasses. o oo 104
8.9 unicodedata —Unicode Database. e 117
8.10 stringprep — Internet String Preparation. e 119
8.11 fpformat — Floating pointconversions. i i i i e 120

9

10

11

12

Data Types 123
9.1 datetime —Basicdateandtimetypes. 123
9.2 calendar — General calendar-related functions. 145
9.3 collections — High-performance container datatypes 149
9.4 heapq — Heap queue algorithm. 158
9.5 bhisect — Array bisectionalgorithm 160
9.6 array — Efficientarraysofnumericvalues. 162
9.7 sets — Unordered collections of uniqueelements. 164
9.8 sched —Eventscheduler. e 167
9.9 mutex — Mutual exclusion support.o e e 169
9.10 queue — Asynchronizedqueueclass. e 170
9.11 weakref —Weakreferences. e 172
9.12 UserDict — Class wrapper for dictionaryobjects 175
9.13 UserList — Classwrapperforlistobjects 176
9.14 UserString — Class wrapper for stringobjects oo 177
9.15 types — Namesfor built-intypes. e 177
9.16 new — Creation of runtime internalobjects. 180
9.17 copy — Shallow anddeepcopyoperations e 181
9.18 pprint — Datapretty printer e 181
9.19 repr — Alternaterepr() implementation. o 184
Numeric and Mathematical Modules 187
10.1 numbers — Numeric abstractbaseclasses. oo 0. 187
10.2 math — Mathematical functions. L 190
10.3 cmath — Mathematical functions for complexnumbers 193
10.4 decimal — Decimal fixed point and floating point arithmetic 196
10.5 fractions —Rationalnumbers. 220
10.6 random — Generate pseudo-randomnumbers. L oL 221
10.7 itertools — Functions creating iterators for efficientlooping. 224
10.8 functools = — Higher order functions and operations on callable objects 236
10.9 operator — Standard operatorsasfunctions e 238
File and Directory Access 245
11.1 os.path — Common pathname manipulations. 245
11.2 fileinput — Iterate over lines from multiple input streams 248
11.3 stat —Interpretingstat() results. 250
11.4 statvfs — Constants used withs.statvfs() 253
11.5 fileecmp — File and Directory ComparisSons o o v i i i 254
11.6 tempfile — Generate temporary filesand directories. 256
11.7 glob — Unix style pathname patternexpansion., 258
11.8 fnmatch — Unix filename pattern matching. 259
11.9 linecache —Randomaccesstotextlines. 260
11.10shutil — High-levelfile operations 260
11.11dircache — Cached directory listings. o o i 263
11.12macpath — Mac OS 9 path manipulation functions. 263
Data Persistence 265
12.1 pickle — Python objectserialization 265
12.2 cPickle —Afasterpickle e 275
12.3 copy _reg — Registempickle supportfunctions. 275
12.4 shelve — Pythonobjectpersistence. 276
12.5 marshal — Internal Python object serialization. 278
12.6 anydbm — Generic access to DBM-styledatabases L. 279
12.7 whichdb — Guess which DBM module created adatabase. 280

13

14

15

16

17

12.8 dbm— Simple “database” interface. e 281

12.9 gdbm— GNU’s reinterpretationofdom. 282
12.10dbhash — DBM-style interface to the BSD database libraty. 283
12.11bsddb — Interface to Berkeley DB library 284
12.12dumbdbm— Portable DBM implementation o 286
12.13sqlite3 — DB-API 2.0 interface for SQLitedatabases 287
Data Compression and Archiving 305
13.1 zlib — Compression compatiblewithzip 305
13.2 gzip — Supportforgzipfiles e 307
13.3 bz2 — Compression compatible withzip2 309
13.4 zipfile — Work with ZIP archives. 311
13.5 tarfile — Read and write tar archivefiles. L o Lo Lo 315
File Formats 323
141 csv — CSV FileReadingand Writing. 323
14.2 ConfigParser = — Configurationfileparser. o oL 330
14.3 robotparser —Parserforrobots.txt. L 335
14.4 netrc —netrcfile processing. e e e 336
145 xdrlib —Encode anddecode XDRdata. 336
14.6 plistlib — Generate and parse Mac OSplist files. 339
Cryptographic Services 343
15.1 hashlib — Secure hashesand messagedigests 343
15.2 hmac — Keyed-Hashing for Message Authentication. 344
15.3 md5— MD5 message digestalgorithm. oo 345
15.4 sha — SHA-1 message digestalgorithm. 346
Generic Operating System Services 349
16.1 os — Miscellaneous operating systemiinterfaces. oL 349
16.2 io — Coretools forworkingwithstreams, 370
16.3 time —Timeaccessand CoONVErSIONS v v v v v v v e e e e e 378
16.4 optparse — More powerful command line optionparser.. 383
16.5 getopt — Parserforcommandlineoptions. L L Lo 407
16.6 logging — Logging facility for Python.409
16.7 getpass — Portable passwordinput. 443
16.8 curses — Terminal handling for character-celldisplays. 444
16.9 curses.textpad — Text input widget for curses programs 459
16.10curses.wrapper ~ — Terminal handler for curses programs 460
16.11 curses.ascii — Utilities for ASCll characters 460
16.12curses.panel ~ — A panel stack extensionforcurses.. L oL 463
16.13platform — Access to underlying platform’s identifyingdata. 464
16.14errno — Standard errno systemsymbols. 467
16.15ctypes — A foreign function library for Python.. 473
Optional Operating System Services 505
17.1 select — Waiting for I/O completion. 505
17.2 threading — Higher-level threadinginterface. 509
17.3 thread — Multiple threadsofcontrol. 518
17.4 dummy_threading — Drop-in replacement for thiareading module 520
17.5 dummy_thread — Drop-in replacement for thdaread module 520
17.6 multiprocessing — Process-based “threading” interface. 520
17.7 mmap— Memory-mapped file support 576
17.8 readline — GNUreadlineinterface. 579

17.9 rlcompleter — Completion function for GNU readline. 581

18 Interprocess Communication and Networking 583

19

20

21

18.1 subprocess — Subprocessmanagement e e 583
18.2 socket — Low-level networkinginterface. o oo 589
18.3 ssl — SSL wrapper forsocketobjects. 600
18.4 signal — Sethandlers forasynchronousevents. 607
18.5 popen2 — Subprocesses with accessible l/Ostreams. 610
18.6 asyncore — Asynchronoussockethandler. 612
18.7 asynchat — Asynchronous socket command/response handler. 615
Internet Data Handling 621
19.1 email — Anemailand MIME handlingpackage 621
19.2 json —JSONencoderanddecoder. i i it 651
19.3 mailcap — Mailcapfilehandling. 656
19.4 mailbox — Manipulate mailboxesinvariousformats 657
195 mhlib —Accessto MH mailboxes e 675
19.6 mimetools — Tools for parsing MIME MeSSages v v v v v i v i i i e e 677
19.7 mimetypes — Map filenamesto MIME types. 678
19.8 MimeWriter — Generic MIME filewriter Lo Lo 680
19.9 mimify — MIME processingof mailmessages. o 681
19.10 multifile — Support for files containing distinctparts. 682
19.11rfc822 — Parse RFC 2822 mailheaders. 684
19.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 688
19.13binhex — Encode and decode binhex4files L oo oL 690
19.14binascii — Convert between binaryand ASCIl. o Lo 691
19.15quopri — Encode and decode MIME quoted-printabledata 692
19.16uu — Encode and decode uuencodefiles o 693
Structured Markup Processing Tools 695
20.1 HTMLParser — Simple HTML and XHTML parser. v v i v v .. 695
20.2 sgmllib — Simple SGML parser. e e e e 697
20.3 htmllib — AparserforHTMLdocuments i it e i 700
20.4 htmlentitydefs — Definitions of HTML general entities 701
20.5 xml.parsers.expat — Fast XML parsingusingExpat 702
20.6 xml.dom — The Document Object Model APL. 710
20.7 xml.dom.minidom — Lightweight DOM implementation. 720
20.8 xml.dom.pulldom — Support for building partial DOMtrees 724
20.9 xml.sax — Supportfor SAX2parsers. i e e e X125
20.10xml.sax.handler — BaseclassesforSAX handlers oo 726
20.11xml.sax.saxutils — SAXUtilities 731
20.12xml.sax.xmlreader — Interface for XML parsers. e 732
20.13xml.etree.ElementTree — The ElementTree XML API. 736
Internet Protocols and Support 743
21.1 webbrowser — Convenient Web-browsercontroller. 743
21.2 cgi — Common Gateway Interface support.. e 745
21.3 cgitb — Traceback managerfor CGlscripts. i 751
21.4 wsgiref — WSGI Utilities and Reference Implementation 752
21.5 urllib — Open arbitrary resourcesby URL oo 761
21.6 urllib2 —extensible library foropeningURLs, 766
21.7 httplib — HTTP protocolclient. 777
21.8 ftplib — FTP protocolclient. 781
21.9 poplib — POP3protocolclient. 785
21.10imaplib — IMAP4 protocol client T87
21.11nntplib — NNTP protocolclient. e 792

22

23

24

25

26

27

21.12smtplib — SMTP protocolclient. e 796

21.13smtpd — SMTP Server. o e e e e e 800
21.14telnetlib —Telnetclient e 801
21.15uuid — UUID objects accordingto RFC 4122. it 803
21.16urlparse — Parse URLsINto components. o i i i v vt e 806
21.17SocketServer — A framework for networkservers. L o 0oL 809
21.18BaseHTTPServer — BasicHTTP server o i i ettt e 817
21.19SimpleHTTPServer — Simple HTTP requesthandler 820
21.20CGIHTTPServer — CGl-capable HTTP requesthandler 821
21.21cookielib — Cookie handling forHTTP clients. 821
21.22Cookie — HTTP state management. 0 v i i it e e e e e e e e e 830
21.23xmirpclib — XML-RPCclientaccess v i i i i i e e 833
21.24SimpleXMLRPCServer — Basic XML-RPCserver. 841
21.25DocXMLRPCServer — Self-documenting XML-RPC server. 844
Multimedia Services 847
22.1 audioop — Manipulateraw audiodata L 847
22.2 imageop — Manipulaterawimagedata.o 850
22.3 aifc — Read and write AIFFand AIFCfiles. 851
22.4 sunau — Read and write Sun AUfiles L 853
22.5 wave — Read and write WAV files. 856
22.6 chunk —Read IFFchunkeddata., 858
22.7 colorsys — Conversions betweencolorsystems. 859
22.8 imghdr — Determinethetypeofanimage oo 859
22.9 sndhdr — Determine type of soundfile 860
22.100ssaudiodev — Access to OSS-compatible audiodevices. 861
Internationalization 867
23.1 gettext — Multilingual internationalizationservices. 867
23.2 locale — Internationalizationservices 876
Program Frameworks 883
24.1 cmd— Support for line-oriented command interpreters. L. 883
24.2 shlex — Simplelexicalanalysis e 885
Graphical User Interfaces with Tk 889
25.1 Tkinter — Pythoninterfaceto Tcl/Tk. 889
25.2 Tix —ExtensionwidgetsforTK. e 899
25.3 ScrolledText ~ — Scrolled TextWidget. o o 904
25.4 turtle —Turtlegraphicsfor TK 904
255 IDLE e e 933
25.6 Other Graphical User Interface Packages 936
Development Tools 939
26.1 pydoc — Documentation generator and online helpsystem. 939
26.2 doctest — Testinteractive Pythonexamples. o 940
26.3 unittest ~—Unittestingframework. 962
26.4 2to3 - Automated Python 2to 3 code translation 974
26.5 test — Regression tests package for Python. oo 975
26.6 test.test_support — Utility functionsfortests. oL 977
Debugging and Profiling 981
27.1 bdb — Debugger framework. 981
27.2 pdb — The Python Debugger e 985
27.3 DebuggerCommands e e e e e e 986

28

29

30

31

32

33

27.4 The Python Profilers 989

27.5 hotshot — High performance logging profiler 996

27.6 timeit — Measure execution time of small code snippets 998

27.7 trace — Trace or track Python statement execution. 1001
Python Runtime Services 1003

28.1 sys — System-specific parameters and functions. o oL 1003
28.2 _ builtin__ — Built-inobjects 1012
28.3 future_builtins —Python 3 builtins. 1013
28.4 _ _main__ — Top-level scriptenvironment.o 1013
28.5 warnings —Warningcontrol. e e e 1014
28.6 contextlib — Utilities for with -statementcontexts.. 1018
28.7 abc — Abstract Base Classes. e e 1019
28.8 atexit —Exithandlers. e 1022
28.9 traceback — Printorretrieve astacktraceback. o Lo 1023
28.10 future_ — Future statementdefinitions 1027
28.11gc — Garbage Collectorinterface. e 1028
28.12inspect —Inspectliveobjects. 1030
28.13site — Site-specific configurationhook Lo 1035
28.14user — User-specific configurationhook 1036
28.15fpectl — Floating point exceptioncontrol 1037
Custom Python Interpreters 1039

29.1 code — Interpreterbaseclasses 1039
29.2 codeop — Compile Pythoncode 1041
Restricted Execution 1043

30.1 rexec — Restricted executionframework Lo 1043
30.2 Bastion — Restrictingaccesstoobjects 1046
Importing Modules 1049

31.1 imp —Accessthemport internals. e 1049
31.2 imputil —Importutilities e 1052
31.3 zipimport — Import modules from Zip archives. 1056
31.4 pkgutii — Package extensionutility L L 1058
31.5 modulefinder = — Find modulesusedbyascript 1058
31.6 runpy — Locating and executing Pythonmodules 1060
Python Language Services 1063

32.1 parser — Access Pythonparsetrees. e 1063
32.2 Abstract Syntax TreeS o o i e e e e e e 1072
32.3 symtable — Access tothe compiler'ssymboltables. 1077
32.4 symbol — Constants used with Python parsetrees 1079
32.5 token — Constants used with Python parsetrees 1079
32.6 keyword — Testing for Pythonkeywords, 1079
32.7 tokenize — Tokenizerfor Pythonsource., 1080
32.8 tabnanny — Detection of ambiguousindentation 1081
32.9 pyclbr — Python class browsersupport e 1082
32.10py_compile — Compile Pythonsourcefiles 1083
32.11compileall — Byte-compile Pythonlibraries 1083
32.12dis — Disassembler for Pythonbytecode 1084
32.13pickletools — Tools for pickle developers.. 1092
32.14distutils — Building and installing Pythonmodules. 1092
Python compiler package 1095

Vi

34

35

36

37

38

39

33.1 Thebasicinterface e e e e 1095

33.2 LIMItationS. o e e e e 1096
33.3 Python Abstract Syntax. e 1096
33.4 Using Visitorsto Walk ASTS 1101
33.5 Bytecode Generation. e e e e 1101
Miscellaneous Services 1103

34.1 formatter = — Generic outputformatting 1103
MS Windows Specific Services 1107

35.1 msilib — Read and write Microsoft Installerfiles 1107
35.2 msvert — Useful routines from the MS VC++runtime L. 1112
35.3 _winreg —WIindows registry @CCeSS v i i e e e e e e e 1114
35.4 winsound — Sound-playing interface for Windows. 1119
Unix Specific Services 1121

36.1 posix — The mostcommon POSIX systemcalls. 1121
36.2 pwd—The passworddatabase e 1122
36.3 spwd — The shadow password database, 1123
36.4 grp — Thegroupdatabase 1123
36.5 crypt — Functionto check Unix passwords. e 1124
36.6 dI —CallCfunctionsinsharedobjects 1124
36.7 termios — POSIXstylettycontrol. 1126
36.8 tty — Terminal controlfunctions. 1127
36.9 pty — Pseudo-terminal utilities 1127
36.10fcntl — Thefentl() andioctl() systemecalls. 1128
36.11pipes — Interfaceto shellpipelines 1130
36.12posixfile — File-like objects with lockingsupport 1131
36.13resource — Resource usage information. L L0 1133
36.14nis — Interface to Sun’s NIS (Yellow Pages) o oL 1135
36.15syslog — Unix syslog libraryroutines. 1136
36.16 commands — Utilities forrunningcommands 0. 1137
Mac OS X specific services 1139

37.1 ic — Accesstothe Mac OS XInternetConfig. L 1139
37.2 MacOS— Accessto Mac OSinterpreterfeatures 1140
37.3 macostools — Convenience routines for file manipulation. 1142
37.4 findertools — Thefinder's Apple Eventsinterface 1142
37.5 EasyDialogs — Basic Macintoshdialogs., 1143
37.6 FrameWork — Interactive application framework L 1145
37.7 autoGIL — Global Interpreter Lock handling ineventloops. 1149
37.8 Mac OSToolbox Modules e 1149
37.9 ColorPicker —Colorselectiondialog., 1155
MacPython OSA Modules 1157

38.1 gensuitemodule — Generate OSA stubpackages. 1158
38.2 aetools — OSAclientsupport. 1159
38.3 aepack — Conversion between Python variables and AppleEvent data containers. 1160
38.4 aetypes — AppleEventobjects. Lo 1161
38.5 MiniAEFrame — Open Scripting Architecture serversupport. 1162
SGI IRIX Specific Services 1165

39.1 al —Audiofunctionsonthe SGl 1165
39.2 AL — Constants used withthed module Lo 1167
39.3 cd — CD-ROM access on SGISYSteMS v v v i i i e e e e e e e e e e 1167

Vii

39.4 fl — FORMS library for graphical userinterfaces. 1170
39.5 FL — Constantsused withtife module 1175
39.6 flp — Functions for loading stored FORMS designs. 1175
39.7 fm — Font Managerinterface. 1175
39.8 gl — Graphics Libraryinterface e 1176
39.9 DEVICE— Constantsused withttgd module 1178
39.10GL— Constants used withttgg module 1178
39.11imgfile — Support for SGlimglibfiles o 1178
39.12jpeg — Read andwrite JPEGfiles. 1179
40 SunOS Specific Services 1181
40.1 sunaudiodev — AccesstoSunaudiohardware. 1181
40.2 SUNAUDIODEW- Constants used witbunaudiodev 1182
41 Undocumented Modules 1183
41.1 Miscellaneous useful utilities. L 1183
41.2 Platformspecificmodules L 1183
41.3 Multimedia. e 1183
41.4 Undocumented Mac OSmodules. e 1184
415 ODbsolete. 1185
41.6 SGl-specific Extension modules. 1185
A Glossary 1187
B About these documents 1193
B.1 Contributors to the Python Documentation. 1193
C History and License 1195
C.1 Historyofthesoftware e 1195
C.2 Terms and conditions for accessing or otherwise using Python 1196
C.3 Licenses and Acknowledgements for Incorporated Software. 1198
D Copyright 1207
Module Index 1209
Index 1215

viii

The Python Library Reference, Release 2.6.4c1

Release?2.6
Date October 18, 2009

While The Python Language Referer{c@ The Python Language Referehdescribes the exact syntax and semantics
of the Python language, this library reference manual describes the standard library that is distributed with Python. It
also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file 1/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include many

additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so

it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available ffgthdhé ackage
Index

CONTENTS 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6.4c1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with cliaptem Objects as the remainder

of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.6.4c1

4 Chapter 1. Introduction

CHAPTER

TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

all (iterable
Return True if all elements of theerableare true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of thierableis true. If the iterable is empty, return False. Equivalent to:

def any (iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass $or andunicode . It cannot be called or instantiated, but it can be

used to test whether an object is an instancetof or unicode . isinstance(obj, basestring) is
equivalent tdsinstance(obj, (str, unicode)) . New in version 2.3.
bin (x)

Convert an integer number to a binary string. The result is a valid Python expresskas.niét a Pythorint
object, it has to define an index () method that returns an integer. New in version 2.6.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedwés fiilse or omitted, this returns
False ; otherwise it returngrue . bool is also a class, which is a subclassmf . Classbool cannot be
subclassed further. Its only instancesaeése andTrue . New in version 2.2.1.Changed in version 2.3: If no
argument is given, this function returfslse .

The Python Library Reference, Release 2.6.4c1

callable (objec)
ReturnTrue if the objectargument appears callableglse if not. If this returns true, it is still possible that a
call fails, but if it is false, callingbjectwill never succeed. Note that classes are callable (calling a class returns
a new instance); class instances are callable if they haveall () method.

chr (i)
Return a string of one character whose ASCII code is the intedesr examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusitedpeError will
be raised ifi is outside that range. See alsoichr()

classmethod (function
Return a class method function

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, S

The @classmethod form is a functiondecorator— see the description of function definitionsFuminction
definitions(in The Python Language Referehéar details.

It can be called either on the class (suchCaK)) or on an instance (such &).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different than C++ or Java static methods. If you want thosgtseeethod() in this
section.

For more information on class methods, consult the documentation on the standard type hierahghgtan-
dard type hierarchyin The Python Language RefereljcHew in version 2.2.Changed in version 2.4: Function
decorator syntax added.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X < y,zeroifx == y and strictly positive ik > vy.

compile (source, filename, mode, [flags, [dont_inheijt]]
Compile thesourceinto a code or AST object. Code objects can be executed byan statement or evaluated
by a call toeval() . sourcecan either be a string or an AST object. Refer todhke module documentation
for information on how to work with AST objects.

The filenameargument should give the file from which the code was read; pass some recognizable value if it

wasn't read from a file’€string>’ is commonly used).

The modeargument specifies what kind of code must be compiled; it caexer’ if sourceconsists of a
sequence of statementsyal’ if it consists of a single expression, @ingle’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something dttwerethat
be printed).

The optional argumenftagsanddont_inheritcontrol which future statements (sSB&P 239 affect the compi-

lation of source If neither is present (or both are zero) the code is compiled with those future statements that are
in effect in the code that is calling compile. If tHagsargument is given andont_inheritis not (or is zero) then

the future statements specified by flegsargument are used in addition to those that would be used anyway.

If dont_inheritis a non-zero integer then tflagsargument is it — the future statements in effect around the call

to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmapiler_flag attribute on the Feature

6 Chapter 2. Built-in Functions

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6.4c1

instance inthe future_ module.

This function raiseSyntaxError if the compiled source is invalid, antdypeError if the source contains
null bytes.

Note: When compiling a string with multi-line statements, line endings must be represented by a single
newline character\p’), and the input must be terminated by at least one newline character. If line endings
are represented Byr'\n’ | usestr.replace() to change them intdn’ . Changed in version 2.3: The
flagsanddont_inheritarguments were added.Changed in version 2.6: Support for compiling AST objects.

complex ([real, [imag]])
Create a complex number with the valgal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat() . If both arguments are omitted, retui@s.

The complex type is described Mumeric Types — int, float, long, complex

delattr (object, namg

This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar’) is equivalent talel x.foobar

dict ([arg])
Create a new data dictionary, optionally with items taken feogn The dictionary type is described liapping
Types — dict

For other containers see the builtlist , set , andtuple classes, and theollections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a list
of valid attributes for that object.

If the object has a method nameddir__ () , this method will be called and must return the list of attributes.
This allows objects that implement a custongetattr () or__getattribute_ () function to cus-
tomize the waydir() reports their attributes.

If the object does not provide dir__ () , the function tries its best to gather information from the object’s
__dict__attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custogetattr ()

The defaultdir() mechanism behaves differently with different types of objects, as it attempts to produce the
most relevant, rather than complete, information:

«If the object is a module object, the list contains the names of the module’s attributes.

«If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

«Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> jmport struct
>>> dir () # doctest: +SKIP

[builtins_’, * doc_ ', ' _name__’, 'struct]
>>> dir (struct) # doctest: +NORMALIZE_WHITESPACE
[Struct’, ’__builtins__’, *_doc_’, ' file_ ', ' name_’,

' _package_’, ’_clearcache’, ’calcsize’, ’error, ’'pack’, 'pack_into’,

The Python Library Reference, Release 2.6.4c1

‘'unpack’, 'unpack_from’]
>>> class Foo(object):
def _ dir__ (self):
return ["kan", "ga", "roo"]

>>> f = Foo()
>>> dir (f)
[ga’, 'kan’, 'ro0’]

Note: Becauselir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply

an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases. For example, metaclass attributes are not in the result list when
the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the sam¢aa#/ b, a % b) . For floating point numbers the
resultis(q, a % b) , whereqis usuallymath.floor(a / b) but may be 1 less than that. In any case
*b + a % bisveryclosetm, if a % bis non-zero it has the same signlasand0 <= abs(a % b)
< abs(b) . Changed in version 2.3: Usirjvmod() with complex numbers is deprecated.

enumerate (sequence, [start=0]
Return an enumerate objesequencenust be a sequence, aarator, or some other object which supports iter-
ation. Thenext() method of the iterator returned leyyumerate() returns a tuple containing a count (from
startwhich defaults to 0) and the corresponding value obtained from iteratingtevable enumerate() is

useful for obtaining an indexed seri€B; seq[0]) , (1, seq[1]) . (2, seq[2]) , For example:
>>> for i, season in enumerate ([' Spring ', ' Summer, 'Fall ', ' Winter ']):
print i, season

0 Spring

1 Summer

2 Fall

3 Winter

New in version 2.3.New in version 2.6: Tkeart parameter.

eval (expression, [globals, [locals]]
The arguments are a string and optional globals and locals. If pro\gétdzhlsmust be a dictionary. If provided,
localscan be any mapping object. Changed in version 2.4; formecliswas required to be a dictionary. The
expressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using theglobalsandlocals dictionaries as global and local namespace. Ifdglwbalsdictionary is present
and lacks ‘__builtins__’, the current globals are copied mitthals beforeexpressioris parsed. This means
that expressiomormally has full access to the standardouiltin___ module and restricted environments
are propagated. If thiecalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whext) is called. The return value is the result
of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval (" x+1")
2

This function can also be used to execute arbitrary code objects (such as those createtiy()). In
this case pass a code object instead of a string. If the code object has been compilegegith as thekind
argumenteval() ‘s return value will beNone.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for aselfy or
execfile()

execfile (filename, [globals, [locals])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modulé.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If providedocals can be any mapping object. Changed in version 2.4: formedsls was required

to be a dictionary. If théocals dictionary is omitted it defaults to thglobalsdictionary. If both dictionaries

are omitted, the expression is executed in the environment vehexeile() is called. The return value is

None.

Note: The defaultocalsact as described for functidncals() below: modifications to the defadticals
dictionary should not be attempted. Pass an exgdlcials dictionary if you need to see effects of the code
on locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filename, [mode, [bufsizg]]
Constructor function for théle type, described further in sectidiiie Objects The constructor’s arguments
are the same as those of thigen() built-in function described below.

When opening a file, it's preferable to uspen() instead of invoking this constructor directfjle is more
suited to type testing (for example, writimgjnstance(f, file)). New in version 2.2.

filter (function, iterablg
Construct a list from those elementsitdrable for which functionreturns true.iterable may be either a se-
quence, a container which supports iteration, or an iteratdtertible is a string or a tuple, the result also has
that type; otherwise it is always a list.flinctionis None, the identity function is assumed, that is, all elements
of iterablethat are false are removed.

Note thatfilter(function, iterable) is equivalent to[item for item in iterable if
function(item)] if function is notNone and[item for item in iterable if item] if func-
tion isNone.
Seeitertools.filterfalse() for the complementary function that returns elementdterfable for
whichfunctionreturns false.

float ([X])

Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+|-]nan or
[+]-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point
number with the same value (within Python’s floating point precision) is returned. If no argument is given,
returns0.0 .

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying

C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and a

leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity as nan,
inf or -inf.

The float type is described iMumeric Types — int, float, long, complex

format (value, [format_sped]
Convert avalueto a “formatted” representation, as controlledfbsmat_specThe interpretation dormat_spec

11tis used relatively rarely so does not warrant being made into a statement.

The Python Library Reference, Release 2.6.4c1

will depend on the type of thealueargument, however there is a standard formatting syntax that is used by
most built-in typesFormat Specification Mini-Language

Note: format(value, format_spec) merely callsvalue.__format__(format_spec) . New
in version 2.6.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken fitenable The frozenset type is describedSet
Types — set, frozenset

For other containers see the builtdict |, list |, andtuple classes, and theollections module. New
in version 2.4.

getattr (object, name, [defaul)]
Return the value of the named attributedaffject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgplattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exiggfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The resltue if the string is the name of one of the object’s
attributesFalse if not. (This is implemented by callingetattr(object, name) and seeing whether it
raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace bydire module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.

Note: To obtain a hexadecimal string representation for a float, usgédhiehex() method. Changed in
version 2.4: Formerly only returned an unsigned literal.

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw_input(prompt))

Warning: This function is not safe from user errors! It expects a valid Python expression as input;|if the
input is not syntactically valid, &yntaxError will be raised. Other exceptions may be raised if the¢re

is an error during evaluation. (On the other hand, sometimes this is exactly what you need when wyiting a
quick script for expert use.)

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history
features.

Consider using theaw_input() function for general input from users.

int ([x, [base]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespdesepheameter gives

the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or zero. If
baseis zero, the proper radix is determined based on the contents of string; the interpretation is the same as
for integer literals. (Se&lumeric literals(in The Python Language Referehgelf baseis specified anc is

not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer or a floating point
number. Conversion of floating point numbers to integers truncates (towards zero). If the argument is outside
the integer range a long object will be returned instead. If no arguments are given, feturns

The integer type is described Wumeric Types — int, float, long, complex

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassinfois a type object (new-style class) aobjectis an object of that type or of a
(direct or indirect) subclass thereof.dbjectis not a class instance or an object of the given type, the function
always returns false. Klassinfois neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accapasd)nidis not

a class, type, or tuple of classes, types, and such tuplegeError exception is raised. Changed in version
2.2: Support for a tuple of type information was added.

issubclass (class, classinfp

iter

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entgjassinfowill be checked. In any other
case, alypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

(o, [sentinel)

Return anterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the _iter__ () method), or it must support the sequence protocol (thgetitem__ () method with
integer arguments starting @). If it does not support either of those protocolg,peError is raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equaldentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

list

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

([iterable])

Return a list whose items are the same and in the same ordtrasle's items. iterable may be either a
sequence, a container that supports iteration, or an iterator objéetalfleis already a list, a copy is made and
returned, similar taterable[:] . For instancelist('abc’) returns'a’, 'b’, 'c] andlist(

1, 2, 3)) returns[1, 2, 3] . If no argumentis given, returns a new empty Ijt,

list is a mutable sequence type, as documentegkiquence Types — str, unicode, list, tuple, buffer, xrange
For other containers see the builtditt , set , andtuple classes, and theollections module.

locals ()

Update and return a dictionary representing the current local symbol table.

11

The Python Library Reference, Release 2.6.4c1

Note: The contents of this dictionary should not be modified; changes may not affect the values of local
variables used by the interpreter.

Free variables are returned lmals() when it is called in a function block. Modifications of free variables
may not affect the values used by the interpreter. Free variables are not returned in class blocks.

long ([x, [base]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. Béseargument is interpreted in the same way as for
int() , and may only be given whenis a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, ré&urns

The long type is described iMumeric Types — int, float, long, complex

map(function, iterable, .).
Apply functionto every item ofiterable and return a list of the results. If addition&rable arguments are
passedfunctionmust take that many arguments and is applied to the items from all iterables in parallel. If one
iterable is shorter than another it is assumed to be extendedNwitk items. Iffunctionis None, the identity
function is assumed; if there are multiple argumentsp() returns a list consisting of tuples containing the
corresponding items from all iterables (a kind of transpose operation)terablearguments may be a sequence
or any iterable object; the result is always a list.

max(iterable, [args...], [key)
With a single argumeriterable, return the largest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

The optionakeyargument specifies a one-argument ordering function like that uséidtfeort() . The
keyargument, if supplied, must be in keyword form (for examphax(a,b,c,key=func)). Changed in
version 2.5: Added support for the optiorkalyargument.

min (iterable, [args...], [key)
With a single argumeriterable return the smallest item of a non-empty iterable (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

The optionalkeyargument specifies a one-argument ordering function like that uséidtfeort() . The
keyargument, if supplied, must be in keyword form (for examphin(a,b,c,key=func)). Changed in
version 2.5: Added support for the optiorkelyargument.

next (iterator, [default])
Retrieve the next item from thigerator by calling itsnext() method. Ifdefaultis given, it is returned if the
iterator is exhausted, otherwiSg¢oplteration is raised. New in version 2.6.

object ()
Return a new featureless objecbject is a base for all new style classes. It has the methods that are common
to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function does not accept
any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]]
Open a file, returning an object of thike type described in sectidfile Objects If the file cannot be opened,
IOError israised. When opening afile, it's preferable to apen() instead of invoking théle construc-
tor directly.

The first two arguments are the same assfolio ‘s fopen() : filenameis the file name to be opened, and
modeis a string indicating how the file is to be opened.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

The most commonly-used valuesrmabdeare’r for reading,w’ for writing (truncating the file if it already

exists), anda’ for appending (which osomeUnix systems means thall writes append to the end of the file
regardless of the current seek position)middeis omitted, it defaults t&r' . The default is to use text mode,

which may converfin’ characters to a platform-specific representation on writing and back on reading. Thus,
when opening a binary file, you should appéid to themodevalue to open the file in binary mode, which will
improve portability. (Appendingp’ is useful even on systems that don't treat binary and text files differently,
where it serves as documentation.) See below for more possible valumeglef The optionabufsizeargument
specifies the file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negativgsizemeans to use the system default, which is usually

line buffered for tty devices and fully buffered for other files. If omitted, the system default is tised.

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files; on systems
that don't have this distinction, adding th® has no effect.

In addition to the standarfdpen() valuesmodemay be’U’ or’rU’ . Python is usually built with universal
newline support; supplying)’ opens the file as a text file, but lines may be terminated by any of the following:
the Unix end-of-line conventiohin’ , the Macintosh conventiolr’ , or the Windows conventiofr\n’

All of these external representations are seerirds by the Python program. If Python is built without
universal newline supportmodewith ‘U’ is the same as normal text mode. Note that file objects so opened
also have an attribute calleggwlines which has a value dflone (if no newlines have yet been seetw),
v\ , or a tuple containing all the newline types seen.

Python enforces that the mode, after stripgidy , begins with'r ,'w’ or’a’

Python provides many file handling modules includifiginput , 0s, os.path , tempfile , and
shutil . Changed in version 2.5: Restriction on first letter of mode string introduced.
ord (¢

Given a string of length one, return an integer representing the Unicode code point of the character when the
argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord(’'a’) returns the integed7, ord(u\u2020’) returns8224 . This is the inverse ofhr() for 8-bit

strings and ofinichr() for unicode objects. If a unicode argument is given and Python was built with UCS2
Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise the string length
is two, and al'ypeError will be raised.

pow(X, y, [z])
Returnx to the powery; if z is present, returix to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The two-argument formpow(x, y) is equivalent to using the power operatet*y .

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result is
delivered. For examplel0**2 returns100, but 10**-2 returns0.01 . (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted. If

is presentx andy must be of integer types, ariydnust be non-negative. (This restriction was added in Python

2.2. In Python 2.1 and before, floating 3-argumeotv() returned platform-dependent results depending on
floating-point rounding accidents.)

print ([object, ...], [sep=""], [end="\n"], [file=sys.stdout])
Print objec(s) to the streanfile, separated bgepand followed byend sep endandfile, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings kkg€) does and written to the stream, separated by

2 Specifying a buffer size currently has no effect on systems that don'tdeivbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no reliable way to
determine whether this is the case.

13

The Python Library Reference, Release 2.6.4c1

sepand followed byend Both sepandend must be strings; they can also Bene, which means to use the
default values. If nmbjectis given,print() will just write end

The file argument must be an object with varite(string) method; if it is not present oNone,
sys.stdout will be used.

Note: This function is not normally available as a builtin since the namiet is recognized as therint
statement. To disable the statement and useitiné) function, use this future statement at the top of your
module:

from _ future import print_function

New in version 2.6.

property ([fget, [fset, [fdel, [doc]]]])
Return a property attribute farew-style class (classes that derive frombject).

fgetis a function for getting an attribute value, likewifsetis a function for setting, anttel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def __init (self):
self . _x = None

def getx (self):
return self . _Xx
def setx (self , value):
self . _x = value
def delx (self):
del self . _x
X = property (getx, setx, delx, “1"m the

’ 1

X' property. ")
If given, docwill be the docstring of the property attribute. Otherwise, the property will dgpys docstring
(if it exists). This makes it possible to create read-only properties easily psipgrty() as adecorator

class Parrot (object):
def __init (self):
self . _voltage = 100000

@property

def voltage (self):
""" Get the current voltage.""
return self . _voltage

turns thevoltage() method into a “getter” for a read-only attribute with the same name.

A property object hagetter , setter , anddeleter methods usable as decorators that create a copy of the
property with the corresponding accessor function set to the decorated function. This is best explained with an
example:

class C(object):
def __init__ (self):
self . _x = None

@property
def x(self):

14 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

"I'm the 'X’ property.
return self . _x

@x setter
def x(self , value):
self . _x = value

@x deleter
def x(self):
del self . _x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original propertyX in this case.)

The returned property also has the attribdtgst , fset , andfdel corresponding to the constructor argu-
ments. New in version 2.2.Changed in version 2.5: fgeés docstring if nodocgiven.Changed in version 2.6:
Thegetter , setter , anddeleter attributes were added.

range ([start], stop, [step)
This is a versatile function to create lists containing arithmetic progressions. It is most often tmedlaops.
The arguments must be plain integers. If gtepargument is omitted, it defaults ta If the start argument is
omitted, it defaults td. The full form returns a list of plain integefstart, start + step, start
+ 2 * step, ..] . If stepis positive, the last element is the largs&trt + i * step less tharstop
if stepis negative, the last element is the smalksit + i * step greater tharstop stepmust not be
zero (or elsé/alueError s raised). Example:

>>> range (10)

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
>>> range (1, 11)

1, 2, 3, 4, 5, 6, 7, 8 9, 10]
>>> range (0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range (0)

I

>>> range (1, 0)

I

raw_input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is read,
EOFError israised. Example:

>>> g = raw_input (' -->)
--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline module was loaded, themmw_input() will use it to provide elaborate line editing and
history features.

15

The Python Library Reference, Release 2.6.4c1

reduce (function, iterable, [initializer)

Apply functionof two arguments cumulatively to the itemsitérable from left to right, so as to reduce the
iterable to a single value. For exampteduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calcu-
lates((((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argumgris the
update value from thigerable If the optionalinitializer is present, it is placed before the items of the iterable in
the calculation, and serves as a default when the iterable is emjtiidlizer is not given andterablecontains
only one item, the first item is returned.

reload (modulg

Reload a previously importedodule The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
themoduleargument).

Whenreload(module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to names in the module’s dictionary. Trtie function of extension modules is not
called a second time.

«As with all other objects in Python the old objects are only reclaimed after their reference counts drop to
zero.

*The names in the module namespace are updated to point to any new or changed objects.

«Other references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the firsport statement for it does not bind
its name locally, but does store a (partially initialized) module objesyBimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atatement it can test

for the table’s presence and skip its initialization if desired:

try :
cache

except NameError :
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excepsfor
__main__ and__builtin__ . In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usfrgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefugmthe
statement, another is to ugeport and qualified namesr{odule*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)

Return a string containing a printable representation of an object. This is the same value yielded by conversions

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val() , otherwise the representation is a string enclosed in angle brackets that contains the name of
the type of the object together with additional information often including the name and address of the object.
A class can control what this function returns for its instances by definingepr__ () method.

reversed (seq
Return a reverséerator. seqmust be an object which has areversed_ () method or supports the
sequence protocol (thelen__ () method and the getitem__ () method with integer arguments starting
at0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custoaversed__ ()
method.

round (x, [n])
Return the floating point valuerounded ton digits after the decimal point. Hiis omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for exampled(0.5) is1.0 and
round(-0.5) is-1.0).

set ([iterable])
Return a new set, optionally with elements are taken fiterable The set type is described $et Types — set,
frozenset

For other containers see the builtdict |, list |, andtuple classes, and theollections module. New
in version 2.4.

setattr (object, name, valye
This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(x, 'foobar’, 123) is equivalent tox.foobar = 123

slice ([start], stop, [step)
Return aslice object representing the set of indices specifiedange(start, stop, step) . Thestart
and steparguments default tblone. Slice objects have read-only data attribuséert , stop andstep
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampglstart:stop:step] or a[start:stop, i . See
itertools.islice() for an alternate version that returns an iterator.

sorted (iterable, [cmp, [key, [reverse]])
Return a new sorted list from the itemsiiarable

The optional argumentamp key, andreversehave the same meaning as those forlistesort() method
(described in sectiollutable Sequence Types

cmpspecifies a custom comparison function of two arguments (iterable elements) which should return a nega-
tive, zero or positive number depending on whether the first argument is considered smaller than, equal to, or
larger than the second argumeptnp=lambda x,y: cmp(x.lower(), y.lower()) . The default

value isNone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, thé&eyandreverseconversion processes are much faster than specifying an equisalpfitnction.
This is becausempis called multiple times for each list element whideyandreversetouch each element only
once. To convert an old-stytempfunction to akeyfunction, see th€mpToKey recipe in the ASPN cookbaok
New in version 2.4.

17

http://code.activestate.com/recipes/576653/

The Python Library Reference, Release 2.6.4c1

staticmethod (function

Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C
@staticmethod
def f(argl, arg2, D &

The @staticmethod form is a functiondecorator— see the description of function definitionskanction
definitions(in The Python Language Referehfer details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod() in this section.

For more information on static methods, consult the documentation on the standard type hierdiehgtan-
dard type hierarchyin The Python Language Refereljclew in version 2.2.Changed in version 2.4: Function
decorator syntax added.

str ([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string itself.
The difference withrepr(object) is thatstr(object) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string. If no argument is given, returns the empty string,

For more information on strings s&equence Types — str, unicode, list, tuple, buffer, xravtgeh describes
sequence functionality (strings are sequences), and also the string-specific methods describ&iringthe
Methodssection. To output formatted strings use template strings ofdbperator described in th8tring
Formatting Operationsection. In addition see tt&ring Servicesection. See alsonicode()

sum(iterable, [start])

Sumsstart and the items of aiterable from left to right and returns the totaktart defaults to0. Theiter-

ablées items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by callirigoin(sequence) . Note thatsum(range(n), m) is equivalent

to reduce(operator.add, range(n), m) To add floating point values with extended precision, see
math.fsum() . New in version 2.3.

super (type, [object-or-typé)]

Return a proxy object that delegates method calls to a parent or sibling clapg ofhis is useful for accessing
inherited methods that have been overridden in a class. The search order is same as thaeiset(by
except that theypeitself is skipped.

The __mro__ attribute of thetypelists the method resolution search order used by betfattr() and
super() . The attribute is dynamic and can change whenever the inheritance hierarchy is updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an ob-
ject, isinstance(obj, type) must be true. If the second argument is a tyipsubclass(type2,
type) must be true (this is useful for classmethods).

Note: super() only works fornew-style clases.

There are two typical use cases smper In a class hierarchy with single inheritansepercan be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use fuperin other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This use
case is unique to Python and is not found in statically compiled languages or languages that only support single

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes implement
the same method. Good design dictates that this method have the same calling signature in every case (because
the order of calls is determined at runtime, because that order adapts to changes in the class hierarchy, and
because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method (self , arg):
super (C, self). method(arg)

Note thatsuper() is implemented as part of the binding process for explicit dotted attribute lookups such as
super().__getitem__ (name) . It does so by implementing its own getattribute () method

for searching classes in a predictable order that supports cooperative multiple inheritance. Accordingly,
super() is undefined for implicit lookups using statements or operators sustps()[name]

Also note thatuper() is not limited to use inside methods. The two argument form specifies the arguments
exactly and makes the appropriate references. New in version 2.2.

tuple ([iterable])
Return a tuple whose items are the same and in the same oiitenabte's items.iterablemay be a sequence, a
container that supports iteration, or an iterator objedtetibleis already a tuple, it is returned unchanged. For
instancetuple(’abc’) returns(’a’, ’b’, 'c) andtuple([1, 2, 3]) returns(1, 2, 3) . If
no argument is given, returns a new empty tuple,

tuple is an immutable sequence type, as documentegkeinuence Types — str, unicode, list, tuple, buffer,
xrange For other containers see the builtdict | list , andset classes, and theollections module.

type (objecd
Return the type of ambject The return value is a type object. Thenstance() built-in function is
recommended for testing the type of an object.

With three argumentsype() functions as a constructor as detailed below.

type (name, bases, dict
Return a new type object. This is essentially a dynamic form ofcthes statement. Th@amestring is
the class name and becomes themame___ attribute; thebasestuple itemizes the base classes and becomes
the __bases _ attribute; and thalict dictionary is the namespace containing definitions for class body and
becomes the dict__ attribute. For example, the following two statements create iderifipal objects:

>>> class X(object):
a=1

>>> X = type (' X, (object), dict (a=1))

New in version 2.2.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgmrexamplepunichr(97)
returns the string’'a’ . This is the inverse afrd() for Unicode strings. The valid range for the argument de-
pends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FBRIEEETor
is raised otherwise. For ASCII and 8-bit strings seg) . New in version 2.0.

unicode ([object, [encoding, [errors]]])
Return the Unicode string version albjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowngokupError s raised. Error handling is done accordingetors;

19

The Python Library Reference, Release 2.6.4c1

this specifies the treatment of characters which are invalid in the input encodiegons$ is 'strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteFFFD to be used to replace
input characters which cannot be decoded. See alsmotliecs module.

If no optional parameters are givempicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselghfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a unicode__ () method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiitt’ mode.

For more information on Unicode strings seequence Types — str, unicode, list, tuple, buffer, xraviieh

describes sequence functionality (Unicode strings are sequences), and also the string-specific methods described
in the String Methodssection. To output formatted strings use template strings ovdbgerator described in

the String Formatting Operationsection. In addition see tH&iring Servicesection. See alssir() . New in

version 2.0.Changed in version 2.2: Support founicode_ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hadiet_ attribute), returns a dictionary
corresponding to the object’'s symbol table.

Note: The returned dictionary should not be modified: the effects on the corresponding symbol table are
undefined?

xrange ([start], stop, [step)
This function is very similar toange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the
values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeakth.

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs (“short” Python inte-
gers), and also requires that the number of elements fit in a native C long. If a larger range is needed,
an alternate version can be crafted using iteetools module: islice(count(start, step),
(stop-start+step-1)//step)

zip ([iterable, ...])
This function returns a list of tuples, where thth tuple contains theth element from each of the argument
sequences or iterables. The returned list is truncated in length to the length of the shortest argument sequence.
When there are multiple arguments which are all of the same lenigify, is similar tomap() with an initial
argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups usiig(*[iter(s)]*n)

zip() in conjunction with theé operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>>y = [4, 5, 6]
>>> zipped = zip (X, V)
>>> zipped

(1, 4, 2, 5), 3, 6)]

3 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

20 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6.4c1

>>> X2, y2 = zip (*zipped)
>>> x == list (x2) and y == list (y2)
True

New in version 2.0.Changed in version 2.4: Formerly() required at least one argument anpl) raised
aTypeError instead of returning an empty list.

__import__ (name, [globals, [locals, [fromlist, [level]]])

Note: This is an advanced function that is not needed in everyday Python programming.

This function is invoked by thenport statement. It can be replaced (by importing boidtins module and
assigning tduiltins.__import__) in order to change semantics of thgport statement, but nowadays
it is usually simpler to use import hooks (seeP 302. Direct use of _import_ () is rare, except in cases
where you want to import a module whose name is only known at runtime.

The function imports the moduleame potentially using the giveglobals andlocals to determine how to
interpret the name in a package context. Tioenlist gives the names of objects or submodules that should be
imported from the module given hyame The standard implementation does not uséoitalsargument at all,
and uses itglobalsonly to determine the package context of import statement.

levelspecifies whether to use absolute or relative imports. The defadlt vghich indicates both absolute and
relative imports will be attempted. means only perform absolute imports. Positive value$feglindicate the
number of parent directories to search relative to the directory of the module callimgort ()

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till
the first dot) is returnedyot the module named bygame However, when a non-empfyomlist argument is
given, the module named Imameis returned.

For example, the statemeniport spam results in bytecode resembling the following code:
spam = _ import (' spam’, globals (), locals (), [, -1)

The statemerimport spam.ham results in this call:

spam = __import (' spam.ham’, globals (), locals (), I, -1)

Note how__import_ () returns the toplevel module here because this is the object that is bound to a name
by theimport statement.

On the other hand, the statemémim spam.ham import eggs, sausage as saus results in
_temp = _ import__ ('’ spam.ham’, globals (), locals (), ['eggs’, ’'sausage’'], -1)
eggs = _temp. eggs

saus = _temp. sausage

Here, thespam.ham module is returned from import () . From this object, the names to import are

retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, you can catlport__ ()
and then look it up irsys.modules

>>> jmport sys

>>> name = ' foo.bar.baz
>>> _ import__ (name)
<module ’'foo’ from ...>
>>> baz = sys.modules[name]

21

http://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 2.6.4c1

>>> baz
<module ’foo.bar.baz’ from ...>

Changed in version 2.5: The level parameter was added.Changed in version 2.5: Keyword support for parameters
was added.

22 Chapter 2. Built-in Functions

CHAPTER

THREE

NON-ESSENTIAL BUILT-IN FUNCTIONS

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without concerns
about missing something important.

apply (function, args, [keyword3]
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a sequence. Timectionis called withargsas the argument list; the number of
arguments is the length of the tuple. If the optiok@ywordsargument is present, it must be a dictionary whose
keys are strings. It specifies keyword arguments to be added to the end of the argument list.a@alliflg
is different from just callindunction(args) , since in that case there is always exactly one argument. The
use ofapply() is equivalent tdunction(*args, **keywords) . Deprecated since version 2.3: Use
the extended call syntax wittargs and**keywords instead.

buffer (object, [offset, [size]]
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdbhgctargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, rajgeError

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value oiintern() around to benefit from it.

23

The Python Library Reference, Release 2.6.4c1

24 Chapter 3. Non-essential Built-in Functions

CHAPTER

FOUR

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of theool type. New in version 2.3.

True
The true value of théool type. New in version 2.3.

None
The sole value ofypes.NoneType . None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Changed in version 2.4: Assignmotetare illegal and
raise aSyntaxError

Notimplemented
Special value which can be returned by the “rich comparison” special methodg (() ,_ It () ,and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug___
This constant is true if Python was not started with@noption. Assignments to debug are illegal and
raise aSyntaxError . See also thassert statement.

4.1 Constants added by the site module

Thesite module (which is imported automatically during startup, except if-Biecommand-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not be
used in programs.

quit

exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemExit with the specified exit code, and when .

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

25

The Python Library Reference, Release 2.6.4c1

26 Chapter 4. Built-in Constants

CHAPTER

FIVE

BUILT-IN OBJECTS

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choiceSuBemaryin The

Python Language Referender the complete picture on operator priorities.

27

The Python Library Reference, Release 2.6.4c1

28 Chapter 5. Built-in Objects

CHAPTER

SIX

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was not
possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists. The
principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some operations
are supported by several object types; in particular, practically all objects can be compared, tested for truth value,
and converted to a string (with thepr() function or the slightly differenstr() function). The latter function is

implicitly used when an object is written by tipeint() function.

6.1 Truth Value Testing

Any object can be tested for truth value, for use iriffanor while condition or as operand of the Boolean operations
below. The following values are considered false:

* None

 False

« zero of any numeric type, for exampl&,0L, 0.0 , Oj .
« any empty sequence, for example() ,[] .

< any empty mapping, for examplg, .

« instances of user-defined classes, if the class defines@nzero_ () or__len_ () method, when that
method returns the integer zerolayol valueFalse . *

All other values are considered true — so objects of many types are always true. Operations and built-in functions that
have a Boolean result always retrmor False for false andl or True for true, unless otherwise stated. (Important
exception: the Boolean operatioos andand always return one of their operands.)

6.2 Boolean Operations — and, or , not

These are the Boolean operations, ordered by ascending priority:

1 Additional information on these special methods may be found in the Python Reference MBasiabUstomizatio(in The Python Language
Referency.

29

The Python Library Reference, Release 2.6.4c1

Operation Result Notes

X ory if xis false, thery, elsex ()

X and y if xis false, therx, elsey (2)

not X if xis false, therTrue , elseFalse 3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the firstfealeds .
2. This is a short-circuit operator, so it only evaluates the second argument if the firstione is

3. not has a lower priority than non-Boolean operatorsneb a == b isinterpreted asot (a == b) ,and
a == not b isasyntax error.

6.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for examptey <= z is equivalent tax < y

and y <= z, except thay is evaluated only once (but in both cagds not evaluated at all whexn < y is found

to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal Q)
is object identity
is not negated object identity
Notes:

1. !'= can also be writter>, but this is an obsolete usage kept for backwards compatibility only. New code should
always usé= .

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistently, ¥he> and>= operators will raise
aTypeError exception when any operand is a complex number. Instances of a class normally compare as non-equal
unless the class defines thecmp__ () method. Refer t®asic customizatiofin The Python Language Referejice

for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don't support proper comparison are ordered by their address. Two more operations with the same syntactic
priority, in andnot in , are supported only by sequence types (below).

6.4 Numeric Types — int , float ,long , complex

There are four distinct numeric typeplain integers long integers floating point numbersandcomplex numbers
In addition, Booleans are a subtype of plain integers. Plain integers (also justictdigerd are implemented using
long in C, which gives them at least 32 bits of precisisgg.maxint is always set to the maximum plain integer
value for the current platform, the minimum valuesys.maxint - 1). Long integers have unlimited precision.

30 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

Floating point numbers are implemented usitogible in C. All bets on their precision are off unless you happen to
know the machine you are working with.

Complex numbers have a real and imaginary part, which are each implementedasiidg in C. To extract these

parts from a complex numberusez.real andz.imag . Numbers are created by numeric literals or as the result

of built-in functions and operators. Unadorned integer literals (including binary, hex, and octal numbers) yield plain
integers unless the value they denote is too large to be represented as a plain integer, in which case they yield a long
integer. Integer literals with ath’ or’l' suffix yield long integers’((’ is preferred becausH looks too much

like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point numbers. Appending

7 or’'J toanumeric literal yields a complex number with a zero real part. A complex numeric literal is the sum of
areal and an imaginary part. Python fully supports mixed arithmetic: when a binary arithmetic operator has operands
of different numeric types, the operand with the “narrower” type is widened to that of the other, where plain integer is
narrower than long integer is narrower than floating point is narrower than complex. Comparisons between numbers
of mixed type use the same rule.The constructorgit() , long() ,float() , andcomplex() can be used to
produce numbers of a specific type.

All builtin numeric types support the following operations. Sd& power operatofin The Python Language Refer-
enceg and later sections for the operators’ priorities.

Operation Result Notes

X +y sum ofx andy

X -y difference ofx andy

X *y product ofx andy

xly quotient ofx andy (2)

x Iy (floored) quotient ok andy 4)(5)

X %y remainder ok / y 4)

-X X hegated

+X x unchanged

abs(x) absolute value or magnitude »f 3)

int(x) x converted to integer (2)

long(x) x converted to long integer (2)

float(x) x converted to floating point (6)

complex(re,im) a complex number with real pan¢, imaginary parim. im defaults to zero.

c.conjugate() conjugate of the complex number(ldentity on real numbers)

divmod(x, Y) the pair(x // 'y, x % vy) (3)(4)

pow(x, Y) x to the powery 3)(7)

X **y X to the powery @)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

2. Conversion from floats usingnt() or long() truncates toward zero like the related function,
math.trunc() . Use the functiormath.floor() to round downward andhath.ceil() to round up-
ward.

3. SeeBuilt-in Functionsfor a full description.

4. Complex floor division operator, modulo operator, atidnod() . Deprecated since version 2.3: Instead
convert to float usingibs() if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

2 As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

6.4. Numeric Types — int ,float ,long , complex 31

The Python Library Reference, Release 2.6.4c1

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python definepow(0, 0) and0 ** 0 tobel, asis common for programming languages.

All numbers.Real types (nt ,long , andfloat) also include the following operations:

Operation Result Notes
math.trunc(x) x truncated to Integral

round(x[, n]) x rounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math.floor(x) the greatest integral float <<

math.ceil(x) the least integral float >x

6.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’'s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operationhas the same priority as the other unary numeric operatioasd-).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
X |y bitwise or of x andy
XNy bitwise exclusive oof x andy
X &Yy bitwiseand of x andy
X << n x shifted left byn bits (2
X >>n x shifted right byn bits (1)(3)
~X the bits ofx inverted

Notes:

1. Negative shift counts are illegal and causéaueError to be raised.

2. A left shift by n bits is equivalent to multiplication bpow(2, n) . A long integer is returned if the result
exceeds the range of plain integers.

3. Aright shift by n bits is equivalent to division bgow(2, n)

6.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio 0
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator. Raises
OverflowError on infinities and a/alueError ~ on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python's floats are stored internally as
binary numbers, converting a float to or frondacimalstring usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leadigand a trailingp and exponent. New in version 2.6.

32 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

fromhex (9)
Class method to return the float represented by a hexadecimalstiiihg strings may have leading and trailing
whitespace. New in version 2.6.

Note thatfloat.hex() is an instance method, whifat.fromhex() is a class method.
A hexadecimal string takes the form:
[sign] [0x] integer [." fraction] ['p’ exponent]

where the optionasign may by either+ or -, integer andfraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2

of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the oilpiihef() is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings producethafo@isat
character or JavaBouble.toHexString are accepted bfoat.fromhex()

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal stfing.a7p10 represents the floating-point numi@&r
+ 10./16 + 7./16**2) * 2.0**10 ,0r3740.0 :

>>> float . fromhex(' 0x3.a7pl0)
3740.0

Applying the reverse conversion 8740.0 gives a different hexadecimal string representing the same number:

>>> float . hex(3740.0)
'0x1.d380000000000p+11"

6.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more detail,
always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

_iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container

supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspond#toittie slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fivemattie
protocot

_iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used Viéth the

andin statements. This method corresponds totthéter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisettipéteration exception.
This method corresponds to thg iternext slot of the type structure for Python objects in the Python/C
API.

6.5. Iterator Types 33

The Python Library Reference, Release 2.6.4c1

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratorest() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’sgeneratos provide a convenient way to implement the iterator protocol. If a container objedes ()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the _iter__ () andnext() methods.

6.6 Sequence Types — str , unicode ,list ,tuple , buffer , xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

For other containers see the builtdict andset classes, and theollections module. String literals are
written in single or double quotexyzzy’ |, "frobozz" . SeeString literals(in The Python Language Referehce

for more about string literals. Unicode strings are much like strings, but are specified in the syntax using a preceding
‘U’ character:u’abc’ , u"def* . In addition to the functionality described here, there are also string-specific
methods described in thetring Methodssection. Lists are constructed with square brackets, separating items with
commasija, b, ¢] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesasuzh @s or () . A single

item tuple must have a trailing comma, suci{@&3

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created using
thexrange() function. They don't support slicing, concatenation or repetition, and usingot in , min() or
max() onthem is inefficient.

Most sequence types support the following operations. imhandnot in operations have the same priorities as
the comparison operations. Thend* operations have the same priority as the corresponding numeric operations.
Additional methods are provided fdfutable Sequence Types

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s True if an item ofsis equal tox, elseFalse Q)

X not in s False if anitem ofsis equal tox, elseTrue | (1)

s +t the concatenation afandt (6)
s*n n*s n shallow copies o§ concatenated (2)
s[i] i‘th item of s, origin 0 3
s[i:j] slice ofsfromi toj 3)4)
s[izj:K] slice ofsfromi to j with stepk 3)(5)
len(s) length ofs

min(s) smallest item of

max(s) largest item of

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by comparing
corresponding elements. This means that to compare equal, every element must compare equal and the two sequences
must be of the same type and have the same length. (For full detailS@eparisongin The Python Language
Referencgin the language reference.) Notes:

3 They must have since the parser can't tell the type of the operands.

34 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

1. Whensis a string or Unicode string object tlie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyarmday be a string of any length.

2. Values ofn less tharD are treated a8 (which yields an empty sequence of the same typg).aNote also that
the copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> |ists = [* 3
>>> |ists

(b 0 0

>>> lists] 0] . append(3)
>>> |ists

(3], [3], [3]]

What has happened is thflf is a one-element list containing an empty list, so all three elemenrf§ of
* 3 are (pointers to) this single empty list. Modifying any of the elementgstsf modifies this single list.
You can create a list of different lists this way:

>>> lists =[] for i in range (3)]
>>> lists] 0] . append(3)

>>> lists] 1] . append(5)

>>> lists] 2] . append(7)

>>> ists

(131, [5], [7]]

3. If i orj is negative, the index is relative to the end of the strieg(s) + i orlen(s) + j is substituted.
But note thatO is still O.

4. The slice ofsfromi to j is defined as the sequence of items with inllesuch that <= k < j . Ifiorjis
greater thaen(s) , uselen(s) . If i is omitted orNone, useO. If j is omitted orNone, uselen(s) . Ifi
is greater than or equal jpthe slice is empty.

5. The slice ofs from i to j with stepk is defined as the sequence of items with index i + n*k such that
0 <= n < (j-)k . In other words, the indices are i+k , i+2*k ,i+3*k and so on, stopping wheris
reached (but never includirj@y If i orj is greater thamen(s) , uselen(s) . If i orj are omitted oNone,
they become “end” values (which end depends on the sidq).oNote, k cannot be zero. Ik is None, it is
treated likel.

6. If sandt are both strings, some Python implementations such as CPython can usually perform an in-place
optimization for assignments of the forsws+t or s+=t . When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For performance
sensitive code, it is preferable to use #igjoin() method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4: Formerly, string concatenation
never occurred in-place.

6.6.1 String Methods
Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python’s strings support the sequence type methods describediacthence Types — str, unicode, list,
tuple, buffer, xrangsection. To output formatted strings use template strings d¥othpgerator described in th&tring
Formatting Operationsection. Also, see thee module for string functions based on regular expressions.
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

6.6. Sequence Types — str , unicode , list ,tuple , buffer , xrange 35

The Python Library Reference, Release 2.6.4c1

center (width, [fillchar])

Return centered in a string of lengtvidth. Padding is done using the specifiéitchar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sub, [start, [end])

Return the number of non-overlapping occurrences of substtibip the rangeg$tart, end. Optional arguments
startandendare interpreted as in slice notation.

decode ([encoding, [errors]])

Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.

errors may be given to set a different error handling scheme. The defdstti’ , meaning that encoding
errors raiséJnicodeError . Other possible values alignore’ |, 'replace’ and any other name regis-
tered viacodecs.register_error() , see sectioltodec Base Classe®New in version 2.2.Changed in

version 2.3: Support for other error handling schemes added.

encode ([encoding, [errors]])

Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The defaultefamrs is

'strict’ , meaning that encoding errors raiséJaicodeError . Other possible values atignore’
replace’ , 'xmlcharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register_error() , see sectioodec Base ClasseBor a list of possible encodings, see section
Standard EncodingsNew in version 2.0.Changed in version 2.3: Supportxaricharrefreplace’ and
‘backslashreplace’ and other error handling schemes added.

endswith (suffix, [start, [end])

ReturnTrue if the string ends with the specifiexiffix otherwise returrralse . suffixcan also be a tuple of
suffixes to look for. With optionastart, test beginning at that position. With optiorezid stop comparing at
that position. Changed in version 2.5: Accept tuplestfix

expandtabs ([tabsize)

find

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the current
column and the given tab size. The column number is reset to zero after each newline occurring in the string. If
tabsizds not given, a tab size & characters is assumed. This doesn’t understand other non-printing characters

or escape sequences.

('sub, [start, [end])
Return the lowest index in the string where substsnbis found, such thatubis contained in the rangstart,
end. Optional argumentstartandendare interpreted as in slice notation. Retetnif subis not found.

format (format_string, *args, **kwarg}

Perform a string formatting operation. Tfemat_stringargument can contain literal text or replacement fields
delimited by brace§} . Each replacement field contains either the numeric index of a positional argument, or
the name of a keyword argument. Returns a copfoohat_stringwhere each replacement field is replaced
with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is {0} ".format(1+2)
'The sum of 1 + 2 is 3’

SeeFormat String Syntafor a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferreédfotimatting
described irString Formatting Operationi new code. New in version 2.6.

index (sub, [start, [end])

Like find() , but raisevalueError when the substring is not found.

isalnum ()

Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

36

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

For 8-bit strings, this method is locale-dependent.

Isalphgetlg)rn true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

istitle 0
Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqeencéhe separator between elements is
the string providing this method.

ljust (width, [fillchar])
Return the string left justified in a string of lengthdth. Padding is done using the specifidtthar (default is
a space). The original string is returnedhiidth is less tharen(s) . Changed in version 2.4: Support for the
fillchar argument.
lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removed chhesargument is a string specifying the set of
characters to be removed. If omittedMdone, thecharsargument defaults to removing whitespace. thars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> spacious " Istrip()
'spacious '
>>> ' www.example.com ' . Istrip(' cmowz.’)

'example.com’

Changed in version 2.2.2: Support for ttfearsargument.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 37

The Python Library Reference, Release 2.6.4c1

partition (sep
Split the string at the first occurrence #p and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings. New in version 2.5.

replace (old, new, [count]
Return a copy of the string with all occurrences of substaltgeplaced byhew If the optional argumertount
is given, only the firstountoccurrences are replaced.

rfind (sub, [start, [end])
Return the highest index in the string where substsinigis found, such thagubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Rettitnon failure.

rindex (' sub, [start, [end])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width, [fillchar])
Return the string right justified in a string of lengthdth. Padding is done using the specifidtthar (default
is a space). The original string is returneavitlth is less tharlen(s) . Changed in version 2.4: Support for
thefillchar argument.

rpartition (sep
Split the string at the last occurrences®p and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep, [maxsplit])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostaxsplit
splits are done, theghtmostones. Ifsepis not specified oNone, any whitespace string is a separator. Except
for splitting from the right,rsplit() behaves likesplit() which is described in detail below. New in
version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removed. dia@sargument is a string specifying the set of
characters to be removed. If omittedMone, thecharsargument defaults to removing whitespace. Thars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious " rstrip()

’ spacious’

>>> ' mississippi “orstrip(Tipz)
'mississ’

Changed in version 2.2.2: Support for ttiearsargument.

split ([sep, [maxsplit])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mostmaxsplit
splits are done (thus, the list will have at mostixsplit+1 elements). limaxsplitis not specified, then there
is no limit on the number of splits (all possible splits are made).

If sepis given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example,1,2".split(’,") returns['l’, ", '2]). Thesepargument may consist of multiple char-
acters (for examplél<>2<>3".split('<>") returns['l’, '2’, '3). Splitting an empty string

with a specified separator returfip .

If sepis not specified or idNone, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with aNone separator returng .

38 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

For example; 1 2 3 .split() returng['l’, '2', '3 ,and’ 1 2 3 '.split(None, 1)
returns['l’, '2 3]
splitlines ([keepends)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix, [start, [end]])
ReturnTrue if string starts with theprefix otherwise returriralse . prefix can also be a tuple of prefixes to
look for. With optionalstart, test string beginning at that position. With optioeald stop comparing string at
that position. Changed in version 2.5: Accept tuplepragix

strip ([chars])
Return a copy of the string with the leading and trailing characters removedchBrsargument is a string
specifying the set of characters to be removed. If omitteName, the charsargument defaults to removing
whitespace. Theharsargument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> spacious ", strip()

'spacious’

>>> ' www.example.com . strip(' cmowz.’)
‘'example’

Changed in version 2.2.2: Support for ttiearsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

titte ()
Return a titlecased version of the string where words start with an uppercase character and the remaining char-
acters are lowercase.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they 're bill ’s friends from the UK " title()
"They’Re BIill'S Friends From The UK"

A workaround for apostrophes can be constructed using regular expressions:

>>> jmport re
>>> def titlecase (S):
return re.sub(r'[A-Za-z]+([A-Za-z]+)?",
lambda mo: mo.group(0)[O].upper() +
mo.group(0)[1:].lower(),
s)

>>> titlecase(“they 're bill s friends. ")
"They're Bill's Friends."

For 8-bit strings, this method is locale-dependent.

translate (table, [deletecharg]
Return a copy of the string where all characters occurring in the optional arguialetecharsre removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 39

The Python Library Reference, Release 2.6.4c1

You can use thenaketrans() helper function in thestring module to create a translation table. For string
objects, set theableargument tdNone for translations that only delete characters:

>>> ' read this short text " . translate(None, ' aeiou ')
rd ths shrt txt’

New in version 2.6: Support forldone tableargument. For Unicode objects, ttranslate() method does

not accept the optionaeletecharsargument. Instead, it returns a copy of #where all characters have been
mapped through the given translation table which must be a mapping of Unicode ordinals to Unicode ordinals,
Unicode strings oNone. Unmapped characters are left untouched. Characters mappemh&are deleted.

Note, a more flexible approach is to create a custom character mapping codec usingettee module (see
encodings.cp1251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill - (‘width)
Return the numeric string left filled with zeros in a string of lengfidth. A sign prefix is handled correctly.
The original string is returned Widthis less tharlen(s) . New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric ()
ReturnTrue if there are only numeric characters inf&se otherwise. Numeric characters include digit char-
acters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR FRACTION
ONE FIFTH.

isdecimal ()
ReturnTrue if there are only decimal characters inlse otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

6.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
stringformattingor interpolationoperator. Giveriormat % values (whereformatis a string or Unicode object),
%conversion specifications fiormatare replaced with zero or more elementsafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentaluesmay be a single non-tuple object. Otherwise valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The’%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for exsompémame)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as & (asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

4 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

40 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

5. Precision (optional), given asa (dot) followed by the precision. If specified s (an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in thenstritigclude a paren-
thesised mapping key into that dictionary inserted immediately afteBdhecharacter. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print has % #)03d quote types. "%\
{’ language ': "Python ", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

The value conversion will use the “alternate form” (where defined below).

o The conversion will be zero padded for numeric values.

The converted value is left adjusted (overrides'@he conversion if both are given).
(a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
+ A sign charactert’ or’-") will precede the conversion (overrides a “space” flag).

A length modifier f, | , orL) may be present, but is ignored as it is not necessary for Python — $iblél.gs identical
to %d

The conversion types are:

Conver- | Meaning Notes

sion

d’ Signed integer decimal.

T Signed integer decimal.

o’ Signed octal value. (2)

o’ Obsolete type — it is identical td’ . (7

X' Signed hexadecimal (lowercase). (2)

X! Signed hexadecimal (uppercase). (2)

e’ Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). (3)

' Floating point decimal format. 3)

' Floating point decimal format. 3)

g’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or no4)
less than precision, decimal format otherwise.

'G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or nqy)
less than precision, decimal format otherwise.

'c’ Single character (accepts integer or single character string).

r String (converts any python object usirepr()). (5)

's’ String (converts any python object usisg()). (6)

"%’ No argument is converted, results irff& character in the result.

Notes:

1. The alternate form causes a leading zé®0 () to be inserted between left-hand padding and the formatting of
the number if the leading character of the result is not already a zero.

2. The alternate form causes a leadily’ or’0X’ (depending on whether thg' or’'X’ format was used)
to be inserted between left-hand padding and the formatting of the number if the leading character of the result
is not already a zero.

6.6. Sequence Types — str , unicode , list ,tuple , buffer |, xrange 41

The Python Library Reference, Release 2.6.4c1

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
5. The%r conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
6. If the object or format provided is@anicode string, the resulting string will also henicode
The precision determines the maximal number of characters used.
7. SeePEP 237
Since Python strings have an explicit lengtbs conversions do not assume thi@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e50 are replaced Bygconversions?® All other errors raise exceptions. Additional string operations are defined
in standard modulestring andre .

6.6.3 XRange Type

Thexrange type is animmutable sequence which is commonly used for looping. The advantagemefithe type
is that anxrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, aneitf)e function.

6.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
X is an arbitrary object):

5 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use
and without having to know the exact precision of floating point values on a particular machine.

42 Chapter 6. Built-in Types

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6.4c1

Operation Result Notes

s[i] = x itemi of sis replaced by

sfizj]] =t slice ofsfromi toj is replaced by the contents of the
iterablet

del s[i:]] same as[i;j] = []

s[i:jk] =t the elements of]i:j:K] are replaced by those bf | (1)

del sJizj:K] removes the elements sffi:j:k] from the list

s.append(x) same as[len(s):len(s)] = [x] (2)

s.extend(x) same as[len(s):len(s)] = x 3)

s.count(x) return number of's for whichs[i] == x

s.index(x[, i[, jlI) return smallesk such thas[k] == andi <= k 4)
<]

s.insert(i, x) same as[iii] = [X] (5)

s.pop([i]) same ax = gJ[i]; del g[i]; return x (6)

s.remove(x) same aglel s[s.index(x)] 4)

s.reverse() reverses the items afin place ©)

s.sort([cmp[, key], sort the items o§in place (M(®d)(9)(10

reverse]]])

Notes:

1.
2.

. RaisesvalueError

. When a negative index is passed as the first parameter bostie()

. Thesort()

. Thesort()

. Starting with Python 2.3, thsort()

t must have the same length as the slice it is replacing.

The C implementation of Python has historically accepted multiple parameters and implicitly joined them into
a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

. X can be any iterable object.

whenx is not found ins. When a negative index is passed as the second or third parameter
totheindex() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previouslyex() didn’'t have arguments for specifying start
and stop positions.

method, the list length is added, as for
slice indices. Ifitis still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

. Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so

that by default the last item is removed and returned.

andreverse() methods modify the listin place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (listitems) which should return a negative, zero or
positive number depending on whether the first argument is considered smaller than, equal to, or larger than the
second argumentmp=lambda x,y: cmp(x.lower(), y.lower()) . The default value idlone.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower . The default value idlone.

reverseis a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, th&eyandreverseconversion processes are much faster than specifying an equisalpfitnction.
This is becausempis called multiple times for each list element whitey andreversetouch each element
only once. Changed in version 2.3: Supportfme as an equivalent to omittingmpwas added.Changed in
version 2.4: Support fdreyandreversewas added.

method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for

6.6.

Sequence Types — str , unicode , list , tuple , buffer , xrange 43

The Python Library Reference, Release 2.6.4c1

example, sort by department, then by salary grade).

10. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty for the duration, andais&sror
if it can detect that the list has been mutated during a sort.

6.7 Set Types — set , frozenset

A setobject is an unordered collection of distitetshableobjects. Common uses include membership testing, remov-

ing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and
symmetric difference. (For other containers see the builtdh , list , andtuple classes, and theollections

module.) New in version 2.4. Like other collections, sets suppoirt set ,len(set) , andfor x in set

Being an unordered collection, sets do not record element position or order of insertion. Accordingly, sets do not
support indexing, slicing, or other sequence-like behavior.

There are currently two builtin set typesst andfrozenset . Theset type is mutable — the contents can be
changed using methods lilkeld() andremove() . Since it is mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another set.frfbhenset type is immutable antiashable— its

contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

The constructors for both classes work the same:

classset ([iterable])

classfrozenset ([iterable])
Return a new set or frozenset object whose elements are takeriténainle The elements of a set must be
hashable. To represent sets of sets, the inner sets miistdeeset objects. Ifiterableis not specified, a
new empty set is returned.

Instances ofet andfrozenset provide the following operations:

len(s)
Return the cardinality of set

X in's
Testx for membership irs.

X not in s
Testx for non-membership is.

isdisjoint (othern)
Return True if the set has no elements in common witter. Sets are disjoint if and only if their intersec-
tion is the empty set. New in version 2.6.

issubset (othen)
set <= other ()
Test whether every element in the set ither.

set < other ()
Test whether the set is a true subseotbfer, that is,set <= other and set != other

issuperset (othen
set >= other ()
Test whether every elementatheris in the set.

set > other ()
Test whether the set is a true superseattber, that is,set >= other and set != other

union (other, ..)

44 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

set | other | ... 0
Return a new set with elements from the set and all others. Changed in version 2.6: Accepts multiple input
iterables.

intersection (other, ..)

set & other & ... 0
Return a new set with elements common to the set and all others. Changed in version 2.6: Accepts multiple
input iterables.

difference (other, ..)

set - other - ... 0
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set ~ other ()
Return a new set with elements in either the seither but not both.

copy ()
Return a new set with a shallow copyof

Note, the non-operator versions ofinion() , intersection() , difference() , and
symmetric_difference() , issubset() , and issuperset() methods will accept any iter-

able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions liket('abc’) & ’'cbs’ in favor of the more readable

set('abc’).intersection(’'cbs’)

Bothset andfrozenset support set to set comparisons. Two sets are equal if and only if every element of
each set is contained in the other (each is a subset of the other). A set is less than another set if and only if the
first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances ofset are compared to instances dfozenset based on their members. For
example, set(’abc’) == frozenset('abc’) returns True and so doesset(’abc’) in
set([frozenset('abc’)])

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two
disjoint sets are not equal and are not subsets of each ottedl,afdhe following returnFalse : a<b, a==b,
ora>b. Accordingly, sets do notimplement thecmp__() method.

Since sets only define partial ordering (subset relationships), the outputlttbert() method is unde-
fined for lists of sets.

Set elements, like dictionary keys, musttmeshable

Binary operations that mixet instances witlirozenset return the type of the first operand. For example:
frozenset('ab’) | set(’bc’) returns an instance éfozenset

The following table lists operations available fat that do not apply to immutable instancedmfzenset

update (other,..)
set |= other | ... 0
Update the set, adding elements frother. Changed in version 2.6: Accepts multiple input iterables.

intersection_update (other, ..)

set &= other & ... 0
Update the set, keeping only elements found in it atiter. Changed in version 2.6: Accepts multiple
input iterables.

difference_update (other, ..)

6.7. Set Types — set , frozenset 45

The Python Library Reference, Release 2.6.4c1

set -= other | ... 0
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input iter-
ables.

symmetric_difference_update (other)

set A= other ()
Update the set, keeping only elements found in either set, but not in both.

add (elem
Add elemenelemto the set.

remove (elen)
Remove elemerglemfrom the set. RaiseéseyError if elemis not contained in the set.

discard (elem
Remove elemerdglemfrom the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Réisg&rror if the set is empty.

clear ()

Remove all elements from the set.
Note, the non-operator versions of theupdate() |, intersection_update() ,
difference_update() , and symmetric_difference_update() methods will accept any

iterable as an argument.

Note, theelemargument to the contains__ () , remove() , anddiscard() methods may be a set. To
support searching for an equivalent frozenset,dleenset is temporarily mutated during the search and then
restored. During the search, tbeemset should not be read or mutated since it does not have a meaningful
value.

See Also:

Comparison to the built-in set type®ifferences between theets module and the built-in set types.

6.8 Mapping Types — dict

A mappingobject mapsashablevalues to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, ttietionary. (For other containers see the builtiist , set , andtuple classes, and
thecollections module.)

A dictionary’s keys ar@lmostarbitrary values. Values that are matshablethat is, values containing lists, dictionaries

or other mutable types (that are compared by value rather than by object identity) may not be used as keys. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal {sarthla)

then they can be used interchangeably to index the same dictionary entry. (Note however, that since computers store
floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated k&yof value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or {4098: ‘jack’, 4127: ’sjoerd’} , or by thedict
constructor.

classdict ([arg])
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments. If
no arguments are given, return a new empty dictionary. If the positional argamggsia mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first

46 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary edtahed:

2, "two": 3}

edict(one=2, two=3)
«dict({'one’ 2, 'two: 3})
«dict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

The first example only works for keys that are valid Python identifiers; the others work with any valid keys.
New in version 2.2.Changed in version 2.3: Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom mapping types should support too):

len(d)
Return the number of items in the dictionaty

dlkey]
Return the item ofl with key key. Raises &KeyError if keyis not in the map. New in version 2.5:
If a subclass of dict defines a methodmissing_ () , if the key keyis not present, thel[key]

operation calls that method with the kkgyas argument. Thd[key] operation then returns or raises
whatever is returned or raised by themissing__ (key) call if the key is not present. No other
operations or methods invoke missing__ () . If __missing__ () is not definedKeyError is
raised. __missing__ () must be a method; it cannot be an instance variable. For an example, see
collections.defaultdict

dlkey] = value
Setd[key] tovalue

del d[key]
Removed[key] fromd. Raises &eyError if keyis not in the map.

key in d
ReturnTrue if d has a keykey, elseFalse . New in version 2.2.
key not in d
Equivalent tonot key in d . New in version 2.2.
iter(d)
Return an iterator over the keys of the dictionary. This is a shortcliteikeys()
clear ()
Remove all items from the dictionary.
copy ()

Return a shallow copy of the dictionary.

fromkeys (seq, [value]
Create a new dictionary with keys frosegand values set tealue

fromkeys() is a class method that returns a new dictionarglue defaults toNone. New in version
2.3.

get (key, [default)
Return the value fokeyif keyis in the dictionary, elsdefault If defaultis not given, it defaults tdlone,
so that this method never raisegayError

6.8. Mapping Types — dict a7

The Python Library Reference, Release 2.6.4c1

has_key (key)
Test for the presence &gyin the dictionaryhas_key() is deprecated in favor dfey in d .

items ()
Return a copy of the dictionary’s list gkey, value) pairs.

Note: Keys and values are listed in an arbitrary order which is non-random, varies across Python imple-
mentations, and depends on the dictionary’s history of insertions and deletiatesnd{) , keys() ,
values() , iteritems() , iterkeys() , anditervalues() are called with no intervening mod-
ifications to the dictionary, the lists will directly correspond. This allows the creatiofvaitie,

key) pairs usingzip() : pairs = zip(d.values(), d.keys()) . The same relationship
holds for theiterkeys() and itervalues() methods: pairs = zip(d.itervalues(),

d.iterkeys()) provides the same value fpairs . Another way to create the same lispigirs =

[(v, k) for (k, v) in d.iteritems()]

iteritems ()
Return an iterator over the dictionaryleey, value) pairs. See the note fafict.items()

Usingiteritems() while adding or deleting entries in the dictionary may rais&uatimeError or
fail to iterate over all entries. New in version 2.2.

iterkeys ()
Return an iterator over the dictionary’s keys. See the notdifdritems()

Usingiterkeys() while adding or deleting entries in the dictionary may raiseuatimeError or
fail to iterate over all entries. New in version 2.2.

itervalues ()
Return an iterator over the dictionary’s values. See the noteiébitems()

Usingitervalues() while adding or deleting entries in the dictionary may raiseuatimeError
or fail to iterate over all entries. New in version 2.2,
keys ()

Return a copy of the dictionary’s list of keys. See the noteifor.items()

pop (key, [default)
If keyis in the dictionary, remove it and return its value, else retlefault If defaultis not given andey
is not in the dictionary, &eyError is raised. New in version 2.3.

popitem ()
Remove and return an arbitrafigey, value) pair from the dictionary.

popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, callingopitem() raises &eyError

setdefault (key, [default)
If keyis in the dictionary, return its value. If not, inséetywith a value ofdefaultand returndefault
defaultdefaults toNone.

update ([other])
Update the dictionary with the key/value pairs framher, overwriting existing keys. ReturiNone.

update() accepts either another dictionary object or an iterable of key/value pairs (as a tuple or other
iterable of length two). If keyword arguments are specified, the dictionary is then is updated with those
key/value pairsd.update(red=1, blue=2) . Changed in version 2.4: Allowed the argument to be

an iterable of key/value pairs and allowed keyword arguments.

values ()
Return a copy of the dictionary’s list of values. See the notelfcritems()

48

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

6.9 File Objects

File objects are implemented using @slio package and can be created with the builbjren() function. File
objects are also returned by some other built-in functions and methods, sustpapen() andos.fdopen()

and themakefile() method of socket objects. Temporary files can be created usirigitiigile ~ module, and
high-level file operations such as copying, moving, and deleting files and directories can be achievedshittilthe
module.

When a file operation fails for an 1/0O-related reason, the excepfi@mror is raised. This includes situations where
the operation is not defined for some reason, $§igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a/alueError after the file has been closed. Callicigse() = more than once is allowed.

As of Python 2.5, you can avoid having to call this method explicitly if you usewtttle statement. For
example, the following code will automatically cloevhen thewith block is exited:

from _ future import with_statement # This isn't required in Python 2.6
with open (" hello.txt ") as f
for line in f:
print line

In older versions of Python, you would have needed to do this to get the same effect:

f = open (" hello.txt ")

try :
for line in f:
print line
finally
f . close()

Note: Not all “file-like” types in Python support use as a context manager fowttie statement. If your code

is intended to work with any file-like object, you can use the functiontextlib.closing() instead of
using the object directly.

flush ()
Flush the internal buffer, liketdio ‘s fflush() . This may be a no-op on some file-like objects.

fileno ()

Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module oros.read() and friends.

Note: File-like objects which do not have a real file descriptor shadtprovide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, elBalse .

Note: If a file-like object is not associated with a real file, this method shoolde implemented.

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used as an
iterator, typically in afor loop (for examplefor line in f: print line), thenext() method is
called repeatedly. This method returns the next input line, or r&sgsteration when EOF is hit when

6.9. File Objects 49

The Python Library Reference, Release 2.6.4c1

the file is open for reading (behavior is undefined when the file is open for writing). In order to rfaakelaop
the most efficient way of looping over the lines of a file (a very common operationjethi€) method uses
a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, combit{ing with other file
methods (likeeadline()) does not work right. However, usirsgek() to reposition the file to an absolute
position will flush the read-ahead buffer. New in version 2.3.

read ([size])
Read at mossizebytes from the file (less if the read hits EOF before obtaisizgbytes). If thesizeargument
is negative or omitted, read all data until EOF is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after an EOF is hit.) Note that this method may call the underlying C furftéad() = more than
once in an effort to acquire as closediaebytes as possible. Also note that when in non-blocking mode, less
data than was requested may be returned, evensfaeparameter was given.

Note: This function is simply a wrapper for the underlyifrgad() C function, and will behave the same in
corner cases, such as whether the EOF value is cached.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when
a file ends with an incomplete linej. If the sizeargument is present and non-negative, it is a maximum byte
count (including the trailing newline) and an incomplete line may be returned. An empty string is reduaiped
when EOF is encountered immediately.

Note: Unlike stdio ‘s fgets() , the returned string contains null characté\@ () if they occurred in the
input.

readlines ([sizehint])
Read until EOF usingeadline() and return a list containing the lines thus read. If the opticimhint
argument is present, instead of reading up to EOF, whole lines totalling approximsiateyntoytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()

This method returns the same thingites(f) . New in version 2.1.Deprecated since version 2.3: fdse
line in file instead.

seek (offset, [whence)]
Set the file’s current position, liketdio ‘s fseek() . Thewhenceargument is optional and defaults to
0S.SEEK_SET or 0 (absolute file positioning); other values ave.SEEK_CUR or 1 (seek relative to the
current position) ands.SEEK_END or 2 (seek relative to the file’s end). There is no return value.

For example, f.seek(2, 0s.SEEK_CUR) advances the position by two an@lseek(-3,
0s.SEEK_END) sets the position to the third to last.

Note that if the file is opened for appending (mdde or’a+’), anyseek() operations will be undone at
the next write. If the file is only opened for writing in append mode (m@de), this method is essentially
a no-op, but it remains useful for files opened in append mode with reading enabled’@wodg If the file

is opened in text mode (withotlt’), only offsets returned biell() are legal. Use of other offsets causes
undefined behavior.

Note that not all file objects are seekable. Changed in version 2.6: Passing float values as offset has been
deprecated.

tell ()
Return the file’s current position, likedio ‘s ftell()

6 The advantage of leaving the newline on is that returning an empty string is then an unambiguous EOF indication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended
in a newline or not (yes this happens!).

50 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

Note: On Windows tell() can return illegal values (after dgets()) when reading files with Unix-style
line-endings. Use binary model{’) to circumvent this problem.

truncate ([size])
Truncate the file’s size. If the optionalzeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified size
exceeds the file's current size, the result is platform-dependent: possibilities include that the file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many Unix variants.

write ('str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to nmatatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redildt g=adline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributejdse() = method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may alSohe, in which case the file
uses the system default encoding for converting Unicode strings. New in version 2.3.

errors
The Unicode error handler used along with the encoding. New in version 2.6.

mode
The I/O mode for the file. If the file was created using tipeen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirgpen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form..> . This is a read-only attribute and may not be present on all file-like
objects.

newlines
If Python was built with the-with-universal-newlines option toconfigure (the default) this read-
only attribute exists, and for files opened in universal newline read mode it keeps track of the types of newlines
encountered while reading the file. The values it can také\are , \n’ , \r\n’ , None (unknown, no
newlines read yet) or a tuple containing all the newline types seen, to indicate that multiple newline conventions
were encountered. For files not opened in universal newline read mode the value of this attributé\wiiebe

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vautfifpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may

6.9. File Objects 51

The Python Library Reference, Release 2.6.4c1

be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute.

Note: This attribute is not used to control tpeint statement, but to allow the implementationpoint to
keep track of its internal state.

6.10 Context Manager Types

New in version 2.5. Pythonwith statement supports the concept of a runtime context defined by a context manager.
This is implemented using two separate methods that allow user-defined classes to define a runtime context that is
entered before the statement body is executed and exited when the statement ends.

Thecontext management protoamnsists of a pair of methods that need to be provided for a context manager object
to define a runtime context:

__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier indbeclause ofwith statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__ () to allowopen() to be used as the context expression with statement.

An example of a context manager that returns a related object is the one returned by
decimal.localcontext() . These managers set the active decimal context to a copy of the origi-
nal decimal context and then return the copy. This allows changes to be made to the current decimal context in
the body of thewith statement without affecting code outside thigh statement.

__exit__ (exc_type, exc_val, exc)tb
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be suppressed.
If an exception occurred while executing the body ofWith statement, the arguments contain the exception
type, value and traceback information. Otherwise, all three argumenitoare

Returning a true value from this method will cause With statement to suppress the exception and continue
execution with the statement immediately following thigh statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body ofilin statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value to
indicate that the method completed successfully and does not want to suppress the raised exception. This allows
context management code (suctcastextlib.nested) to easily detect whether or not anexit__ ()

method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. Seerthextlib module for some examples.

Python’sgeneratos and thecontextlib.contextfactory decoratorprovide a convenient way to implement
these protocols. If a generator function is decorated withtctirgextlib.contextfactory decorator, it will
return a context manager implementing the necessaepter () and__exit_ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C API.
Extension types wanting to define these methods must provide them as a normal Python accessible method. Compared
to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is negligible.

52 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

6.11 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

6.11.1 Modules

The only special operation on a module is attribute acaessame, wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatppert statement is not, strictly
speaking, an operation on a module objéoport foo does not require a module object nanfiedto exist, rather
it requires an (externafjefinitionfor a module nametbo somewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thet
attribute is not possible (you can write. _dict [a’] = 1 , which definesn.a to bel, but you can't write
m.__dict__ = {}). Modifying__dict__ directly is not recommended.

Modules built into the interpreter are written like thismodule ’'sys’ (built-in)> . If loaded from a file,
they are written asmodule ’os’ from ’/usr/local/lib/pythonX.Y/os.pyc’>

6.11.2 Classes and Class Instances

SeeObjects, values and typém The Python Language Referehemd Class definitiongin The Python Language
Referencgfor these.

6.11.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list)

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

SeeFunction definitiongin The Python Language Referehéer more information.

6.11.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methaas:self is the object
on which the method operates, amdim_func is the function implementing the method. Callingarg-1,
arg-2, ..., arg-n) is completely equivalent to callingn.im_func(m.im_self, arg-1, arg-2,

..., arg-n)

Class instance methods are eitheundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this safe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSg@eError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objentgth.im_func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results/jpe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

6.11. Other Built-in Types 53

The Python Library Reference, Release 2.6.4c1

class C
def method (self):
pass
c = C(
c. method . im_func . whoami = 'my name is ¢’

SeeThe standard type hierarchjn The Python Language Referehéar more information.

6.11.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the builtémpile() function and can be extracted from function objects
through theirfunc_code attribute. See also theode module. A code object can be executed or evaluated by
passing it (instead of a source string) to thec statement or the built-iaval() function.

SeeThe standard type hierarchjn The Python Language Referehéa more information.

6.11.6 Type Objects
Type objects represent the various object types. An object’s type is accessed by the built-in fiypetipn . There
are no special operations on types. The standard mogotde defines names for all standard built-in types.

Types are written like thisctype ’int’>

6.11.7 The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

6.11.8 The Ellipsis Object
This object is used by extended slice notation (S&eings(in The Python Language Referejicelt supports no
special operations. There is exactly one ellipsis object, neftigtsis (a built-in name).

It is written asEllipsis

6.11.9 Boolean Values

Boolean values are the two constant objdeadse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in functigh can be used to

cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).
They are written afalse andTrue , respectively.

6.11.10 Internal Objects

SeeThe standard type hierarchin The Python Language Referehder this information. It describes stack frame
objects, traceback objects, and slice objects.

54 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6.4c1

6.12 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the() built-in function.

__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods__
Deprecated since version 2.2: Use the built-in functiofy to get a list of an object’s attributes. This attribute
is no longer available.

__members__
Deprecated since version 2.2: Use the built-in functiofy to get a list of an object’s attributes. This attribute
is no longer available.

__class__
The class to which a class instance belongs.

__bases__
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

The following attributes are only supported bgw-style clases.

mro__
This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

mro()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored imro___.

__subclasses__ ()
Each new-style class keeps a list of weak references to its immediate subclasses. This method returns a list of
all those references still alive. Example:

>>> int . __ subclasses_ ()
[<type ’'bool>]

6.12. Special Attributes 55

The Python Library Reference, Release 2.6.4c1

56 Chapter 6. Built-in Types

CHAPTER

SEVEN

BUILT-IN EXCEPTIONS

Exceptions should be class objects. The exceptions are defined in the medafgions . This module never

needs to be imported explicitly: the exceptions are provided in the built-in namespace as welkbasetheons

module. For class exceptions, itrg statement with aexcept clause that mentions a particular class, that clause

also handles any exception classes derived from that class (but not exception classes froiig/dtived). Two

exception classes that are not related via subclassing are never equivalent, even if they have the same name. The
built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. If the exception class is derived from the standard rootRdasException

the associated value is present as the exception instaargs's attribute.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from tlie«ception class and noBaseException . More information on defining excep-
tions is available in the Python Tutorial undgser-defined Exceptior{gn Python Tutoria).

The following exceptions are only used as base classes for other exceptions.

exceptionBaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for that
useException). If str() orunicode() is called on an instance of this class, the representation of the
argument(s) to the instance are returned or the empty string when there were no arguments. All arguments are
stored inargs as a tuple. New in version 2.5.

exceptionException
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class. Changed in version 2.5: Changed to inheritFemmException

exceptionStandardError
The base class for all built-in exceptions excepbtoplteration , GeneratorExit
Keyboardinterrupt andSystemExit . StandardError itself is derived fromException

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic €versiowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly lyys.setdefaultencoding()

57

The Python Library Reference, Release 2.6.4c1

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python syStemor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instaarces attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available ondtgs attribute. New in version 1.5.2. When an
EnvironmentError exception is instantiated with a 3-tuple, the first two items are available as above, while
the third item is available on tféename attribute. However, for backwards compatibility, dags attribute
contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute iSNone when this exception is created with other than 3 argumentsefifne and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when aassert statement fails.

exceptionAttributeError
Raised when an attribute reference (8éteibute referenceén The Python Language Referejoer assignment
fails. (When an object does not support attribute references or attribute assignmentg gbesror is

raised.)

exceptionEOFError
Raised when one of the built-in functionsifut() orraw_input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: tfig.read() andfile.readline() methods return an empty string
when they hit EOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANT_SIGFPE_HANDLE®mbol is defined
in thepyconfig.h file.

exceptionGeneratorExit
Raise when ajeneratofs close() method is called. It directly inherits froaseException instead of
StandardError since it is technically not an error. New in version 2.5.Changed in version 2.6: Changed to
inherit fromBaseException

exceptionlOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frofinvironmentError . See the discussion above for more information on exception
instance attributes. Changed in version 2.6: Changeé#et.error to use this as a base class.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefiam ... import fails
to find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integéiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm&@iytrol-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipait() or raw_input() is waiting
for input also raise this exception. The exception inherits fRaseException so as to not be accidentally

58 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.4c1

caught by code that catchEgception and thus prevent the interpreter from exiting. Changed in version 2.5:
Changed to inherit fromBaseException

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@afloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This exception is derived froenvironmentError . It is raised when a function returns a system-related
error (not for illegal argument types or other incidental errors). @teo attribute is a numeric error code
from errno , and thestrerror attribute is the corresponding string, as would be printed by the C function
perror() . See the modulerrno , which contains names for the error codes defined by the underlying
operating system.

For exceptions that involve a file system path (sucktadir() orunlink()), the exception instance will
contain a third attributdjlename , which is the file name passed to the function. New in version 1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raisgéemoryError than give up) and for most operations with plain integers,
which return a long integer instead. Because of the lack of standardization of floating point exception handling
in C, most floating point operations also aren’t checked.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethieref.proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref.ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn't fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by anterator's next() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occuriinpan statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

Instances of this class have attribufilesname , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to

59

The Python Library Reference, Release 2.6.4c1

abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version ;itis also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by theys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthayie).
Also, this exception derives directly froBaseException and notStandardError , since it is not techni-
cally an error.

A call to sys.exit() is translated into an exception so that clean-up handfirally clauses otry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos._exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfook()).

The exception inherits frorBaseException instead ofStandardError or Exception so that it is not
accidentally caught by code that catclieseption . This allows the exception to properly propagate up and
cause the interpreter to exit. Changed in version 2.5: Changed to inheriBfiepException

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BfameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclagsadfrror . New in
version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclalsscofieError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclasscofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsscofleError . New in
version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sucteasrror

exceptionVMSError
Only available on VMS. Raised when a VMS-specific error occurs.

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporetrtean
value. Thewinerror andstrerror values are created from the return values of@estLastError()
andFormatMessage() functions from the Windows Platform API. Tlegrno value maps th&inerror

60 Chapter 7. Built-in Exceptions

The Python Library Reference, Release 2.6.4c1

value to correspondingrrno.h values. This is a subclass 6fSError . New in version 2.0.Changed in
version 2.5: Previous versions put tBetLastError() codes inteerrno .

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedimrengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning
Base class for warnings about constructs that will change semantically in the future.

exceptionimportWarning
Base class for warnings about probable mistakes in module imports. New in version 2.5.

exceptionUnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

7.1 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- Keyboardinterrupt
+-- GeneratorExit
+-- Exception
+-- Stoplteration
+-- StandardError
| +-- BufferError
| ArithmeticError
[+-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
| +-- AssertionError
I
I
I
I
I

I
1
1

AttributeError
EnvironmentError
+-- |OError
+-- OSError
+-- WindowsError (Windows)

- + +
[
[

7.1. Exception hierarchy 61

The Python Library Reference, Release 2.6.4c1

+-- VMSError (VMS)

I
| +-- EOFError
[+-- ImportError
[+-- LookupError
| | +-- IndexError
| | +-- KeyError
[+-- MemoryError
[+-- NameError
| | +-- UnboundLocalError
[+-- ReferenceError
[+-- RuntimeError
| | +-- NotlmplementedError
| +-- SyntaxError
[| +-- IndentationError
[| +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError
| +-- UnicodeError
[+-- UnicodeDecodeError
[+-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning

62

Chapter 7. Built-in Exceptions

CHAPTER

EIGHT

STRING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations.

In addition, Python’s built-in string classes support the sequence type methods describeskigubece Types — str,
unicode, list, tuple, buffer, xrang®ction, and also the string-specific methods described fatthvey Methodsection.
To output formatted strings use template strings or%eperator described in th®&tring Formatting Operations
section. Also, see thee module for string functions based on regular expressions.

8.1 string — Common string operations

Thestring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. In addition, Python’s built-in string classes support the sequence type
methods described in ttigequence Types — str, unicode, list, tuple, buffer, xraegtion, and also the string-specific
methods described in th&ring Methodssection. To output formatted strings use template strings o¥dberator
described in thé&tring Formatting Operationsection. Also, see thee module for string functions based on regular
expressions.

8.1.1 String constants

The constants defined in this module are:

ascii_letters
The concatenation of thascii_lowercase and ascii_uppercase constants described below. This
value is not locale-dependent.

ascii_lowercase
The lowercase lettefabcdefghijklmnopqgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii_uppercase
The uppercase lettet A BCDEFGHIJKLMNOPQRSTUVWXYZhis value is not locale-dependent and will not
change.

digits
The string'0123456789’

hexdigits
The string'0123456789abcdefABCDEF

letters
The concatenation of the stringsvercase anduppercase described below. The specific value is locale-
dependent, and will be updated whenale.setlocale() is called.

63

The Python Library Reference, Release 2.6.4c1

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopgrstuvwxyz’ . The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of ASCII characters which are considered punctuation characters@idiele.

printable
String of characters which are considered printable. This is a combinatiodigat , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYZhe specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab.

8.1.2 String Formatting

Starting in Python 2.6, the built-in str and unicode classes provide the ability to do complex variable substitutions and
value formatting via thestr.format() method described iREP 3101 TheFormatter class in thestring

module allows you to create and customize your own string formatting behaviors using the same implementation as
the built-informat() method.

classFormatter ()
TheFormatter class has the following public methods:

format (format_string, *args, *kwargs
format() is the primary APl method. It takes a format template string, and an arbitrary set of positional
and keyword argumentormat() is just a wrapper that call§ormat()

vformat (format_string, args, kwargs
This function does the actual work of formatting. It is exposed as a separate function for cases where you
want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dictionary as
individual arguments using thiargs and**kwds syntax.vformat() does the work of breaking up
the format template string into character data and replacement fields. It calls the various methods described
below.

In addition, theFormatter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string
Loop over the format_string and return an iterable of tupiesrél_text field_nameformat_spegcconver-
sion). This is used byformat() to break the string in to either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively)it¢nah text

will be a zero-length string. If there is no replacement field, then the valuBislof nameformat_spec
andconversiornwill be None.

get field (field_name, args, kwarlys
Givenfield_nameas returned byarse() (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form define&mn3101 such as

64 Chapter 8. String Services

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 2.6.4c1

“O[name]” or “label.title”. argsandkwargsare as passed in tdormat() . The return valuaised_key
has the same meaning as Keyparameter tget value()

get_value (key, args, kwargs
Retrieve a given field value. THeesyargument will be either an integer or a string. If it is an integer, it
represents the index of the positional argumertrgs, if it is a string, then it represents a named argument
in kwargs

Theargsparameter is set to the list of positional argumentsftomat() , and thekwargsparameter is
set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
Subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cayse value() to be called with &eyar-
gument of 0. Thename attribute will be looked up afteget value() returns by calling the built-in
getattr() function.

If the index or keyword refers to an item that does not exist, them@exError or KeyError should
be raised.

check_unused_args (used_args, args, kwarjys
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference tatpeandkwargsthat was passed to vformat. The set
of unused args can be calculated from these parametersk unused_args() is assumed to throw
an exception if the check fails.

format_field (value, format_spgc
format_field() simply calls the globaformat() built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversiaon
Converts the value (returned lt_field()) given a conversion type (as in the tuple returned by the
parse() method.) The default version understands ‘r’ (repr) and ‘s’ (str) conversion types.

8.1.3 Format String Syntax
The str.format() method and thé&ormatter class share the same syntax for format strings (although in the
case ofFormatter , subclasses can define their own format string syntax.)

Format strings contain “replacement fields” surrounded by curly bfacefnything that is not contained in braces is
considered literal text, which is copied unchanged to the output. If you need to include a brace character in the literal
text, it can be escaped by doublifg: and}} .

The grammar for a replacement field is as follows:

replacement_field w= " field_name [""" conversion] [:" format_spec] “}’
field_name n= (identifier | integer) (*.” attribute_name | “[" element_index “]")*
attribute_name n= identifier

element_index n= integer

conversion = e

<described in the next section>

format_spec

In less formal terms, the replacement field starts wiffels_name which can either be a number (for a positional
argument), or an identifier (for keyword arguments). Following this is an optmalersiorfield, which is preceded
by an exclamation poirit' , and aformat_spegcwhich is preceded by a colon

8.1. string — Common string operations 65

The Python Library Reference, Release 2.6.4c1

Thefield_namaeitself begins with either a number or a keyword. If it's a number, it refers to a positional argument,
and if it's a keyword it refers to a named keyword argument. This can be followed by any number of index or attribute
expressions. An expression of the formame’ selects the named attribute usipgtattr() , while an expression

of the form’[index]’ does an index lookup using getitem__ ()

Some simple format string examples:

" First, thou shalt count to {0} " # References first positional argument
"My quest is {name} " # References keyword argument ’name’
"Weight in tons {0.weight} ! # 'weight’ attribute of first positional arg

"Units destroyed: {players[0]} # First element of keyword argument ’players’.

Theconversiorfield causes a type coercion before formatting. Normally, the job of formatting a value is done by the
__format_ () method of the value itself. However, in some cases it is desirable to force a type to be formatted as a
string, overriding its own definition of formatting. By converting the value to a string before callifgmat__ ()

the normal formatting logic is bypassed.

Two conversion flags are currently supportesl: which callsstr() onthe value, andr which callsrepr()
Some examples:

"Harold 's a clever {0!s} : # Calls str() on the argument first
"Bring out the holy {name!r} " # Calls repr() on the argument first

The format_spedield contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define it's own “formatting mini-
language” or interpretation of tHermat_spec

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spedield can also include nested replacement fields within it. These nested replacement fields can contain
only a field name; conversion flags and format specifications are not allowed. The replacement fields within the
format_spec are substituted before themat_specstring is interpreted. This allows the formatting of a value to be
dynamically specified.

For example, suppose you wanted to have a replacement field whose field width is determined by another variable:
"A man with two {0:{1}} ", format("noses", 10)

This would first evaluate the inner replacement field, making the format string effectively:

"A man with two {0:10}

Then the outer replacement field would be evaluated, producing:

" noses "

Which is substituted into the string, yielding:
"A man with two noses

(The extra space is because we specified a field width of 10, and because left alignment is the default for strings.)

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individual
values are presented (seemat String Synta) They can also be passed directly to the builtirmat() function.
Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

66 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

A general convention is that an empty format stritig X produces the same result as if you had calie) on the
value.

The general form of atandard format specifigs:

format_spec [[filalign][sign][#][0][width][.precision][type]

fill = <a character other than ‘}>

align = s e Y

sign e

width = integer

precision = integer

type :: “b” | HCH | Hd” | “eﬂ | “EH | “f” | “FH I HgH | “GH | HnH | “O” | “X” | “X” | “%”

Thefill character can be any character other than ‘} (which signifies the end of the field). The presence of a fill
character is signaled by theextcharacter, which must be one of the alignment options. If the second character of

format_speds not a valid alignment option, then it is assumed that both the fill character and the alignment option are
absent.

The meaning of the various alignment options is as follows:

Op- Meaning

tion

< Forces the field to be left-aligned within the available space (This is the default.)

> Forces the field to be right-aligned within the available space.

= Forces the padding to be placed after the sign (if any) but before the digits. This is used for printing fields
in the form ‘+000000120’. This alignment option is only valid for numeric types.

W Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

Thesignoption is only valid for number types, and can be one of the following:

Option | Meaning

+ indicates that a sign should be used for both positive as well as negative numbers.

indicates that a sign should be used only for negative numbers (this is the default behavior).

space indicates that a leading space should be used on positive numbers, and a minus sign on negative
numbers.

The'# option is only valid for integers, and only for binary, octal, or hexadecimal output. If present, it specifies that
the output will be prefixed biob’ ,’'00’ , or’'0Ox’ , respectively.

widthis a decimal integer defining the minimum field width. If not specified, then the field width will be determined
by the content.

If the width field is preceded by a zer®{) character, this enables zero-padding. This is equivalent &digmment
type of'=" and &fill character of0’

Theprecisionis a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted witf’ and’F’ , or before and after the decimal point for a floating point value formatted with

‘g’ or’'G’ . For non-number types the field indicates the maximum field size - in other words, how many characters
will be used from the field content. Thmecisionis not allowed for integer values.

Finally, thetypedetermines how the data should be presented.

The available integer presentation types are:

8.1. string — Common string operations 67

The Python Library Reference, Release 2.6.4c1

Type | Meaning

b’ Binary format. Outputs the number in base 2.

’c’ Character. Converts the integer to the corresponding unicode character before printing.

d’ Decimal Integer. Outputs the number in base 10.

0’ Octal format. Outputs the number in base 8.

X’ Hex format. Outputs the number in base 16, using lower- case letters for the digits above 9.

X’ Hex format. Outputs the number in base 16, using upper- case letters for the digits above 9.

n’ Number. This is the same &5 , except that it uses the current locale setting to insert the appropria
number separator characters.

None | The same a&l’

(5]

The available presentation types for floating point and decimal values are:

Type

Meaning

o
B
!f!

=
9

le

n

!%!
None

Exponent notation. Prints the number in scientific notation using the letter ‘e’ to indicate the expone
Exponent notation. Same & except it uses an upper case ‘E’ as the separator character.

Fixed point. Displays the number as a fixed-point number.

Fixed point. Same d§

General format. This prints the number as a fixed-point number, unless the number is too large, in V|
case it switches te’ exponent notation. Infinity and NaN values are formattethfs, -inf andnan,
respectively.

General format. Same & except switches ttE’ if the number gets to large. The representations @
infinity and NaN are uppercased, too.

Number. This is the same g8 , except that it uses the current locale setting to insert the appropriate

number separator characters.
Percentage. Multiplies the number by 100 and displays in fied) format, followed by a percent sign.
The same ay'’

vhich

nY

8.1.4 Template strings

Templates provide simpler string substitutions as describ&din 292 Instead of the normé&lsbased substitutions,
Templates suppofi-based substitutions, using the following rules:

» $$ is an escape; it is replaced with a single

* S$identifier names a substitution placeholder matching a mapping kéideftifier" . By default,
"identifier" must spell a Python identifier. The first non-identifier character afte$ tblearacter termi-
nates this placeholder specification.

* ${identifier} is equivalent tdbidentifier . It is required when valid identifier characters follow the
placeholder but are not part of the placeholder, suc¢$amunlification"

Any other appearance 8fin the string will result in &/alueError being raised. New in version 2.4. Th&ing
module provides @emplate class that implements these rules. The methodsafplate are:

classTemplate (templaté
The constructor takes a single argument which is the template string.

substitute (mapping, [**kws)
Performs the template substitution, returning a new strimgppingis any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When bmtppingandkwsare given and there are duplicates, the
placeholders fronkwstake precedence.

safe_substitute (mapping, [**kws)
Like substitute() , except that if placeholders are missing frovappingandkws instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute() , any other appearances of thavill simply return$ instead of raising/alueError

68

Chapter 8. String Services

http://www.python.org/dev/peps/pep-0292

The Python Library Reference, Release 2.6.4c1

While other exceptions may still occur, this method is called “safe” because substitutions always tries to
return a usable string instead of raising an exception. In another setrisesubstitute() may be
anything other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructteimplateargument. In general, you shouldn’t change it, but read-
only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> s.substitute(who="tim’, what='kung pao’)

'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

[--]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[--]

KeyError: 'what’

>>> Template('$who likes $what’).safe_substitute(d)
'tim likes $what’

Advanced usage: you can derive subclassegecofiplate to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

« delimiter— This is the literal string describing a placeholder introducing delimiter. The default $alidote
that this shouldchot be a regular expression, as the implementation will icaktscape() on this string as
needed.

« idpattern— This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular expressigh a-z0-9]*

Alternatively, you can provide the entire regular expression pattern by overriding the class apisitbeita If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

 escaped- This group matches the escape sequence$é.gn the default pattern.

* named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

« braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

« invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

8.1.5 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

8.1. string — Common string operations 69

The Python Library Reference, Release 2.6.4c1

capwords (s, [sep)
Split the argument into words usirggr.split() , capitalize each word usirgjr.capitalize() , and
join the capitalized words usirggr.join() . If the optional second argumesgpis absent oNone, runs of
whitespace characters are replaced by a single space and leading and trailing whitespace are removed, otherwise
sepis used to split and join the words.

maketrans (from, to
Return a translation table suitable for passingrémslate() , that will map each character frominto the
character at the same positiont@ from andto must have the same length.

Note: Don't use strings derived fronowercase anduppercase as arguments; in some locales, these
don't have the same length. For case conversions, alwaysiusasver() andstr.upper()

8.1.6 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see Seatipihiethods
for more information on those. You should consider these functions as deprecated, although they will not be removed
until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since version 2.0: Use fluait() built-in function. Convert a string to a floating point number.
The string must have the standard syntax for a floating point literal in Python, optionally preceded by+a sign (
or -). Note that this behaves identical to the built-in functitarat() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s, [base)
Deprecated since version 2.0: Use thi&) built-in function. Convert string to an integer in the givebase
The string must consist of one or more digits, optionally preceded by a-=sign-(). Thebasedefaults to 10. If
itis 0, a default base is chosen depending on the leading characters of the string (after stripping tb& sign):
0X means 160 means 8, anything else means 10hdkeis 16, a leadin@x or OX is always accepted, though
not required. This behaves identically to the built-in functiorf) when passed a string. (Also note: for a
more flexible interpretation of numeric literals, use the built-in functigal() .)

atol (s, [base)
Deprecated since version 2.0: Use thieg() built-in function. Convert stringto a long integer in the given
base The string must consist of one or more digits, optionally preceded by asign-(). Thebaseargument
has the same meaning as &ipi() . Atrailing!| orL is not allowed, except if the base is 0. Note that when
invoked withoutbaseor with baseset to 10, this behaves identical to the built-in functiomy() when passed
a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s, [tabsize]
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub, [start, [end]]
Return the lowest index irs where the substringub is found such thatsub is wholly contained in
s[start:end] . Return-1 on failure. Defaults foistart andend and interpretation of negative values is
the same as for slices.

rfind (s, sub, [start, [end])
Like find() but find the highest index.

70 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

index (s, sub, [start, [end])
Like find() but raiseValueError when the substring is not found.

rindex (s, sub, [start, [end]]
Like rfind() but raiseValueError when the substring is not found.

count (s, sub, [start, [end])
Return the number of (non-overlapping) occurrences of substtibgn string s[start:end] . Defaults for
startandendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy 0§, but with upper case letters converted to lower case.

split (s, [sep, [maxsplit])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string. The
optional third argumenmnaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and the
remainder of the string is returned as the final element of the list (thus, the list will have atnevosplit+1
elements).

The behavior of split on an empty string depends on the valisepf If sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s, [sep, [maxsplit])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting list
of words is the same as returned §ylit() , except when the optional third argumenéxsplitis explicitly
specified and nonzero. Whenaxsplitis nonzero, at mosnaxsplitnumber of splits — theightmostones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit+l elements). New in version 2.4.

splitfields (s, [sep, [maxsplit])
This function behaves identically tplit() . (Inthe pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words, [sep)
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. Itis always true teaiing.join(string.split(s, sep), sep) equalss.

joinfields (words, [sep]
This function behaves identically foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ipondields() method on string
objects; use th@in() method instead.

Istrip (s, [chars)
Return a copy of the string with leading characters removethdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.3hahgparameter was added.
Thecharsparameter cannot be passed in earlier 2.2 versions.

rstrip (s, [chars)
Return a copy of the string with trailing characters removedhérsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.3chEreparameter was added. The
charsparameter cannot be passed in earlier 2.2 versions.

strip (s, [chars)
Return a copy of the string with leading and trailing characters removeHattis omitted omNone, whitespace

8.1. string — Common string operations 71

The Python Library Reference, Release 2.6.4c1

characters are removed. If given and MNaine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2cBaf$parameter
was added. Theharsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table, [deletechar$]
Delete all characters fromthat are indeletechargif present), and then translate the characters usibip
which must be a 256-character string giving the translation for each character value, indexed by its ordinal. If
tableis None, then only the character deletion step is performed.

upper (9
Return a copy 0§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new, [maxreplacg]
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxreplacas given, the firstnaxreplacenccurrences are replaced.

8.2 re — Regqular expression operations

This module provides regular expression matching operations similar to those found in Perl. Both patterns and strings
to be searched can be Unicode strings as well as 8-bit strings.

Regular expressions use the backslash chardtter)(to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression must heand each backslash must be express&d asside a regular Python

string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with . Sor"\n" is a two-character string containiig and'n’ , while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

It is important to note that most regular expression operations are available as module-level functions and
RegexObject methods. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See Also:

Mastering Regular ExpressionsBook on regular expressions by Jeffrey Friedl, published by O’Reilly. The second
edition of the book no longer covers Python at all, but the first edition covered writing good regular expression
patterns in great detail.

72 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

8.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidB are both regular expressions,
thenAB is also a regular expression. In general, if a stpngatchesA and another string matchesB, the string

pq will match AB. This holds unles# or B contain low precedence operations; boundary conditions betieemn

B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult theRegular Expression HOWT(@n).

Regular expressions can contain both special and ordinary characters. Most ordinary charactafs, like , or

'0’ , are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters, so
last matches the stringast’ . (In the rest of this section, we’ll write RE’s ithis special style , usually

without quotes, and strings to be matchied single quotes’ J)

Some characters, likf or’(" , are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted. Regular expression pattern strings may not contain
null bytes, but can specify the null byte using thember notation, e.g.;\x00’

The special characters are:

(Dot.) In the default mode, this matches any character except a newline.DfafiédLLflag has been specified,
this matches any character including a newline.

"N (Caret.) Matches the start of the string, and/ibLTILINE mode also matches immediately after each newline.

'$" Matches the end of the string or just before the newline at the end of the string, BidLiRILINE mode also
matches before a newlindoo matches both ‘foo’ and ‘foobar’, while the regular expresdioo$ matches
only ‘foo’. More interestingly, searching fdioo.$ in 'fool\nfoo2\n’ matches ‘foo2’ normally, but
‘fool’ in MULTILINE mode; searching for a singfgin 'foo\n’ will find two (empty) matches: one just
before the newline, and one at the end of the string.

™ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

'+ Causes the resulting RE to match 1 or more repetitions of the precedirapREvill match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

'?" Causes the resulting RE to match 0 or 1 repetitions of the precedinglREwill match either ‘a’ or ‘ab’.

*?,+?,?? The™ '+ ,and'? qualifiers are algreedy they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE.*> is matched againskH1>title</H1>’ , it will match the entire
string, and not just<H1>" . Adding’'?’ after the qualifier makes it perform the matchrian-greedyor
minimal fashion; asfew characters as possible will be matched. Usit®y in the previous expression will
match only'<H1>’

{m} Specifies that exactlsn copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For example{6} will match exactly sixa’ characters, but not five.

{m,n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For exampdg3,5} will match from 3 to 5'a’ characters. Omittingn specifies
a lower bound of zero, and omittingspecifies an infinite upper bound. As an exampld,}b will match
aaaab or athousanda’ characters followed by B, but notaaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

8.2. re — Regular expression operations 73

The Python Library Reference, Release 2.6.4c1

{m,n}? Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to matcfeas
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string’aaaaaa’ , a{3,5} willmatch5'a’ characters, whila{3,5}? will only match 3 characters.

" Either escapes special characters (permitting you to match charactérs lik&" , and so forth), or signals a
special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it's highly
recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by a. Special characters are not active inside sets. For
exampleJakm$] will match any of the characteta’ ,’k’ ,'m’ ,or'$’ ;[a-z] will match any lowercase
letter, anda-zA-Z0-9] matches any letter or digit. Character classes sut ax \S (defined below) are
also acceptable inside a range, although the characters they match depends onlv@tetiegeor UNICODE
mode is in force. If you wantto include’a ora’-" inside a set, precede it with a backslash, or place it as

the first character. The pattefih will match’] , for example.

You can match the characters not within a rangedyplementinghe set. This is indicated by including’a
as the first character of the s&t; elsewhere will simply match thé’ character. For exampl@)5] will
match any character except , and[™] will match any character except

Note that insidg] the special forms and special characters lose their meanings and only the syntaxes described
here are valid. For example, *, (,) , and so on are treated as literals indide and backreferences cannot be
used insidg] .

I A|B,where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by 'the in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separatefl byare tried from left to right. When one pattern completely
matches, that branch is accepted. This means thatdntatchesB will not be tested further, even if it would
produce a longer overall match. In other words,’the operator is never greedy. To match a litefal , use
\| , or enclose it inside a character class, ajg]in.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the \number special sequence, described below. To match the lit§falsor’)’ , use\(or\) , or
enclose them inside a character cldés:[)]

(?..) This is an extension notation (& following a’(" is not meaningful otherwise). The first character
after the’?” determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new groug?P<name>...) is the only exception to this rule. Following are the currently supported
extensions.

(?iLmsux) (One or more letters from the s&t ,’L’ ,’'m’ ,’s’ ,’u’ ,’X .) The group matches the empty
string; the letters set the corresponding flagst (ignore case)e.L (locale dependentje.M (multi-line),
re.S (dot matches all)re.U (Unicode dependent), ané.X (verbose), for the entire regular expression.
(The flags are described iModule Content This is useful if you wish to include the flags as part of the
regular expression, instead of passirftag argument to theompile() function.

Note that th€?x) flag changes how the expression is parsed. It should be used first in the expression string, or
after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the grcammotbe retrieved after performing a match or referenced later
in the pattern.

74 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible within the rest
of the regular expression via the symbolic group naame Group names must be valid Python identifiers, and
each group name must be defined only once within a regular expression. A symbolic group is also a numbered
group, just as if the group were not named. So the group nénéa the example below can also be referenced
as the numbered group

For example, if the pattern (@P<id>[a-zA-Z_]\w*) , the group can be referenced by its name in argu-
ments to methods of match objects, suchragroup(’id’) or m.end(’id") , and also by name in the
regular expression itself (usirf@P=id)) and replacement text given teub() (using\g<id>).

(?P=name) Matches whatever text was matched by the earlier group naicme
(?#..) A comment; the contents of the parentheses are simply ignored.

(?=..) Matches if... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example|saac (?=Asimov) willmatch’lsaac ' only ifit's followed by 'Asimov’

(?!...) Matches if... doesn’t match next. This is a negative lookahead assertion. For exalsqe,
(?'Asimov) will match’lsaac * only ifit's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match.for that ends at the current
position. This is called positive lookbehind assertiof?<=abc)def will find a match inabcdef , since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning tiat or alb are allowed, bua* anda{3,4} are not.

Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use #earch() function rather than thematch() function:

>>> import re

>>> m = re . search(' (?<=abc)def ', ’abcdef ")
>>> m group(0)
‘def’
This example looks for a word following a hyphen:
>>> m = re.search(' (?<=-) \w+ , ’'spam-egg’)
>>> m group(0)
‘egq’
(?<l.) Matches if the current position in the string is not preceded by a match for This is called anegative

lookbehind assertianSimilar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/name)yes-pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or nameexists, and withho-pattern if it doesn't. no-pattern is optional and can be omitted. For
example(<)?(\Ww+@\w+(?:\.\w+)+)(?(1)>) is a poor email matching pattern, which will match with
'<user@host.com>’ as well asuser@host.com’ , but not with’<user@host.com’ . New in ver-
sion 2.4.

The special sequences consist\bf and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exaiplmatches the charactd

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.+) \1 matchesthe the’ or’55 55 | but not'the end” (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digiloéris 0, ornumber
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octahwaiber
Inside the[" and’]" of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

8.2. re — Regular expression operations 75

The Python Library Reference, Release 2.6.4c1

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note thiatis defined as the boundary betweéen and\ W, so the precise set of
characters deemed to be alphanumeric depends on the valuesWiIB©DEand LOCALEflags. Inside a
character rangé&b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when itriet at the beginning or end of a word. This is just the opposite of
\b , sois also subject to the settingsLédd CALEandUNICODE

\d When theUNICODEflag is not specified, matches any decimal digit; this is equivalent to th@-€3t . With
UNICODE it will match whatever is classified as a digit in the Unicode character properties database.

\D When theUNICODHETlag is not specified, matches any non-digit character; this is equivalent to tH®-8it
With UNICODE: it will match anything other than character marked as digits in the Unicode character properties

database.

\s When theLOCALEandUNICODHflags are not specified, matches any whitespace character; this is equivalent to
the sef \t\n\r\flv] . With LOCALE it will match this set plus whatever characters are defined as space
for the current locale. IUNICODEIs set, this will match the charactgrs\t\n\r\fiv] plus whatever is

classified as space in the Unicode character properties database.

\S When theLOCALEandUNICODHTlags are not specified, matches any non-whitespace character; this is equivalent
to the sef* \t\n\r\fiv] With LOCALE it will match any character not in this set, and not defined as space
in the current locale. IUNICODHs set, this will match anything other thint\n\r\fiv] and characters
marked as space in the Unicode character properties database.

\w When theLOCALEandUNICODHflags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the s¢h-zA-Z0-9] . With LOCALE it will match the sef0-9_] plus whatever
characters are defined as alphanumeric for the current localé&IiEODEs set, this will match the characters
[0-9] plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theLOCALEandUNICODHilags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the sefta-zA-Z0-9] . With LOCALE it will match any character not in the §&9_] , and not
defined as alphanumeric for the current localéJNICODEHSs set, this will match anything other thii+9_]
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digitis a 0, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

8.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressitatsh checks for a match only at the
beginning of the string, whilsearchchecks for a match anywhere in the string (this is what Perl does by default).

Note that match may differ from search even when using a regular expression beginniriy witt matches

only at the start of the string, or MULTILINE mode also immediately following a newline. The “match” operation
succeeds only if the pattern matches at the start of the string regardless of mode, or at the starting position given by
the optionalposargument regardless of whether a newline precedes it.

76 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

>>> re . match("c", "abcdef ") # No match
>>> re.search("c", "abcdef ") # Match
< sre.SRE_Match object at ...>

8.2.3 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (pattern, [flags)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re . compile(pattern)
result = prog . match(string)

is equivalent to
result = re . match(pattern, string)

but usingcompile() and saving the resulting regular expression object for reuse is more efficient when the
expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed.itoatch() , re.search() or
re.compile() are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

|

IGNORECASE
Perform case-insensitive matching; expressions[k«&] will match lowercase letters, too. This is not af-
fected by the current locale.

L

LOCALE
Make\w ,\W,\b ,\B,\s and\S dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chardéter matches at the end of the string and
at the end of each line (immediately preceding each newline). By defdultmatches only at the beginning
of the string, and$’ only at the end of the string and immediately before the newline (if any) at the end of the
string.

S

DOTALL
Make the’.” special character match any character at all, including a newline; without this.flagwill
match anythingxcepta newline.

U

8.2. re — Regular expression operations 77

The Python Library Reference, Release 2.6.4c1

UNICODE

X

Make\w , \W,\b ,\B,\d ,\D,\s and\S dependent on the Unicode character properties database. New in
version 2.0.

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored, except
when in a character class or preceded by an unescaped backslash, and, when a line céhtaieither in a
character class or preceded by an unescaped backslash, all characters from the leftnig'st shavugh the

end of the line are ignored.

That means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(\d + # the integral part

\. # the decimal point

\d * # some fractional digits "re LX)
b = re.compile(r* \d+\.\d*")

search (pattern, string, [flags)

Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondingMatchObject instance. Returione if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string, [flags]

split

If zero or more characters at the beginningtwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

(pattern, string, [maxsplit=0}
Split string by the occurrences @iattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(' \W+, ' Words, words, words. ")
[Words’, 'words’, 'words’, "]

>>> re.split(’ (\W+), ' Words, words, words. ")
[Words’, ', ’, 'words’, ', ', 'words’, ", "]

>>> re.split('\W+, ' Words, words, words. 1)

[Words’, 'words, words.’]

If there are capturing groups in the separator and it matches at the start of the string, the result will start with an
empty string. The same holds for the end of the string:

>>> re.split(’ (\W+), ' ..words, words... ")

’ 1

[’, ..., 'words’, ', ’, 'words’, ..., "]

That way, separator components are always found at the same relative indices within the result list (e.g., if there’s
one capturing group in the separator, the Oth, the 2nd and so forth).
Note thatsplit will never split a string on an empty pattern match. For example:

>>> re . splitf(' x*’, ' foo)
[foo’]

78

Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

>>> re . split(" (?m)*$ ", "foo \n\n bar\n")
[foo\n\nbar\n’]

findall ~ (pattern, string, [flags]
Return all non-overlapping matchesgtternin string, as a list of strings. Thstring is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result unless they touch the beginning of another match. New in version 1.5.2.Changed in version 2.4: Added
the optional flags argument.

finditer (pattern, string, [flags)
Return aniterator yielding MatchObject instances over all non-overlapping matches for thepRernin
string. The string is scanned left-to-right, and matches are returned in the order found. Empty matches are
included in the result unless they touch the beginning of another match. New in version 2.2.Changed in version
2.4: Added the optional flags argument.

sub (pattern, repl, string, [couni)
Return the string obtained by replacing the leftmost non-overlapping occurrenpast@hin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is,converted to a single newline character,
\r is converted to a linefeed, and so forth. Unknown escapes sifhae left alone. Backreferences, such as
\6 , are replaced with the substring matched by group 6 in the pattern. For example:

>>> re . sub(r def\ s+([a-zA-Z_][a-zA-Z_0-9]*) \s*\ (\s*\): 7,
r' static PyObject* \ npy_\1(void) \n{’,

" def myfunc(): ')

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrenceaitern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj):

if matchobj .group(0) == "-": return '~
. else : return -’
>>> re.sub(' -{1,2} ', dashrepl, ' pro----gram-files)

'‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a
RE object, or use embedded modifiers in a pattern; for exaraphg,'(?i)b+", "x", "bbbb BBBB")
returns’x x’

The optional argumerdountis the maximum number of pattern occurrences to be replamrtmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matclsusg'x*, ’'-’, 'abc’) returns-a-b-c-’

In addition to character escapes and backreferences as described \gkoeene> will use the substring
matched by the group namethme, as defined by thé?P<name>...) syntax. \g<number> uses the
corresponding group numbag<2> is therefore equivalent t? , but isn't ambiguous in a replacement such
as\g<2>0 . \20 would be interpreted as a reference to group 20, not a reference to group 2 followed by the
literal charactet0’ . The backreferencg<0> substitutes in the entire substring matched by the RE.

subn (pattern, repl, string, [count)
Perform the same operationash() , but return a tuplénew_string, number_of subs_made)

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

8.2. re — Regular expression operations 79

The Python Library Reference, Release 2.6.4c1

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. Itis
never an error if a string contains no match for a pattern.

8.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string, [pos, [endpos]]
If zero or more characters at the beginningstring match this regular expression, return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

The optional second paramefmsgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; the pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional paramet@ndpodimits how far the string will be searched; it will be as if the stringposchar-
acters long, so only the characters frposto endpos - 1 will be searched for a match. éindposs less than
pos no match will be found, otherwise, iik is a compiled regular expression objent,match(string,

0, 50) is equivalent tax.match(string[:50], 0)

>>> pattern = re . compile("o")

>>> pattern . match("dog") # No match as "0" is not at the start of "dog."
>>> pattern . match("dog", 1) # Match as "o" is the 2nd character of "dog".
< sre.SRE_Match object at ...>

search (string, [pos, [endpos])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturbNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionabosandendpogarameters have the same meaning as fonthieh() method.

split (' string, [maxsplit=0)
Identical to thesplit() function, using the compiled pattern.

findall ('string, [pos, [endpos])
Identical to thefindall() function, using the compiled pattern.

finditer (string, [pos, [endpos])
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string, [count=0)
Identical to thesub() function, using the compiled pattern.

subn (repl, string, [count=0)
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compilédlifaro flags were provided.

groups
The number of capturing groups in the pattern.

80 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

groupindex
A dictionary mapping any symbolic group names definedt8<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

8.2.5 Match Objects

Match objects always have a boolean valuéafe , so that you can test whether ergatch() resulted in a match
with a simple if statement. They support the following methods and attributes:

expand (templatg
Return the string obtained by doing backslash substitution on the templatesiriplate as done by theub()
method. Escapes such\as are converted to the appropriate characters, and numeric backreferdnces X
and named backreferencég<1> ,\g<name>) are replaced by the contents of the corresponding group.

group ([groupl, ...)
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if

there are multiple arguments, the result is a tuple with one item per argument. Without arguynaums,
defaults to zero (the whole match is returned). HraupN argument is zero, the corresponding return value

is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result iSone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re . match(r" (\w+) (\w+)", "lIsaac Newton, physicist ")
>>> m group(0) # The entire match

'Isaac Newton’

>>> m group(1) # The first parenthesized subgroup.

'Isaac’

>>> m group(2) # The second parenthesized subgroup.
'Newton’

>>> mgroup(1, 2) # Multiple arguments give us a tuple.

(lsaac’, 'Newton’)

If the regular expression uses ff#<name>...) syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the patterex&nor
exception is raised.

A moderately complicated example:

>>> m = re. match(r" (?P<first_ name> \w+) (?P<last nhame> \w+)", "Malcom Reynolds ")
>>> m group(' first name)

"Malcom’

>>> m group(' last_ name ')

'Reynolds’

Named groups can also be referred to by their index:

>>> m group(1)
'Malcom’
>>> m group(2)
'Reynolds’

8.2. re — Regular expression operations 81

The Python Library Reference, Release 2.6.4c1

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (.)+ ", "alb2c3") # Matches 3 times.
>>> m group(1) # Returns only the last match.
'3

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

For example:
>>> m = re.match(r" (\d+)\.(\d+)", "24.1632 ")

>>> m groups()
(24, '1632))

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default thione unless thelefaultargument is given:

>>> m = re.match(r" (\d+)\.?2(\d+)? ", "24")

>>> m groups() # Second group defaults to None.

('24’, None)

>>> m groups(' 0") # Now, the second group defaults to 'O
(24, '0')

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defatsrte. For example:

>>> m = re . match(r' (?P<first_name> \w+) (?P<last_ name> \w+)", "Malcom Reynolds ")
>>> m groupdict()
{first_name’. 'Malcom’, ’last name’: 'Reynolds’}

start ([group])

end ([group])
Return the indices of the start and end of the substring matchedloys group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a group that did contribute to the match, the substring matched by ggqeguivalent tan.group(g))
is

m string[m . start(g):m . end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after
= re.search(’b(c?)’, 'cba’) , m.start(0) is1,m.end(0) is2,m.start(1) andm.end(1)
are both 2, andn.start(2) raises arindexError exception.

An example that will removeemove_thigrom email addresses:

>>> email = "tony@tiremove_thisger.net "
>>> m = re.search("remove_this ", email)
>>> emaill:m . start()] + emaillm . end()]

‘tony@tiger.net’

82 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

span ([group])
For MatchObject m, return the 2-tuplém.start(group), m.end(group)) . Note that ifgroupdid
not contribute to the match, this(sl, -1) . groupdefaults to zero, the entire match.

pos
The value ofposwhich was passed to tteearch() ormatch() method of theRegexObject . This is the
index into the string at which the RE engine started looking for a match.

endpos
The value ofendposvhich was passed to tteearch() ormatch() method of theRegexObject . This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groug\ame if no group was matched at all. For example,
the expression@)b , ((@)(b)) , and((ab)) will havelastindex == if applied to the stringab’
while the expressiofa)(b) will havelastindex == , if applied to the same string.

lastgroup

The name of the last matched capturing grouplNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() orsearch()

8.2.6 Examples

Checking For a Pair

In this example, we’'ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match):
if match is None:
return None
return ' <Match: , groups= > 9% (match . group(), match . groups())

Suppose you are writing a poker program where a player's hand is represented as a 5-character string with each
character representing a card, “a” for ace, “k” for king, “q” for queen, j for jack, “0” for 10, and “1” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r" [0-9akqj|{5}$ ")

>>> displaymatch(valid . match("ak05q ")) # Valid.
"<Match: 'ak05q’, groups=()>"

>>> displaymatch(valid . match("ak05e ")) # Invalid.
>>> displaymatch(valid . match("ak0")) # Invalid.
>>> displaymatch(valid .match("727ak")) # Valid.

"<Match: '727ak’, groups=()>"

That last hand;727ak"” , contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(" *(.).* \1")

>>> displaymatch(pair . match(" 717ak ")) # Pair of 7s.
"<Match: '717’, groups=(7’,)>"

>>> displaymatch(pair . match(" 718ak ")) # No pairs.

8.2. re — Regular expression operations 83

The Python Library Reference, Release 2.6.4c1

>>> displaymatch(pair . match(" 354aa")) # Pair of aces.
"<Match: '354aa’, groups=('a’,)>"

To find out what card the pair consists of, one could usggtbeip() method ofMatchObject in the following
manner:

>>> pair . match("717ak"). group(1)
e

Error because re.match() returns None, which doesn’t have a group() method:
>>> pair . match("718ak"). group(1)
Traceback (most recent call last):

File "<pyshell#23>" | line 1, in <module>
re . match(r" .*(.).* \1", "718ak"). group(1)
AttributeError : 'NoneType’' object has no attribute 'group’

>>> pair . match("354aa"). group(1)
‘a

Simulating scanf()

Python does not currently have an equivalergédanf() . Regular expressions are generally more powerful, though
also more verbose, thastanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%c .

%5¢ {5}

%d [-+]?\d+

%e %E %f, %g [-+]1?2(\d+(\d*)?\\d+)([eE][-+]?\d+)?
%i [-+]?(O[xX][\dA-Fa-f]+|0[0-7]*|\d+)
%0 0[0-7]*

%s \S+

%u \d+

%x %X O[xX][\dA-Fa-f]+

To extract the filename and numbers from a string like
lusr/sbin/sendmail - 0 errors, 4 warnings

you would use a&canf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be

(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a

RuntimeError exception with the messageaximum recursion limit exceeded. For example,
>>> g = 'Begin ' + 1000*' a very long string "+ "end’
>>> re . match(' Begin (\w|)*? end ', s) .end()
Traceback (most recent call last):
File "<stdin>" | line 1, in?

84 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

File "/usr/local/lib/python2.5/re.py" , line 132, in match
return _compile(pattern, flags) . match(string)
RuntimeError : maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of tte pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recasBegin [a-zA-Z0-9_ [*?end . As a further benefit, such
regular expressions will run faster than their recursive equivalents.

search() vs. match()

In a nutshellmatch() only attempts to match a pattern at the beginning of a string wdeaech() will match a
pattern anywhere in a string. For example:

>>> re . match("0", "dog") # No match as "o" is not the first letter of "dog".

>>> re.search("o", "dog") # Match as search() looks everywhere in the string.

<_sre.SRE_Match object at ...>

Note: The following applies only to regular expression objects like those created
with re.compile("pattern™) , not the primitives re.match(pattern, string) or

re.search(pattern, string)
match() has an optional second parameter that gives an index in the string where the search is to start:

>>> pattern = re . compile("o")
>>> pattern . match("dog") # No match as "0" is not at the start of "dog."

Equivalent to the above expression as 0 is the default starting index:
>>> pattern . match("dog", 0)

Match as "o" is the 2nd character of "dog" (index 0 is the first):

>>> pattern . match("dog", 1)

< sre.SRE_Match object at ...>

>>> pattern . match("dog", 2) # No match as "0" is not the 3rd character of "dog."

Making a Phonebook

split() splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example that
creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax:
>>> jnput = """ Ross McFluff: 834.345.1254 155 EIm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place @ ™"

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

n "

>>> entries = re . split(\n +
>>> entries

[Ross McFluff: 834.345.1254 155 EIm Street’,

, input)

8.2. re — Regular expression operations 85

The Python Library Reference, Release 2.6.4c1

'Ronald Heathmore: 892.345.3428 436 Finley Avenue’,
'Frank Burger: 925.541.7625 662 South Dogwood Way’,
'Heather Albrecht: 548.326.4584 919 Park Place’]

Finally, split each entry into a list with first name, last name, telephone number, and address. Wemepesthiz
parameter oplit() because the address has spaces, our splitting pattern, in it:

>>> [re .split((":? ", entry, 3) for entry in entries]
[[Ross’, 'McFluff, '834.345.1254’, '155 Elm Street],

[Ronald’, 'Heathmore’, '892.345.3428', '436 Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662 South Dogwood Way],
[Heather’, 'Albrecht’, '548.326.4584’, '919 Park Place’]]

The:? pattern matches the colon after the last name, so that it does not occur in the result listmitbpdit of
4, we could separate the house number from the street name:

>>> [re .split(":? ", entry, 4) for entry in entries]
[[Ross’, 'McFluff’, '834.345.1254’, '155’, 'ElIm Street],
[Ronald’, 'Heathmore’, '892.345.3428’, '436’, 'Finley Avenue’],
[Frank’, 'Burger’, '925.541.7625’, '662’, 'South Dogwood Way'],
[Heather’, 'Albrecht’, '548.326.4584', '919’, 'Park Place’]]

Text Munging

sub() replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
usingsub() with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner word = list (m. group(2))

random . shuffle(inner_word)

return — m group(1) + "".join(inner_word) + m group(3)
>>> text = "Professor Abdolmalek, please report your absences promptly.

>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.’
>>> re . sub(" (\w)(\w+)(\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potimrpy.’

Finding all Adverbs

findall() matchesall occurrences of a pattern, not just the first oneesch() does. For example, if one was
a writer and wanted to find all of the adverbs in some text, he or she miglitdsél() in the following manner:
>>> text = "He was carefully disguised but captured quickly by police.

>>> re . findall("\ wtly ", text)
[carefully’, 'quickly’]

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matchedrteier() is useful as it
provides instances dflatchObject instead of strings. Continuing with the previous example, if one was a writer
who wanted to find all of the adverland their positionsn some text, he or she would u§editer() in the
following manner:

86 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

>>> text = "He was carefully disguised but captured quickly by police. "
>>> for min re . finditer("\ w+ly ", text):

print ' L : 5 % (m. start(), m . end(), m . group(0))

07-16: carefully

40-47: quickly

Raw String Notation

Raw string notationr(text") keeps regular expressions sane. Without it, every backslash) (in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re . match(r" \W() \1\w, " ff ")

< sre.SRE_Match object at ...>

>>> re . match("\\ W() \\ 1\ W, " ff ")
< _sre.SRE_Match object at ...>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string notation, this
meang™\" . Without raw string notation, one must ud8\" , making the following lines of code functionally
identical:

>>> re . match(r" \\ ", "\ ")
<_sre.SRE_Match object at ...>
>>> re . match("\ \\ ", "\ ")
< sre.SRE_Match object at ...>

8.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringniatises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, .).
Return a string containing the values, v2, ... packed according to the given format. The arguments
must match the values required by the format exactly.

pack_into (fmt, buffer, offset, v1, v2,)...
Pack the valuesl, v2, ... according to the given format, write the packed bytes into the writiaiiter
starting abffset Note that the offset is a required argument. New in version 2.5.

unpack (fmt, string
Unpack the string (presumably packedgmck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en(string) must equatalcsize(fmt)).

unpack_from (fmt, buffer, [offset=0]
Unpack thebufferaccording to tthe given format. The result is a tuple even if it contains exactly one item. The
buffer must contain at least the amount of data required by the foderatbuffer[offset:]) must be
at leastcalcsize(fmt)). New in version 2.5.

8.3. struct — Interpret strings as packed binary data 87

The Python Library Reference, Release 2.6.4c1

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python Notes
X pad byte no value

C char string of length 1

b signed char integer

B unsigned char integer

? _Bool bool (1)
h short integer

H unsigned short integer

i int integer

I unsigned int integer or long

I long integer

L unsigned long long

q long long long (2)
Q unsigned long long long (2)
f float float

d double float

s char[] string

p char[] string

P void * long
Notes:

1. The'?" conversion code corresponds to thgool type defined by C99. If this type is not available, it is
simulated using ahar . In standard mode, it is always represented by one byte. New in version 2.6.

2. The’'q and’'Q’ conversion codes are available in native mode only if the platform C compiler supports C
long long ,or,on Windows, int64 . They are always available in standard modes. New in version 2.2,

A format character may be preceded by an integral repeat count. For example, the formadistringeans exactly
the same athhhh'’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the's’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; for exampl&0s’ means a single 10-byte string, whil®c’ means 10 characters. For packing,

the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special f&se, means a single, empty string (whilgc’ means

0 characters).

The'p’ format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thatrfpack() ,the’p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthel’ 'L’ ,’q" and’'Q’ format characters, the return value is a Python long integer.

For the’P’ format character, the return value is a Python integer or long integer, depending on the size needed to

hold a pointer when it has been cast to an integer typRUAL pointer will always be returned as the Python integer

0. When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha
and Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

88 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

For the'?” format character, the return value is eitieue or False . When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size and alignment
@ native native

= native standard

< little-endian standard

> big-endian standard

! network (= big-endian)| standard

If the first character is not one of thes@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesjnt andlong are 4 bytestong long (__int64 on Windows)is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectiveBpol is 1 byte.

Note the difference betwee@’' and’=" : both use native byte order, but the size and alignment of the latter is
standardized.

The form’"" is available for those poor souls who claim they can’t remember whether network byte order is big-
endian or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate chdiceoof>’

The'P’ format character is only available for the native byte ordering (selected as the default or wi@ thoyte
order character). The byte order charattér chooses to use little- or big-endian ordering based on the host system.
The struct module does not interpret this as native ordering, S@thdormat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(' hhl ", 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03'’

>>> unpack(' hhl 7, "\x00 \x01 \x00 \x02 \x00 \x00 \x00 \x03)

1, 2, 3)

>>> calcsize(' hhl ")

8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. For example, the fortat’ specifies two pad bytes at the end, assuming

longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = ’'raymond \x32 \x12 \x08 \x01 \x08 ’
>>> npame, serialnum, school, gradelevel = unpack(' <10sHHb’ , record)
>>> from collections import namedtuple

8.3. struct — Interpret strings as packed binary data 89

The Python Library Reference, Release 2.6.4c1

>>> Student = namedtuple(' Student ', ' name serialnum school gradelevel ")
>>> Student . make(unpack(' <10sHHb', s))

Student(name="raymond

, serialnum=4658, school=264, gradelevel=8)

See Also:

Module array Packed binary storage of homogeneous data.

Module xdrlib Packing and unpacking of XDR data.

8.3.1 Struct Objects

Thestruct module also defines the following type:

classStruct (formaf)

Return a new Struct object which writes and reads binary data according to the formafimiag Creating

a Struct object once and calling its methods is more efficient than callingjithet functions with the same
format since the format string only needs to be compiled once. New in version 2.5. Compiled Struct objects
support the following methods and attributes:

pack (v1,v2,.)
Identical to thepack() function, using the compiled formatef(result) will equal self.size)

pack_into (buffer, offset, v1, v2,)..
Identical to thepack into() function, using the compiled format.

unpack (string)
Identical to theunpack() function, using the compiled format. lef(string) must equal
self.size).

unpack_from (buffer, [offset=0)
Identical to theunpack _from() function, using the compiled formatlef(buffer[offset:])
must be at leastelf.size).

format
The format string used to construct this Struct object.
size
The calculated size of the struct (and hence of the string) correspondimgrtat .

8.4 difflib — Helpers for computing deltas

New in version 2.1. This module provides classes and functions for comparing sequences. It can be used for example,
for comparing files, and can produce difference information in various formats, including HTML and context and
unified diffs. For comparing directories and files, see alsofithenp module.

classSequenceMatcher ()

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by

Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

90

Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer ()
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of aDiffer delta begins with a two-letter code:

Code Meaning
- line unique to sequence 1

'+’ line unigue to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with ?* attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff ()
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ ([tabsize], [wrapcolumn], [linejunk], [charjunk]
Initializes instance oHtmIDiff

tabsizeis an optional keyword argument to specify tab stop spacing and defa8lts to

wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped, de-
faults toNone where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed indtiff() (used byHtmIDIff to
generate the side by side HTML differences). &d#f() documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedromlinesand tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdescandtodescare optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

contextandnumlinesare both optional keyword arguments. $ehtextto True when contextual differ-
ences are to be shown, else the defaukatse to show the full files.numlinesdefaults to5. When
contextis True numlinescontrols the number of context lines which surround the difference highlights.
Whencontextis False numlinescontrols the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

make_table (fromlines, tolines, [fromdesc], [todesc], [context], [numlings]
Comparedromlinesandtolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fondke file() method.

8.4. difflib — Helpers for computing deltas 91

The Python Library Reference, Release 2.6.4c1

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use. New in version 2.4.

context_diff (a, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)

Comparea andb (lists of strings); return a delta (@neratorgenerating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsetiigh defaults to three.

By default, the diff control lines (those with** or ---) are created with a trailing newline. This is
helpful so that inputs created frofiie.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings filomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returnedtoye.ctime() . If not specified, the strings default to blanks.

>>> sl ["bacon\n’, ’eggs\n’, "hamin’, ’guido \n']

>>> g2 [python \n’, "eggy\n’, ’'hamster \n’, ’guido \n’]

>>> for line in context_diff(sl, s2, fromfile =’ before.py , tofile =’ after.py '):
sys . stdout . write(line) # doctest: +NORMALIZE_WHITESPACE

*** phefore.py
--- after.py

*khkkkkkkkkkkkkk

1

**k% 1,4 *kkk

I bacon

I eggs

I ham
guido

— 1,4 -

I' python

I eggy

I hamster
guido

SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

get_close_matches (‘word, possibilities, [n], [cutoff)

Return a list of the best “good enough” matchegord is a sequence for which close matches are desired
(typically a string), andoossibilitiesis a list of sequences against which to matebrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get _close_matches("appel ', ["ape’, 'apple ', 'peach’, ’puppy’])
[apple’, "ape’]

>>> ijmport keyword

>>> get_close_matches("wheel *, keyword . kwlist)

['while]

92

Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

ndiff

>>> get _close_matches("apple ', keyword . kwlist)
I

>>> get_close_matches("accept ', keyword . kwlist)
[except’]

(a, b, [linejunk], [charjunk)

Comparea andb (lists of strings); return ®iffer -style delta (ayeneratorgenerating the delta lines).
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default isNone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE_JUNK() , which filters out lines without visible characters, except for at most one pound character
(#). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which lines
are so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level functio8 CHARACTER_JUNK(), which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

Tools/scripts/ndiff.py is a command-line front-end to this function.

>>> diff = ndiff(’ one\n two \n three \n ' . splitlines(1),
"ore \n tree \n emun ' . splitlines(1))
>>> print '’ . join(diff),
- one

2 A

+ ore

? AN

- two

- three

2 -

+ tree

+ emu

restore (sequence, whigh

Return one of the two sequences that generated a delta.

Given asequence@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiff("’ one\n two\n three \n ' . splitlines(1),

“ore \n tree \n emun ' . splitlines(1))

>>> diff = list (diff) # materialize the generated delta into a list
>>> print ' . join(restore(diff, 1)),

one

two

three

>>> print . join(restore(diff, 2)),

ore

tree

emu

unified_diff (&, b, [fromfile], [tofile], [fromfiledate], [tofiledate], [n], [lineterm)

Comparea andb (lists of strings); return a delta (@neratorgenerating the delta lines) in unified diff format.

8.4. difflib — Helpers for computing deltas 93

The Python Library Reference, Release 2.6.4c1

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with- , +++, or @@are created with a trailing newline. This
is helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fémomfile, tofile, fromfiledate andtofiledate The modification times are normally

expressed in the format returned toye.ctime() . If not specified, the strings default to blanks.

>>> sl = ["bacon\n’, ’'eggs\n’, 'hamin’, ’'guido \n’]

>>> g2 = [’ python \n’, "eggy\n’, ’'hamster \n’, ’guido \n’]

>>> for line in unified_diff(sl, s2, fromfile =" before.py ', tofile =" after.py ')
sys . stdout . write(line) # doctest: +NORMALIZE_WHITESPACE

--- before.py

+++ after.py

0@ -14 +14 0@
-bacon

-eggs

-ham

+python

+eggy
+hamster

guido
SeeA command-line interface to difflfior a more detailed example. New in version 2.3.

IS_LINE_JUNK (line)
Return true for ignorable lines. The lifiee is ignorable ifline is blank or contains a singl&’ , otherwise it
is not ignorable. Used as a default for paramétesjunkin ndiff() before Python 2.3.

IS_CHARACTER_JUNKch)
Return true for ignorable characters. The charachds ignorable ifch is a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published ibr. Dobb’s Journain July, 1988.

8.4.1 SequenceMatcher Objects

The SequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk, [a, [b]]])
Optional argumernisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing for isjunkis equivalent
to passindambda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \{t "

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

94 Chapter 8. String Services

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

The Python Library Reference, Release 2.6.4c1

The optional argumen@andb are sequences to be compared; both default to empty strings. The elements of
both sequences must bashable

SequenceMatcher objects have the following methods:

set_seqs (a,b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequenceseuseq2() to set the commonly used sequence once
and callset_seql() repeatedly, once for each of the other sequences.

set_ seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhj
Find longest matching block ia[alo:ahi] andb(blo:bhi]

If isjunkwas omitted oiNone, find_longest_match() returns(i, j, k) such thag[i:i+k]
is equal tao[j:j+k] ,Wherealo <= i <= i+k <= abhi andblo <= j <= j+k <= bhi . For
all (", j, k) meeting those conditions, the additional conditigns= k' ,i <= i’ , and ifi

,] <= J are also met. In other words, of all maximal matching blocks, return one that starts
earliest ina, and of all those maximal matching blocks that start earliest, ireturn the one that starts
earliest inb.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd ")
>>> s, find_longest_match(0, 5 0, 9
Match(a=0, b=4, size=5)

If isjunkwas provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That preeda$ from
matching the abcd’ at the tail end of the second sequence directly. Instead onliatizel’ can
match, and matches the leftmésbed’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x ==" ", " abcd", "abcd abcd ")
>>> s. find_longest_match(0, 5, 0, 9
Match(a=1, b=0, size=4)

If no blocks match, this returrglo, blo, 0) . Changed in version 2.6: This method returmsaned
tupleMatch(a, b, size)

get_matching_blocks 0
Return list of triples describing matching subsequences. Each triple is of the(ifojmn) , and
means thaa[i:i+n] == Db[j:j+n] . The triples are monotonically increasingiiand;.

The last triple is a dummy, and has the vallen(a), len(b), 0) . It is the only triple withn

== 0. If (i, j, n) and(i’, j, n) are adjacent triples in the list, and the second is not the

last triple in the list, them+n = 1’ orj+n != j° ;in other words, adjacent triples always describe
non-adjacent equal blocks. Changed in version 2.5: The guarantee that adjacent triples always describe
non-adjacent blocks was implemented.

8.4. difflib — Helpers for computing deltas 95

The Python Library Reference, Release 2.6.4c1

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> g. get_matching_blocks()
[Match(a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to tueninto b. Each tuple is of the fornftag, i1, i2,
i1, j2) . The firsttuple hagl == j1 == , and remaining tuples havé equal to tha2 from the
preceding tuple, and, likewisg, equal to the previoug.

Thetag values are strings, with these meanings:

Value Meaning

'replace’ afil:i2] should be replaced Hyj1:j2]

‘delete’ afil:i2] should be deleted. Note thdt == j2 in this case.
'insert’ b[j1:j2] should be inserted afil:il] . Note thatl == i2 in this case.
‘equal’ afil:i2] == b[j1:j2] (the sub-sequences are equal).
For example:
>>> a = "qabxcd "
>>> b = "abycdf "
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s. get opcodes():

print (" a[%d %d (%9 b[%d %d (%9 " %

(tag, i1, i2, afil1:i2], j1, j2, b[j1:j2])
delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)
insert a[6:6] () b[5:6] (f)

get_grouped_opcodes ([n])
Return ageneratorof groups with up tan lines of context.

Starting with the groups returned Iyt opcodes() , this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same formajets opcodes() . New in version 2.3.

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M
/ T. Note that this id.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to computedgket matching blocks() orget opcodes() hasn't already been
called, in which case you may want to tjyick ratio() orreal_quick_ratio() first to get an
upper bound.

quick_ratio ()
Return an upper bound oatio() relatively quickly.

This isn't defined beyond that it is an upper boundato() , and is faster to compute.

real_quick_ratio 0
Return an upper bound oatio() very quickly.

This isn't defined beyond that it is an upper boundratio() , and is faster to compute than either
ratio() or quick_ratio()

96

Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougfuick_ratio() andreal_quick_ratio() are always at least as largeratio()

>>> g = SequenceMatcher(None, "abcd", "bcde")
>>> 5. ratio()

0.75

>>> s, quick _ratio()

0.75

>>> g. real_quick_ratio()

1.0

8.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
" private Thread currentThread;
" private volatile Thread currentThread; ")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuiafip@ value
over 0.6 means the sequences are close matches:

>>> print round (s . ratio(), 3)
0.866
If you're only interested in where the sequences mageh, matching_blocks() is handy:

>>> for block in s. get _matching_blocks():

print "a] %d and b[] match for elements " % block
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 21 elements

a[29] and b[38] match for O elements

Note that the last tuple returned bgt_matching_blocks() is always a dummylen(a), len(b), 0) ,
and this is the only case in which the last tuple element (number of elements matdbed) is

If you want to know how to change the first sequence into the secondetisepcodes()

>>> for opcode in s.get opcodes():

print " a[%d %d b[t%d " % opcode

equal aJ0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:29] b[17:38]

See also the functiomet close matches() in this module, which shows how simple code building on

SequenceMatcher can be used to do useful work.

8.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim tomé@imal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer class has this constructor:

classDiffer ([linejunk, [charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

8.4. difflib — Helpers for computing deltas 97

The Python Library Reference, Release 2.6.4c1

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from theeadlines() method of file-like objects. The delta generated also consists of
newline-terminated strings, ready to be printed as-is viaufielines() method of a file-like object.

8.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

1

>>> textl = 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

o Csplitlines(1)

>>> len (textl)

>>> textl[O] -1]

>>> textz = 1. Beautiful is better than ugly.
3. Simple is better than complex.

4. Complicated is better than complex.

5. Flat is better than nested.

. splitlines(1)

1

Next we instantiate a Differ object:
>>> d = Differ()

Note that when instantiating@iffer object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:
>>> result = list (d.compare(textl, text2))
result s a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint(result)

[1. Beautiful is better than ugly.\n’,

- 2. Explicit is better than implicit.\n’,

- 3. Simple is better than complex.\n’,

"+ 3. Simple is better than complex.\n’,

? ++\n’,

- 4. Complex is better than complicated.\n’,

? N ---- N,
'+ 4. Complicated is better than complex.\n’,

98 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

? ++++ N Nn',
'+ 5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

>>> import sys

>>> sys . stdout . writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.

? ++

- 4. Complex is better than complicated.

? A — A
+ 4. Complicated is better than complex.

? ++++ A A
+ 5. Flat is better than nested.

8.4.5 A command-line interface to difflib

This example shows how to use difflib to creatdifd -like utility. It is also contained in the Python source distribu-
tion, asTools/scripts/diff.py

" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.
* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.
* html: generates side by side comparison with change highlights.
import sys, os, time , difflib , optparse
def main ():
Configure the option parser
usage = "usage: %prog [options] fromfile tofile "
parser = optparse . OptionParser(usage)
parser .add_option("-c", action ="store true ", default =False ,
help =" Produce a context format diff (default) ")
parser .add option("-u", action ="store true ", default =False ,
help =" Produce a unified format diff ")
hip = ' Produce HTML side by side diff (can use -c and -l in conjunction) ’
parser .add_option("-m", action ="store true ", default =False , help =hlp)
parser .add_option("-n", action ="store true ", default =False ,
help =’ Produce a ndiff format diff ")
parser .add option("-I ", "-lines ", type ="int ", default =3,
help =" Set number of context lines (default 3) ")
(options, args) = parser . parse_args()
if len (args) == 0:
parser . print_help()
sys . exit(1)
if len (args) = 2:
parser . error("need to specify both a fromfile and tofile ")

8.4. difflib — Helpers for computing deltas 99

The Python Library Reference, Release 2.6.4c1

n = options . lines
fromfile, tofile = args # as specified in the usage string

we're passing these as arguments to the diff function

fromdate = time . ctime(os . stat(fromfile) . st_mtime)
todate = time . ctime(os . stat(tofile) . st_mtime)
fromlines = open (fromfile, "U). readlines()

tolines = open (tofile, "U) . readlines()

if options . u:
diff = difflib . unified_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)
elif options . n:
diff = difflib . ndiff(fromlines, tolines)
elif options . m:

diff = difflib . HtmIDiff() . make_file(fromlines, tolines, fromfile,
tofile, context =options . c,
numlines =n)
else :
diff = difflib . context_diff(fromlines, tolines, fromfile, tofile,
fromdate, todate, n =n)

we're using writelines because diff is a generator
sys . stdout . writelines(diff)

if __name__ == _ main__
main()
8.5 StringlO — Read and write strings as files

This module implements a file-like clasSiringlO , that reads and writes a string buffer (also knownresnmory
fileg. See the description of file objects for operations (sechitm Objecty. (For standard strings, se¢r and
unicode .)

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th#&tringlO will start empty. In both cases, the initial file position starts at
zero.

The StringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause a
UnicodeError to be raised whepgetvalue() is called.

The following methods o6tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShiénglO object'sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer. Attempting to do further operations with a clé#edglO object will raise a
ValueError

100 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

Example usage:

import StringlO

output = StringlO . StringlO()
output . write(’ First line. \n ")
print >>output, " Second line.
Retrieve file contents -- this will be
'First line.\nSecond line.\n’

contents = output . getvalue()

Close object and discard memory buffer --
.getvalue() will now raise an exception.
output . close()

8.6 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of thetringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the func8timglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. It's not possible to set attributes on it. Use the ofigima|O module in those cases.

Unlike the memory files implemented by tB&inglO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as plain ASCII strings.

Calling StringlO() with a Unicode string parameter populates the object with the buffer representation of the
Unicode string, instead of encoding the string.

Another difference from th&tringlO module is that callingstringlO() with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods. These objects are not
generally visible. They turn up in tracebacksstengl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO() with a string parameter.

OutputType
The type object of the objects returned by callBiginglO() with no parameters.

There is a C API to the module as well; refer to the module source for more information.
Example usage:

import ¢cStringlO

output = cStringlO . StringlO()

output . write(' First line. \n ")
print >>output, * Second line.

)

Retrieve file contents -- this will be
'First line.\nSecond line.\n’
contents = output . getvalue()

Close object and discard memory buffer --

8.6. cStringlO — Faster version of StringlO 101

The Python Library Reference, Release 2.6.4c1

.getvalue() will now raise an exception.
output . close()

8.7 textwrap — Text wrapping and filling

New in version 2.3. Théextwrap module provides two convenience functiomsap() andfill() , as well as
TextWrapper , the class that does all the work, and a utility functitadent() . If you're just wrapping or filling

one or two text strings, the convenience functions should be good enough; otherwise, you should use an instance of
TextWrapper for efficiency.

wrap (text, [width, [...]])
Wraps the single paragraph text (a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesofVrapper , documented belowvidth
defaults to70.

fill (text, [width, [...]])
Wraps the single paragraph text and returns a single string containing the wrapped paragté(gh. is
shorthand for

“\n " . join(wrap(text, L)
In particularfill() accepts exactly the same keyword argumentsrap() .
Both wrap() andfill() work by creating arextWrapper instance and calling a single method on it. That

instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unlessxtWrapper.break long_words is set to false.

An additional utility functiondedent() , is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (tex?
Remove any common leading whitespace from every lirtexh

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: thadit@s and
“\thello" are considered to have no common leading whitespace. (This behaviour is new in Python 2.5;
older versions of this module incorrectly expanded tabs before searching for common leading whitespace.)

For example:
def test ():
end first line with \ to avoid the empty line!
s ="\
hello
world
print repr (s) # prints ’ hello\n world\n ’
print repr (dedent(s)) # prints 'hello\n world\n’

102 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

classTextWrapper (...
TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent ="x)
is the same as

wrapper = TextWrapper()
wrapper . initial_indent = "*

You can re-use the samiextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer thanvidth , TextWrapper guarantees that no output line will be longer thédth
characters.

expand_tabs
(default: True) If true, then all tab characters itext will be expanded to spaces using the
expandtabs() method oftext

replace_whitespace
(default: True) If true, each whitespace character (as definedtoyng.whitespace) remaining
after tab expansion will be replaced by a single space.

Note: If expand_tabs is false andeplace whitespace is true, each tab character will be re-
placed by a single space, whichnistthe same as tab expansion.

drop_whitespace
(default: True) If true, whitespace that, after wrapping, happens to end up at the beginning or end of
a line is dropped (leading whitespace in the first line is always preserved, though). New in version 2.6:
Whitespace was always dropped in earlier versions.

initial_indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of
the first line.

subsequent_indent
(default: ") String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by one bf ,’!" ,or'?" , possibly followed by one of’ or™" , followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’'s monster [...]
and “Spot.” in

[...] See Spot. See Spot run [..]]

8.7. textwrap — Text wrapping and filling 103

The Python Library Reference, Release 2.6.4c1

fix_sentence_endings is false by default.

Since the sentence detection algorithm relieswimg.lowercase for the definition of “lowercase
letter,” and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break long_words
(default: True) If true, then words longer thawidth will be broken in order to ensure that no lines
are longer thanvidth . If it is false, long words will not be broken, and some lines may be longer than
width . (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need tasetk_long_words to false if you want truly insecable
words. Default behaviour in previous versions was to always allow breaking hyphenated words. New in
version 2.6.

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (texd
Wraps the single paragraphtiext(a string) so every line is at mostdth characters long. All wrapping
options are taken from instance attributes of Thet\Wrapper instance. Returns a list of output lines,
without final newlines.

fill (texd
Wraps the single paragraphtiext and returns a single string containing the wrapped paragraph.

8.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search_function
Register a codec search function. Search functions are expected to take one argument, the encoding hame in all
lower case letters, and returrCadecinfo object having the following attributes:

ename The name of the encoding;
eencode The stateless encoding function;
«decode The stateless decoding function;
eincrementalencoder An incremental encoder class or factory function;
eincrementaldecoder An incremental decoder class or factory function;
estreamwriter A stream writer class or factory function;
estreamreader A stream reader class or factory function.
The various functions or classes take the following arguments:

encode and decode These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

104 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

incrementalencodeasindincrementaldecoderThese have to be factory functions providing the following inter-
face:

factory(errors='strict’)

The factory functions must return objects providing the interfaces defined by the base classes
IncrementalEncoder andincrementalDecoder , respectively. Incremental codecs can maintain state.

streamreadeandstreamwriter These have to be factory functions providing the following interface:
factory(stream, errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Slassgs/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors aisrict’ (raise an exception in case of an encoding erfogplace’ (re-
place malformed data with a suitable replacement marker, suh as 'ignore’ (ignore malformed data
and continue without further noticexmicharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) andlackslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name definecygiater _error()

In case a search function cannot find a given encoding, it should rstume.

lookup (‘encoding
Looks up the codec info in the Python codec registry and retu@mdecinfo object as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If n@Codecinfo object is found, a.ookupError s raised. Otherwise, theéodecinfo object is
stored in the cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHimbkug¢) for
the codec lookup:

getencoder (encoding
Look up the codec for the given encoding and return its encoder function.

Raises d ookupError in case the encoding cannot be found.

getdecoder (encoding
Look up the codec for the given encoding and return its decoder function.

Raises da.ookupError in case the encoding cannot be found.

getincrementalencoder (‘encoding
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises d_ookupError in case the encoding cannot be found or the codec doesn't support an incremental
encoder. New in version 2.5.

getincrementaldecoder (‘encoding
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises d_ookupError in case the encoding cannot be found or the codec doesn't support an incremental
decoder. New in version 2.5.

getreader (encoding
Look up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (‘encoding
Look up the codec for the given encoding and return its StreamWriter class or factory function.

Raises a.ookupError in case the encoding cannot be found.

8.8. codecs — Codec registry and base classes 105

The Python Library Reference, Release 2.6.4c1

register_error (name, error_handlégr

Register the error handling functiamror_handlerunder the namaame error_handlerwill be called during
encoding and decoding in case of an error, whameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains informa-

tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound anndexError will be raised.

Decoding and translating works similar, excépticodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup_error (namg

Return the error handler previously registered under the meame

Raises a.ookupError in case the handler cannot be found.

strict_errors (exception

Implements thestrict error handling.

replace_errors (- exception

Implements theeplace error handling.

ignore_errors (exception

Implements thégnore error handling.

xmlicharrefreplace_errors (- exception
Implements thexmlicharrefreplace error handling.
backslashreplace_errors (- exception

Implements théackslashreplace error handling.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode, [encoding, [errors, [buffering]]]

Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding. The default file mode’'ts meaning to open the file in read mode.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

Note: Files are always opened in binary mode, even if no binary mode was specified. This is done to avoid data
loss due to encodings using 8-bit values. This means that no automatic conversion o done on reading
and writing.

encodingspecifies the encoding which is to be used for the file.

errors may be given to define the error handling. It defaultstact’ which causes &alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builtpen() function. It defaults to line buffered.

EncodedFile (file, input, [output, [errors])

Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gt encoding and then written to
the original file as strings using tfeutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput

106

Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

errors may be given to define the error handling. It defaultsstact’ , Which cause¥/alueError to be
raised in case an encoding error occurs.

iterencode (iterable, encoding, [errorg)]
Uses an incremental encoder to iteratively encode the input providadraple This function is agenerator
errors (as well as any other keyword argument) is passed through to the incremental encoder. New in version
2.5.

iterdecode (iterable, encoding, [errorg)]
Uses an incremental decoder to iteratively decode the input providédrbaple This function is egenerator
errors (as well as any other keyword argument) is passed through to the incremental decoder. New in version
2.5.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOM_BE

BOM_LE

BOM_UTF8

BOM_UTF16

BOM_UTF16_BE

BOM_UTF16_LE

BOM_UTF32

BOM_UTF32_BE

BOM_UTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOM_UTF16s eitherBOM_UTF16_BEor BOM_UTF16_LEdepending on the platform’s native byte order,
BOMis an alias forBOM_UTF16 BOM_LEfor BOM_UTF16_LEand BOM_BHor BOM_UTF16_BEThe
others represent the BOM in UTF-8 and UTF-32 encodings.

8.8.1 Codec Base Classes

Thecodecs module defines a set of base classes which define the interface and can also be used to easily write your
own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #wecode() anddecode() methods may implement different error
handling schemes by providing tleerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

replace’ Replace with a suitable replacement character; Python will use the official U+FFFD
REPLACEMENT CHARACTER for the built-in Unicode codecs on decoding and ‘?’ on
encoding.

'xmicharrefreplac&eplace with the appropriate XML character reference (only for encoding).

‘backslashreplaceReplace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedrgig@ster _error()

8.8. codecs — Codec registry and base classes 107

The Python Library Reference, Release 2.6.4c1

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input, [errors])
Encodes the obje@putand returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.gp1252 oriso-8859-1).

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input, [errors])
Decodes the objedput and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremental
encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder function,
but with multiple calls to theencode() /decode() method of the incremental encoder/decoder. The incremental
encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to thencode() /decode() method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

New in version 2.5. ThéncrementalEncoder class is used for encoding an input in multiple steps. It defines
the following methods which every incremental encoder must define in order to be compatible with the Python codec
registry.

classincrementalEncoder ([errors])
Constructor for anncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providingetiners key-
word argument. These parameters are predefined:

*'strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

108 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

’xmlicharrefreplace’ Replace with the appropriate XML character reference
*'backslashreplace’ Replace with backslashed escape sequences.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime ofithementalEncoder
object.

The set of allowed values for thegrors argument can be extended witkgister_error()

encode (object, [final])
Encodesobject (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call tencode() final must be true (the default is false).

reset ()
Reset the encoder to the initial state.

IncrementalDecoder Objects
ThelncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

classincrementalDecoder ([errors])
Constructor for anncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providingetiners key-
word argument. These parameters are predefined:

*’strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.
*replace’ Replace with a suitable replacement character.

Theerrors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime ofithementalDecoder
object.

The set of allowed values for thegrors argument can be extended witkgister_error()

decode (object, [final])
Decodesobject (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call talecode() final must be true (the default is false). flhal is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

The StreamWriter — andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encoding submodules very easily. &sendings.utf 8 for an example of how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass Gfodec and defines the following methods which every stream writer must
define in order to be compatible with the Python codec registry.

8.8. codecs — Codec registry and base classes 109

The Python Library Reference, Release 2.6.4c1

classStreamWriter (stream, [errors)
Constructor for &treamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing binary data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are predefined:

*’strict’ RaiseValueError (or a subclass); this is the default.

*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character

oxmicharrefreplace’ Replace with the appropriate XML character reference
*’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime 8frtem\Writer object.

The set of allowed values for thegrors argument can be extended wittgister_error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tB&reamWriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects
The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

classStreamReader (stream, [errors)
Constructor for &treamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

*’strict’ RaiseValueError (or a subclass); this is the default.
*'ignore’ Ignore the character and continue with the next.

*replace’ Replace with a suitable replacement character.

110 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it

possible to switch between different error handling strategies during the lifetime 8frteemReader object.
The set of allowed values for thegrors argument can be extended wittgister_error()

read ([size, [chars, [firstline]]])

Decodes data from the stream and returns the resulting object.

charsindicates the number of characters to read from the streaad() will never return more than
charscharacters, but it might return less, if there are not enough characters available.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes.
The decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as
much as possiblesizeis intended to prevent having to decode huge files in one step.

firstline indicates that it would be sufficient to only return the first line, if there are decoding errors on later
lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are

available on the stream, these should be read too. Changed in versich&gargument added.Changed
in version 2.4.2firstline argument added.

readline ([size, [keepends]]
Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streamasline() method.

If keependss false line-endings will be stripped from the lines returned. Changed in versiokezgends
argument added.

readlines ([sizehint, [keepends]]
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decoder method and are included in the list entries if

keependss true.
sizehint if given, is passed as ttsizeargument to the stream’sad() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover

from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attributes from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide

useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned lopkhg() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tli#reamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

8.8. codecs — Codec registry and base classes 111

The Python Library Reference, Release 2.6.4c1

StreamReaderWriter instances define the combined interfacesSofeamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkhg() function to construct the instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encode decodemust adhere to th€odec interface. Readey Writer must be factory functions or classes
providing objects of th&treamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®@gaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
the intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStofamReader andStreamWriter classes. They
inherit all other methods and attributes from the underlying stream.

8.8.2 Encodings and Unicode

Unicode strings are stored internally as sequences of codepoints (to be preejseJd CODEarrays). Depending

on the way Python is compiled (either vignable-unicode=ucs2 or--enable-unicode=ucs4 , with the

former being the defaulpy UNICODEis either a 16-bit or 32-bit data type. Once a Unicode object is used outside

of CPU and memory, CPU endianness and how these arrays are stored as bytes become an issue. Transforming
a unicode object into a sequence of bytes is called encoding and recreating the unicode object from the sequence
of bytes is known as decoding. There are many different methods for how this transformation can be done (these
methods are also called encodings). The simplest method is to map the codepoints 0-255 to tBeObes .

This means that a unicode object that contains codepoints &bed@FF can’t be encoded with this method (which is
called’latin-1’ or’iso-8859-1’). unicode.encode() will raise aUnicodeEncodeError that looks

like this: UnicodeEncodeError: ’latin-1’ codec can't encode character u\ul234’ in

position 3: ordinal not in range(256)

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all unicode
code points and how these codepoints are mapped to the@¥@e8xff . To see how this is done simply open e.qg.
encodings/cpl1252.py (which is an encoding that is used primarily on Windows). There’s a string constant with
256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 65536 (or 1114111) codepoints defined in unicode. A simple
and straightforward way that can store each Unicode code point, is to store each codepoint as two consecutive bytes.
There are two possibilities: Store the bytes in big endian or in little endian order. These two encodings are called
UTF-16-BE and UTF-16-LE respectively. Their disadvantage is that if e.g. you use UTF-16-BE on a little endian
machine you will always have to swap bytes on encoding and decoding. UTF-16 avoids this problem: Bytes will
always be in natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have

112 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

to be swapped though. To be able to detect the endianness of a UTF-16 byte sequence, there’s the so called BOM
(the “Byte Order Mark™). This is the Unicode charactérFEFFE This character will be prepended to every UTF-16
byte sequence. The byte swapped version of this chardiIEFFE) is an illegal character that may not appear in

a Unicode text. So when the first character in an UTF-16 byte sequence appearsWie-BERE the bytes have to

be swapped on decoding. Unfortunately upto Unicode 4.0 the chatd¢tEFF had a second purpose aZBRO
WIDTH NO-BREAK SPACHR character that has no width and doesn't allow a word to be split. It can e.g. be used
to give hints to a ligature algorithm. With Unicode 4.0 usldgFEFFas aZERO WIDTH NO-BREAK SPAGES

been deprecated (witd+2060 (WORD JOINERassuming this role). Nevertheless Unicode software still must be
able to handl®&J+FEFFin both roles: As a BOM it's a device to determine the storage layout of the encoded bytes, and
vanishes once the byte sequence has been decoded into a Unicode striddeRO aWVIDTH NO-BREAK SPACE

it's a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-hit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists of
two parts: Marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to six 1 bits
followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when concatenated
give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F OXXXXXXX

U-00000080 ... U-000007FF 120xxxXXX LOXXXXXX

U-00000800 ... U-0000FFFF | 11210xxxX 1OXXXXXX 1OXXXXXX

U-00010000 ... U-001FFFFF | 11110xxX 10xXXXXXX LOXXXXXX 1OXXXXXX

U-00200000 ... U-03FFFFFF | 1111210xx 10xxXxXXXX 1OXXXXXX LOXXXXXX LOXXXXXX
U-04000000 ... U-7FFFFFFF | 11111210x 10xXXXXX LOXXXXXX LOXXXXXX LOXXXXXX 1OXXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and &y-EFFcharacter in the decoded Unicode string (even if
it's the first character) is treated aZBRO WIDTH NO-BREAK SPACE

Without external information it's impossible to reliably determine which encoding was used for encoding a Uni-
code string. Each charmap encoding can decode any random byte sequence. However that's not possible with
UTF-8, as UTF-8 byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the re-
liability with which a UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls
"utf-8-sig") for its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 en-
coded BOM (which looks like this as a byte sequert>eef , Oxbb , Oxbf) is written. As it's rather improbable that

any charmap encoded file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER | WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a utf-8-sig encoding can be correctly guessed from the byte sequence.
So here the BOM is not used to be able to determine the byte order used for generating the byte sequence, but as a
signature that helps in guessing the encoding. On encoding the utf-8-sig codec wilDxafte Oxbb , Oxbf as the

first three bytes to the file. On decoding utf-8-sig will skip those three bytes if they appear as the first three bytes in
the file.

8.8.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

8.8. codecs — Codec registry and base classes 113

The Python Library Reference, Release 2.6.4c1

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

* an ISO 8859 codeset

 a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

« an IBM EBCDIC code page

« an IBM PC code page, which is ASCIl compatible

Codec Aliases Languages
ascii 646, us-ascii English
bigs big5-tw, csbig5 Traditional Chi
big5hkscs big5-hkscs, hkscs Traditional Chi
cp037 IBMO37, IBM039 English
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, 1BM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Eurof
cp737 Greek
cp775 IBM775 Baltic languag
cp850 850, IBM850 Western Euror
cp852 852, IBM852 Central and Ez
cp855 855, IBM855 Bulgarian, Bye
cp856 Hebrew
cp857 857, IBM857 Turkish
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM865 Danish, Norwe
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chi
cpl1006 Urdu
cpl026 ibm1026 Turkish
cpl1140 ibm21140 Western Euroy
cpl1250 windows-1250 Central and Ec
cpl251 windows-1251 Bulgarian, Bye
cpl252 windows-1252 Western Eurof
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic
cpl257 windows-1257 Baltic languag
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese

114 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

Table 8.1 — continued from previous page

euc_jisx0213
euc_kr
gh2312

gbk

gbh18030

hz
i502022_jp
i502022_jp_1
i502022_jp_2
i502022_jp_2004
502022 jp_3
i502022_jp_ext
i502022_kr
latin_1
is08859 2
iso8859 3
iso8859 4
is08859 5
iso8859 6
iso8859 7
iso8859 8
is08859 9
iso8859 10
is08859 13
is08859_ 14
is08859_15
johab

koi8_r

koi8 u
mac_cyrillic
mac_greek
mac_iceland
mac_latin2
mac_roman
mac_turkish
ptcpl54
shift_jis
shift_jis_2004
shift_jisx0213
utf_32
utf_32_he

utf_ 32 le
utf_16

utf_16 be
utf_16 le

utf 7

utf 8

utf_8_sig

eucjisx0213

euckr, korean, ksc5601, ks_c-5601, ks _¢c-5601-1987, ksx1001, ks_x-1001
chinese, csis058gb231280, euc- cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, i

936, cp936, ms936

gb18030-2000

hzgb, hz-gh, hz-gh-2312
€sis02022jp, is02022jp, iso-2022-jp
i502022jp-1, is0-2022-jp-1
i502022jp-2, is0-2022-jp-2
iI502022jp-2004, is0-2022-jp-2004
i502022jp-3, is0-2022-jp-3
i502022jp-ext, is0-2022-jp-ext
€sis02022kr, is02022kr, iso-2022-kr
iS0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1
iS0-8859-2, latin2, L2

is0-8859-3, latin3, L3

is0-8859-4, latin4, L4

is0-8859-5, cyrillic

is0-8859-6, arabic

is0-8859-7, greek, greek8
is0-8859-8, hebrew

is0-8859-9, latin5, L5

is0-8859-10, latin6, L6

is0-8859-13

is0-8859-14, latin8, L8

is0-8859-15

cpl361, ms1361

maccyrillic

macgreek

maciceland

maclatin2, maccentraleurope
macroman

macturkish

csptcplb4, ptl54, cpl54, cyrillic-asian
csshiftjis, shiftjis, sjis, s_jis
shiftjis2004, sjis_2004, sjis2004
shiftjisx0213, sjisx0213, s_jisx0213
U32, utf32

UTF-32BE

UTF-32LE

U16, utfl6

UTF-16BE

UTF-16LE

U7, unicode-1-1-utf-7

U8, UTF, utf8

Japanese
Korean
saBimp8fied Chir
Unified Chines
Unified Chines
Simplified Chir
Japanese
Japanese
Japanese, Kor
Japanese
Japanese
Japanese
Korean
West Europe
Central and Ee
Esperanto, Ma
Baltic languag:
Bulgarian, Bye
Arabic
Greek
Hebrew
Turkish
Nordic languac
Baltic languag:
Celtic languag
Western Euroy
Korean
Russian
Ukrainian
Bulgarian, Bye
Greek
Icelandic
Central and Ec
Western Euroy
Turkish
Kazakh
Japanese
Japanese
Japanese
all languages
all languages
all languages
all languages
all languages (
all languages (
all languages
all languages
all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that

any bijective function with one argument can be considered as an encoding.

8.8. codecs — Codec registry and base classes

115

The Python Library Reference, Release 2.6.4c1

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

Codec Aliases Operand Purpose
type
base64_codexse64, base-64 | byte Convert operand to MIME base64
string
bz2_ codec bz2 byte Compress the operand using bz2
string
hex_code¢ hex byte Convert operand to hexadecimal representation, with two digits per
string byte
idna Uni- ImplementsRFC 349Q see als@ncodings.idna
code
string
mbcs dbcs Uni- Windows only: Encode operand according to the ANSI codepage
code (CP_ACP)
string
palmos Uni- Encoding of PalImOS 3.5
code
string
punycode Uni- ImplementsRFC 3492
code
string
quo- quopri, byte Convert operand to MIME quoted printable
pri_codec| quoted-printable, | string
quotedprintable
raw_unicode_escape Uni- Produce a string that is suitable as raw Unicode literal in Python
code source code
string
rot_13 rotl3 Uni- Returns the Caesar-cypher encryption of the operand
code
string
string_escape byte Produce a string that is suitable as string literal in Python source
string code
unde- any Raise an exception for all conversions. Can be used as the system
fined encoding if no automaticoercionbetween byte and Unicode
strings is desired.
uni- Uni- Produce a string that is suitable as Unicode literal in Python source
code_escape code code
string
uni- Uni- Return the internal representation of the operand
code_internal code
string
uu_codec| uu byte Convert the operand using uuencode
string
zlib_codec zip, zlib byte Compress the operand using gzip
string

New in version 2.3: Th&dna andpunycode encodings.

8.8.4 encodings.idna — Internationalized Domain Names in Applications

New in version 2.3. This module implemeritsC 3490(Internationalized Domain Names in Applications) &feC
3492 (Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upoputmgcode

116 Chapter 8. String Services

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 2.6.4c1

encoding andtringprep

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain hame containing
non-ASCII characters (such asvw.Alliancefrangaise.nu) is converted into an ASCII-compatible encoding

(ACE, such asvww.xn--alliancefranaise-npb.nu). The ACE form of the domain name is then used in all
places where arbitrary characters are not allowed by the protocol, such as DNS querie${$T Tields, and so on.

This conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: ifina codec allows to convert between Unicode and the ACE.
Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, sictpés andftplib , accept Unicode host names

(httplib then also transparently sends an IDNA hostname itHib&t field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The modulezncodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version latbel The implementation currently assumes query strings, so
AllowUnassigned is true.

ToASCII (label)
Convert a label to ASCII, as specifiediti-C 3490 UseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specifiediRC 349Q

8.8.5 encodings.utf 8 sig — UTF-8 codec with BOM signature

New in version 2.5. This module implements a variant of the UTF-8 codec: On encoding a UTF-8 encoded BOM will
be prepended to the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte
stream). For decoding an optional UTF-8 encoded BOM at the start of the data will be skipped.

8.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based dyrtivedeData.txt file version 5.1.0 which is publicly available
from ftp://ftp.unicode.org/

The module uses the same names and symbols as defined by the UnicodeData File Format 5.1.0 (see
http://www.unicode.org/Public/5.1.0/ucd/UCD.h)mlt defines the following functions:

lookup (nam§
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr, [default)
Returns the name assigned to the Unicode charantehnr as a string. If no name is definagkfaultis returned,
or, if not given,ValueError s raised.

8.9. unicodedata — Unicode Database 117

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html
ftp://ftp.unicode.org/
http://www.unicode.org/Public/5.1.0/ucd/UCD.html

The Python Library Reference, Release 2.6.4c1

decimal (unichr, [default)
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giveriyalueError s raised.

digit (unichr, [default)
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definetkfault
is returned, or, if not giveriyalueError is raised.

numeric (unichr, [default)
Returns the numeric value assigned to the Unicode chanawighr as float. If no such value is definedkfault
is returned, or, if not giveriyalueError is raised.

category (‘unichr)
Returns the general category assigned to the Unicode chauadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chauaithir as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaidler as integer. Return8 if no
combining class is defined.

east_asian_width (‘unichr)
Returns the east asian width assigned to the Unicode chaveitér as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode characiehr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanéateas string. An empty
string is returned in case no such mapping is defined.

normalize (form, unist)
Return the normal fornform for the Unicode stringinistr. Valid values forform are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0327 (COMBINING CEDILLA) U+0043 (LATIN CAPITAL LETTER C).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining characters
and the other doesn't, they may not compare equal. New in version 2.3.

In addition, the module exposes the following constant:

118 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

unidata_version
The version of the Unicode database used in this module. New in version 2.3.

ucd_3 2 0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA). New in
version 2.5.

Examples:

>>> import unicodedata
>>> unicodedata . lookup(' LEFT CURLY BRACKEY

u'{

>>> unicodedata .name(u’ /")
'SOLIDUS’

>>> unicodedata . decimal(u 9")
9

>>> unicodedata .decimal(u a’')
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
ValueError : not a decimal
>>> unicodedata . category(u A') # ’'L'etter, 'u'ppercase

L
>>> unicodedata . bidirectional(u’ \u0660 ') # 'A’rabic, 'N'umber
AN’

8.10 stringprep — Internet String Preparation

New in version 2.3. When identifying things (such as host names) in the internet, it is often necessary to compare such
identifications for “equality”. Exactly how this comparison is executed may depend on the application domain, e.g.
whether it should be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow
only identifications consisting of “printable” characters.

RFC 3454defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of thetringprep procedure are part of the profile. One example sfrengprep profile is
nameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using tinekstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a setfiringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in_table_al (code
Determine whetherodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in_table bl (codé
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table_b2 (codg
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

8.10. stringprep — Internet String Preparation 119

http://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 2.6.4c1

map_table_b3 (codg
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normalization).

in_table_cl11 (codg
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in_table c12 (codg
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

in_table c11 c12 (codg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in_table c21 (codg
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in_table c22 (codg
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

in_table_c21 c22 (code
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in_table ¢c3 (codg
Determine whethetodeis in tableC.3 (Private use).

in_table_c4 (code
Determine whethetodeis in tableC.4 (Non-character code points).

in_table ¢5 (codé
Determine whethetodeis in tableC.5 (Surrogate codes).

in_table_c6 (code
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in_table ¢c7 (codg
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in_table ¢8 (codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in_table c9 (codé
Determine whethetodeis in tableC.9 (Tagging characters).

in_table d1 (codg
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL").

in_table d2 (codé
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

8.11 fpformat — Floating point conversions

Deprecated since version 2.6: Tiigormat module has been removed in Python 3.0. Tiifermat module
defines functions for dealing with floating point numbers representations in 100% pure Python.

Note: This module is unnecessary: everything here can be done usifgsthiag interpolation operator described in
the String Formatting Operationsection.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digs digits after the point and at least one digit beforedijs <= 0 , the
decimal point is suppressed.

120 Chapter 8. String Services

The Python Library Reference, Release 2.6.4c1

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.

sci (%, dig9
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedifis <=
0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passetht) orsci() asthexparameter does not look like a number. This
is a subclass dfalueError ~ when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat . fix(1.23, 1)
1.2

8.11. fpformat — Floating point conversions 121

The Python Library Reference, Release 2.6.4c1

122 Chapter 8. String Services

CHAPTER

NINE

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, synchronized queues, and sets.

Python also provides some built-in data types, in particular, , list , set (which along withfrozenset
replaces the deprecatedts module), anduple . Thestr class can be used to handle binary data and 8-bit text,
and theunicode class to handle Unicode text.

The following modules are documented in this chapter:

9.1 datetime — Basic date and time types

New in version 2.3. Thelatetime module supplies classes for manipulating dates and times in both simple and
complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member
extraction for output formatting and manipulation. For related functionality, see alstnibe and calendar

modules.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object has
any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment. Whether a
naivedatetime object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it's up to the program whether a particular number represents metres, miles, or
mass. Naivelatetime objects are easy to understand and to work with, at the cost of ignoring some aspects of
reality.

For applications requiring morejatetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the absniaéd class. Thesézinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that no concretézinfo classes are supplied by thetetime module. Supporting timezones at whatever level

of detail is required is up to the application. The rules for time adjustment across the world are more political than
rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed inlate or datetime object. MINYEARIs 1.

MAXYEAR
The largest year number allowed irdate or datetime object. MAXYEARS 9999 .

See Also:
Module calendar General calendar related functions.

Module time Time access and conversions.

123

The Python Library Reference, Release 2.6.4c1

9.1.1 Available Types

classdate ()
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month , andday .

classtime ()
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of “leap seconds” here). Attributesur , minute , second , microsecond
andtzinfo

classdatetime ()
A combination of a date and a time. Attributesiear , month, day, hour , minute , second,
microsecond , andtzinfo

classtimedelta ()
A duration expressing the difference between thate , time , ordatetime instances to microsecond reso-
lution.

classtzinfo ()
An abstract base class for time zone information objects. These are usedibydtime andtime classesto
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.
Objects of thedate type are always naive.

An objectd of type time or datetime may be naive or awared is aware ifd.tzinfo is not None and
d.tzinfo.utcoffset(d) does not returNone. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset(d) returnsNone, d is naive.

The distinction between naive and aware doesn't appiyitedelta objects.
Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

9.1.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

classtimedelta ([days, [seconds, [microseconds, [milliseconds, [minutes, [hours, [weeks])]
All arguments are optional and default@ Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days secondsndmicrosecondsire stored internally. Arguments are converted to those units:
*A millisecond is converted to 1000 microseconds.
*A minute is converted to 60 seconds.
*An hour is converted to 3600 seconds.

A week is converted to 7 days.

124 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

and days, seconds and microseconds are then normalized so that the representation is unique, with
*0 <= microseconds < 1000000
*0 <= seconds < 3600*24 (the number of seconds in one day)
*-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated ra@geyflowError is raised.
Note that normalization of negative values may be surprising at first. For example,
>>> from datetime import timedelta

>>> d = timedelta(microseconds =-1)

>>> (d . days, d .seconds, d . microseconds)
(-1, 86399, 999999)

Class attributes are:

min
The most negativemedelta object,timedelta(-999999999)

max
The most positiveimedelta object,timedelta(days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999)

resolution
The smallest possible difference between non-equal timedelta objects,
timedelta(microseconds=1)

Note that, because of normalizatidimedelta.max > -timedelta.min . -timedelta.max is not repre-

sentable as amedelta object.

Instance attributes (read-only):

Attribute Value
days Between -999999999 and 999999999 inclusjve
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive
Supported operations:
Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 ==t3 andt1-t3 ==t2 are true. (1)
t1 = t2 - t3 Difference oft2 andt3. Afterwardstl ==1t2 - t3 andt2 ==t1 + t3 are true. (1)
t1 =t2 *iortl =i Delta multiplied by an integer or long. Afterwartls// i == t2 is true,
* 12 providedi '= 0
In generalfl *i == t1* (i-1) + tlis true. (1)
tL =t2 /i The floor is computed and the remainder (if any) is thrown away. (3)
+t1 Returns dimedelta object with the same value. (2)
-t1 equivalent taimedelta (-tl.days-t1l.secondstl.microsecondsand to
t1*-1. (1)(4)
abs(t) equivalent to +*t* whert.days >= 0 ,andtotwhent.days < 0 . (2)
Notes:

1. This is exact, but may overflow.

9.1. datetime — Basic date and time types 125

The Python Library Reference, Release 2.6.4c1

2. This is exact, and cannot overflow.
3. Division by 0 raisegeroDivisionError
4. -timedelta.maxs not representable adienedelta object.

In addition to the operations listed aboveedelta objects support certain additions and subtractions dtie
anddatetime objects (see below).

Comparisons ofimedelta objects are supported with thienedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, whetinaedelta object is compared to an object of a different typgpeError

is raised unless the comparisorris or = . The latter cases retuffelse or True , respectively.

timedelta objects aréhashable(usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta object is considered to be true if and only if it isn’t equatitoedelta(0)

Example usage:

>>> from datetime import timedelta

>>> year = timedelta(days =365)

>>> another_year = timedelta(weeks =40, days =84, hours =23,

minutes =50, seconds =600) # adds up to 365 days
>>> year == another_year
True

>>> ten_years = 10 * year
>>> ten_years, ten_years .days // 365

(datetime.timedelta(3650), 10)

>>> nine_years = ten_years - year

>>> nine_years, hine_years .days // 365
(datetime.timedelta(3285), 9)

>>> three_years = nine_years // 3;

>>> three_years, three_years .days // 365
(datetime.timedelta(1095), 3)

>>> abs (three_years - ten_years) == 2 * three_years + year
True

9.1.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day
number 2, and so on. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculations, where it's the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

classdate (year, month, day
All arguments are required. Arguments may be ints or longs, in the following ranges:

*MINYEAR <= year <= MAXYEAR
*1 <= month <= 12
*1 <= day <= number of days in the given month and year
If an argument outside those ranges is givéalueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalenti&ébe.fromtimestamp(time.time())

126 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

fromtimestamp (timestamp
Return the local date corresponding to the POSIX timestamp, such as is returinee lbyne() . This may
raiseValueError , if the timestamp is out of the range of values supported by the platfdooaltime()
function. It's common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are igrfovetibyestamp()

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unlesd <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) ==

Class attributes:

min

The earliest representable dadafe(MINYEAR, 1, 1)
max

The latest representable dadate(MAXYEAR, 12, 31)
resolution

The smallest possible difference between non-equal date olijewtslelta(days=1)
Instance attributes (read-only):

year
BetweenVIINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result
date2 = datel + timedelta dateZ2is timedelta.days days removed frordatel (1)
date2 = datel - timedelta Computesiate?2such thatlate2 + timedelta == datel . (2
timedelta = datel - date2 3)
datel < date2 datelis considered less thatate2whendatelprecedeslate2in time. (4)
Notes:
1. date2 is moved forward in time iftimedelta.days > O , or backward if timedelta.days
< 0. Afterward date2 - datel == timedelta.days . timedelta.seconds and
timedelta.microseconds are ignored. OverflowError is raised if date2.year would be

smaller tharMINYEARor larger tharMAXYEAR

2. This isn’t quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where

datel - timedelta does ndimedelta.seconds andtimedelta.microseconds are ignored.

3. This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

4. In other wordsdatel < date2 if and only if datel.toordinal() < date2.toordinal() . In

order to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raisesTypeError if the other comparand isn’t alsodate object. HoweverNotimplemented

is returned instead if the other comparand hématuple() attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, whieiea object is compared to an object

of a different type,TypeError is raised unless the comparisorsis or = . The latter cases retufralse or

True , respectively.

9.1. datetime — Basic date and time types 127

The Python Library Reference, Release 2.6.4c1

Dates can be used as dictionary keys. In Boolean context&f@ll objects are considered to be true.
Instance methods:

replace (year, month, day
Return a date with the same value, except for those members given new values by whichever keyword ar-
guments are specified. For examplegif== date(2002, 12, 31) , thend.replace(day=26) ==
date(2002, 12, 26)

timetuple ()
Return aime.struct_time such as returned byme.localtime() . The hours, minutes and seconds
are 0, and the DST flag is -1.d.timetuple() is equivalent totime.struct_time((d.year,
d.month, d.day, 0, 0, O, d.weekday(), d.toordinal() - date(d.year, 1,
1).toordinal() + 1, -1))

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. &aieargbject
d, date.fromordinal(d.toordinal()) ==

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For exdatg(2002,
12, 4).weekday() == , @ Wednesday. See alsmweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For exdatg(2002,
12, 4).isoweekday() == , @ Wednesday. See als@ekday() ,isocalendar()

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The 1SO calendar is a widely used variant of the Gregorian calendar. h8pe&/www.phys.uu.nl/
vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so tIme(ZOOS 12, 29). |socalendar() = (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7)

isoformat ()
Return a string representing the date in ISO 8601 format, ‘'YYYY-MM-DD’. For exanga&g (2002, 12,
4).isoformat() == '2002-12-04’

0

Fora dated, str(d) is equivalent tal.isoformat()

ctime ()
Return a string representing the date, for exanga® (2002, 12, 4).ctime() == 'Wed Dec 4
00:00:00 2002' . d.ctime() is equivalent taime.ctime(time.mktime(d.timetuple()))
on platforms where the native Ctime() function (which time.ctime() invokes, but which
date.ctime() does not invoke) conforms to the C standard.

stritime (formatf)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See sedtidtime() Behavior

Example of counting days to an event:

>>> jmport time
>>> from datetime import date

128 Chapter 9. Data Types

http://www.phys.uu.nl/

The Python Library Reference, Release 2.6.4c1

>>> today = date . today()

>>> today
datetime.date(2007, 12, 5)
>>> today == date . fromtimestamp(time . time())
True
>>> my_birthday = date(today .year, 6, 24)
>>> if my_birthday < today:
my_birthday = = my_birthday . replace(year =today .year + 1)

>>> my_hirthday
datetime.date(2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday . days
202

Example of working withdate :

>>> from datetime import date

>>> d = date . fromordinal(730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date(2002, 3, 11)

>>> t = d. timetuple()

>>> for i in t

print i

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d. isocalendar()

>>> for i in ic:

print i

2002 # 1SO vyear

11 # 1ISO week number

1 # 1SO day number (1 = Monday)
>>> d. isoformat()

'2002-03-11"

>>> d. stritime(" %d %m/%")

'11/03/02’

>>> d. stritime(" %A %d YB %)

'Monday 11. March 2002’

9.1.4 datetime Objects

A datetime object is a single object containing all the information frordede object and g@ime object. Like
adate object,datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, day, [hour, [minute, [second, [microsecond, [tzinfo]j]]]
The year, month and day arguments are requiteidfo may beNone, or an instance of &info subclass.

9.1. datetime — Basic date and time types 129

The Python Library Reference, Release 2.6.4c1

The remaining arguments may be ints or longs, in the following ranges:
*MINYEAR <= year <= MAXYEAR
*l <= month <= 12
¢l <= day <= number of days in the given month and year
*0 <= hour < 24
*0 <= minute < 60
*0 <= second < 60
*0 <= microsecond < 1000000
If an argument outside those ranges is givéalueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None. This is equivalent to
datetime.fromtimestamp(time.time()) . See alsmow() , fromtimestamp()

now([tz])

Return the current local date and time. If optional argunteigtNone or not specified, this is likeoday()
but, if possible, supplies more precision than can be gotten from going throtigle dme() timestamp

(for example, this may be possible on platforms supplying tlye@imeofday() function).
Else tz must be an instance of a clasgzinfo subclass, and the current date
and time are converted totzZs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)) . See alsaoday() , utcnow()

utcnow ()

Return the current UTC date and time, witinfo ~ None. This is likenow() , but returns the current UTC
date and time, as a naidgatetime object. See alsoow() .

fromtimestamp (timestamp, [tZ)
Return the local date and time corresponding to the POSIX timestamp, such as is retutines thyie()
If optional argumentz is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returnedatetime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted to tZs time zone. In this case the result is equivalent to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz))

fromtimestamp() may raiseValueError , if the timestamp is out of the range of values supported by

the platform Clocaltime() orgmtime() functions. It's common for this to be restricted to years in 1970
through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap
seconds are ignored byomtimestamp() , and then it's possible to have two timestamps differing by a

second that yield identicalatetime objects. See alsatcfromtimestamp()

utcfromtimestamp (timestamp
Return the UTCdatetime corresponding to the POSIX timestamp, wittinfo ~ None. This may raise
ValueError , if the timestamp is out of the range of values supported by the platfogmi@ne() function.
It's common for this to be restricted to years in 1970 through 2038. Seératstimestamp()

fromordinal (ordinal)
Return thelatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError israised unlesé <= ordinal <= datetime.max.toordinal() . The hour, minute,
second and microsecond of the result are all O,tamdo is None.

130 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

combine (date, timg
Return a newdatetime object whose date members are equal to the giveie object’s, and whose
time andtzinfo members are equal to the givéime object's. For anydatetime objectd, d ==
datetime.combine(d.date(), d.timetz()) . If date is adatetime object, its time andzinfo
members are ignored.

strptime (date_string, format
Return adatetime corresponding todate string parsed according téormat This is equivalent to
datetime(*(time.strptime(date_string, format)[0:6])) . ValueError is raised if the
date_string and format can’t be parsedibye.strptime() or if it returns a value which isn’t a time tuple.
New in version 2.5.

Class attributes:

min
The earliest representallatetime , datetime(MINYEAR, 1, 1, tzinfo=None)

max
The latest representablelatetime , datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None)

resolution

The smallest possible difference between non-edatdtime objectstimedelta(microseconds=1)
Instance attributes (read-only):

year
BetweenVIINY EARandMAXY EARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as ttenfoargument to thelatetime constructor, oNone if none was passed.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta Q)

datetime2 = datetimel - timedelta (2)

timedelta = datetimel - datetime2 3)

datetimel < datetime2 Compareslatetime to datetime . (4)

1. datetime2 is a duration of timedelta removed from datetimel, moving forward in tineeiflelta.days >
0, or backward itimedelta.days <0. The result has the sartenfo member as the input datetime, and
datetime2 - datetimel == timedelta aft€rverflowError is raised if datetime2.year would be smaller than

9.1. datetime — Basic date and time types 131

The Python Library Reference, Release 2.6.4c1

MINYEAROor larger tharMAXYEARNote that no time zone adjustments are done even if the input is an aware
object.

2. Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the same
tzinfo member as the input datetime, and no time zone adjustments are done even if the input is aware. This
isn't quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow in cases where
datetimel - timedelta does not.

3. Subtraction of alatetime from adatetime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naivigjpeError is raised.

If both are naive, or both are aware and have the sam® member, thézinfo members are ignored, and
theresultis dimedelta objectt such thatlatetime2 + t == datetimel . No time zone adjustments
are done in this case.

If both are aware and have differeftinfo members,a-b acts as ifa and b were first converted
to naive UTC datetimes first. The result (a.replace(tzinfo=None) - a.utcoffset()) -
(b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never overflows.

4. datetimels considered less thatatetime2avhendatetimelprecedeslatetimedn time.

If one comparand is naive and the other is awadrgmeError is raised. If both comparands are aware, and

have the sam&info member, the commotzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have diffézerib members, the comparands are first adjusted by
subtracting their UTC offsets (obtained fraalf.utcoffset()).

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses, date-
time comparison normally rais&ypeError if the other comparand isn't alsodatetime object. However,
Notimplemented is returned instead if the other comparand hasatuple() attribute. This hook gives

other kinds of date objects a chance at implementing mixed-type comparison. If not, wheziiene object

is compared to an object of a different typejpeError is raised unless the comparisor=s or |=. The

latter cases returalse or True , respectively.

datetime objects can be used as dictionary keys. In Boolean contextataiime objects are considered to be
true.

Instance methods:

date ()
Returndate object with same year, month and day.

time ()
Returntime object with same hour, minute, second and microsecénidfo is None. See also method
timetz()

timetz ()
Returntime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time()

replace ([year, [month, [day, [hour, [minute, [second, [microsecond, [tzinfo]]]]]]]]
Return a datetime with the same members, except for those members given new values by whichever keyword
arguments are specified. Note thzihfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time members.

astimezone (t2)
Return adatetime object with newtizinfo membertz, adjusting the date and time members so the result is
the same UTC time aself but intZs local time.

tz must be an instance oftainfo subclass, and itstcoffset() anddst() methods must not return
None. self must be awaresglf.tzinfo must not beNone, andself.utcoffset() must not return
None).

132 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

If self.tzinfo is tz, self.astimezone(tz) is equal toself: no adjustment of date or time members is
performed. Else the result is local time in time zapeepresenting the same UTC timesadf: afterastz =
dt.astimezone(tz) ,astz - astz.utcoffset() will usually have the same date and time members
asdt - dt.utcoffset() . The discussion of clagginfo explains the cases at Daylight Saving Time
transition boundaries where this cannot be achieved (an issue ¢nipdfdels both standard and daylight time).

If you merely want to attach a time zone objetto a datetimedt without adjustment of date and time members,
usedt.replace(tzinfo=tz) . If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time members, diseeplace(tzinfo=None)

Note that the defaulizinfo.fromutc() method can be overridden intainfo subclass to affect the
result returned bystimezone() . Ignoring error casesistimezone() acts like:

def astimezone (self , tz):
if self .tzinfo is tz
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self . utcoffset()) . replace(tzinfo =tz)
Convert from UTC to tz's local time.
return tz . fromutc(utc)

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(self) , and raises an excep-
tion if the latter doesn'’t returiNone, or atimedelta object representing a whole number of minutes with
magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(self) , and raises an exception if the
latter doesn’t returiNone, or atimedelta object representing a whole number of minutes with magnitude
less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(self) , raises an exception if the
latter doesn’t returtNone or a string object,

timetuple ()
Return atime.struct_time such as returned byme.localtime() . d.timetuple() is equiva-
lent to time.struct_time((d.year, d.month, d.day, d.hour, d.minute, d.second,
d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() + 1, dst)) The

tm_isdst flag of the result is set according to tiiet() method:tzinfo isNone ordst() returnsNone,
tm_isdst issetto-1;elseifdst() returns anon-zero valuem_isdst is settol; elsetm_isdst is set
to 0.

utctimetuple 0
If datetime instanced is naive, this is the same dgimetuple() except thatm_isdst is forced to 0
regardless of what.dst() returns. DST is never in effect for a UTC time.

If dis awared is normalized to UTC time, by subtractirmutcoffset() , and atime.struct_time

for the normalized time is returnedn_isdst is forced to 0. Note that the resultsn_year member may
be MINYEARL or MAXYEARL, if d.year wasMINYEARor MAXYEARINd UTC adjustment spills over a year
boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The sanseléslate().toordinal()

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday() . See alsasoweekday()

9.1. datetime — Basic date and time types 133

The Python Library Reference, Release 2.6.4c1

isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday() . See alsaveekday() ,isocalendar()

isocalendar ()
Return a 3-tuple, (ISO vyear, ISO week number,
self.date().isocalendar()

isoformat ([sep])

ISO weekday). The same as

Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm

or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not returiNone, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm-+HH:MM or, ihicrosecond is 0 YYYY-

MM-DDTHH:MM:SS+HH:MM

The optional argumersep(default’T’) is a one-character separator, placed between the date and time portions

of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):

def utcoffset (self , dt): return timedelta(minutes =- 399)

>>> datetime(2002, 12, 25, tzinfo =TZ()) . isoformat(

'2002-12-25 00:00:00-06:39’

_str ()

For adatetime instancead, str(d) is equivalent tal.isoformat(’ ’)

ctime ()

)

Return a string representing the date and time, for exangd¢etime(2002, 12, 4, 20,

30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’ d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native @ime() function
(which time.ctime() invokes, but whichdatetime.ctime() does not invoke) conforms to the C
standard.

stritime (forma)

Return a string representing the date and time, controlled by an explicit format string. See sefition()

Behavior
Examples of working with datetime objects:

>>> from datetime import datetime, date, time
>>> # Using datetime.combine()

>>> d = date(2005, 7, 14)

>>> t = time(12, 30)

>>> datetime . combine(d, t)
datetime.datetime(2005, 7, 14, 12, 30)

>>> # Using datetime.now() or datetime.utcnow()
>>> datetime . now()

datetime.datetime(2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime . utcnow()
datetime.datetime(2007, 12, 6, 15, 29, 43, 79060)
>>> # Using datetime.strptime()

>>> dt = datetime . strptime("21/11/06 16:30 ", "%d %n/% % %)

>>> dt
datetime.datetime(2006, 11, 21, 16, 30)
>>> # Using datetime.timetuple() to get tuple of all attributes

134

Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

>>> tt = dt . timetuple()
>>> for it in ftt
print it
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1st January
-1 # dst - method tzinfo.dst() returned None
>>> # Date in ISO format
>>> jc = dt . isocalendar()
>>> for it in ic:
print it
2006 # 1SO vyear
47 # 1SO week
2 # 1SO weekday

>>> # Formatting datetime
>>> dt . stritime("OA, %d 9B % 9%: %Pp")
"Tuesday, 21. November 2006 04:30PM’

Using datetime with tzinfo:

>>> from datetime import timedelta, datetime, tzinfo
>>> class GMT{tzinfo):
def __init__ (self): # DST starts last Sunday in March
d = datetime(dt .year, 4, 1) # ends last Sunday in October
self .dston = d - timedelta(days =d. weekday() + 1)
d = datetime(dt .year, 11, 1)
self .dstoff = d - timedelta(days =d. weekday() + 1)
def utcoffset (self , dt):
return timedelta(hours =1) + self . dst(dt)
def dst (self , dt):
if self .dston <= dt. replace(tzinfo =None) < self . dstoff:
return timedelta(hours =1)
else :
return timedelta(0)
def tzname (self ,dt):
return " GMT +1
>>> class GMTZtzinfo):
def __init__ (self):
d = datetime(dt .year, 4, 1)
self .dston = d - timedelta(days =d. weekday() + 1)
d = datetime(dt .year, 11, 1)
self .dstoff = d - timedelta(days =d. weekday() + 1)
def utcoffset (self , dt):
return timedelta(hours =1) + self . dst(dt)
def dst (self , dt):
if self .dston <= dt. replace(tzinfo =None) < self . dstoff:
return timedelta(hours =2)
9.1. datetime — Basic date and time types 135

The Python Library Reference, Release 2.6.4c1

else :
return timedelta(0)
def tzname (self ,dt):
return " GMT +2

>>> gmtl = GMTL()

>>> # Daylight Saving Time

>>> dtl = datetime(2006, 11, 21, 16, 30, tzinfo =gmtl)
>>> dtl . dst()

datetime.timedelta(0)

>>> dtl . utcoffset()

datetime.timedelta(0, 3600)

>>> dt2 = datetime(2006, 6, 14, 13, 0, tzinfo =gmtl)
>>> dt2 . dst()

datetime.timedelta(0, 3600)

>>> dt2 . utcoffset()

datetime.timedelta(0, 7200)

>>> # Convert datetime to another time zone

>>> dt3 = dt2 . astimezone(GMT2())

>>> dt3 # doctest: +ELLIPSIS

datetime.datetime(2006, 6, 14, 14, 0, tzinfo=<GMT2 object at 0x...>)
>>> dt2 # doctest: +ELLIPSIS

datetime.datetime(2006, 6, 14, 13, 0, tzinfo=<GMT1 object at 0x...>)
>>> dt2 . utctimetuple() == dt3 . utctimetuple()

True

9.1.5 time Objects
A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

classtime (hour, [minute, [second, [microsecond, [tzinfo]]]]
All arguments are optionalzinfomay beNone, or an instance of &info subclass. The remaining arguments
may be ints or longs, in the following ranges:

*0 <= hour < 24

*0 <= minute < 60

*0 <= second < 60

*0 <= microsecond < 1000000

If an argument outside those ranges is givénlueError is raised. All default ta) excepttzinfa which
defaults toNone.

Class attributes:

min

The earliest representalilene , time(0, 0, 0, 0)
max

The latest representabiene |, time(23, 59, 59, 999999)
resolution

The smallest possible difference between non-etjuad objects,timedelta(microseconds=1) , al-
though note that arithmetic dime objects is not supported.

Instance attributes (read-only):

136 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as the tzinfo argument taithe constructor, oNone if none was passed.

Supported operations:

« comparison ofime totime , whereais considered less thdrwhena precede® in time. If one comparand is
naive and the other is awargypeError is raised. If both comparands are aware, and have the izame
member, the commotrinfo member is ignored and the base times are compared. If both comparands
are aware and have differettinfo = members, the comparands are first adjusted by subtracting their UTC
offsets (obtained fronself.utcoffset()). In order to stop mixed-type comparisons from falling back to
the default comparison by object address, wheima& object is compared to an object of a different type,
TypeError israised unless the comparisorris or = . The latter cases retufralse or True , respectively.

« hash, use as dict key
« efficient pickling

 in Boolean contexts, 8me object is considered to be true if and only if, after converting it to minutes and
subtractingutcoffset() (or 0 if that's None), the result is non-zero.

Instance methods:

replace ([hour, [minute, [second, [microsecond, [tzinfo]]]]]
Return atime with the same value, except for those members given new values by whichever keyword argu-
ments are specified. Note thainfo=None can be specified to create a natiee from an awardime ,
without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not returrNone, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is O,
HH:MM:SS+HH:MM

str ()
For a timet, str(t) is equivalent td.isoformat()

stritime (forma)
Return a string representing the time, controlled by an explicit format string. See s&ctione() Behavior

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(None) , and raises an excep-
tion if the latter doesn’t returiNone or atimedelta object representing a whole number of minutes with
magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(None) , and raises an exception if the
latter doesn't returiNone, or atimedelta object representing a whole number of minutes with magnitude
less than one day.

9.1. datetime — Basic date and time types 137

The Python Library Reference, Release 2.6.4c1

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(None) , Or raises an exception if
the latter doesn’t returNone or a string object.

Example:

>>> from datetime import time, tzinfo
>>> class GMT{tzinfo):
def utcoffset (self , dt):
return timedelta(hours =1)
def dst (self , dt):
return timedelta(0)
def tzname (self ,dt):
return " Europe/Prague "
>>> t = time(12, 10, 30, tzinfo =GMT1())
>>> # doctest: +ELLIPSIS
datetime.time(12, 10, 30, tzinfo=<GMT1 object at 0x...>)
>>> gmt = GMTL()
>>> t . isoformat()
'12:10:30+01:00’
>>> t. dst()
datetime.timedelta(0)
>>> t . tzname()
'Europe/Prague’
>>> t . ostritime("% 90V %S %)
'12:10:30 Europe/Prague’

9.1.6 tzinfo Objects

tzinfo is an abstract base class, meaning that this class should not be instantiated directly. You need to derive a
concrete subclass, and (at least) supply implementations of the standéwd methods needed by thiatetime
methods you use. Th#atetime module does not supply any concrete subclassesrdb

An instance of (a concrete subclasst@ijifo can be passed to the constructorsdatetime andtime objects.
The latter objects view their members as being in local time, anttthi® object supports methods revealing offset
of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: &info subclass must have aninit__ () method that can be called with no
arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be relaxed
in the future.

A concrete subclass ofinfo may need to implement the following methods. Exactly which methods are needed
depends on the uses made of aw@aigetime objects. If in doubt, simply implement all of them.

utcoffset (' self, d)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should be
negative. Note that this is intended to be the total offset from UTC; for exampléziiifa object represents
both time zone and DST adjustments$;offset() should return their sum. If the UTC offset isn't known,
returnNone. Else the value returned must béirmedelta object specifying a whole number of minutes in
the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less than one day). Most
implementations ofitcoffset() will probably look like one of these two:

return ~ CONSTANT # fixed-offset class
return ~ CONSTANT+ self . dst(dt) # daylight-aware class

138 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

If utcoffset() does not returiNone, dst() should not returiNone either.
The default implementation afticoffset() raisesNotimplementedError

dst (self, d)
Return the daylight saving time (DST) adjustment, in minutes east of UTNpoe if DST information isn’t
known. Returrtimedelta(0) if DST is not in effect. If DST is in effect, return the offset asraedelta
object (seeitcoffset() for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned byitcoffset() , SO there’s no need to consudkt() unless you're interested in obtaining
DST info separately. For exampleatetime.timetuple() calls itstzinfo member'sdst() method
to determine how thém_isdst flag should be set, andinfo.fromutc() callsdst() to account for

DST changes when crossing time zones.

An instancetz of atzinfo subclass that models both standard and daylight times must be consistent in this
sense:

tz.utcoffset(dt) - tz.dst(dt)

must return the same result for evelgtetime dt with dt.tzinfo == tz For sandzinfo subclasses,

this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementationdefetime.astimezone() relies on this, but cannot
detect violations; it's the programmer’s responsibility to ensure it. tfiafo subclass cannot guarantee

this, it may be able to override the default implementationzoffo.fromutc() to work correctly with
astimezone() regardless.

Most implementations afist() will probably look like one of these two:

def dst (self):
a fixed-offset class: doesn't account for DST
return timedelta(0)

or

def dst (self):
Code to set dston and dstoff to the time zone’'s DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt. replace(tzinfo =None) < dstoff:
return timedelta(hours =1)

else :
return timedelta(0)

The default implementation afst() raisesNotimplementedError

tzname (self, d)
Return the time zone name corresponding tatthietime objectdt, as a string. Nothing about string names is
defined by thelatetime module, and there’s no requirement that it mean anything in particular. For example,
“‘GMT”, “UTC”, “-500", “-5:00", “EDT", “US/Eastern”, “America/New York” are all valid replies. Return
None if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some
tzinfo subclasses will wish to return different names depending on the specific vadtipadsed, especially
if the tzinfo class is accounting for daylight time.

The default implementation e¢fname() raisesNotimplementedError

These methods are called bydatetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, artdree object passedlone as the argument. Azinfo
subclass’s methods should therefore be prepared to acdeptgument oNone, or of classdatetime

9.1. datetime — Basic date and time types 139

The Python Library Reference, Release 2.6.4c1

When None is passed, it's up to the class designer to decide the best response. For example, rikomeing
appropriate if the class wishes to say that time objects don't participate izittie protocols. It may be more
useful forutcoffset(None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When adatetime object is passed in response tda@etime method,dt.tzinfo is the same object aself
tzinfo methods can rely on this, unless user code d¢aliso methods directly. The intent is that thenfo
methods interpreadt as being in local time, and not need worry about objects in other timezones.

There is one mori&zinfo method that a subclass may wish to override:

fromutc (self, d)
This is called from the defaultiatetime.astimezone() implementation. When called from that,
dt.tzinfo is self anddt's date and time members are to be viewed as expressing a UTC time. The pur-
pose offromutc() is to adjust the date and time members, returning an equivalent datetied 'elocal
time.

Mosttzinfo subclasses should be able to inherit the defaoitbutc() implementation without problems.

It's strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc() implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations oéstimezone() andfromutc() may not produce the result you want if the result is one

of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the defdutimutc() implementation acts like:

def fromutc (self , dt):

raise ValueError error if dt.tzinfo is not self

dtoff = dt . utcoffset()

dtdst = dt. dst()

raise ValueError if dtoff is None or dtdst is None

delta = dtoff - dtdst # this is self's standard offset

if delta:
dt += delta # convert to standard local time
dtdst = dt . dst()
raise ValueError if dtdst is None

if dtdst:

return dt + dtdst
else :

return dt

Exampletzinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR=timedelta(hours =1)

A UTC class.

class UT(Qtzinfo):
myTCem™

def utcoffset (self , dt):
return ZERO

140 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

def tzname (self , dt):
return " UTC

def dst (self , dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.
Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset (tzinfo):
""" Fixed offset in minutes east from UTC.

def __init__ (self , offset, name):
self . __ offset = timedelta(minutes = offset)
self . __name = name

def utcoffset (self , dt):
return self . __ offset

def tzname (self , dt):
return self . _ _name

def dst (self , dt):
return ZERO

A class capturing the platform’s idea of local time.

import time as _time

STDOFFSET= timedelta(seconds = -_time . timezone)
if _time . daylight:

DSTOFFSET= timedelta(seconds = - _time . altzone)
else :

DSTOFFSET= STDOFFSET
DSTDIFF = DSTOFFSET- STDOFFSET
class LocalTimezone (tzinfo):

def utcoffset (self , dt):
if self . _isdst(dt):
return DSTOFFSET
else :
return STDOFFSET

def dst (self , dt):
if self . _isdst(dt):
return DSTDIFF
else :
return ZERO

9.1. datetime — Basic date and time types

141

The Python Library Reference, Release 2.6.4c1

def tzname (self , dt):
return _time . tzname[self . _isdst(dt)]

def _isdst (self , dt):
tt = (dt .year, dt .month, dt .day,
dt . hour, dt . minute, dt . second,
dt . weekday(), 0, -1)
stamp = _time . mktime(tt)
tt = _time . localtime(stamp)
return tt .tm_isdst > O

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):

days to go = 6 - dt.weekday()

if days_to_go:

dt += timedelta(days_to_go)

return dt
US DST Rules
#
This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-link.htm
http://sourceforge.net/projects/pytz/ (might not be up-to-date)
#
In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.

DSTSTART_2007 = datetime(1, 3, 8, 2)

and ends at 2am (DST time; lam standard time) on the first Sunday of Nov.
DSTEND_2007 = datetime(1, 11, 1, 1)

From 1987 to 2006, DST used to start at 2am (standard time) on the first

Sunday in April and to end at 2am (DST time; lam standard time) on the last
Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime(1, 4, 1, 2)

DSTEND_1987_2006 = datetime(1, 10, 25, 1)

From 1967 to 1986, DST used to start at 2am (standard time) on the last

Sunday in April (the one on or after April 24) and to end at 2am (DST time;
lam standard time) on the last Sunday of October, which is the first Sunday
on or after Oct 25.

DSTSTART_1967_1986 = datetime(1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

class USTimeZone (tzinfo):

def __init__ (self , hours, reprname, stdname, dstname):
self . stdoffset = timedelta(hours =hours)
self .reprname = reprname

self . stdname = stdname

142 Chapter 9.

Data Types

The Python Library Reference, Release 2.6.4c1

self . dstname = dstname

def _ repr__ (self):
return self . reprname

def tzname (self , dt):
if self . dst(dt):
return self . dstname
else :
return self . stdname

def utcoffset (self , dt):
return self . stdoffset + self . dst(dt)

def dst (self , dt):

if dt is None or dt. tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find start and end times for US DST. For years before 1967, return
ZERO for no DST.
if 2006 < dt.year:

dststart, dstend = DSTSTART_2007, DSTEND_2007
elif 1986 < dt.year < 2007:

dststart, dstend = DSTSTART_1987 2006, DSTEND_1987 2006
elif 1966 < dt.year < 1987:

dststart, dstend = DSTSTART_1967_1986, DSTEND_1967_1986
else :

return ZERO
start = first_sunday_on_or_after(dststart . replace(year =dt . year))
end = first_sunday_on_or_after(dstend . replace(year =dt . year))

Can’t compare naive to aware objects, so strip the timezone from

dt first.
if start <= dt. replace(tzinfo =None) < end:
return HOUR
else :
return ZERO
Eastern = USTimeZone(-5, "Eastern ", "EST', "EDT')
Central = USTimeZone(-6, "Central ", "CST', "CDT)
Mountain = USTimeZone(-7, "Mountain ", "MST, "MDT)
Pacific = USTimeZone(-8, "Pacific ", "PST', "PDT')

Note that there are unavoidable subtleties twice per yeartiinéd subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last Sunday in
October:

uTC 3MM 4MM 5MM 6:MM 7:MM 8:MM

9.1. datetime — Basic date and time types 143

The Python Library Reference, Release 2.6.4c1

EST 22:MM 23:MM O:MM 1:MM 2:MM 3:MM
EDT 23:MM OMM 1:MM 2:MM 3:MM 4:MM

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM OMM 1.MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn't
really make sense on that day, astimezone(Eastern) won't deliver a result witthour == 2 on the day
DST begins. In order foastimezone() to make this guarantee, thanfo.dst() method must consider times

in the “missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can't be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that's times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguouastimezone() = mimics the local clock’s behavior by mapping two adjacent

UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map
to 1:MM when converted to Eastern. In order fstimezone() to make this guarantee, theinfo.dst()

method must consider times in the “repeated hour” to be in standard time. This is easily arranged, as in the example,
by expressing DST switch times in the time zone’s standard local time.

Applications that can't bear such ambiguities should avoid using hybritb ~ subclasses; there are no ambiguities
when using UTC, or any other fixed-offsginfo subclass (such as a class representing only EST (fixed offset -5
hours), or only EDT (fixed offset -4 hours)).

9.1.7 strftime() Behavior

date , datetime ,andtime objects all support atrftime(format) method, to create a string representing the
time under the control of an explicit format string. Broadly speakéhgtrftime(fmt) acts like theime mod-
ule’stime.strftime(fmt, d.timetuple()) although not all objects supportianetuple() method.

Fortime objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they're used anywayl900 is substituted for the year, afidfor the month and day.

Fordate objects, the format codes for hours, minutes, seconds, and microseconds should not belasedpbgects

have no such values. If they're used anyways substituted for them. New in version 2.6me anddatetime

objects support &of format code which expands to the number of microseconds in the object, zero-padded on the left
to six places. For a naive object, thiezand%Zformat codes are replaced by empty strings.

For an aware object:

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a 2-
digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, uftcoffset() returnstimedelta(hours=-3, minutes=-30) , %zis
replaced with the string0330’

%Z If tzname() returnsNone, %Zis replaced by an empty string. OtherwB&is replaced by the returned value,
which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common.

The following is a list of all the format codes that the C standard (1989 version) requires, and these work on all
platforms with a standard C implementation. Note that the 1999 version of the C standard added additional format
codes.

The exact range of years for whistkrftime() works also varies across platforms. Regardless of platform, years
before 1900 cannot be used.

144 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

Di- Meaning Notes
rec-
tive
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%f Microsecond as a decimal number [0,999999], zero-padded on the left (1)
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%)j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. 2
%S Second as a decimal number [00,61]. 3)
%U Week number of the year (Sunday as the first day of the week) as a decimal number [00,53].(A)l
days in a new year preceding the first Sunday are considered to be in week 0.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week) as a decimal number [00,53].(#I
days in a new year preceding the first Monday are considered to be in week 0.
%X Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%z UTC offset in the form +HHMM or -HHMM (empty string if the the object is naive). (5)
%Z Time zone name (empty string if the object is naive).
%% A literal '%’ character.
Notes:
1. When used with thetrptime() function, the%f directive accepts from one to six digits and zero pads on

9.2

the right. %f is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

. When used with thetrptime() function, theYopdirective only affects the output hour field if tB&l directive

is used to parse the hour.

. The range really i® to 61; according to the Posix standard this accounts for leap seconds and the (very rare)

double leap seconds. Thene module may produce and does accept leap seconds since it is based on the Posix
standard, but thdatetime module does not accept leap secondstiptime() input nor will it produce
them instrftime() output.

. When used with thstrptime() function,%Uand%\Wére only used in calculations when the day of the week

and the year are specified.

. For example, ifutcoffset() returnstimedelta(hours=-3, minutes=-30) , %zis replaced with

the string’-0330’

calendar — General calendar-related functions

This module allows you to output calendars like the Uoat program, and provides additional useful functions

relate

d to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last

(the European convention). Usetfirstweekday/() to set the first day of the week to Sunday (6) or to any other

9.2. calendar — General calendar-related functions 145

The Python Library Reference, Release 2.6.4c1

weekday. Parameters that specify dates are given as integers. For related functionality, seedalsoiithe and
time modules.

Most of these functions and classses rely ondh&time module which uses an idealized calendar, the current
Gregorian calendar indefinitely extended in both directions. This matches the definition of the “proleptic Gregorian”
calendar in Dershowitz and Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computa-

tions.

classCalendar ([firstweekday])

Creates & alendar object. firstweekdays an integer specifying the first day of the weékis Monday (the
default),6 is Sunday.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses. New in versioiCal&ndar
instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the iterator
will be the same as the value of thestweekday property.

itermonthdates (year, month
Return an iterator for the montmonth (1-12) in the yearyear. This iterator will return all days (as
datetime.date objects) for the month and all days before the start of the month or after the end of the
month that are required to get a complete week.

itermonthdays2 (year, month
Return an iterator for the monthonthin the yeatyear similar toitermonthdates() . Days returned
will be tuples consisting of a day number and a week day number.

itermonthdays (year, month
Return an iterator for the monthonthin the yearyear similar toitermonthdates() . Days returned
will simply be day numbers.

monthdatescalendar (year, month
Return a list of the weeks in the monthonth of the year as full weeks. Weeks are lists of seven
datetime.date objects.

monthdays2calendar (year, month
Return a list of the weeks in the monttonthof theyearas full weeks. Weeks are lists of seven tuples of
day numbers and weekday numbers.

monthdayscalendar (year, month
Return a list of the weeks in the monthonthof the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, [width])
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up twidth months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Daysdautetime.date objects.

yeardays2calendar (year, [width])

Return the data for the specified year ready for formatting (similgetodatescalendar()). Entries
in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this month are
zero.

yeardayscalendar (year, [width])
Return the data for the specified year ready for formatting (similaetodatescalendar()). Entries
in the week lists are day numbers. Day numbers outside this month are zero.

146

Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

classTextCalendar ([firstweekday]
This class can be used to generate plain text calendars. New in versionei&alendar instances have
the following methods:

formatmonth (theyear, themonth, [w, [I]}
Return a month'’s calendar in a multi-line stringwlfs provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set bys#igrstweekday() method.

prmonth (theyear, themonth, [w, [I]]
Print a month’s calendar as returnedfbymatmonth()

formatyear (theyear, themonth, [w, [I, [c, [M]]])
Return am-column calendar for an entire year as a multi-line string. Optional paranvetgrandc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends
on the first weekday as specified in the constructor or set bgdtfestweekday() method. The
earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, [w, [, [c, [m]]]])
Print the calendar for an entire year as returnebbyatyear()

classHTMLCalendar ([firstweekday]
This class can be used to generate HTML calendars. New in versionZI8LCalendar instances have the
following methods:

formatmonth (theyear, themonth, [withyegr]
Return a month’s calendar as an HTML tablewithyearis true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, themonth, [width]
Return a year's calendar as an HTML tableidth (defaulting to 3) specifies the number of months per
row.

formatyearpage (theyear, [width, [css, [encoding]])]
Return a year's calendar as a complete HTML pagdth (defaulting to 3) specifies the number of months
per row. cssis the name for the cascading style sheet to be ukkxhe can be passed if no style sheet
should be usedencodingspecifies the encoding to be used for the output (defaulting to the system default
encoding).

classLocaleTextCalendar ([firstweekday, [locale])
This subclass of extCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

classLocaleHTMLCalendar ([firstweekday, [locale])
This subclass oHTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale. If this locale includes an encoding all strings containing month and
weekday names will be returned as unicode. New in version 2.5.

For simple text calendars this module provides the following functions.

setfirstweekday (weekday
Sets the weekday(is Monday,6 is Sunday) to start each week. The valMENDAYTUESDAYWEDNESDAY
THURSDAYFRIDAY, SATURDAYand SUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

import calendar
calendar . setfirstweekday(calendar . SUNDAY)

New in version 2.0.

9.2. calendar — General calendar-related functions 147

The Python Library Reference, Release 2.6.4c1

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (yean
ReturnsTrue if yearis a leap year, otherwidealse .

leapdays (y1,y?
Returns the number of leap years in the range fydrto y2 (exclusive), whergl andy?2 are years. Changed in
version 2.0: This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day
Returns the day of the wee (s Monday) foryear (1970 —...), month(1-12), day(1-31).

weekheader (n)
Return a header containing abbreviated weekday namsgsecifies the width in characters for one weekday.

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgeifiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbgtweekday()

prmonth (theyear, themonth, [w, [I]]
Prints a month’s calendar as returnednbynth() .

month (theyear, themonth, [w, [I]]
Returns a month’s calendar in a multi-line string usingftmenatmonth() of the TextCalendar class.
New in version 2.0.

prcal (year, [w, [I, [c]]])
Prints the calendar for an entire year as returnedabdgndar()

calendar (year, [w, [l, [c]]])
Returns a 3-column calendar for an entire year as a multi-line string usinéptimatyear() of the
TextCalendar class. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned lgyntirae() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In factiime.gmtime() andtimegm() are each others’ inverse. New in version 2.0.

Thecalendar module exports the following data attributes:

day name
An array that represents the days of the week in the current locale.

day_abbr
An array that represents the abbreviated days of the week in the current locale.

month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 amahth_name[0] is the empty string.

month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal convention
of January being month number 1, so it has a length of 13waoth_abbr[0] is the empty string.

See Also:
Module datetime Object-oriented interface to dates and times with similar functionality toithe module.

Module time Low-level time related functions.

148 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

9.3 collections — High-performance container datatypes

New in version 2.4. This module implements high-performance container datatypes. Currently, there are two
datatypesdeque anddefaultdict , and one datatype factory functiomamedtuple() . Changed in version

2.5: Addeddefaultdict .Changed in version 2.6: Addethmedtuple() . The specialized containers provided

in this module provide alternatives to Python’s general purpose built-in contaifigrs, list , set , andtuple

Besides the containers provided here, the optibedtb module offers the ability to create in-memory or file based
ordered dictionaries with string keys using therldb.btopen() method.

In addition to containers, the collections module provides some ABCs (abstract base classes) that can be used to test
whether a class provides a particular interface, for example, is it hashable or a mapping. Changed in version 2.6:

Added abstract base classes.

9.3.1 ABCs - abstract base classes

The collections module offers the following ABCs:

ABC Inherits Abstract Methods Mixin Methods
Container __contains__
Hashable __hash__
Iterable __iter__
Iterator Iterable __hext_ __iter__
Sized _len__
Callable _cal__
Sequence| Sized , __getitem___ _contains__ . __iter__, reversed
Iterable index , andcount
Container
MutableSeq8eqcoence __setitem___ Inherited Sequence methods apmpend , reverse
__delitem__ ,and | extend , pop,remove,and iadd__
insert
Set Sized , e, It , eq _,_ne_, gt
Iterable ~ge , and_, or __sub_, xor
Container andisdisjoint
MutableSet Set add anddiscard Inherited Set methods amtkar |, pop, remove ,
_jor__ , iand__ , ixor__ ,and__isub_
Mapping | Sized , __getitem___ __contains__ , keys , items ,values ,get ,
Iterable _eq__,and__ne__
Container
Mutable Mapdiagping __setitem__ and | Inherited Mapping methods ambp, popitem ,
__delitem___ clear ,update , andsetdefault
MappingVieBized _len__
KeysView | MappingView __contains__, __iter__
Set
ltemsView| MappingView , __contains__,__iter__
Set
ValuesView MappingView __contains__, iter
These ABCs allow us to ask classes or instances if they provide particular functionality, for example:
size = None
if isinstance (myvar, collections . Sized):
size = len (myvar)

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For

9.3. collections

— High-performance container datatypes

149

The Python Library Reference, Release 2.6.4c1

example, to write a class supporting the falt API, it only necessary to supply the three underlying abstract meth-
ods: __contains_ () ,__iter_() ,and__len_ () . The ABC supplies the remaining methods such as
__and__ () andisdisjoint()

class ListBasedSet (collections . Set):
7" Alternate set implementation favoring space over speed
and not requiring the set elements to be hashable.
def _init (self , iterable):
self .elements = Ist =]
for wvalue in iterable:
if value not in |Ist
Ist . append(value)
def _ _iter (self):
return iter (self . elements)
def _ contains__ (self , value):
return value in self . elements
def __len_ (self):
return len (self . elements)

1

sl ListBasedSet(' abcdef ')
s2 = ListBasedSet(' defghi)
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on usinget andMutableSet as a mixin:

1. Since some set operations create new sets, the default mixin methods need a way to create new instances from

an iterable. The class constructor is assumed to have a signature in th€lasaName(iterable)

That assumption is factored-out to an internal classmethod calfeamn_iterable() which calls
cls(iterable) to produce a new set. If tHeet mixin is being used in a class with a different constructor
signature, you will need to overrideom_iterable() with a classmethod that can construct new instances
from an iterable argument.

2. To override the comparisons (presumably for speed, as the semantics are fixed), redefin@ and then
the other operations will automatically follow suit.

3. The Set mixin provides a hash() method to compute a hash value for the set; howeverash () is

not defined because not all sets are hashable or immutable. To add set hashabilty using mixins, inherit from both

Set() andHashable() ,thendefine_hash__ = Set._hash
See Also:
» OrderedSet recipfor an example built oMutableSet
» For more about ABCs, see thiéc module and?EP 3119

9.3.2 deque objects

classdeque ([iterable, [maxlen]])
Returns a new deque object initialized left-to-right (usipgpend()) with data fromiterable. If iterableis not
specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque

with approximately the same O(1) performance in either direction.

Thoughlist objects support similar operations, they are optimized for fast fixed-length operations and incur

O(n) memory movement costs fppp(0) andinsert(0, v) operations which change both the size and
position of the underlying data representation. New in version 2 aKlenis not specified or iNone deques

150 Chapter 9. Data Types

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119

The Python Library Reference, Release 2.6.4c1

may grow to an arbitrary length. Otherwise, the deque is bounded to the specified maximum length. Once a
bounded length deque is full, when new items are added, a corresponding number of items are discarded from
the opposite end. Bounded length deques provide functionality similar taithe filter in Unix. They are

also useful for tracking transactions and other pools of data where only the most recent activity is of interest.
Changed in version 2.6: Addedaxlenparameter. Deque objects support the following methods:

append (X)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length O.

extend (iterable)
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable
Extend the left side of the deque by appending elements frerable Note, the series of left appends
results in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError

popleft ()
Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError

remove (valug
Removed the first occurrenceddlue If not found, raises &alueError . New in version 2.5.

rotate (n)
Rotate the deque steps to the right. Ifi is negative, rotate to the left. Rotating one step to the right is
equivalent tod.appendleft(d.pop())

In addition to the above, deques support iteration, pickliten(d) , reversed(d) , copy.copy(d) ,
copy.deepcopy(d) , membership testing with thie operator, and subscript references sucti[ay . Indexed
access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists instead.

Example:

>>> from collections import deque

>>> d = deque(' ghi ") # make a new deque with three items
>>> for elem in d: # iterate over the deque’s elements
print elem . upper()

G

H

|

>>> d.append(']) # add a new entry to the right side
>>> d. appendleft('f") # add a new entry to the left side
>>> d # show the representation of the deque

deque(['f, 'g’, 'h", T, 1)

>>>
m

J
>>>
Yfl

d. pop() # return and remove the rightmost item

d. popleft() # return and remove the leftmost item

9.3. collections — High-performance container datatypes 151

The Python Library Reference, Release 2.6.4c1

>>> list (d) # list the contents of the deque
(g, i, 7]

>>> d[0] # peek at leftmost item

Yg!

>>> d[- 1] # peek at rightmost item

li!

>>> [ist (reversed(d)) # list the contents of a deque in reverse
)i), !h), !gl]

>>> "h in d # search the deque

True

>>> d. extend(' jkl) # add multiple elements at once
>>> d

deque(['g’, 'n’, ',), K, T

>>> d. rotate(1) # right rotation
>>> d

deque(['l, 'g’, 'h’, ", 7}, KT

>>> d. rotate(-1) # left rotation
>>> d

deque(['g’, 'n, 1, J, K, T

>>> deque(reversed(d)) # make a new deque in reverse order

deque(['l', 'k, 'J’, ', 'h’, 'g)

>>> d. clear()

>>> d. pop()

Traceback (most recent call last):
File "<pyshell#6>" | line 1, in -toplevel-

d. pop()
IndexError : pop from an empty deque

empty the deque
cannot pop from an empty deque

H H

>>> d. extendleft(“abc’) # extendleft() reverses the input order
>>> d

deque(['c’, 'b’, 'al)

deque Recipes

This section shows various approaches to working with deques.
Bounded length deques provide functionality similar tottdie filter in Unix:

def tail (filename, n =10):
" Return the last n lines of a file
return deque(open (filename), n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n =3):
moving_average([40, 30, 50, 46, 39, 44]) --> 40.0 42.0 45.0 43.0
http://fen.wikipedia.org/wiki/Moving_average

it = iter (iterable)

d = deque(itertools . islice(it, n -1))
d. appendleft(0)

s = sum(d)

for elem in it

152 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

s += elem - d. popleft()
d. append(elem)
yield s / float (n)

The rotate() method provides a way to implemedéeque slicing and deletion. For example, a pure python
implementation oflel d[n] relies on theotate() method to position elements to be popped:

def delete_nth (d, n):
d. rotate(- n)
d. popleft()
d. rotate(n)

To implementdeque slicing, use a similar approach applyingtate() to bring a target element to the left side
of the deque. Remove old entries wjghpleft() , add new entries witextend() , and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations slugh dsop ,
swap, over , pick ,rot , androll

9.3.3 defaultdict objects

classdefaultdict ([default_factory, [...])
Returns a new dictionary-like objeafefaultdict is a subclass of the builtidict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same aslifdr thedass
and is not documented here.

The first argument provides the initial value for thiefault _factory attribute; it defaults tdNone. All
remaining arguments are treated the same as if they were passedit theonstructor, including keyword ar-
guments. New in version 2.8lefaultdict objects support the following method in addition to the standard
dict operations:

__missing__ (key)

If the default_factory attribute isNone, this raises &eyError exception with thekeyas argu-
ment.
If default_factory is notNone, it is called without arguments to provide a default value for the

givenkey, this value is inserted in the dictionary for tkey, and returned.
If calling default_factory raises an exception this exception is propagated unchanged.

This method is called by the getitem__ () method of thelict class when the requested key is not
found; whatever it returns or raises is then returned or raised bgtitem__ ()

defaultdict objects support the following instance variable:

default_factory
This attribute is used by the missing_ () method; it is initialized from the first argument to the
constructor, if present, or tdone, if absent.

defaultdict Examples

Usinglist as thedefault_factory , itis easy to group a sequence of key-value pairs into a dictionary of lists:
>>> s = [("yellow ', 1), ("blue ', 2), ("yellow ", 3), ("blue’', 4), ("red’, 1)]

>>> d = defaultdict(list)

>>> for k, v in s:
dlk] . append(v)

S>> d. items()
[Cblue’, [2, 4]), (red’, [1]), (yellow’, [1, 3])]

9.3. collections — High-performance container datatypes 153

The Python Library Reference, Release 2.6.4c1

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created

using thedefault_factory function which returns an emptyst . The list.append() operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the list
for that key) and théist.append() operation adds another value to the list. This technique is simpler and faster
than an equivalent technique usidigt.setdefault()
>>> d = {}
>>> for k, v in s:

d. setdefault(k, []) . append(v)

5> d. items()
[(blue’, [2, 4]), (red’, [1]), Cyellow’, [1, 3])]

Setting thedefault_factory toint makes thelefaultdict useful for counting (like a bag or multiset in
other languages):

)

>>> 5 " mississippi
>>> d defaultdict(int)
>>> for k in s:

dk] +=1

>>> d. items()
[, 4), Cp’, 2), (s, 4), (m’, 1)]

When a letter is first encountered, it is missing from the mapping, sdefault factory function callsint()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The functionint() which always returns zero is just a special case of constant functions. A faster and more flexible

way to create constant functions is to usetools.repeat() which can supply any constant value (not just
zero):

>>> def constant factory (value):

. return itertools . repeat(value) . next

>>> d = defaultdict(constant_factory(' <missing> '))

>>> d. update(name =’ John’, action ="ran’)

>>> to " %d

'John ran to <missing>’
Setting thedefault_factory to set makes thelefaultdict useful for building a dictionary of sets:

>>> 5 [("red’, 1), ("blue’, 2), ('red’, 3), ("blue’, 4), ("red’, 1), (’'blue ", 4)]
>>> d defaultdict(set)
>>> for k, v in s:

dlk] . add(v)

S>> d. items()
[(blue’, set([2, 4])), (red’, set([1, 3]))]

9.3.4 namedtuple() Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

namedtuple (typename, field_names, [verbose]
Returns a new tuple subclass nantygename The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have

154 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

a helpful docstring (with typename and field_names) and a helpfdpr () method which lists the tuple
contents in amame=value format.

Thefield_namesre a single string with each fieldname separated by whitespace and/or commas, for example
Xy oor’x, y . Alternatively,field_namegan be a sequence of strings sucliés 'y’]

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such aglass for, return, global, pass print, or raise

If verboseéis true, the class definition is printed just before being built.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more mem-
ory than regular tuples. New in version 2.6.

Example:

>>> Point = namedtuple(' Point ', 'x y’, verbose =True)
class Point(tuple):
‘Point(x, y)

_slots = ()
_fields = ('x', 'y)

def _ new__ (_cls, x, y):
return _tuple.__new__ (_cls, (X, Yy))

@classmethod
def _make(cls, iterable, new=tuple._ _new__, len=len):
'Make a new Point object from a sequence or iterable’
result = new(cls, iterable)
if len(result) = 2:
raise TypeError(Expected 2 arguments, got %d’ % len(result))
return result

def _ repr__(self):
return 'Point(x=%r, y=%r)" % self

def _asdict(t):
'Return a new dict which maps field names to their values’
return {'x: t[0], 'y t[1]}

def _replace(_self, **kwds):
'Return a new Point object replacing specified fields with new values’
result = _self._make(map(kwds.pop, (X, 'y), _self))
if kwds:
raise ValueError('Got unexpected field names: %r % kwds.keys())
return result

def _ getnewargs__(self):
return tuple(self)

X = _property(_itemgetter(0))
y = _property(_itemgetter(1))

>>> p = Point(11, y =22) # instantiate with positional or keyword arguments

9.3. collections — High-performance container datatypes 155

The Python Library Reference, Release 2.6.4c1

>>> p[0] + p[1] # indexable like the plain tuple (11, 22)

33

>>> X,y = p # unpack like a regular tuple

>>> X, Y

(11, 22)

>>> p.xX + p.y # fields also accessible by name

33

>>> p # readable _ repr__ with a name=value style

Point(x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by thiesqlite3 mod-
ules:

EmployeeRecord = namedtuple(' EmployeeRecord ', ' name, age, title, department, paygrade ")
import csv
for emp in map(EmployeeRecord . _make, csv . reader(open("employees.csv ", "rb™"))):

print emp. name, emp. title

import sqlite3
conn = sqglite3 . connect(’'/companydata)
cursor = conn. cursor()
cursor . execute(' SELECT name, age, title, department, paygrade FROM employees ")
for emp in map(EmployeeRecord . _make, cursor . fetchall()):
print emp. name, emp. title

In addition to the methods inherited from tuples, named tuples support three additional methods and one attribute. To
prevent conflicts with field names, the method and attribute names start with an underscore.

_make(iterable)
Class method that makes a new instance from an existing sequence or iterable.

>>>t = [11, 22]
>>> Point . _make(t)
Point(x=11, y=22)

_asdict ()
Return a new dict which maps field names to their corresponding values:

>>> p. _asdict()
{x: 11, 'y: 22}

_replace (kwarg9
Return a new instance of the hamed tuple replacing specified fields with new values:

>>> p = Point(x =11, y =22)

>>> p. _replace(x =33)
Point(x=33, y=22)

>>> for partnum, record in inventory . items():
inventory[partnum] = record . _replace(price =newprices[partnum], timestamp =time . now()

_fields
Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p. _fields # view the field names

(X, y)

156 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

>>> Color = namedtuple(' Color ', ’'red green blue ")
>>> Pixel = namedtuple(' Pixel ', Point . _fields + Color . _fields)
>>> Pixel(11, 22, 128, 255, 0)

Pixel(x=11, y=22, red=128, green=255, blue=0)
To retrieve a field whose name is stored in a string, use tattr() function:

>>> getattr (p, ' X')
11

To convert a dictionary to a named tuple, use the double-star-operator (as desctilbgrhaking Argument Listén
Python Tutoria)):

>>>d = {"x': 11, 'y’ : 22}

>>> Point(**d)

Point(x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how to
add a calculated field and a fixed-width print format:

>>> class Point (namedtuple(' Point ', 'x y’')):
slots =)
@property

def hypot (self):
return (self .x ** 2 + self .y ** 2) ** 05
def _ str (self):

return ' Point: x= y= hypot= " % (self .x, self .y, self .hypo
>>> for p in Point(3, 4), Point(14, 5/7.):
print p

Point: x= 3.000 y= 4.000 hypot= 5.000
Point: x=14.000 y= 0.714 hypot=14.018

The subclass shown above setslots__ to an empty tuple. This keeps keep memory requirements low by pre-
venting the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_fields attribute:

>>> Point3D = namedtuple(' Point3D ', Point . _fields +('z2)

Default values can be implemented by usimgplace() to customize a prototype instance:

>>> Account = namedtuple(' Account ', ’owner balance transaction_count ")
>>> default_account = Account(' <owner name>', 0.0, 0)
>>> johns_account = default_account . _replace(fowner =" John’)

Enumerated constants can be implemented with named tuples, but it is simpler and more efficient to use a simple class
declaration:

>>> Status = namedtuple(' Status ', ’open pending closed)._make(range (3))
>>> Status . open, Status . pending, Status . closed
o, 1, 2)
>>> class Status
open, pending, closed = range (3)
See Also:

Named tuple recipadapted for Python 2.4.

9.3. collections — High-performance container datatypes 157

http://code.activestate.com/recipes/500261/

The Python Library Reference, Release 2.6.4c1

9.4 heapg — Heap queue algorithm

New in version 2.3. This module provides an implementation of the heap queue algorithm, also known as the priority
gueue algorithm.

Heaps are arrays for whidreap[k] <= heap[2*k+1] andheap[k] <= heap[2*k+2] for all k, counting
elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is théeap[0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable

since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surpasgg0] is the smallest item,
andheap.sort() maintains the heap invariant!

To create a heap, use a list initializedlto, or you can transform a populated list into a heap via fundimapify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heappushpop (heap, item
Pushitemon the heap, then pop and return the smallest item fronhéfag The combined action runs more
efficiently thanheappush() followed by a separate call teeappop() . New in version 2.6.

heapify (X)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, ite
Pop and return the smallest item from theap and also push the netem The heap size doesn’t change. If the
heap is emptyindexError is raised. This is more efficient thareappop() followed by heappush()
and can be more appropriate when using a fixed-size heap. Note that the value returned may be ldgyar than
That constrains reasonable uses of this routine unless written as part of a conditional replacement:

if item > heap[O]:
item = heapreplace(heap, item)

Example of use:

>>> from heapq import heappush, heappop
>>> heap = []
>>> data =[1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> for item in data:

heappush(heap, item)

>>> ordered =[]
>>> while heap:
ordered . append(heappop(heap))

>>> print ordered
[0, 1, 2, 3, 4,5, 6, 7, 8 9]
>>> data . sort()

158 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

>>> print data == ordered
True

Using a heap to insert items at the correct place in a priority queue:

>>> heap = []
>>> data = [(1, 'J), (4, "N), (3, "H), (2, "O)]
>>> for item in data:

heappush(heap, item)

>>> while heap:
print heappop(heap)] 1]

J

O
H
N

The module also offers three general purpose functions based on heaps.

merge (*iterableg
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns arierator over the sorted values.

Similar to sorted(itertools.chain(*iterables)) but returns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest). New
in version 2.6.

nlargest (n, iterable, [key)
Return a list with then largest elements from the dataset defineddrable key, if provided, specifies a function
of one argument that is used to extract a comparison key from each element in the itezgbbdr.lower
Equivalent to:sorted(iterable, key=key, reverse=True)[:n] New in version 2.4.Changed in
version 2.5: Added the optionkéyargument.

nsmallest (' n, iterable, [key)
Return a list with then smallest elements from the dataset defineditbyable key, if provided, speci-
fies a function of one argument that is used to extract a comparison key from each element in the iterable:
key=str.lower Equivalent to:sorted(iterable, key=key)[:n] New in version 2.4.Changed in
version 2.5: Added the optionkéyargument.

The latter two functions perform best for smaller valuesnof For larger values, it is more efficient to use the
sorted() function. Also, whem==1, it is more efficient to use the builtimin() andmax() functions.

9.4.1 Theory

(This explanation is due to Francois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whicklk] <= a[2*k+1] andalk] <= a[2*k+2] for all k, counting elements from 0.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
thata[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
arek, notalk] :

9.4. heapq — Heap queue algorithm 159

The Python Library Reference, Release 2.6.4c1

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cdllis topping2*k+1 and2*k+2 . In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule
becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two topped
cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0'th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what | used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly orgahisiid very important that the initial sort produces

the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the
value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

9.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callétsect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

1 The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

160 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

bisect_left (list, item, [lo, [hi]])
Locate the proper insertion point fiiemin list to maintain sorted order. The parameterandhi may be used
to specify a subset of the list which should be considered; by default the entire list is ustedn iff already
present ifist, the insertion point will be before (to the left of) any existing entries. The return value is suitable

for use as the first parameterlist.insert() . This assumes théist is already sorted. New in version 2.1.
bisect_right (list, item, [lo, [hi]])
Similar to bisect_|left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.
bisect (..)

Alias for bisect_right()

insort_left (list, item, [lo, [hi]])
Insertitemin list in sorted order. This is equivalent list.insert(bisect.bisect_left(list,

item, lo, hi), item) . This assumes théist is already sorted. New in version 2.1.
insort_right (list, item, [lo, [hi]])

Similar toinsort_left() , but insertingtemin list after any existing entries @em New in version 2.1.
insort (..)

Alias forinsort_right()

9.5.1 Examples

Thebisect() function is generally useful for categorizing numeric data. This examplelisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

>>> grades = "FEDCBA
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade (total):
return grades|bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88))

[E’, 'A’, 'B, 'D, 'F, 'A]

Unlike thesorted() function, it does not make sense for thisect() functions to havéeyor reversecarguments

because that would lead to an inefficent design (successive calls to bisect functions would not “remember” all of the
previous key lookups).

Instead, it is better to search a list of precomputed keys to find the index of the record in question:

>>> data = [("red’, 5), ('blue’, 1), ("yellow ", 8), ('black ', 0)]
>>> data . sort(key =lambda r: r[1])

>>> keys = [rf[1] for r in data] # precomputed list of keys
>>> datafbisect_left(keys, 0)]

('black’, 0)

>>> datalbisect_left(keys, D]

('blue’, 1)

>>> data[bisect_left(keys, 5)]

(red’, 5)

>>> data[bisect_left(keys, 8)]

(yellow’, 8)

9.5. bisect — Array bisection algorithm 161

The Python Library Reference, Release 2.6.4c1

9.6 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1
b’ signed char int 1
‘B’ unsigned char | int 1
u’ Py_UNICODE | Unicode character 2
'’ signed short int 2
'H’ unsigned short| int 2
i) signed int int 2
T unsigned int long 2
T’ signed long int 4
L unsigned long | long 4
f float float 4
d’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed througite¢hesize attribute. The values stored far and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecode, [initializer]
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4: For-
merly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new array’s
fromlist() , fromstring() , or fromunicode() method (see below) to add initial items to the array.
Otherwise, the iterable initializer is passed to éx¢end() method.

ArrayType
Obsolete alias foarray()

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError is raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer_info 0

Return a tuple(address, length) giving the current memory address and the length in elements of
the buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as
array.buffer_info()[1] * array.itemsize . This is occasionally useful when working with low-

162 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

level (and inherently unsafe) I/O interfaces that require memory addresses, such asomtifain operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in Buffer Objectgin The Python/C ABI

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of valuesRuntimeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (X)
Return the number of occurrencesxdh the array.

extend (iterable)
Append items fromiterable to the end of the array. Iferableis another array, it must hawexactlythe same
type code; if not,TypeError will be raised. Ifiterableis not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could only
be another array.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablezOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else witiead() method won't do.

fromlist ~ (list)
Append items from the list. This is equivalentftr x in list: a.append(x) except that if there is
atype error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using théromfile() method).

fromunicode (' 9)
Extends this array with data from the given unicode string. The array must be aityparray; otherwise a
ValueError is raised. Usarray.fromstring(unicodestring.encode(enc)) to append Uni-
code data to an array of some other type.

index (X)
Return the smallestsuch that is the index of the first occurrence »fn the array.

insert (i, X)
Insert a new item with valug in the array before position Negative values are treated as being relative to the
end of the array.

pop([i])
Removes the item with the indéxXrom the array and returns it. The optional argument defaults tcso that
by default the last item is removed and returned.

read (f, n)
Deprecated since version 1.5.1: Use fifwenfile() method. Read items (as machine values) from the file
objectf and append them to the end of the array. If less thi#s®ms are availablé&;OFError is raised, but the
items that were available are still inserted into the arfagust be a real built-in file object; something else with
aread() method won't do.

remove (X)
Remove the first occurrence wfrom the array.

9.6. array — Efficient arrays of numeric values 163

The Python Library Reference, Release 2.6.4c1

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a'typearray; otherwise &alueError is raised.

Usearray.tostring().decode(enc) to obtain a unicode string from an array of some other type.
write ()

Deprecated since version 1.5.1: Use thle() method. Write all items (as machine values) to the file

objectf.

When an array object is printed or converted to a string, it is representetegétypecode, initializer) .
Theinitializer is omitted if the array is empty, otherwise it is a string if igpecodds 'c’ , otherwise it is a list 0
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using

eval() ,solongastharray() function has been imported usifrgm array import array . Examples:
array(1)
array('c’, 'hello world)

’

c
array('u’, u hello \u2641 ")
array(1, [1, 2, 3, 4, 5]

array('d’, [1.0, 20, 3.14])

)

See Also:
Module struct ~ Packing and unpacking of heterogeneous binary data.

Module xdrlib Packing and unpacking of External Data Representation (XDR) data as used in some remote pro-
cedure call systems.

The Numerical Python Manual The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.ndar further information about Numerical Python. (A PDF version of the NumPy
manual is available dtttp://numpy.sourceforge.net/numdoc/numdog.pdf

9.7 sets — Unordered collections of unique elements

New in version 2.3.Deprecated since version 2.6: The buein/frozenset types replace this module. Thets

module provides classes for constructing and manipulating unordered collections of unique elements. Common uses
include membership testing, removing duplicates from a sequence, and computing standard math operations on sets
such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin set ,len(set) , andfor x in set . Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

Most set applications use tt&et class which provides every set method except fonash__ () . For advanced
applications requiring a hash method, themutableSet class adds a _hash_ () method but omits methods
which alter the contents of the set. Bdtlket andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a ssinstance(obj, BaseSet)

164 Chapter 9. Data Types

http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm
http://numpy.sourceforge.net/
http://numpy.sourceforge.net/numdoc/numdoc.pdf

The Python Library Reference, Release 2.6.4c1

The set classes are implemented using dictionaries. Accordingly, the requirements for set elements are the same
as those for dictionary keys; namely, that the element defines baty_ () and__hash__ () . As a re-

sult, sets cannot contain mutable elements such as lists or dictionaries. However, they can contain immutable
collections such as tuples or instancesimmutableSet . For convenience in implementing sets of sets, inner

sets are automatically converted to immutable form, for exampé([Set(['dog’])]) is transformed to
Set([ImmutableSet(['dog’])])

classSet ([iterable])
Constructs a new empget object. If the optionaiterable parameter is supplied, updates the set with elements
obtained from iteration. All of the elementsiterableshould be immutable or be transformable to an immutable
using the protocol described in sectiBrotocol for automatic conversion to immutable

classimmutableSet ([iterable])
Constructs a new emptynmutableSet object. If the optionaiterable parameter is supplied, updates the set
with elements obtained from iteration. All of the element&énable should be immutable or be transformable
to an immutable using the protocol described in sedtartocol for automatic conversion to immutable

BecausdmmutableSet objects provide a _hash__ () method, they can be used as set elements or as
dictionary keys.ImmutableSet objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

9.7.1 Set Objects

Instances ofet andimmutableSet both provide the following operations:

Operation Equivalent | Result

len(s) cardinality of ses

X in s testx for membership irs

X not in s testx for non-membership is

s.issubset(t) s <=t test whether every elementdis int

s.issuperset(t) s >=t test whether every elementtiis in s

s.union(t) s |t new set with elements from bofandt

s.intersection(t) s &t new set with elements commongandt

s.difference(t) s -t new set with elements imbut not int

s.symmetric_difference(t) s Mt new set with elements in eitheor t but not both

s.copy() new set with a shallow copy af
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric_difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructi@et(ldec’) &
'cbs’ in favor of the more readabl&et('abc’).intersection(’cbs’) . Changed in version 2.3.1:

Formerly all arguments were required to be sets. In addition, Beth and ImmutableSet support set to set
comparisons. Two sets are equal if and only if every element of each set is contained in the other (each is a subset
of the other). A set is less than another set if and only if the first set is a proper subset of the second set (is a subset,
but is not equal). A set is greater than another set if and only if the first set is a proper superset of the second set (is a
superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each othat| b the following returnFalse : a<b, a==b, or a>b.
Accordingly, sets do not implement thecmp__ () method.

Since sets only define partial ordering (subset relationships), the output liftthert() method is undefined
for lists of sets.

The following table lists operations availablelinmutableSet but not found inSet :

Operation Result
hash(s) returns a hash value far

9.7. sets — Unordered collections of unique elements 165

The Python Library Reference, Release 2.6.4c1

The following table lists operations availableSet but not found innmmutableSet

Operation Equiva- Result
lent
s.update(t) s|=t return ses with elements added fromn
s.intersection_update(t) S&=t return ses keeping only elements also foundtin
s.difference_update(t) s-=t return set after removing elements found in
s.symmetric_difference_update(t) | s”=t return ses with elements frons or t but not both
s.add(x) add elemenk to sets
s.remove(x) removex from sets; raisesKeyError if not present
s.discard(x) removes from sets if present
s.pop() remove and return an arbitrary element fremaises
KeyError if empty
s.clear() remove all elements from sst
Note, the non-operator versions gpdate() , intersection_update() , difference_update() , and
symmetric_difference_update() will accept any iterable as an argument. Changed in version 2.3.1: For-

merly all arguments were required to be sets. Also note, the module also incluhkésnaupdate() method
which is an alias foupdate() . The method is included for backwards compatibility. Programmers should prefer
theupdate() method because it is supported by the buittt() andfrozenset() types.

9.7.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, "Jane’, 'Jack’', ’Janice '])

>>> programmers = Set(['Jack’, ’'Sani, ’'Susan’, ’Janice '])

>>> managers = Set(['Jane’, ’'Jack’, ’'Susan’, 'Zack'])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference
>>> engineers . add(’ Marvin ") # add element

>>> print engineers # doctest: +SKIP
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees . issuperset(engineers) # superset test

False

>>> employees . update(engineers) # update from another set

>>> employees . issuperset(engineers)

True

>>> for group Iin [engineers, programmers, managers, employees]: # doctest: +SKIP
group . discard(' Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’)

Set(['Janice’, 'Jack’, 'Sam’])

Set(['Jane’, 'Zack’, 'Jack’)

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack’)

9.7.3 Protocol for automatic conversion to immutable
Sets can only contain immutable elements. For convenience, m#abl®bjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always addhashableelement, or if it is not hashable, the element is checked to see if it has an
__as_immutable__ () method which returns an immutable equivalent.

166 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

SinceSet objects have a_as_immutable__ () method returning an instance lofimutableSet , itis possible
to construct sets of sets.

A similar mechanism is needed by thecontains__ () andremove() methods which need to hash an ele-
ment to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily_immutable__ () method which returns the element wrapped by a class that provides tem-
porary methods for hash_ () , _eq_() ,and_ne_ ()

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the as temporarily_immutable__ () method which returns th&et object
wrapped by a new classTemporarilyimmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilyimmutableSet . In other words, sets of mutable sets are not thread-safe.

9.7.4 Comparison to the built-in set types
The built-inset andfrozenset types were designed based on lessons learned frometie module. The key
differences are:

» Set andimmutableSet were renamed teet andfrozenset

» There is no equivalent tBBaseSet . Instead, usésinstance(x, (set, frozenset))

« The hash algorithm for the built-ins performs significantly better (fewer collisions) for most datasets.

« The built-in versions have more space efficient pickles.

 The built-in versions do not haveumion_update() method. Instead, use tlhpdate() method which is
equivalent.

* The built-in versions do not have_aepr(sorted=True) method. Instead, use the builtdiapr() and
sorted() functions:repr(sorted(s))

 The built-in version does not have a protocol for automatic conversion to immutable. Many found this feature
to be confusing and no one in the community reported having found real uses for it.

9.8 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfunc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thaelayfuncfunction should be callable with one argument, compatible with the
output oftimefun¢ and should delay that many time unitgelayfuncwill also be called with the argumeit
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> jmport sched, time

>>> s = sched . scheduler(time . time, time . sleep)

>>> def print_time (): print " From print_time ", time . time()

>>> def print_some_times ():
print time . time()

9.8. sched — Event scheduler 167

The Python Library Reference, Release 2.6.4c1

s.enter(5, 1, print_time, ()
s.enter(10, 1, print_time, ()
s. run()

print time . time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

In multi-threaded environments, theheduler class has limitations with respect to thread-safety, inability to insert
a new task before the one currently pending in a running scheduler, and holding up the main thread until the event
gueue is empty. Instead, the preferred approach is to uskertteeding. Timer class instead.

Example:

>>> import time
>>> from threading import Timer
>>> def print_time ():
print ~ "From print_time ", time .time()

>>> def print_some_times ():
print time . time()
Timer(5, print_time, ()) . start()
Timer(10, print_time, () . start()
time . sleep(11) # sleep while time-delay events execute
print time . time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343701.301

9.8.1 Scheduler Objects

scheduler instances have the following methods and attributes:

enterabs (time, priority, action, argument
Schedule a new event. Thiene argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for the tsaewill be executed in the order of
their priority.

Executing the event means executiaction(*argument) . argumentmust be a sequence holding the
parameters foaction
Return value is an event which may be used for later cancellation of the event(sas()).

enter (delay, priority, action, argumet
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as thosesfaerabs()

cancel (even}
Remove the event from the queue. elfentis not an event currently in the queue, this method will raise a
ValueError

168 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using tegayfunc() function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raiseadtipn, the event will not be attempted in future calls
torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

queue
Read-only attribute returning a list of upcoming events in the order they will be run. Each event is shown as a
named tuplewith the following fields: time, priority, action, argument. New in version 2.6.

9.9 mutex — Mutual exclusion support

Deprecated since version Theiutex module has been removed in Python 3.0. Theex module defines a class
that allows mutual-exclusion via acquiring and releasing locks. It does not require (or ifm@ly)yliing or multi-
tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or nffunection, argument) pairs representing functions

(or methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first
queue entry is removed and ftsction(argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interfacéofde() , where a function is called
once the lock is acquired.

9.9.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and retlirne , otherwise, returfralse .

lock (function, argument

Executefunction(argument) , unless the mutex is locked. In the case it is locked, place the function and
argument on the queue. Seelock() for explanation of wherfunction(argument) is executed in that
case.

unlock ()

Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

9.9. mutex — Mutual exclusion support 169

The Python Library Reference, Release 2.6.4c1

9.10 queue — A synchronized queue class

Note: TheQueue module has been renamediioeue in Python 3.0. Th&to3tool will automatically adapt imports
when converting your sources to 3.0.

The Queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded pro-
gramming when information must be exchanged safely between multiple thread§)uEhe class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python; see the
threading module.

Implements three types of queue whose only difference is the order that the entries are retrieved. In a FIFO queue, the
first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved (operating
like a stack). With a priority queue, the entries are kept sorted (usinigetheg module) and the lowest valued entry

is retrieved first.

TheQueue module defines the following classes and exceptions:

classQueue(maxsizg
Constructor for a FIFO queumaxsizds an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsizas less than or equal to zero, the queue size is infinite.

classLifoQueue (maxsizg
Constructor for a LIFO queuenaxsizds an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsizas less than or equal to zero, the queue size is infinite. New in version 2.6.

classPriorityQueue (maxsizg
Constructor for a priority queuenaxsizeas an integer that sets the upperbound limit on the number of items that
can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed.
If maxsizas less than or equal to zero, the queue size is infinite.

The lowest valued entries are retrieved first (the lowest valued entry is the one returned by

sorted(list(entries))[0]). A typical pattern for entries is a tuple in the form:
(priority_number, data) . New in version 2.6.
exceptionEmpty
Exception raised when non-blockiget() (orget_nowait()) is called on @ueue object which is empty.
exceptionFull
Exception raised when non-blockipgt() (or put_nowait()) is called on &ueue object which is full.
See Also:
collections.deque is an alternative implementation of unbounded queues with fast atapgend() and

popleft() operations that do not require locking.

9.10.1 Queue Objects

Queue objectsiueue, LifoQueue , or PriorityQueue) provide the public methods described below.

gsize ()
Return the approximate size of the queue. Note, gsize() > 0 doesn’t guarantee that a subsequent get() will not
block, nor will gsize() < maxsize guarantee that put() will not block.

empty ()
ReturnTrue if the queue is emptyralse otherwise. If empty() returnrue it doesn't guarantee that a sub-
sequent call to put() will not block. Similarly, if empty() returRalse it doesn’t guarantee that a subsequent
call to get() will not block.

170 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

full ()
ReturnTrue if the queue is fullFalse otherwise. If full() returndrue it doesn’t guarantee that a subsequent
call to get() will not block. Similarly, if full() returng-alse it doesn’t guarantee that a subsequent call to put()
will not block.

put (item, [block, [timeout])
Putiteminto the queue. If optional argdockis true andimeoutis None (the default), block if necessary until
a free slot is available. ifimeoutis a positive number, it blocks at ma#ineoutseconds and raises thelll
exception if no free slot was available within that time. Otherwldedk is false), put an item on the queue
if a free slot is immediately available, else raise Ehél exception {imeoutis ignored in that case). New in
version 2.3: Theimeoutparameter.

put_nowait (item)
Equivalent toput(item, False)

get ([block, [timeout]])
Remove and return an item from the queue. If optional &tgsk is true andtimeoutis None (the default),
block if necessary until an item is available.tilheoutis a positive number, it blocks at magneoutseconds
and raises thempty exception if no item was available within that time. Otherwisk¢kis false), return an
item if one is immediately available, else raise Hapty exception {imeoutis ignored in that case). New in
version 2.3: Theimeoutparameter.

get_nowait ()
Equivalent toget(False)

Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer
threads.

task_done ()
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. Bet(gachsed to
fetch a task, a subsequent caltésk done() tells the queue that the processing on the task is complete.

If a join() is currently blocking, it will resume when all items have been processed (meaning that a
task_done() call was received for every item that had been() into the queue).

Raises &/alueError if called more times than there were items placed in the queue. New in version 2.5.
join ()
Blocks until all items in the queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever

a consumer thread callask_done() to indicate that the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to z@rioy() unblocks. New in version 2.5.

Example of how to wait for enqueued tasks to be completed:

def worker ():
while True :
item = q.get()
do_work(item)
g. task_done()

q = Queue()

for i in range (num_worker_threads):
t = Thread(target =worker)
t . setDaemon(True)
t . start()

for item in source():
g. put(item)

9.10. queue — A synchronized queue class 171

The Python Library Reference, Release 2.6.4c1

g. join() # block until all tasks are done

9.11 weakref — Weak references

New in version 2.1. Theveakref module allows the Python programmer to crestak referencet® objects.
In the following, the ternreferentmeans the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak referencegarbage collectioris free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it's desired that a
large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a hame with each.
If you used a Python dictionary to map names to images, or images to names, the image objects would re-
main alive just because they appeared as values or keys in the dictionariesWeEtdeyDictionary and
WeakValueDictionary classes supplied by theeakref module are an alternative, using weak references to
construct mappings that don't keep objects alive solely because they appear in the mapping objects. If, for example,
an image object is a value invdeakValueDictionary , then when the last remaining references to that image ob-

ject are the weak references held by weak mappings, garbage collection can reclaim the object, and its corresponding
entries in weak mappings are simply deleted.

WeakKeyDictionary andWeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it's not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by theakref module for the benefit of advanced uses.

Note: Weak references to an object are cleared before the objealsl () is called, to ensure that the weak
reference callback (if any) finds the object still alive.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python
(but not in C), methods (both bound and unbound), sets, frozensets, file objeatsatos, type objectsDBcursor

objects from théosddb module, sockets, arrays, deques, and regular expression pattern objects. Changed in version
2.4: Added support for files, sockets, arrays, and patterns. Several builtin types disth asnddict do not

directly support weak references but can add support through subclassing:

class Dict (dict):
pass

obj = Dict(red =1, green =2, blue =3) # this object is weak referenceable

Extension types can easily be made to support weak referenceédlesdeReference Suppdim Extending and Em-
bedding Python

classref (object, [callback)
Return a weak reference tbject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will caose to be
returned. Ifcallbackis provided and noilone, and the returned weakref object is still alive, the callback will
be called when the object is about to be finalized; the weak reference object will be passed as the only parameter
to the callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an objedes () method.

172 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

Weak references areshabldf the objectis hashable. They will maintain their hash value even afteobject
was deleted. Ihash() is called the first time only after thabjectwas deleted, the call will raiseypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oaliback). If either referent has been deleted,

the references are equal only if the reference objects are the same object. Changed in version 2.4: This is now a
subclassable type rather than a factory function; it derives frbjact

proxy (object, [callback)
Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on wheth@bjectis callable. Proxy objects are
nothashableregardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keglbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refsbjext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: Because WeakKeyDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure foWaakKeyDictionary ~ because actions per-
formed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a side effect
of garbage collection).

WeakKeyDictionary objects have the following additional methods. These expose the internal references directly.
The references are not guaranteed to be “live” at the time they are used, so the result of calling the references needs
to be checked before being used. This can be used to avoid creating references that will cause the garbage collector to
keep the keys around longer than needed.

iterkeyrefs 0
Return ariterator that yields the weak references to the keys. New in version 2.5.

keyrefs ()
Return a list of weak references to the keys. New in version 2.5.

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because ®eakValueDictionary is built on top of a Python dictionary, it must not
change size when iterating over it. This can be difficult to ensure fteakValueDictionary because
actions performed by the program during iteration may cause items in the dictionary to vanish “by magic” (as a
side effect of garbage collection).

WeakValueDictionary objects have the following additional methods. These method have the same issues as the
iterkeyrefs() andkeyrefs() methods ofVeakKeyDictionary objects.

itervaluerefs 0
Return ariterator that yields the weak references to the values. New in version 2.5.

valuerefs ()
Return a list of weak references to the values. New in version 2.5.

9.11. weakref — Weak references 173

The Python Library Reference, Release 2.6.4c1

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standardReferenceError exception.

See Also:

PEP 0205- Weak ReferencesThe proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

9.11.1 Weak Reference Objects
Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object :

pass
>>> 0 = Object()
>>> r = weakref . ref(o)

>>> 02 = 1()
>>> 0 is 02
True

If the referent no longer exists, calling the reference object refuoms:

>>> del o0, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresf§)ois not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
0 =r()
if o is None:
referent has been garbage collected
print " Object has been deallocated; can "t frobnicate.
else :
print " Object is still live!
0. do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

174 Chapter 9. Data Types

http://www.python.org/dev/peps/pep-0205

The Python Library Reference, Release 2.6.4c1

Specialized versions off objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclasseaff can be used to store additional information about an object and affect the
value that's returned when the referent is accessed:

import weakref

class ExtendedRef (weakref . ref):

def __init_ (self , ob, callback =None, **annotations):
super (ExtendedRef, self). __init_ (ob, callback)
self . __counter = 0
for k, v in annotations . iteritems():

setattr (self , k, v)

def _ call__ (self):
""Return a pair containing the referent and the number of
times the reference has been called.
ob = super (ExtendedRef, self). call__()
if ob is not None:

self . counter +=1
ob = (ob, self .__ counter)
return ob

9.11.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref

_id20obj_dict = weakref . WeakValueDictionary()
def remember (obj):

oid = id (obj)

_id2obj_dict[oid] = obj

return oid

def id2obj (oid):
return _id2obj_dict[oid]

9.12 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the
shelve module).

This module also defines a claskserDict |, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly ffioin (a feature that became available starting

9.12. UserDict — Class wrapper for dictionary objects 175

The Python Library Reference, Release 2.6.4c1

with Python version 2.2). Prior to the introductionaitt , theUserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thElserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference tnitialdata will not be kept, allowing it be used for other purposes.

Note: For backward compatibility, instancesdferDict are not iterable.

classlterableUserDict ([initialdata])
Subclass ofJserDict that supports direct iteration (efpr key in myDict).

In addition to supporting the methods and operations of mappings (see Sdetigning Types — di}t UserDict
andlterableUserDict instances provide the following attribute:

data
A real dictionary used to store the contents ofthe=rDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem__ () ,__setitem__ () ,__delitem__() ,andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-
tionality. For instance, defining all but delitem__ () will preclude onlypop() andpopitem() from
the full interface.

In addition to the four base methods, progressively more efficiency comes with defirgngtains__ () ,
__iter__() , anditeritems()

Since the mixin has no knowledge of the subclass constructor, it does not deiffiite () or copy()

Starting with Python version 2.6, it is recommended to asiections.MutableMapping instead of
DictMixin
9.13 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from the lmiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thelserList class:

classUserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblelaia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be any iterable, e.g. a real Python list diserList object.

Note: TheUserList class has been moved to thelections module in Python 3.0. Th2to3tool will
automatically adapt imports when converting your sources to 3.0.

In addition to supporting the methods and operations of mutable sequences (seeSsaqtiomce Types — str, unicode,
list, tuple, buffer, xrangg UserList instances provide the following attribute:

data
A real Python list object used to store the contents ofiberList class.

176 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

Subclassing requirements: Subclasses ofiserList are expect to offer a constructor which can be called with

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided in
that case. Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no
parameters, and offer a mutaloleta attribute. Earlier versions of Python did not attempt to create instances of the
derived class.

9.14 UserString — Class wrapper for string objects

Note: ThisUserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-instr type instead of using/serString (there is no built-in equivalent telutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

classUserString ([sequence)
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via tleda attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

Note: TheUserString class has been moved to thellections module in Python 3.0. Thto3tool
will automatically adapt imports when converting your sources to 3.0.

classMutableString ([sequence)
This class is derived from theserString above and redefines strings to toeitable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridegshe ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down. Deprecated since version 2.6MTiebleString class has been removed in
Python 3.0.

In addition to supporting the methods and operations of string and Unicode objects (see Sectiprvethody
UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content df seeString class.

9.15 types — Names for built-in types

This module defines hames for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such

9.14. UserString — Class wrapper for string objects 177

The Python Library Reference, Release 2.6.4c1

as thelistiterator type. Itis safe to uskom types import * — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will alTgpd in

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete (mylist, item):
if type (item) is IntType:
del mylist[item]
else :
mylist . remove(item)

Starting in Python 2.2, built-in factory functions suchiag) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usiygptse module. Accordingly, the example
above should be written as follows:

def delete (mylist, item):
if isinstance (item, int):
del mylistfitem]
else :
mylist . remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedygpe()); alias of the built-intype .

BooleanType
The type of thébool valuesTrue andFalse ; alias of the built-inbool . New in version 2.3.

IntType
The type of integers (e.d.); alias of the built-inint .

LongType
The type of long integers (e.dL); alias of the built-inong .

FloatType
The type of floating point numbers (e..0); alias of the built-infloat

ComplexType
The type of complex numbers (e.4.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’); alias of the built-instr .
UnicodeType

The type of Unicode character strings (aufSpam’). This is not defined if Python was built without Unicode
support. It's an alias of the built-innicode .

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)); alias of the built-intuple
ListType
The type of lists (e.g[0, 1, 2, 3]); alias of the built-inist
DictType
The type of dictionaries (e.g'Bacon’: 1, 'Ham’: 0}); alias of the built-indict

178 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

DictionaryType
An alternate name fdDictType

FunctionType
LambdaType
The type of user-defined functions and functions createldimpda expressions.

GeneratorType
The type ofgeneratoriterator objects, produced by calling a generator function. New in version 2.2.

CodeType
The type for code objects such as returneatbypile()

ClassType
The type of user-defined old-style classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

BuiltinFunctionType

BuiltinMethodType
The type of built-in functions likeen() or sys.exit() , and methods of built-in classes. (Here, the term
“built-in” means “written in C".)

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout ; alias of the built-infile

XRangeType
The type of range objects returnedyange() ; alias of the built-inkrange .

SliceType

The type of objects returned lajice() ; alias of the built-inslice
EllipsisType

The type ofEllipsis

TracebackType
The type of traceback objects such as foundyig.exc_traceback

FrameType
The type of frame objects such as foundbrtb_frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

DictProxyType
The type of dict proxies, such 8ypeType.__dict__

NotlmplementedType
The type ofNotimplemented

GetSetDescriptorType
The type of objects defined in extension modules WijiGetSetDef |, such asrameType.f_locals or

9.15. types — Names for built-in types 179

The Python Library Reference, Release 2.6.4c1

array.array.typecode . This type is used as descriptor for object attributes; it has the same purpose as
theproperty type, but for classes defined in extension modules. New in version 2.5.

MemberDescriptorType
The type of objects defined in extension modules witRyMemberDef, such as
datetime.timedelta.days . This type is used as descriptor for simple C data members which use
standard conversion functions; it has the same purpose asdherty type, but for classes defined in exten-
sion modules. In other implementations of Python, this type may be identiGat®etDescriptorType
New in version 2.5.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
containdUnicodeType if it has been built in the running version of Python. For examgieistance(s,
types.StringTypes) . New in version 2.2.

9.16 new — Creation of runtime internal objects

Deprecated since version 2.6: Thew module has been removed in Python 3.0. Usetybes module’s classes
instead. Thenew module allows an interface to the interpreter object creation functions. This is for use primarily

in marshal-type functions, when a new object needs to be created “magically” and not by using the regular creation
functions. This module provides a low-level interface to the interpreter, so care must be exercised when using this
module. It is possible to supply non-sensical arguments which crash the interpreter when the object is used.

Thenew module defines the following functions:

instance (class, [dict])
This function creates an instance @ésswith dictionarydict without calling the__init__ () constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, clajs
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable.

function (code, globals, [name, [argdefs, [closure]]]
Returns a (Python) function with the given code and globalsiatheis given, it must be a string ddone.
If it is a string, the function will have the given name, otherwise the function name will be taken from
code.co_name . If argdefsis given, it must be a tuple and will be used to determine the default values of
parameters. I€losureis given, it must béNone or a tuple of cell objects containing objects to bind to the names
in code.co_freevars

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Ino-

tab)
This function is an interface to tieyCode_New() C function.

module (name, [doc)
This function returns a new module object with nan@ne namemust be a string. The optiondbcargument
can have any type.

classobj (name, baseclasses, gict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

180 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

9.17 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.
Interface summary:
import copy

X
X

copy . copy(y) # make a shallow copy of y
copy . deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

A shallow copyconstructs a new compound object and then (to the extent possible) referemcesnto it to
the objects found in the original.

« A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

« Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

» Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:
« keeping a “memo” dictionary of objects already copied during the current copying pass; and
« letting user-defined classes override the copying operation or the set of components copied.

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, array, or any
similar types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged;
this is compatible with the way these are treated bypihkle module.

Shallow copies of dictionaries can be made usiiug.copy() , and of lists by assigning a slice of the entire list, for
example,copied_list = original_list[:] . Changed in version 2.5: Added copying functions. Classes

can use the same interfaces to control copying that they use to control pickling. See the description opitiddule

for information on these methods. Thepy module does not use thwpy reg registration module. In order for

a class to define its own copy implementation, it can define special methadpy () and__deepcopy_ ()

The former is called to implement the shallow copy operation; no additional arguments are passed. The latter is called
to implement the deep copy operation; it is passed one argument, the memo dictionary. Heéleecopy () im-
plementation needs to make a deep copy of a component, it should addi¢peopy() function with the component

as first argument and the memo dictionary as second argument.

See Also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

9.18 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

9.17. copy — Shallow and deep copy operations 181

The Python Library Reference, Release 2.6.4c1

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. ConstruétrettyPrinter objects explicitly if you need to adjust the width constraint.
Changed in version 2.5: Dictionaries are sorted by key before the display is computed; before 2.5, a dictionary was
sorted only if its display required more than one line, although that wasn't documented.Changed in version 2.6: Added
support forset andfrozenset . Thepprint module defines one class:

classPrettyPrinter (..)

Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output

stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's

write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters

may be used to control the formatted representation. The keywordisdanet depth andwidth. The amount

of indentation added for each recursive level is specifiethtgnt the default is one. Other values can cause

output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed

is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
. By default, there is no constraint on the depth of the objects being formatted. The desired output width is

constrained using theidth parameter; the default is 80 characters. If a structure cannot be formatted within the

constrained width, a best effort will be made.

>>> jmport pprint

>>> stuff = ['spam’, 'eggs’, ’lumberjack ', ’knights ', 'ni’]
>>> stuff . insert(0, stuff[:])
>>> pp = pprint . PrettyPrinter(indent =4)

>>> pp. pprint(stuff)

[['spam’, 'eggs’, 'lumberjack’, ’'knights’, 'ni’],
'Spam’,
'eggs’,
‘lumberjack’,
‘knights’,
ni’]
>>> tup = ('spam’, ('eggs’, ('lumberjack ', (' knights ', ('ni’, (’dead’,
(" parrot ', (' fresh fruit ")
>>> pp = pprint . PrettyPrinter(depth =6)

>>> pp. pprint(tup)
('spam’, ('eggs’, (lumberjack’, (knights’, ('ni’, (dead’, (..)))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object, [indent, [width, [depth]])
Return the formatted representation affject as a string. indent width and depthwill be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The paraimeé¢eitsvidth
anddepthwere added.

pprint (object, [stream, [indent, [width, [depth]]]]
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteachahs statement for in-
specting valuesindent width and depthwill be passed to th&rettyPrinter constructor as formatting
parameters.

>>> import pprint

>>> stuff = ['spam’, 'eggs’, ’'lumberjack ', 'knights ', 'ni’]
>>> stuff . insert(0, stuff)

>>> pprint . pprint(stuff)

[<Recursion on list with id=...>,

'spam’,

'eggs’,

182 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

‘lumberjack’,
'knights’,
'ni’]

Changed in version 2.4: The parametedent width anddepthwere added.

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returnEalse for recursive objects.

>>> pprint . isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representBea@srsion on typename
with id=number> . The representation is not otherwise formatted.

>>> pprint . saferepr(stuff)
"[<Recursion on list with id=...>, 'spam’, 'eggs’, 'lumberjack’, 'knights’,

1

nin"

9.18.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation object This takes into account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationadfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the
value usingeval() . Note that this return§alse for recursive objects. If theepthparameter of the
PrettyPrinter is set and the object is deeper than allowed, this retoatse .

isrecursive (objec)
Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of tegerepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versioolgectas a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains thi¥) of objects that are part of the current presentation context
(direct and indirect containers fabjectthat are affecting the presentation) as the keys; if an object needs to
be presented which is already representedontext the third return value should bEue . Recursive calls
to theformat() method should add additional entries for containers to this dictionary. The third argument,

9.18. pprint — Data pretty printer 183

The Python Library Reference, Release 2.6.4c1

maxlevels gives the requested limit to recursion; this will Baf there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argutegat, gives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

9.18.2 pprint Example

This example demonstrates several uses op thet() function and its parameters.

>>> jmport pprint

>>> tup = ('spam’, ("eggs’, ('lumberjack ', ('knights ', ('ni’, (' dead’,
. (" parrot ', (' fresh fruit "))
>>> stuff = ["a * 10, tup, ['a * 30, 'b* * 30], ["¢’ * 20, 'd * 20]]

>>> pprint . pprint(stuff)
[aaaaaaaaaa’,
('spam’,
(eggs’,
('lumberjack’,

(Cknights’, ('ni’, (dead’, ('parrot’, (fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, 'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’]
['‘ccceccccccecceccccecee’, 'dddddddddddddddddddd’]]

>>> pprint . pprint(stuff, depth =3)
[aaaaaaaaaa’,
(‘'spam’, (‘eggs’, (...))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’, '’bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’]
['‘ccececcccccecceccccecee’, 'dddddddddddddddddddd’]]
>>> pprint . pprint(stuff, width =60)
[aaaaaaaaaa’,
('spam’,
('eggs’,
(lumberjack’,
(’knights’,
(ni’, (dead’, (parrot’, (fresh fruit’,)))))))),
[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’,
'bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb’],
[‘ccececceccccccecccce’, 'dddddddddddddddddddd™]]

9.19 repr — Alternate repr() implementation

Note: Therepr module has been renamedreprlib in Python 3.0. Theto3 tool will automatically adapt
imports when converting your sources to 3.0.

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the bisi+if) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedraypr() and the Python debugger.

184 Chapter 9. Data Types

The Python Library Reference, Release 2.6.4c1

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

9.19.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defafilt is

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The defadtirisnaxdict , 5 for
maxarray , and6 for the others. New in version 2.4naxset , maxfrozenset , andset .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defédt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner asaxstring . The default iS20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used t3pr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should caprl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr_TYPE (obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name.
In the method namelYPE is replaced bystring.join(string.split(type(obj)._ _name__,
")) . Dispatch to these methods is handled&grl() . Type-specific methods which need to recursively
format a value should cadlelf.repri(subobj, level - 1)

9.19.2 Subclassing Repr Objects

The use of dynamic dispatching Byepr.repri() allows subclasses éfepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr as reprlib
import sys

9.19. repr — Alternate repr() implementation 185

The Python Library Reference, Release 2.6.4c1

class MyRepr(reprlib . Repr):
def repr_file (self , obj, level):
if obj.name in [’<stdin> ', ’<stdout> ', ’<stderr> ']
return obj . name
else :
return repr (obj)

aRepr = MyRepr()
print aRepr . repr(sys . stdin) # prints '<stdin>’

186 Chapter 9. Data Types

CHAPTER

TEN

NUMERIC AND MATHEMATICAL
MODULES

The modules described in this chapter provide numeric and math-related functions and data typesmdes

module defines an abstract hierarchy of numeric types.nTdté& andcmath modules contain various mathematical
functions for floating-point and complex numbers. For users more interested in decimal accuracy than in speed, the
decimal module supports exact representations of decimal numbers.

The following modules are documented in this chapter:

10.1 numbers — Numeric abstract base classes

New in version 2.6. Theumbers module PEP 314) defines a hierarchy of numeric abstract base classes which
progressively define more operations. None of the types defined in this module can be instantiated.

classNumber()
The root of the numeric hierarchy. If you just want to check if an arguéntn number, without caring what
kind, useisinstance(x, Number)

10.1.1 The numeric tower

classComplex ()
Subclasses of this type describe complex numbers and include the operations that work on thesbultirx
type. These are: conversionsdomplex andbool ,real ,imag,+,-,*,/,abs() , conjugate() , ==,
and!= . All except- and!= are abstract.

real
Abstract. Retrieves theeal component of this number.

imag
Abstract. Retrieves theeal component of this number.

conjugate ()
Abstract. Returns the complex conjugate. For exanifte3j).conjugate() == (1-3))

classReal ()
To Complex , Real adds the operations that work on real numbers.

In short, those are: a conversion ioat , trunc() , round() , math.floor() , math.ceil() ,
divmod() ,// ,%<,<=,>, and>=.

Real also provides defaults foomplex() ,real ,imag, andconjugate()

187

http://www.python.org/dev/peps/pep-3141

The Python Library Reference, Release 2.6.4c1

classRational ()
SubtypesReal and addsiumerator anddenominator properties, which should be in lowest terms. With
these, it provides a default fdpat()

numerator
Abstract.

denominator
Abstract.

classintegral ()
SubtypesRational and adds a conversion fot . Provides defaults fofloat() , numerator , and
denominator , and bit-string operationsi<, >>, & ", | , ~.

10.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if

there are two different extensions of the real numbers. For exafmgpdéipns.Fraction implementshash()
as follows:
def _ hash__ (self):

if self .denominator == 1:

Get integers right.
return hash (self . numerator)
Expensive check, but definitely correct.
if self == float (self):
return hash (float (self))
else :
Use tuple’'s hash to avoid a high collision rate on
simple fractions.
return hash ((self . numerator, self . denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility
of adding those. You can addyFoo betweenComplex andReal with:

class MyFoo(Complex):
MyFoo. register(Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes ofntegral ,thismeansthat add_ () and__radd () should be defined as:

class Myintegral (Integral):

def _ add__ (self , other):
if isinstance (other, Mylintegral):
return do_my_adding_stuff(self , other)
elif isinstance (other, OtherTypelKnowAbout):
return do_my_other_adding_stuff(self , other)
else :
return NotiImplemented

188 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

def _ radd__ (self , other):
if isinstance (other, Mylintegral):

return do_my_adding_stuff(other, self)
elif isinstance (other, OtherTypelKnowAbout):
return do_my_ other_adding_stuff(other, self)

elif isinstance (other, Integral):

return int (other) + int (self)
elif isinstance (other, Real):

return float (other) + float (self)
elif isinstance (other, Complex):

return ~ complex (other) + complex (self)
else :

return NotiImplemented

There are 5 different cases for a mixed-type operation on subclasSesrgflex . I'll refer to all of the above code
that doesn't refer tMylintegral andOtherTypelKnowAbout as “boilerplate”.a will be an instance of\, which
is a subtype ofomplex (a : A < Complex),andb : B <: Complex .[I'llconsidera + b:

1. If Adefinesan _add__ () which acceptd, all is well.

2. If Afalls back to the boilerplate code, and it were to return a value froadd__ () , we'd miss the possibility
that B defines a more intelligent radd__ () , so the boilerplate should retuiviotimplemented from
_add__ () .(OrAmaynotimplement add_ () atall.)

3. ThenB's _radd__ () gets achance. If it acceps all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5.1f B < A, PythontriesB._ radd __ beforeA. _add__ . This is ok, because it was implemented with
knowledge ofA, so it can handle those instances before delegatifgptoplex .

If A <t Complex andB <: Real without sharing any other knowledge, then the appropriate shared operation

is the one involving the built imomplex , and both _radd__ () slandthere, satb == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function which
generates the forward and reverse instances of any given operator. For eXeanpte)s.Fraction uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):

def forward (a, b):
if isinstance (b, (int , long , Fraction)):
return monomorphic_operator(a, b)
elif isinstance (b, float):

return fallback operator(float (a), b)
elif isinstance (b, complex):
return fallback operator(complex (a), b)
else :
return NotiImplemented
forward . _name__ ="' ' + fallback_operator ._hame__ + ' '
forward . __doc__ = monomorphic_operator . __doc__

def reverse (b, a):
if isinstance (a, Rational):
Includes ints.
return ~ monomorphic_operator(a, b)
elif isinstance (a, numbers . Real):
return fallback operator(float (a), float (b))

10.1. numbers — Numeric abstract base classes 189

The Python Library Reference, Release 2.6.4c1

elif isinstance (a, numbers . Complex):

return fallback_operator(complex (a), complex (b))
else :
return Notimplemented
reverse ._name__ = ' _r’ + fallback operator . _name__ + ' '’
reverse . __doc__ = monomorphic_operator . _doc

return forward, reverse

def _add(a, b):
II|IIIa + bIlIHI
return Fraction(a . numerator * b.denominator +
b. numerator * a. denominator,
a. denominator * b. denominator)

_add__, radd__ = _operator_fallbacks(_add, operator . add)

10.2 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name droailtheodule

if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

10.2.1 Number-theoretic and representation functions

ceil (X)
Return the ceiling ok as a float, the smallest integer value greater than or equal to

copysign (Xx,y)
Returnx with the sign ofy. copysign copies the sign bit of an IEEE 754 floatppysign(1, -0.0)
returns-1.0. New in version 2.6.

fabs (x)
Return the absolute value »f

factorial (%)
Returnx factorial. Raise¥/alueError if xis not integral or is negative. New in version 2.6.

floor (X)
Return the floor ok as a float, the largest integer value less than or equal @hanged in version 2.6: Added
__floor__() delegation.

fmod (x, y)
Returnfmod(x, y) , as defined by the platform C library. Note that the Python expressiét y may not
return the same result. The intent of the C standard idthad(x, y) be exactly (mathematically; to infinite

190 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

precision) equal t&x - n*y for some integen such that the result has the same sigr asd magnitude less
thanabs(y) . Python'sx % yreturns a result with the sign ginstead, and may not be exactly computable for
float arguments. For examplkmod(-1e-100, 1e100) is-1e-100 , but the result of Python’sle-100

% 1e100 is 1e100-1e-100 , which cannot be represented exactly as a float, and rounds to the surprising
1e100. For this reason, functiormod() is generally preferred when working with floats, while Python’s

% yis preferred when working with integers.

frexp (X)
Return the mantissa and exponenkafs the paifm, e) . mis a float ance is an integer such that == m
* 2**e exactly. Ifxis zero, returng0.0, 0) , otherwise0.5 <= abs(m) < 1 . This is used to “pick
apart” the internal representation of a float in a portable way.

fsum (iterable)
Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]
0.99999999999999989

>>> fsum(.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition and
may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, sed3Ré cookbook recipes for accurate floating
point summationNew in version 2.6.

isinf (X)
Checks if the floak is positive or negative infinite. New in version 2.6.

isnan (X)
Checks if the floak is a NaN (not a number). NaNs are part of the IEEE 754 standards. Operation like but not
limited toinf * O ,inf / inf or any operation involving a NaN, e.gqpan * 1, return a NaN. New in

version 2.6.
Idexp (X, i)

Returnx * (2*%) . This is essentially the inverse of functiéexp()
modf (X)

Return the fractional and integer partsxoBoth results carry the sign afand are floats.

trunc (X)
Return theReal valuextruncated to amntegral (usually a long integer). Delegatesxo trunc__ ()
New in version 2.6.

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

For theceil() ,floor() , andmodf() functions, note thaall floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any floawvith abs(x) >= 2**52 necessarily has no fractional bits.

10.2.2 Power and logarithmic functions

exp (X)
Returne**x .

10.2. math — Mathematical functions 191

http://code.activestate.com/recipes/393090/
http://code.activestate.com/recipes/393090/

The Python Library Reference, Release 2.6.4c1

log (X, [base)
Return the logarithm af to the giverbase If the baseis not specified, return the natural logarithmxdthat is,
the logarithm to base). Changed in version 2.3iaseargument added.

loglp (x)
Return the natural logarithm daftx (basee). The result is calculated in a way which is accuratexfoear zero.
New in version 2.6.

l0g10 (X)
Return the base-10 logarithm xf

pow(X, y)
Returnx raised to the powey. Exceptional cases follow Annex ‘F’ of the C99 standard as far as possible. In
particular,pow(1.0, x) andpow(x, 0.0) always returrl.0 , even wherx is a zero or a NaN. If botk
andy are finite x is negative, ang is not an integer thepow(x, y) is undefined, and rais&é&lueError
Changed in version 2.6: The outcomeldfnan andnan**0 was undefined.

sqrt (X)
Return the square root a&f

10.2.3 Trigonometric functions

acos (x)
Return the arc cosine &f in radians.
asin (x)
Return the arc sine of in radians.
atan (x)
Return the arc tangent a&f in radians.
atan2 (v, X
Returnatan(y / x) ,inradians. Theresultis betwegs andpi . The vector in the plane from the origin to

point(x, y) makes this angle with the positive X axis. The pointtfn2() is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For exatgpi€l) andatan2(1,
1) are bothpi/4 , butatan2(-1, -1) is-3*pi/4

cos (X)
Return the cosine ofradians.
hypot (x,Y)
Return the Euclidean normgrt(x*x + y*y) . This is the length of the vector from the origin to pofrt
y) .
sin (X)
Return the sine of radians.

tan (X)
Return the tangent ofradians.

10.2.4 Angular conversion
degrees (X)
Converts angle from radians to degrees.

radians (X)
Converts angle from degrees to radians.

192 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

10.2.5 Hyperbolic functions

acosh (x)
Return the inverse hyperbolic cosinexofNew in version 2.6.

asinh (x)
Return the inverse hyperbolic sinexofNew in version 2.6.

atanh (x)
Return the inverse hyperbolic tangentoiNew in version 2.6.

cosh (X)
Return the hyperbolic cosine &f

sinh (x)
Return the hyperbolic sine af

tanh (X)
Return the hyperbolic tangent rf

10.2.6 Constants

pi
The mathematical constapi

The mathematical constaat

Note: Themath module consists mostly of thin wrappers around the platform C math library functions. Behavior in
exceptional cases is loosely specified by the C standards, and Python inherits much of its math-function error-reporting
behavior from the platform C implementation. As a result, the specific exceptions raised in error cases (and even
whether some arguments are considered to be exceptional at all) are not defined in any useful cross-platform or cross-
release way. For example, whetineath.log(0) returns-Inf orraisesvalueError or OverflowError isn't

defined, and in cases whemeath.log(0) raisesOverflowError , math.log(OL) may raiseValueError

instead.

All functions return a quieiNaN if at least one of the args iaN SignalingNaNs raise an exception. The ex-
ception type still depends on the platform and libm implementation. It's usd&llyeError for EDOM and
OverflowError for errno ERANGE Changed in version 2.6: In earlier versions of Python the outcome of an
operation with NaN as input depended on platform and libm implementation.

See Also:

Module cmath Complex number versions of many of these functions.

10.3 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
in this module accept integers, floating-point numbers or complex humbers as arguments. They will also accept any
Python object that has either acomplex () ora__ float_ () method: these methods are used to convert

the object to a complex or floating-point number, respectively, and the function is then applied to the result of the
conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous omothsides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the other.
On platforms that do not support signed zeros the continuity is as specified below.

10.3. cmath — Mathematical functions for complex numbers 193

The Python Library Reference, Release 2.6.4c1

10.3.1 Conversions to and from polar coordinates

A Python complex number is stored internally usingectangularor Cartesiancoordinates. It is completely deter-
mined by itsreal partz.real and itsimaginary partz.imag . In other words:

z == z.real + z.imag*1j

Polar coordinategive an alternative way to represent a complex number. In polar coordinates, a complex mismber
defined by the modulusand the phase angji. The modulus is the distance frora to the origin, while the phase
phiis the counterclockwise angle from the positive x-axis to the line segment that joins the orgin to

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

phase (x)
Return the phase ok (also known as theargumentof x), as a float. phase(x) is equivalent to
math.atan2(x.imag, x.real) . The result lies in the range7; 7], and the branch cut for this oper-

ation lies along the negative real axis, continuous from above. On systems with support for signed zeros (which
includes most systems in current use), this means that the sign of the result is the same as theisigg of
even wherx.imag is zero:

>>> phase(complex (-1.0, 0.0))
3.1415926535897931

>>> phase(complex (-1.0, -0.0))
-3.1415926535897931

New in version 2.6.

Note: The modulus (absolute value) of a complex numbean be computed using the built-itibs() function.
There is no separatenath module function for this operation.

polar (X)
Return the representation »fn polar coordinates. Returns a pé&ir phi) wherer is the modulus ok and
phi is the phase of. polar(x) is equivalent tdabs(x), phase(x)) . New in version 2.6.

rect (r, phi)
Return the complex numberwith polar coordinates andphi. Equivalent tor * (math.cos(phi) +
math.sin(phi)*1j) . New in version 2.6.

10.3.2 Power and logarithmic functions

exp (X)
Return the exponential valueg*x .
log (X, [base)
Returns the logarithm ofto the giverbase If the baseis not specified, returns the natural logarithnxoT here
is one branch cut, from 0 along the negative real axi$xto eontinuous from above. Changed in version 2.4:
baseargument added.

logl0 (x)
Return the base-10 logarithm xf This has the same branch cutiag()

sqrt (x)
Return the square root &f This has the same branch cutag()

194 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

10.3.3 Trigonometric functions

acos (X)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axit@entinuous from above.

asin (x)
Return the arc sine of This has the same branch cutsass()

atan (x)
Return the arc tangent af There are two branch cuts: One extends filjmalong the imaginary axis teoj ,
continuous from the right. The other extends fretj along the imaginary axis toocoj , continuous from the
left. Changed in version 2.6: direction of continuity of upper cut reversed

cos (X)
Return the cosine of.

sin (X)
Return the sine af.

tan ()
Return the tangent of

10.3.4 Hyperbolic functions

acosh (x)
Return the hyperbolic arc cosine xf There is one branch cut, extending left from 1 along the real axisto -
continuous from above.

asinh (x)
Return the hyperbolic arc sine »f There are two branch cuts: One extends frlgmalong the imaginary axis
to ooj , continuous from the right. The other extends frelp along the imaginary axis toocj , continuous
from the left. Changed in version 2.6: branch cuts moved to match those recommended by the C99 standard

atanh (x)
Return the hyperbolic arc tangentofThere are two branch cuts: One extends flbalong the real axis too,
continuous from below. The other extends frelnalong the real axis toco, continuous from above. Changed
in version 2.6: direction of continuity of right cut reversed

cosh (x)
Return the hyperbolic cosine &f

sinh (X)
Return the hyperbolic sine af

tanh (x)
Return the hyperbolic tangent gf

10.3.5 Classification functions
isinf (X)
ReturnTrueif the real or the imaginary part of x is positive or negative infinity. New in version 2.6.

isnan (X)
ReturnTrueif the real or imaginary part of x is not a number (NaN). New in version 2.6.

10.3. cmath — Mathematical functions for complex numbers 195

The Python Library Reference, Release 2.6.4c1

10.3.6 Constants

pi
The mathematical constant as a float.

The mathematical constagatas a float.

Note that the selection of functions is similar, but not identical, to that in madhalés . The reason for having two
modules is that some users aren't interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

10.4 decimal — Decimal fixed point and floating point arithmetic

New in version 2.4. Thelecimal module provides support for decimal floating point arithmetic. It offers several
advantages over tHmat datatype:

« Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

< Decimal numbers can be represented exactly. In contrast, numbetslikdo not have an exact representation
in binary floating point. End users typically would not expéct to display asl.1000000000000001 as
it does with binary floating point.

* The exactness carries over into arithmetic. In decimal floating p@iht,+ 0.1 + 0.1 - 0.3 is exactly
equal to zero. In binary floating point, the resul6i$511151231257827e-017 . While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is preferred
in accounting applications which have strict equality invariants.

» The decimal module incorporates a notion of significant places sd.tB@t+ 1.20 is 2.50 . The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multi-
plication, the “schoolbook” approach uses all the figures in the multiplicands. For inslaBcé&, 1.2 gives
1.56 while1.30 * 1.20 gives1.5600 .

« Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> getcontext() .prec =6

>>> Decimal(1) / Decimal(7)
Decimal(’0.142857’)

>>> getcontext() .prec = 28

>>> Decimal(1) / Decimal(7)
Decimal(’0.1428571428571428571428571429’)

196 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

« Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling. This includes an
option to enforce exact arithmetic by using exceptions to block any inexact operations.

« The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values stdfimag , -Infinity ,
andNaN The standard also differentiatéd from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options includeROUND_CEILINGROUND_DOWROUND_FLOQROUND_HALF_DOWRDUND_HALF_EVEN
ROUND_HALF_UROUND_URNdROUND_05UP

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module areClamped , InvalidOperation , DivisionByZero , Inexact , Rounded, Subnormal ,

Overflow , andUnderflow

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See Also:
» IBM’s General Decimal Arithmetic Specificatioimhe General Decimal Arithmetic Specification
* |EEE standard 854-198Unofficial IEEE 854 Text

10.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current contexjetdttntext() and, if
necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])

>>> getcontext() .prec =7 # Set a new precision

Decimal instances can be constructed from integers, strings, or tuples. To create a Decimalflfram a first

convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values sucNaswhich stands for “Not a number”, positive and negative
Infinity ,and-0 .

>>> getcontext() . prec = 28

>>> Decimal(10)

Decimal('10’)

>>> Decimal(' 3.14 ")
Decimal(’3.14")

>>> Decimal((0, (3, 1, 4), -2))

10.4. decimal — Decimal fixed point and floating point arithmetic 197

http://www2.hursley.ibm.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

The Python Library Reference, Release 2.6.4c1

Decimal(’3.14")

>>> Decimal(str (2.0 ** 0.5))
Decimal(’1.41421356237’)

>>> Decimal(2) ** Decimal(0.5 ")
Decimal('1.414213562373095048801688724)
>>> Decimal(' NaN)

Decimal(’'NaN’)

>>> Decimal(' -Infinity ")
Decimal(’-Infinity’)

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext() .prec =6
>>> Decimal('3.0")
Decimal(’3.0%)

>>> Decimal(' 3.1415926535 ')

Decimal(’3.1415926535’)

>>> Decimal(' 3.1415926535 ') + Decimal(' 2.7182818285 ')
Decimal(’5.85987")

>>> getcontext() .rounding = ROUND_UP

>>> Decimal(' 3.1415926535 ') + Decimal(' 2.7182818285 ')
Decimal(’5.85988")

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25 " split()
>>> max(data)

Decimal(’9.25)

>>> min (data)

Decimal(’0.03")

>>> sorted(data)

[Decimal(’0.03"), Decimal(’1.00"), Decimal(’1.34"), Decimal('1.87"),
Decimal(’2.35’), Decimal(’3.45’), Decimal(’9.25"]

>>> sum(data)

Decimal(’19.29")

>>> agb,c = data]: 3]

>>> str (a)

'1.34

>>> float (a)

1.3400000000000001

>>> round (a, 1) # round() first converts to binary floating point
1.3

>>> int (a)

1

>>> g * 5

Decimal(’6.70")

>>> a * b

Decimal(’2.5058")

>>> ¢ % a

Decimal(’0.777)

And some mathematical functions are also available to Decimal:

>>> getcontext() .prec = 28
>>> Decimal(2). sgrt()
Decimal('1.414213562373095048801688724)

198 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

>>> Decimal(1) . exp()
Decimal(’2.718281828459045235360287471")
>>> Decimal(' 10"). In()
Decimal(’2.302585092994045684017991455")
>>> Decimal(' 10"). logl0()

Decimal('1’)

Thequantize() method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal(' 7.325 ') . quantize(Decimal(*.01 "), rounding =ROUND_DOWN)

Decimal('7.32")

>>> Decimal(' 7.325 ') . quantize(Decimal("1.7), rounding =ROUND_UP)

Decimal(’8’)

As shown above, thgetcontext() function accesses the current context and allows the settings to be changed.

This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use tleetcontext() function.

In accordance with the standard, thecimal module provides two ready to use standard cont®dsjcContext
andExtendedContext . The former is especially useful for debugging because many of the traps are enabled:

>>> myothercontext = Context(prec =60, rounding =ROUND_HALF_DOWN)
>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)
Decimal(’0.142857142857142857142857142857142857142857142857142857142857’)

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> getcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal(’0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal(’Infinity”)

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File ‘"<pyshell#143>" | line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero : x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
theclear_flags() method.

>>> getcontext(ExtendedContext)

>>> getcontext() . clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal(’3.14159292)

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF _EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Rounded, Inexact], traps=[])

10.4. decimal — Decimal fixed point and floating point arithmetic 199

The Python Library Reference, Release 2.6.4c1

The flagsentry shows that the rational approximationRb was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in theps field of a context:

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(0)

Decimal(’Infinity”)

>>> getcontext() . traps[DivisionByZero] =1

>>> Decimal(1) / Decimal(0)

Traceback (most recent call last):

File "<pyshell#112>" , line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero : x / 0O

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted tbecimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

10.4.2 Decimal objects

classDecimal ([value, [context])
Construct a nevidecimal object based frommalue

valuecan be an integer, string, tuple, or anotbecimal object. If novalueis given, return®ecimal(’0")
If valueis a string, it should conform to the decimal numeric string syntax after leading and trailing whitespace
characters are removed:

sign =

digit =0 Y| 23|45 e T |8y
indicator = e | F

digits = digit [digit]...

decimal-part = digits . [digits] | [.] digits

exponent-part := indicator [sign] digits

infinity = Infinity’ | 'Inf

nan = ’NaN’ [digits] | 'sNaN’" [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If valueis a unicode string then other Unicode decimal digits are also permitted wiggtre appears above.
These include decimal digits from various other alphabets (for example, Arabic-Indic andagavatigits)
along with the fullwidth digitas'\uff10’ throughu\uff19’

If valueis a tuple , it should have three components, a sigh for positive or 1 for negative), a

tuple of digits, and an integer exponent. For examecimal((0, (1, 4, 1, 4), -3)) returns
Decimal(’1.414")

Thecontextprecision does not affect how many digits are stored. That is determined exclusively by the number
of digits invalue For examplePecimal(’3.00000") records all five zeros even if the context precision is
only three.

The purpose of theontextargument is determining what to dovélueis a malformed string. If the context
trapsinvalidOperation , an exception is raised; otherwise, the constructor returns a new Decimal with the
value ofNaN

Once constructed)ecimal objects are immutable. Changed in version 2.6: leading and trailing whitespace
characters are permitted when creating a Decimal instance from a string. Decimal floating point objects share

200 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

many properties with the other built-in numeric types sucticeg andint . All of the usual math operations
and special methods apply. Likewise, decimal objects can be copied, pickled, printed, used as dictionary keys,
used as set elements, compared, sorted, and coerced to another type {sath asrlong).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized

methods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal(’321e+5’).adjusted() returns seven. Used for determining the position of

the most significant digit with respect to the decimal point.

as_tuple ()
Return a named tuple representation of the number: DecimalTuple(sign, digits,
exponent) . Changed in version 2.6: Use a named tuple.

canonical ()
Return the canonical encoding of the argument. Currently, the encodingafienal instance is always
canonical, so this operation returns its argument unchanged. New in version 2.6.

compare (other, [context)
Compare the values of two Decimal instances. This operation behaves in the same way as the usual
comparison method _cmp__ () , except thattompare() returns a Decimal instance rather than an
integer, and if either operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal('NaN’)
a<b ==> Decimal(’-1’)
a == ==> Decimal('0’)
a>hb ==> Decimal(’l’)

compare_signal (other, [context]
This operation is identical to theompare() method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN. New
in version 2.6.

compare_total (other)
Compare two operands using their abstract representation rather than their numerical value. Similar to
thecompare() method, but the result gives a total ordering@acimal instances. Twdecimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal(' 12.0 '). compare_total(Decimal("127)
Decimal(’-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is
Decimal(’0’) if both operands have the same representafi@timal(’-1") if the first operand

is lower in the total order than the second, @&wetimal(’1’) if the first operand is higher in the total
order than the second operand. See the specification for details of the total order. New in version 2.6.

compare_total mag (other)
Compare two operands using their abstract representation rather than their value as in
compare_total() , but ignoring the sign of each operandx.compare_total_mag(y) is
equivalent tax.copy_abs().compare_total(y.copy_abs()) . New in version 2.6.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification. New in version 2.6.

10.4. decimal — Decimal fixed point and floating point arithmetic 201

The Python Library Reference, Release 2.6.4c1

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed. New in version 2.6.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags are
changed and no rounding is performed. New in version 2.6.

copy_sign (othen
Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For
example:

>>> Decimal(' 2.3). copy_sign(Decimal("-1.5 "))
Decimal(’-2.3")

This operation is unaffected by the context and is quiet: no flags are changed and no rounding is performed.
New in version 2.6.

exp ([context)
Return the value of the (natural) exponential functégrix at the given number. The result is correctly
rounded using thROUND_HALF_EVEMunding mode.

>>> Decimal(1) . exp()
Decimal(’2.718281828459045235360287471")

>>> Decimal(321) . exp()
Decimal('2.561702493119680037517373933E+139’)

New in version 2.6.
fma (other, third, [context]

Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other.

>>> Decimal(2).fma(3, 5)
Decimal(’11)

New in version 2.6.

is_canonical ()
ReturnTrue if the argumentis canonical afidilse otherwise. Currently, Becimal instance is always
canonical, so this operation always retuiimse . New in version 2.6.

is_finite 0
ReturnTrue if the argument is a finite number, aRdlse if the argument is an infinity or a NaN. New
in version 2.6.

is_infinite 0
ReturnTrue if the argument is either positive or negative infinity dralse otherwise. New in version
2.6.

is_nan ()

ReturnTrue if the argument is a (quiet or signaling) NaN arelse otherwise. New in version 2.6.

is_normal ()
ReturnTrue if the argument is aormalfinite number. Returfralse if the argument is zero, subnormal,
infinite or a NaN. New in version 2.6.

is_gnan ()
ReturnTrue if the argument is a quiet NaN, arichise otherwise. New in version 2.6.

202

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

is_signed ()
ReturnTrue if the argument has a negative sign drmlse otherwise. Note that zeros and NaNs can
both carry signs. New in version 2.6.

is_shan ()
ReturnTrue if the argument is a signaling NaN aRalse otherwise. New in version 2.6.

is_subnormal ()
ReturnTrue if the argument is subnormal, afélse otherwise. New in version 2.6.

is_zero ()
ReturnTrue if the argument is a (positive or negative) zero &adse otherwise. New in version 2.6.

In ([context)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVENunding mode. New in version 2.6.

log10 ([context])
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVENunding mode. New in version 2.6.

logb ([context)
For a nonzero number, return the adjusted exponent of its operardessmaal instance. If the operand
is a zero thebecimal(’-Infinity’) is returned and thBivisionByZero flag is raised. If the
operand is an infinity theBecimal(’Infinity’) is returned. New in version 2.6.

logical_and (other, [context]
logical_and() is a logical operation which takes twogical operandgseelLogical operands The
result is the digit-wisend of the two operands. New in version 2.6.

logical_invert (other, [context]
logical_invert() is a logical operation. The argument must bégical operand(seelLogical
operand}. The result is the digit-wise inversion of the operand. New in version 2.6.

logical_or (other, [context]
logical_or() is a logical operation which takes twogical operandgseelLogical operands The
result is the digit-wis@r of the two operands. New in version 2.6.

logical_xor (other, [context]
logical_xor() is a logical operation which takes twogical operandqseelLogical operands The
result is the digit-wise exclusive or of the two operands. New in version 2.6.

max(other, [context]
Like max(self, other) except that the context rounding rule is applied before returning antl gt
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

max_mag other, [context]
Similar to themax() method, but the comparison is done using the absolute values of the operands. New
in version 2.6.

min (other, [context]
Like min(self, other) except that the context rounding rule is applied before returning antl gt
values are either signaled or ignored (depending on the context and whether they are signaling or quiet).

min_mag (other, [context]
Similar to themin() method, but the comparison is done using the absolute values of the operands. New
in version 2.6.

next_minus ([context]
Return the largest number representable in the given context (or in the current thread’s context if no context
is given) that is smaller than the given operand. New in version 2.6.

10.4. decimal — Decimal fixed point and floating point arithmetic 203

The Python Library Reference, Release 2.6.4c1

next_plus ([context])
Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand. New in version 2.6.

next_toward (other, [context]
If the two operands are unequal, return the number closest to the first operand in the direction of the second
operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be
the same as the sign of the second operand. New in version 2.6.

normalize ([context])
Normalize the number by stripping the rightmost trailing zeros and converting any result equal to
Decimal(’0") to Decimal(’0e0’) . Used for producing canonical values for members of an equiv-
alence class. For exampleecimal(’32.100’) andDecimal(’0.321000e+2") both normalize
to the equivalent valuBecimal(’32.1")

number_class ([context])
Return a string describing tletassof the operand. The returned value is one of the following ten strings.

"-Infinity" , indicating that the operand is negative infinity.
*"-Normal" , indicating that the operand is a negative normal number.
*"-Subnormal” , indicating that the operand is negative and subnormal.

«"-Zero" , indicating that the operand is a negative zero.
*"+Zero" , indicating that the operand is a positive zero.
*"+Subnormal” , indicating that the operand is positive and subnormal.
*"+Normal” , indicating that the operand is a positive normal number.
"+Infinity" , indicating that the operand is positive infinity.
*"NaN" , indicating that the operand is a quiet NaN (Not a Number).
*"sNaN" , indicating that the operand is a signaling NaN.
New in version 2.6.
quantize (exp, [rounding, [context, [watchexp]]]

Return a value equal to the first operand after rounding and having the exponent of the second operand.

>>> Decimal(' 1.41421356 ') . quantize(Decimal(71.000 "))
Decimal(’1.414’)

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than
precision, then amvalidOperation is signaled. This guarantees that, unless there is an error condi-
tion, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary. In this
case, the rounding mode is determined byrthending argument if given, else by the giveontext
argument; if neither argument is given the rounding mode of the current thread’s context is used.

If watchexgs set (default), then an error is returned whenever the resulting exponent is greatemtran
or less tharkttiny

radix ()
ReturnDecimal(10) , the radix (base) in which theecimal class does all its arithmetic. Included for
compatibility with the specification. New in version 2.6.

204 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

remainder_near (other, [context]
Compute the modulo as either a positive or negative value depending on which is closest to zero. For
instance Decimal(10).remainder_near(6) returnsDecimal(’-2") which is closer to zero
thanDecimal('4’)

If both are equally close, the one chosen will have the same sigelfas

rotate (other, [context]
Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation is
to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with
zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. New in
version 2.6.

same_quantum (other, [context)
Test whether self and other have the same exponent or whether bdthldre

scaleb (other, [context]
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other . The second operand must be an integer. New in version 2.6.

shift (other, [context]
Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift is
to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged. New in version 2.6.

sqrt ([context])
Return the square root of the argument to full precision.

to_eng_string ([context)
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, conveilecimal(123E+1") to Decimal('1.23E+3")

to_integral ([rounding, [context])
Identical to theto_integral_value() method. Theo_integral name has been kept for com-
patibility with older versions.

to_integral_exact ([rounding, [context])
Round to the nearest integer, signalingxact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by theunding parameter if given, else by the giveontext . If
neither parameter is given then the rounding mode of the current context is used. New in version 2.6.

to_integral_value ([rounding, [context])
Round to the nearest integer without signalingxact or Rounded. If given, appliesounding other-
wise, uses the rounding method in either the suppt@ttextor the current context. Changed in version
2.6: renamed frono_integral toto_integral_value . The old name remains valid for compat-
ibility.

Logical operands
The logical_and() , logical_invert() , logical_or() , andlogical_xor() methods expect their

arguments to blogical operandsA logical operandis aDecimal instance whose exponent and sign are both zero,
and whose digits are all eith8ror 1.

10.4. decimal — Decimal fixed point and floating point arithmetic 205

The Python Library Reference, Release 2.6.4c1

10.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed usingettiuatext() and
setcontext() functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread.to

Beginning with Python 2.5, you can also useWith statement and thecalcontext() function to temporarily
change the active context.

localcontext ([c])
Return a context manager that will set the current context for the active thread to a copy @htry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used. New in version 2.5. For example, the following code sets the current decimal
precision to 42 places, performs a calculation, and then automatically restores the previous context:

from decimal import localcontext

with localcontext() as ctx:
ctx . prec = 42 # Perform a high precision calculation
s = calculate_something()

s = +s # Round the final result back to the default precision

New contexts can also be created usingGleitext constructor described below. In addition, the module provides
three pre-made contexts:

classBasicContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUND_HALF_URII flags are cleared. All traps are enabled (treated as exceptions) except
Inexact , Rounded, andSubnormal .

Because many of the traps are enabled, this context is useful for debugging.

classExtendedContext ()
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUND_HALF_EVEMII flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result MalNe of
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

classDefaultContext 0
This context is used by th€ontext constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating Ijotitext constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

206 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow, Invali-
dOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created witlotivext constructor.

classContext (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capijals=1
Creates a new context. If a field is not specified orNisne, the default values are copied from the
DefaultContext . If the flagsfield is not specified or islone, all flags are cleared.

Theprecfield is a positive integer that sets the precision for arithmetic operations in the context.
Theroundingoption is one of:

*ROUND_ CEILING(towardslnfinity),

*ROUND_DOWtdwards zero),

*ROUND_FLOOfwards-Infinity),

*ROUND_HALF_DOWN nearest with ties going towards zero),

*ROUND_HALF_EVE(b nearest with ties going to nearest even integer),

*ROUND_HALF_URo nearest with ties going away from zero), or

*ROUND_URaway from zero).

*ROUND_05URaway from zero if last digit after rounding towards zero would have been 0 or 5; otherwise
towards zero)

Thetrapsandflagsfields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The EminandEmaxfields are integers specifying the outer limits allowable for exponents.

The capitalsfield is either0 or 1 (the default). If set td, exponents are printed with a capiilotherwise, a
lowercasee is used:Decimal('6.02e+23’) . Changed in version 2.6: THROUND_05UPounding mode

was added. Th€ontext class defines several general purpose methods as well as a large number of methods
for doing arithmetic directly in a given context. In addition, for each offleeimal methods described above

(with the exception of thedjusted() andas_tuple() methods) there is a correspondifgntext

method. For examplé&;.exp(x) is equivalent tox.exp(context=C)

clear_flags ()
Resets all of the flags 10.

copy ()
Return a duplicate of the context.

copy_decimal (num)
Return a copy of the Decimal instance num.

create_decimal (num)
Creates a new Decimal instance frommmbut usingself as context. Unlike th®ecimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change

the result:

>>> getcontext() .prec =3

>>> Decimal(' 3.4445 ') + Decimal(' 1.0023 ')
Decimal(’4.45’)

10.4. decimal — Decimal fixed point and floating point arithmetic 207

The Python Library Reference, Release 2.6.4c1

>>> Decimal(' 3.4445 ') + Decimal(0) + Decimal(' 1.0023 ")
Decimal('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string, no
leading or trailing whitespace is permitted.

Etiny ()
Returns a value equal tmin - prec + 1 which is the minimum exponent value for subnormal re-
sults. When underflow occurs, the exponent is séittoy .

Etop ()
Returns a value equal ffmax - prec + 1 .

The usual approach to working with decimals is to crézeimal instances and then apply arithmetic opera-
tions which take place within the current context for the active thread. An alternative approach is to use context
methods for calculating within a specific context. The methods are similar to those foeth®al class and

are only briefly recounted here.

abs (x)
Returns the absolute value xf

add(x,y)
Return the sum af andy.

canonical (x)
Returns the same Decimal object

compare (X, Y)
Comparex andy numerically.

compare_signal (Xx,y)
Compares the values of the two operands numerically.

compare_total (X, Y)
Compares two operands using their abstract representation.

compare_total mag (Xx,y)
Compares two operands using their abstract representation, ignoring sign.

copy_abs (X)
Returns a copy of with the sign set to O.

copy_negate (X)
Returns a copy af with the sign inverted.

copy_sign (Xx,y)
Copies the sign frony to x.
divide (x,y)
Returnx divided byy.
divide_int (Xx,)
Returnx divided byy, truncated to an integer.

divmod (X,)
Divides two numbers and returns the integer part of the result.

exp (x)
Returnse ** x.

fma(x,y, 2
Returnsx multiplied byy, plusz

208

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

is_canonical (x)

Returns True ik is canonical; otherwise returns False.
is_finite (%)

Returns True ik is finite; otherwise returns False.
is_infinite (x)

Returns True ik is infinite; otherwise returns False.
is_nan (x)

Returns True ifk is a gNaN or sNaN; otherwise returns False.
is_normal (x)

Returns True ik is a normal number; otherwise returns False.
is_gnan (X)

Returns True ik is a quiet NaN; otherwise returns False.
is_signed (X)

Returns True ik is negative; otherwise returns False.
is_snan (X)

Returns True ik is a signaling NaN; otherwise returns False.
is_subnormal (X)

Returns True ik is subnormal; otherwise returns False.
is_zero (X)

Returns True ik is a zero; otherwise returns False.
In (x)

Returns the natural (base e) logarithnmxof
log10 (x)

Returns the base 10 logarithmof
logb (X)

Returns the exponent of the magnitude of the operand’s MSD.
logical_and (x,¥)

Applies the logical operatioand between each operand’s digits.
logical_invert (%)

Invert all the digits inx.
logical_or (Xx,y)

Applies the logical operatioar between each operand’s digits.
logical_xor (Xx,¥)

Applies the logical operatioror between each operand’s digits.

max(X, y)
Compares two values numerically and returns the maximum.

max_magd X, y)

Compares the values numerically with their sign ignored.
min (X, y)

Compares two values numerically and returns the minimum.
min_mag(x, y)

Compares the values numerically with their sign ignored.

10.4. decimal — Decimal fixed point and floating point arithmetic 209

The Python Library Reference, Release 2.6.4c1

minus (X)
Minus corresponds to the unary prefix minus operator in Python.

multiply (%, y)
Return the product of andy.

next_minus (X)
Returns the largest representable number smallenthan

next_plus (x)
Returns the smallest representable number largenthan

next_toward (Xx,Y)
Returns the number closestitpin direction towardy.

normalize (X)
Reducex to its simplest form.

number_class (X)
Returns an indication of the classof

plus (x)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it isot an identity operation.

power (X, Y, [modulo)
Returnx to the power ofy, reduced modulonodulo if given.

With two arguments, compute*y . If x is negative thery must be integral. The result will be inexact
unlessy is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The result
should always be correctly rounded, using the rounding mode of the current thread’s context.

With three arguments, compute™y) % modulo . For the three argument form, the following restric-
tions on the arguments hold:

«all three arguments must be integral

*y must be nonnegative

«at least one ok ory must be nonzero

*modulo must be nonzero and have at most ‘precision’ digits

The result ofContext.power(x, y, modulo) is identical to the result that would be obtained by
computing(x**y) % modulo with unbounded precision, but is computed more efficiently. Itis always
exact. Changed in version 2.6:may now be nonintegral iR**y . Stricter requirements for the three-
argument version.

quantize (x,Y)
Returns a value equal to(rounded), having the exponentyf

radix ()
Just returns 10, as this is Decimal, :)

remainder (X,Y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder_near (X,Y)
Returnsx - y * n , wheren is the integer nearest the exact valuexof y (if the result is O then its
sign will be the sign ok).

210

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

rotate (x,Y)
Returns a rotated copy &fy times.

same_quantum (X, y)
Returns True if the two operands have the same exponent.

scaleb (x,V)
Returns the first operand after adding the second value its exp.

shift (x,y)
Returns a shifted copy of y times.

sqrt (x)
Square root of a non-negative number to context precision.

subtract (x,Y)
Return the difference betwearandy.

to_eng_string (X
Converts a number to a string, using scientific notation.

to_integral_exact (X
Rounds to an integer.

to_sci_string (X
Converts a number to a string using scientific notation.

10.4.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
if the DivisionByZero trap is set, then BivisionByZero exception is raised upon encountering the condition.

classClamped ()
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the contériie andEmaxlimits. If possible, the
exponent is reduced to fit by adding zeros to the coefficient.

classDecimalException ()
Base class for other signals and a subclagsrofimeticError

classDivisionByZero ()
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returnifinity or -Infinity with the sign determined by the inputs to the calculation.

classlnexact ()
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

10.4. decimal — Decimal fixed point and floating point arithmetic 211

The Python Library Reference, Release 2.6.4c1

classinvalidOperation 0
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trappedjadluPassible causes

include:

Infinity - Infinity

0 * Infinity

Infinity [Infinity

X %0

Infinity % X

X. _rescale(non -integer)
sgrt(-x) and x > 0

0 ** 0

X ** (non - integer)
X ** Infinity

classOverflow ()
Numerical overflow.

Indicates the exponent is larger thBmax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity . In either caselnexact andRounded are also signaled.

classRounded ()
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rduf@intp 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

classSubnormal ()
Exponent was lower thalBmin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

classUnderflow ()
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rountdirgact andSubnormal are also signaled.
The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(lnexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

212 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

10.4.5 Floating Point Notes

Mitigating round-off error with increased precision

The use of decimal floating point eliminates decimal representation error (making it possible to repesexdctly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(’7.51111111")
>>> (U + V) +w

Decimal(’9.5111111")

>>> U+ (Vv + w)

Decimal('10")

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003")
>>> (urv) + (u*w)

Decimal(’0.01")

>>> U * (vHw)

Decimal(’0.0060000")

Thedecimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext() .prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal(' 7.51111111 ")
>>> (U + V) + W

Decimal(’9.51111111)

>>> u + (Vv o+ w)

Decimal(’9.51111111")

>>>

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(' 6.0000003 ")
>>> (U*v) + (Uu*w)

Decimal(’0.0060000")

>>> u * (v +w)

Decimal(’0.0060000’)

Special values

The number system for thdecimal module provides special values includiddaN, sNaN, -Infinity ,
Infinity , and two zerost+0 and-0 .

Infinities can be constructed directly witiecimal(’Infinity’) . Also, they can arise from dividing by zero
when theDivisionByZero signal is not trapped. Likewise, when tbeerflow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and relNaN| or if the InvalidOperation signal is trapped, raise an excep-
tion. For exampleQ/0 returnsNaNwhich means “not a number”. This variety N&Nis quiet and, once created, will

10.4. decimal — Decimal fixed point and floating point arithmetic 213

The Python Library Reference, Release 2.6.4c1

flow through other computations always resulting in anott&X This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant issNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python's comparison operators can be a little surprising whétaNais involved. A test

for equality where one of the operands is a quiet or signahiaN always returns-alse (even when doing
Decimal(’'NaN’)==Decimal('NaN")), while a test for inequality always returiisue . An attempt to compare
two Decimals using any of the, <=, > or >= operators will raise thénvalidOperation signal if either operand

is aNaN and returnFalse if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons invoNaigveere taken from

the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliancecaspéne() and
compare-signal() methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal(' Infinity ")
Decimal(’'0E-1000000026")

10.4.6 Working with threads

Thegetcontext() function accesses a differe@ibntext object for each thread. Having separate thread contexts
means that threads may make changes (suget@sntext.prec=10) without interfering with other threads.

Likewise, thesetcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called befogetcontext() , thengetcontext() will automatically create a
new context for use in the current thread.

The new context is copied from a prototype context cabedaultContextTo control the defaults so that each thread
will use the same values throughout the application, directly modifyDsfaultContexbbject. This should be done
beforeany threads are started so that there won't be a race condition between threadgyeadlimgext() . For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started
tl.start()
t2.start()
t3.start()

214 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

10.4.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work Witictimel class:

def moneyfmt (value, places =2, curr ="', sep=",",dp=".",
pos="", neg = -, trailneg =)
Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+, space or blank
neg: optional sign for negative numbers: '-', (', space or blank
trailneg:optional trailing minus indicator: -, ’)’, space or blank

>>> d = Decimal(’-1234567.8901")
>>> moneyfmt(d, curr="$’)
'-$1,234,567.89’

>>> moneyfmt(d, places=0, sep='".
'1.234.568-

>>> moneyfmt(d, curr="$’, neg='(’, trailneg=")")
'($1,234,567.89)’

>>> moneyfmt(Decimal(123456789), sep=" ")

'123 456 789.00°

>>> moneyfmt(Decimal(’-0.02’), neg='<’, trailneg=">")

, dp=", neg=", trailneg="-)

'<0.02>’
q = Decimal(10) ** -places # 2 places --> '0.01’
sign, digits, exp = value . quantize(q) . as_tuple()
result =]
digits = map(str , digits)
build, next = result . append, digits . pop
if sign:

build(trailneg)
for i in range (places):

build(next() if digits else '0")
build(dp)
if not digits:

build(" 0")
i =0
while digits:

build(next())

i +=1

if i == 3 and digits:

i =0
build(sep)
build(curr)
build(neg if sign else pos)
return '’ . join(reversed(result))
def pi ():

10.4. decimal — Decimal fixed point and floating point arithmetic 215

The Python Library Reference, Release 2.6.4c1

""Compute Pi to the current precision.

>>> print pi()
3.141592653589793238462643383

getcontext() .prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s

n, na = n+na, na +8

d, da = d+da, da +32

t =@ *n / d

s +=t
getcontext() .prec -= 2
return +s # unary plus applies the new precision

def exp (x):

""Return e raised to the power of x. Result type matches input type.

>>> print exp(Decimal(1))
2.718281828459045235360287471
>>> print exp(Decimal(2))
7.389056098930650227230427461
>>> print exp(2.0)
7.38905609893

>>> print exp(2+0j)
(7.38905609893+0j)

getcontext() .prec += 2
i, lasts, s, fact, num =0, 0 1, 1, 1
while s = lasts:
lasts = s
i +=1
fact *= i
num *= X
s += num / fact
getcontext() .prec -=2
return +s

def cos (x):
""Return the cosine of x as measured in radians.

>>> print cos(Decimal(’0.5"))
0.8775825618903727161162815826
>>> print cos(0.5)

0.87758256189

>>> print cos(0.5+0j)
(0.87758256189+0j)

getcontext() .prec += 2

216 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

i, lasts, s, fact, num, sign =0, 0 1, 1, 1, 1
while s != lasts:

lasts = s

i += 2

fact *=1 * (i -1)

num *= x * X

sign *= -1
s += num / fact * sign
getcontext() .prec -= 2
return +s
def sin (x):

""Return the sine of x as measured in radians.

>>> print sin(Decimal(’0.5"))
0.4794255386042030002732879352
>>> print sin(0.5)

0.479425538604

>>> print sin(0.5+0j)
(0.479425538604+0j)

nnn

getcontext() .prec += 2
i, lasts, s, fact, num, sign =1, 0, x, 1,x, 1
while s = lasts:

lasts = s

i += 2

fact *=1i * (i -1)

num *= x * x

sign *= -1

s += num / fact * sign
getcontext() .prec -= 2
return +s

10.4.8 Decimal FAQ

Q. It is cumbersome to typgecimal.Decimal(’1234.5") . Is there a way to minimize typing when using the
interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal . Decimal
>>> D(’1.237) + D(’3.45")
Decimal(’4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. Thequantize() method rounds to a fixed number of decimal places. Ilftleeact trap is set, itis also useful
for validation:

>>> TWOPLACES- Decimal(10) ** -2 # same as Decimal(’0.01’)

>>> # Round to two places
>>> Decimal(' 3.214 ') . quantize(TWOPLACES)
Decimal(’3.21")

10.4. decimal — Decimal fixed point and floating point arithmetic 217

The Python Library Reference, Release 2.6.4c1

>>> # Validate that a number does not exceed two places
>>> Decimal(' 3.21 ') . quantize(TWOPLACES, context =Context(traps =[Inexact]))
Decimal(’3.21")

>>> Decimal(' 3.214 ') . quantize(TWOPLACES, context =Context(traps =[Inexact]))
Traceback (most recent call last):
Inexact : None

Q. Once | have valid two place inputs, how do | maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need to
be followed-up with aquantize() step:

>>> a = Decimal(' 102.72 ") # Initial fixed-point values
>>> b = Decimal(' 3.17 ")
>>> a + b # Addition preserves fixed-point

Decimal('105.89’)
>>> a - b
Decimal(’99.55’)

>>> a * 42 # So does integer multiplication
Decimal(’4314.24")

>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal(’325.62’)

>>> (b / a).quantize(TWOPLACES) # And quantize division

Decimal(’0.03")
In developing fixed-point applications, it is convenient to define functions to handtptiize() step:

>>> def mul(x, y, fp =TWOPLACES):
return (X * y) . quantize(fp)
>>> def div (x, y, fp =TWOPLACES):

return (X / y) . quantize(fp)

>>> mul(a, b) # Automatically preserve fixed-point
Decimal(’325.62)

>>> div(b, a)

Decimal(’0.03")

Q. There are many ways to express the same value. The nugtier200.000 , 2E2, and02E+4 all have the same
value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. Thenormalize() method maps all equivalent values to a single representative:

>>> values = map(Decimal, ' 200 200.000 2E2 .02E+4 ' . split()
>>> [v . normalize() for v in values]
[Decimal(2E+2"), Decimal(’2E+2’), Decimal(’2E+2’), Decimal(2E+2’)]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressiBgOE+3 as5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

>>> def remove_exponent (d):
return d. quantize(Decimal(1)) if d == d. to_integral() else d. normalize()

218 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

>>> remove_exponent(Decimal(" BE+3"))
Decimal(’50007)

Q. Is there a way to convert a regular float tbecimal ?

A. Yes, all binary floating point numbers can be exactly expressed as a Decimal. An exact conversion may take more
precision than intuition would suggest, so we ttapxact to signal a need for more precision:

def float_to_decimal :
"Convert a floating point number to a Decimal with no loss of information
n, d = f.as_integer_ratio()
numerator, denominator = Decimal(n), Decimal(d)
ctx = Context(prec =60)
result = ctx . divide(numerator, denominator)
while ctx . flags[Inexact]:
ctx . flags[inexact] = False
Cctx . prec *= 2
result = ctx . divide(hnumerator, denominator)

return result

>>> float_to_decimal(math . pi)
Decimal('3.141592653589793115997963468544185161590576171875")

Q. Why isn't thefloat_to_decimal() routine included in the module?

A. There is some question about whether it is advisable to mix binary and decimal floating point. Also, its use requires
some care to avoid the representation issues associated with binary floating point:

>>> float_to_decimal(1.1)
Decimal(’1.100000000000000088817841970012523233890533447265625’)

Q. Within a complex calculation, how can | make sure that | haven't gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the results
can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext() .prec =3

>>> Decimal(' 3.104 ') + Decimal(' 2.104 ')

Decimal(’5.21)

>>> Decimal(' 3.104 ') + Decimal(’0.000 ') + Decimal(' 2.104 ")
Decimal(’5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext() .prec =3
>>> +Decimal(' 1.23456789 ') # unary plus triggers rounding
Decimal('1.23)

Alternatively, inputs can be rounded upon creation usingtbietext.create_decimal() method:

>>> Context(prec =5, rounding =ROUND_DOWNjreate decimal(' 1.2345678 ')
Decimal(’1.2345’)

10.4. decimal — Decimal fixed point and floating point arithmetic 219

The Python Library Reference, Release 2.6.4c1

10.5 fractions — Rational numbers

New in version 2.6. Thé&actions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

classFraction (. numerator=0, denominator=L
classFraction (other_fractior)
classFraction (string)

The first version requires thatumerator and denominatorare instances ofiumbers.Integral and
returns a newrraction instance with valuenumerator/denominator . If denominatoris O, it
raises aZeroDivisionError . The second version requires thather_fractionis an instance of
numbers.Rational and returns affrraction instance with the same value. The last version of the con-
structor expects a string or unicode instance in one of two possible forms. The first form is:

[sign] numerator [/’ denominator]

where the optionadign may be either '+’ or - anchumerator anddenominator (if present) are strings
of decimal digits. The second permitted form is that of a number containing a decimal point:

[sign] integer .’ [fraction] | [sign] '." fraction

whereinteger andfraction are strings of digits. In either form the input string may also have leading
and/or trailing whitespace. Here are some examples:

>>> from fractions import Fraction
>>> Fraction(16, -10)
Fraction(-8, 5)

>>> Fraction(123)

Fraction(123, 1)

>>> Fraction()

Fraction(0, 1)

>>> Fraction(' 3/7 ")

Fraction(3, 7)

[40794 refs]

>>> Fraction(' -3/7)
Fraction(-3, 7)

>>> Fraction(' 1.414213 \t \n")
Fraction(1414213, 1000000)

>>> Fraction(' -.125 ")
Fraction(-1, 8)

TheFraction class inherits from the abstract base classbers.Rational , and implements all of the
methods and operations from that classaction instances are hashable, and should be treated as immutable.
In addition,Fraction has the following methods:

from_float (flt)
This class method constructd=aaction representing the exact value fitf which must be dloat
Beware thatraction.from_float(0.3) is not the same value &saction(3, 10)

from_decimal (deg
This class method constructs Faaction representing the exact value deg which must be a
decimal.Decimal

220

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

limit_denominator (max_denominator=1000000
Finds and returns the closédstaction to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction(' 3.1415926535897932). limit_denominator(1000)
Fraction(355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction . from_float(cos(pi /' 3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction . from_float(cos(pi /'3)) . limit_denominator()

Fraction(1, 2)

gcd(a, b
Return the greatest common divisor of the integeasdb. If eithera or b is nonzero, then the absolute value of
gcd(a, b) isthe largest integer that divides batlandb. gcd(a,b) has the same sign &sf b is nonzero;
otherwise it takes the sign af gcd(0, 0) returnsO.

See Also:

Module numbers The abstract base classes making up the numeric tower.

10.6 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functimndom() , which generates a random float uniformly in

the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instanceaoftten. Random class.

You can instantiate your own instancesRdndomto get generators that don't share state. This is especially useful
for multi-threaded programs, creating a different instandRaridomfor each thread, and using thenpahead()
method to make it likely that the generated sequences seen by each thread don't overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that case,
override theeandom() , seed() , getstate() , setstate() andjumpahead() methods. Optionally, a new
generator can supplygetrandbits() method — this allowsandrange() to produce selections over an arbi-

trarily large range. New in version 2.4: thyetrandbits() method. As an example of subclassing, thedom

module provides thgVichmannHill class that implements an alternative generator in pure Python. The class pro-
vides a backward compatible way to reproduce results from earlier versions of Python, which used the Wichmann-Hill
algorithm as the core generator. Note that this Wichmann-Hill generator can no longer be recommended: its period is
too short by contemporary standards, and the sequence generated is known to fail some stringent randomness tests. See
the references below for a recent variant that repairs these flaws. Changed in version 2.3: Substituted MersenneTwister
for Wichmann-Hill. Bookkeeping functions:

10.6. random — Generate pseudo-random numbers 221

The Python Library Reference, Release 2.6.4c1

seed ([x])
Initialize the basic random number generator. Optional arguresut be anyashableobject. Ifx is omitted or
None, current system time is used; current system time is also used to initialize the generator when the module
is first imported. If randomness sources are provided by the operating system, they are used instead of the
system time (see thes.urandom() function for details on availability). Changed in version 2.4: formerly,
operating system resources were not used.igfnotNone or an int or longhash(x) is used instead. Kis
an int or longx is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be pessiséat &)
to restore the state. New in version 2.1.Changed in version 2.6: State values produced in Python 2.6 cannot be
loaded into earlier versions.

setstate (stat
stateshould have been obtained from a previous cafjdtstate() , andsetstate() restores the internal
state of the generator to what it was at the taéstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current stast@ non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjunction with multiple instances of tiRandom class: setstate() or seed() can be used to force
all instances into the same internal state, and fhempahead() can be used to force the instances’ states
far apart. New in version 2.1.Changed in version 2.3: Instead of jumping to a specificrstitps ahead,
jumpahead(n) jumps to another state likely to be separated by many steps.

getrandbits (k)
Returns a pythotong int with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When avajbdedbits()
enablesandrange() to handle arbitrarily large ranges. New in version 2.4.

Functions for integers:

randrange ([start], stop, [step)
Return a randomly selected element fromnge(start, stop, step) . This is equivalent to
choice(range(start, stop, step)) , but doesn't actually build a range object. New in version 1.5.2.

randint (a, b)
Return a random integdt such thah <= N <= b.

Functions for sequences:

choice (seq
Return a random element from the non-empty sequeeqdf seqis empty, raisesndexError

shuffle (' x, [random)
Shuffle the sequencein place. The optional argumerandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functioandom() .

Note that for even rather smadin(x) , the total number of permutations »fs larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

sample (population, K
Return ak length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3. Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also
be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second
place winners (the subslices).

Members of the population need not bashableor unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

222 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

To choose a sample from a range of integers, use@amge() object as an argument. This is especially fast
and space efficient for sampling from a large populateample(xrange(10000000), 60)

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random floating point numbérsuchtha <= N <= bfora <= bandb <= N <= aforb <
a.

The end-point valud may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random()

triangular (low, high, modg
Return arandom floating point numbéisuch thatow <= N <= high and with the specifiechodebetween
those bounds. Thiew andhigh bounds default to zero and one. Tim@deargument defaults to the midpoint
between the bounds, giving a symmetric distribution. New in version 2.6.

betavariate (alpha, beta
Beta distribution. Conditions on the parameters @mgha > 0 andbeta > 0 . Returned values range
between 0 and 1.

expovariate (lambd
Exponential distributionlambdis 1.0 divided by the desired mean. It should be nonzero. (The parameter would
be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if
lambdis positive, and from negative infinity to Oldmbdis negative.

gammavariate (alpha, beta
Gamma distribution. Not the gamma function!) Conditions on the parametersagigha > 0 andbeta >
0.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatisigma mucan have any value, arsijmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 grida2tdkappais the concentration parameter, which
must be greater than or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @i

paretovariate (‘alphg)
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

Alternative Generators:

classWichmannHill ([seed)
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Randomplus thewhseed() method described below. Because this class is implemented in pure Python, it is

10.6. random — Generate pseudo-random numbers 223

The Python Library Reference, Release 2.6.4c1

not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is
small enough to require care that two independent random sequences do not overlap.

whseed ([X])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. s8ed() for
details. whseed() does not guarantee that distinct integer arguments yield distinct internal states, and can
yield no more than about 2**24 distinct internal states in all.

classSystemRandom ([seed)
Class that uses thes.urandom() function for generating random numbers from sources provided by the op-
erating system. Not available on all systems. Does not rely on software state and sequences are not reproducible.
Accordingly, theseed() andjumpahead() methods have no effect and are ignored. Théstate()
andsetstate() methods raisélotimplementedError if called. New in version 2.4.

Examples of basic usage:

>>> random . random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646

>>> random. uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523

>>> random. randint(1, 10) # Integer from 1 to 10, endpoints included

7
>>> random . randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random . choice(' abcdefghij ') # Choose a random element
o

>>> jtems =[1, 2, 3, 4, 5, 6, 7]
>>> random . shuffle(items)

>>> jtems

[7, 3, 2, 5, 6, 4, 1]

>>> random. sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
4, 1, 5]
See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics 31 (1982) 188-190.

Complementary-Multiply-with-Carry recipfer a compatible alternative random number generator with a long period
and comparatively simple update operations.

10.7 itertools — Functions creating iterators for efficient looping

New in version 2.3. This module implements a numbeitertitor building blocks inspired by constructs from APL,
Haskell, and SML. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Together, they form an “iterator algebra” making it possible to construct specialized tools succinctly and efficiently in
pure Python.

For instance, SML provides a tabulation totdbulate(f) which produces a sequent{®), f(1),
This toolbox providesmap() andcount() which can be combined to forrmap(f, count()) to produce an

224 Chapter 10. Numeric and Mathematical Modules

http://code.activestate.com/recipes/576707/

The Python Library Reference, Release 2.6.4c1

equivalent result.

These tools and their built-in counterparts also work well with the high-speed functions opéhetor mod-
ule. For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum(imap(operator.mul, vectorl, vector2))

Infinite Iterators:

Iterator Argu- Results Example
ments
count() start start, start+1, start+2, ... count(10) --> 10 11 12 13 14
cycle() p po, p1, ... plast, p0, p1, ... cycle(ABCD’) -> ABCDARB
CD..
repeat() | elem[,n] | elem, elem, elem, ... endlessly or up| repeat(10, 3) --> 10 10 10
to n times

Iterators terminating on the shortest input sequence:

Iterator Arguments Results Example
chain() P, q, ... po, p1, ... plast, qO, q1, ...| chain(ABC’, 'DEF) --> A B C D E
F

dropwhile() | pred, seq seq[n], seq[n+1], starting | dropwhile(lambda x: x<5,
when pred fails [1,4,6,4,1]) > 6 4 1

groupby/() iterable[, sub-iterators grouped by

keyfunc] value of keyfunc(v)

ifilter() pred, seq elements of seq where ifilter(lambda x: x%2, range(10))
pred(elem) is True ->13579

ifilterfalse() | pred, seq elements of seq where ifilterfalse(lambda x: x%?2,

pred(elem) is False

range(10)) --> 0 2 4 6 8

islice() seq, [start,] elements from isliceCABCDEFG’, 2, None) --> C D
stop [, step] seq[start:stop:step] EFG

imap() func, p, q, ... | func(pO, q0), func(pl, q1)| imap(pow, (2,3,10), (5,2,3)) -->
32 9 1000

starmap() func, seq func(*seq[0]), starmap(pow, [(2,5), (3,2),
func(*seq[1]), ... (20,3)]) --> 32 9 1000

tee() it, n itl, it2, ... itn splits one
iterator into n

takewhile() | pred, seq seq[0], seq[1], until pred | takewhile(lambda x: x<5,
fails [1,46,41]) -> 1 4

izip() e (p[0], a[0]), (P[1], A[1]), ... | izip(ABCD', 'xy’) --> Ax By

p.q, ..
izip_longest() p, q, --.

(p[O], q[0D), (p[1], q[1]), ...

izip_longestABCD’, ’'xy’,
fillvalue="-") --> Ax By C- D-

Combinatoric generators:

Iterator Arguments Results
product() p,q, ... cartesian product, equivalent to a nested for-loop

[repeat=1]
permutations() pl, r] r-length tuples, all possible orderings, no repeated elements
combinations() pl, r] r-length tuples, in sorted order, no repeated elements
product(ABCD’, AA AB AC AD BA BB BC BD CA CB CC CD DA
repeat=2) DB DC DD
permutations(ABCD’, AB AC AD BA BC BD CA CB CD DA DB DC
2)

combinations(ABCD’,
2)

AB AC AD BC BD CD

10.7. itertools

— Functions creating iterators for efficient looping 225

The Python Library Reference, Release 2.6.4c1

10.7.1 Itertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterables

Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next
iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

def chain (*iterables):
chain(ABC’, 'DEF) > AB CD E F
for it in iterables:
for element in it
yield element

from_iterable (iterable)

Alternate constructor farhain() . Gets chained inputs from a single iterable argument that is evaluated lazily.
Equivalent to:

@classmethod
def from_iterable (iterables):
chain.from_iterable(ABC’, 'DEF]) -> A B C D E F
for it in iterables:
for element in it
yield element

New in version 2.6.

combinations (iterable,)

Returnr length subsequences of elements from the iiitprble

Combinations are emitted in lexicographic sort order. So, if the iitprableis sorted, the combination tuples
will be produced in sorted order.

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each combination.

Equivalent to:

def combinations (iterable, r):
combinations('ABCD’, 2) --> AB AC AD BC BD CD
combinations(range(4), 3) --> 012 013 023 123
pool = tuple (iterable)
n = len (pool)
if r >n
return
indices = range (r)
yield tuple (poolli] for i in indices)
while True :
for i in reversed(range (r)):
if indices]i] =i +n-n
break
else :
return
indicesi] += 1

226

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

for j in range (i +1, r):
indicesl[j] = indices[j -1] + 1
yield tuple (pool[i] for i in indices)

The code forombinations() can be also expressed as a subsequeneerofutations() after filtering
entries where the elements are not in sorted order (according to their position in the input pool):

def combinations (iterable, r):
pool = tuple (iterable)
n = len (pool)
for indices in permutations(range (n), r):

if sorted(indices) == list (indices):
yield tuple (poolli] for i in indices)
The number of items returnedié / !/ (n-r)! when0 <= r <= n orzerowherr > n. New
in version 2.6.

count ([n])
Make an iterator that returns consecutive integers starting mitlf not specifiedn defaults to zero. Often
used as an argumentitoap() to generate consecutive data points. Also, used witlf) to add sequence
numbers. Equivalent to:

def count (n =0):
count(10) --> 10 11 12 13 14 ..

while True :

yield n

n +=1

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle (iterable):
cycle(ABCD) -=> ABCDABCDABCD ..
saved = []
for element in iterable:
yield element
saved . append(element)
while saved:
for element in saved:
yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iter-
able).

dropwhile (predicate, iterablg
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not prodaog output until the predicate first becomes false, so it may have a
lengthy start-up time. Equivalent to:

def dropwhile (predicate, iterable):
dropwhile(lambda x: x<5, [1,4,6,4,1]) -> 6 4 1
iterable = iter (iterable)
for x in iterable:
if not predicate(x):

10.7. itertools — Functions creating iterators for efficient looping 227

The Python Library Reference, Release 2.6.4c1

yield x

break

for x in iterable:
yield x

groupby (iterable, [key)

Make an iterator that returns consecutive keys and groups froritettable. Thekeyis a function computing
a key value for each element. If not specified oNisne, keydefaults to an identity function and returns the
element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The operation ofyroupby() is similar to theuniqg filter in Unix. It generates a break or new group every
time the value of the key function changes (which is why it is usually necessary to have sorted the data using
the same key function). That behavior differs from SQL's GROUP BY which aggregates common elements
regardless of their input order.

The returned group is itself an iterator that shares the underlying iterablgmitipby() . Because the source
is shared, when thgroupby() object is advanced, the previous group is no longer visible. So, if that data is
needed later, it should be stored as a list:

groups =]
uniquekeys =]
data = sorted(data, key =keyfunc)
for k, g in groupby(data, keyfunc):
groups . append(list (g)) # Store group iterator as a list

uniquekeys . append(k)
groupby() is equivalent to:

class groupby (object):
[k for k, g in groupbyCAAAABBBCCDAABBB')] -> A B C D A B
[list(g) for k, g in groupby(AAAABBBCCD’)] --> AAAA BBB CC D
def __init__ (self , iterable, key =None):
if key is None:
key = lambda x: X
self . keyfunc = key

self .it = iter (iterable)
self .tgtkey = self .currkey = self . currvalue = object ()
def __iter_ (self):
return self
def next (self):
while self . currkey == self . tgtkey:
self . currvalue = next(self .it) # Exit on Stoplteration
self . currkey = self .keyfunc(self . currvalue)
self .tgtkey = self . currkey

return (self . currkey, self . _grouper(self . tgtkey))
def _grouper (self , tgtkey):

while self . currkey == tgtkey:
yield self . currvalue
self . currvalue = next(self .it) # EXit on Stoplteration
self . currkey = self . keyfunc(self . currvalue)

New in version 2.4.

(predicate, iterabli
Make an iterator that filters elements from iterable returning only those for which the predidateeis If

Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

predicateis None, return the items that are true. Equivalent to:

def ifilter (predicate, iterable):
ffilter(lambda x: x%2, range(10)) --> 1 3 5 7 9
if predicate is None:
predicate = bool
for x in iterable:
if predicate(x):
yield x

ifilterfalse (predicate, iterable
Make an iterator that filters elements from iterable returning only those for which the prediéatisés . If
predicateis None, return the items that are false. Equivalent to:

def fifilterfalse (predicate, iterable):
fifilterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield X

imap (function, *iterable$
Make an iterator that computes the function using arguments from each of the iteratfi@sctiinis set to
None, thenimap() returns the arguments as a tuple. Likep() but stops when the shortest iterable is
exhausted instead of filling iNone for shorter iterables. The reason for the difference is that infinite iterator
arguments are typically an error forap() (because the output is fully evaluated) but represent a common and
useful way of supplying argumentsitoap() . Equivalent to:

def imap (function, * iterables):
imap(pow, (2,3,10), (5,2,3)) --> 32 9 1000
iterables = map(iter , iterables)
while True :
args = [next(it) for it in iterables]

if ~ function is None:
yield tuple (args)
else :
yield function(*args)

islice (iterable, [start], stop, [step]
Make an iterator that returns selected elements from the iterabsgartfis non-zero, then elements from the
iterable are skipped until start is reached. Afterward, elements are returned consecutivelystapesset
higher than one which results in items being skippedtdpis None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slisiiog/) does
not support negative values fetart, stop or step Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line report may list a name field on every third line).
Equivalent to:

def islice (iterable, *args):
isliceC(ABCDEFG’, 2) --> A B
isliceCABCDEFG’, 2, 4) --> C D
isliceCABCDEFG’, 2, None) --> C D E F G
isliceCABCDEFG’, 0, None, 2) --> A C E G
s = slice (*args)

10.7. itertools — Functions creating iterators for efficient looping 229

The Python Library Reference, Release 2.6.4c1

it = iter (xrange (s.start or 0, s.stop or sys.Hmaxint, s .step or 1))
nexti = next(it)
for i, element in enumerate (iterable):
if 1 == nexti:
yield element
nexti = next(it)

If startis None, then iteration starts at zero. dfepis None, then the step defaults to one. Changed in version
2.5: accepiNone values for defaulstart andstep

izip (*iterableg
Make an iterator that aggregates elements from each of the iterableszipike except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip (*iterables):
izip(ABCD’, 'xy’) --> Ax By
iterables = map(iter , iterables)
while iterables:
yield tuple (map(next, iterables))

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of raising a
TypeError exception. The left-to-right evaluation order of the iterables is guaranteed. This makes possible
an idiom for clustering a data series into n-length groups ugip§[iter(s)]*n)

izip() should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important,ziselongest() instead.

izip_longest (*iterables, [fillvalue])
Make an iterator that aggregates elements from each of the iterables. If the iterables are of uneven length,
missing values are filled-in witfillvalue. Iteration continues until the longest iterable is exhausted. Equivalent
to:

def izip_longest (*args, **kwds):
izip_longestCABCD’, 'xy’, fillvalue="-") --> Ax By C- D-

fillvalue = kwds. get(' fillvalue ")
def sentinel (counter = ([fillvalue] *(len (args) -1)) . pop):
yield counter() # vyields the fillvalue, or raises IndexError
fillers = repeat(fillvalue)
iters = [chain(it, sentinel(), fillers) for it in args]
try :
for tup in izip(*iters):
yield tup
except IndexError
pass
If one of the iterables is potentially infinite, then thep longest() function should be wrapped with
something that limits the number of calls (for exampzléce() or takewhile()). If not specifiedfill-

valuedefaults toNone. New in version 2.6.

permutations (iterable, [r])
Return successivelength permutations of elements in titerable

If r is not specified or idone, thenr defaults to the length of thiterableand all possible full-length permuta-
tions are generated.

Permutations are emitted in lexicographic sort order. So, if the iibgatble is sorted, the permutation tuples
will be produced in sorted order.

230 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

Elements are treated as unique based on their position, not on their value. So if the input elements are unique,
there will be no repeat values in each permutation.

Equivalent to:
def permutations (iterable, r =None):

permutationsCABCD’, 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
permutations(range(3)) --> 012 021 102 120 201 210

pool = tuple (iterable)
n = len (pool)
r =nif r is None else r
if r >n:
return
indices = range (n)
cycles = range (n, n -r, -1)
yield tuple (poolli] for i in indices[:r])
while n:
for i in reversed(range (r)):
cycles]i] -=1
if cycles]i] == 0:
indicesli:] = indices]i +1:] + indicesi:i +1]
cycles]i] =n - i
else :
j = cycles[i]
indices[i], indices| -j] = indices[-]], indices]i]
yield tuple (poolli] for i in indices[:r])
break
else :
return
The code fopermutations() can be also expressed as a subsequengedfict() |, filtered to exclude

entries with repeated elements (those from the same position in the input pool):

def permutations (iterable, r =None):
pool = tuple (iterable)
n = len (pool)
r =nif r is None else r

for indices in product(range (n), repeat =r):
if len (set(indices)) =
yield tuple (poolli] for i in indices)
The number of items returnedns / (n-r)! when0 <= r <= n orzerowhem > n . Newinversion

2.6.

product (*iterables, [repeat)
Cartesian product of input iterables.

Equivalent to nested for-loops in a generator expression. For exapmptiyct(A, B) returns the same as
((x,y) for x in A for y in B)

The nested loops cycle like an odometer with the rightmost element advancing on every iteration. This pattern
creates a lexicographic ordering so that if the input’s iterables are sorted, the product tuples are emitted in sorted
order.

To compute the product of an iterable with itself, specify the number of repetitions with the optmest
keyword argument. For examplproduct(A, repeat=4) means the same gsoduct(A, A, A,

10.7. itertools — Functions creating iterators for efficient looping 231

The Python Library Reference, Release 2.6.4c1

A).

This function is equivalent to the following code, except that the actual implementation does not build up inter-
mediate results in memory:

def product (*args, **kwds):
productCABCD’, 'xy’) --> Ax Ay Bx By Cx Cy Dx Dy
product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111

pools = map(tuple , args) * kwds.get(’'repeat ', 1)
result = [[]]
for pool in pools:

result = [x +[y] for x in result for y in pool]

for prod in result:
yield tuple (prod)

New in version 2.6.

repeat (object, [times]
Make an iterator that returmbjectover and over again. Runs indefinitely unlessttimesargument is specified.
Used as argument tonap() for invariant function parameters. Also used witlp() to create constant
fields in a tuple record. Equivalent to:

def repeat (object , times =None):
repeat(10, 3) --> 10 10 10
if times is None:
while True :

yield object
else :
for i in xrange (times):
yield object

starmap (function, iterablg
Make an iterator that computes the function using arguments obtained from the iterable. Used instead
of imap() when argument parameters are already grouped in tuples from a single iterable (the data has
been “pre-zipped”). The difference betweenap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap (function, iterable):
starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:
yield function(*args)

Changed in version 2.6: Previousltarmap() required the function arguments to be tuples. Now, any
iterable is allowed.

takewhile (predicate, iterablg
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile (predicate, iterable):
takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4
for x in iterable:
if predicate(x):
yield x
else :
break

232 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

tee (iterable, [n=2])
Returnn independent iterators from a single iterable. Equivalent to:

def tee (iterable, n =2):

it = iter (iterable)

deques = [collections .deque() for i in range (n)]

def gen(mydeque):

while True :
if not mydeque: # when the local deque is empty

newval = next(it) # fetch a new value and
for d in deques: # load it to all the deques

d. append(newval)
yield mydeque. popleft()
return tuple (gen(d) for d in deques)

Oncetee() has made a split, the origindérable should not be used anywhere else; otherwisejttdrable
could get advanced without the tee objects being informed.

This itertool may require significant auxiliary storage (depending on how much temporary data needs to be
stored). In general, if one iterator uses most or all of the data before another iterator starts, it is faster to use
list() instead oftee() . New in version 2.4.

10.7.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

>>> # Show a dictionary sorted and grouped by value

>>> from operator import itemgetter

>>> d = dict (a=1, b=2, c =1, d=2, e =1, f =2, g =3)

>>> di = sorted(d . iteritems(), key =itemgetter(1))

>>> for k, g in groupby(di, key =itemgetter(1):
print k, map(itemgetter(0), 9)

[a, e, e
[, 'd, f]
g7

WN -

>>> # Find runs of consecutive numbers using groupby. The key to the solution
>>> # is differencing with a range so that consecutive numbers all appear in
>>> # same group.
>>> data =[1, 4,5,6, 10, 15,16,17,18, 22, 25,26, 27, 28]
>>> for k, g in groupby(enumerate (data), lambda (i,x):i - X):

print map(itemgetter(1), 9)

1]

[4, 5, 6]

[10]

[15, 16, 17, 18]
[22]

[25, 26, 27, 28]

10.7. itertools — Functions creating iterators for efficient looping 233

The Python Library Reference, Release 2.6.4c1

10.7.3 Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-looggeardatos which incur
interpreter overhead.

def take (n, iterable):
"Return first n items of the iterable as a list "
return list (islice(iterable, n))

def enumerate (iterable, start =0):
return izip(count(start), iterable)

def tabulate (function, start =0):
"Return function(0), function(1), ...
return imap(function, count(start))

def consume (iterator, n):
" Advance the iterator n-steps ahead. If n is none, consume entirely.
collections . deque(islice(iterator, n), maxlen =0)

def nth (iterable, n, default =None):
" Returns the nth item or a default value
return next(islice(iterable, n, None), default)

def quantify (iterable, pred =bool):
"Count how many times the predicate is true
return sum(imap(pred, iterable))

def padnone (iterable):
""" Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.

return chain(iterable, repeat(None))

def ncycles (iterable, n):
"Returns the sequence elements n times
return chain . from_iterable(repeat(iterable, n))

def dotproduct (vecl, vec2):
return sum(imap(operator . mul, vecl, vec2))

def flatten (listOfLists):
return list (chain . from_iterable(listOfLists))

def repeatfunc (func, times =None, *args):
""" Repeat calls to func with specified arguments.

Example: repeatfunc(random.random)

234 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))

def pairwise (iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ... "
a, b = tee(iterable)
next(b, None)
return izip(a, b)

def grouper (n, iterable, fillvalue =None):
" grouper(3, " ABCDEFG, ’'x’) --> ABC DEF Gxx "
args = [iter (iterable)] *n
return izip_longest(fillvalue =fillvalue, *args)

def roundrobin (*iterables):
“roundrobin("ABC, 'D, '"EF) ->ADEBFC"
Recipe credited to George Sakkis

pending = len (iterables)
nexts = cycle(iter (it) .next for it in iterables)
while pending:
try :
for next in nexts:
yield next()
except Stoplteration
pending -=1
nexts = cycle(islice(nexts, pending))

def compress (data, selectors):
"compress(' ABCDEF, [1,0,1,0,1,1]) --> A C E F

return (d for d, s in izip(data, selectors) if s)
def combinations_with_replacement (iterable, r):
" combinations_with_replacement("ABC, 2) --> AA AB AC BB BC CC"
number items returned: (n+r-1)! / r! / (n-1)!
pool = tuple (iterable)

n = len (pool)
if not n and r:

return
indices = [0] * r
yield tuple (poolli] for i in indices)
while True :
for i in reversed(range (r)):
if indices]i] = n - 1:
break
else :
return
indices]i:] = [indicesli] + 1] * (r -)
yield tuple (poolli] for i in indices)

def powerset (iterable):
"powerset([1,2,3]) --> () (1) (2,) (3) (1,2) (1,3) (2,3) (1,2,3)
s = list (iterable)
return chain . from_iterable(combinations(s, r) for r in range (len (s) +1))

10.7. itertools — Functions creating iterators for efficient looping 235

The Python Library Reference, Release 2.6.4c1

def unique_everseen (iterable, key =None):
"List unique elements, preserving order. Remember all elements ever seen.
unique_everseen(AAAABBBCCDAABBB’) --> A B C D
unique_everseen('ABBCcAD’, str.lower) --> A B C D
seen = set()
seen_add = seen. add
if key is None:
for element in iterable:
if element not in seen:
seen_add(element)
yield element

else :
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
def unique_justseen (iterable, key =None):

"List unique elements, preserving order. Remember only the element just seen.
unique_justseen(AAAABBBCCDAABBB’) --> A B C D A B
unique_justseen(ABBCcAD’, str.lower) --> A B C A D

return imap(next, imap(itemgetter(1), groupby(iterable, key)))
10.8 functools = — Higher order functions and operations on callable
objects

New in version 2.5. Théunctools module is for higher-order functions: functions that act on or return other
functions. In general, any callable object can be treated as a function for the purposes of this module.

Thefunctools module defines the following functions:

reduce (function, iterable, [initializer)
This is the same function asduce() . Itis made available in this module to allow writing code more forward-
compatible with Python 3. New in version 2.6.

partial (func, [*args], [**keywords])
Return a newpartial object which when called will behave liKeinc called with the positional arguments
argsand keyword argumenteywords If more arguments are supplied to the call, they are appendad$o
If additional keyword arguments are supplied, they extend and ovekeilgords Roughly equivalent to:

def partial (func, *args, **keywords):
def newfunc (*fargs, **fkeywords):
newkeywords = keywords . copy()
newkeywords . update(fkeywords)
return func(*(args + fargs), ** newkeywords)

newfunc . func = func
newfunc . args = args
newfunc . keywords = keywords

return newfunc

Thepartial() is used for partial function application which “freezes” some portion of a function’s arguments

236 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

and/or keywords resulting in a new object with a simplified signature. For exapypiégl() can be used
to create a callable that behaves like ith€) function where thdaseargument defaults to two:

>>> from functools import partial

>>> basetwo = partial(int , base =2)

>>> basetwo . _doc__ = ' Convert base 2 string to an int. ’
>>> basetwo(' 10010)

18

update_wrapper (wrapper, wrapped, [assigned], [updated]
Update awrapper function to look like thewrappedfunction. The optional arguments are tuples to specify
which attributes of the original function are assigned directly to the matching attributes on the wrapper function
and which attributes of the wrapper function are updated with the corresponding attributes from the original
function. The default values for these arguments are the module level conAtBABPER_ASSIGNMENTS
(which assigns to the wrapper function’sname_, module__and__doc_, the documentation string) and
WRAPPER_UPDATE@vhich updates the wrapper function’sdict_, i.e. the instance dictionary).

The main intended use for this function isdacoratorfunctions which wrap the decorated function and return
the wrapper. If the wrapper function is not updated, the metadata of the returned function will reflect the wrapper
definition rather than the original function definition, which is typically less than helpful.

wraps (wrapped, [assigned], [updatel]
This is a convenience function for invokingartial(update wrapper, wrapped=wrapped,

assigned=assigned, updated=updated) as a function decorator when defining a wrapper function.
For example:
>>> from functools import wraps
>>> def my_decorator (f):
@wraps(f)
def wrapper (*args, **kwds):
print ' Calling decorated function ’

return f(*args, **kwds)
return wrapper

>>> @my_decorator
def example ():
""" Docstring™"
print ' Called example function '
>>> example()
Calling decorated function
Called example function

>>> example . __name__
‘example’

>>> example . __doc
'Docstring’

Without the use of this decorator factory, the name of the example function would havevbapper’ , and
the docstring of the originaxample() would have been lost.

10.8.1 partial Objects

partial ~ objects are callable objects createddaytial() . They have three read-only attributes:

10.8. functools = — Higher order functions and operations on callable objects 237

The Python Library Reference, Release 2.6.4c1

func
A callable object or function. Calls to thmartial ~ object will be forwarded téunc with new arguments and
keywords.

args
The leftmost positional arguments that will be prepended to the positional arguments provideal tiela
object call.

keywords

The keyword arguments that will be supplied whenhetial object is called.

partial objects are likdunction objects in that they are callable, weak referencable, and can have attributes.
There are some important differences. For instance, theame___ and__doc__ attributes are not created automat-
ically. Also, partial objects defined in classes behave like static methods and do not transform into bound methods
during instance attribute look-up.

10.9 operator — Standard operators as functions

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailingre also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

It (a, b

le (a, b

eq(a, b

ne(a, b

ge(a, b

ot (a, b

_It (ab

_le (ab

eq(ab

ne (ab

ge (ab

gt (ab
Perform “rich comparisons” betweenandb. Specifically,lt(a, b) is equivalent taa < b, le(a, b)
is equivalentta <= b, eq(a, b) isequivalentta == b,ne(a, b) isequivalentta != b, gt(a,
b) isequivalentt@ > b andge(a, b) isequivalentt@ >= b. Note that unlike the built-ikmp() , these
functions can return any value, which may or may not be interpretable as a Boolean valGengeeisongin
The Python Language Referehéar more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

not_ (obj)

__not__ (obj)
Return the outcome afot obj. (Note that thereisno not () method for object instances; only the inter-
preter core defines this operation. The result is affected by thenzero_ () and__len_ () methods.)

truth (obj)
ReturnTrue if objis true, and~alse otherwise. This is equivalent to using theol constructor.

238 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

is_ (a,b
Returna is b . Tests object identity. New in version 2.3.

is_not (a,b
Returna is not b . Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (obj)
__abs__ (obj)
Return the absolute value obj.

add(a, b
__add__(a,b
Returna + b, for aandb numbers.

and_(a,b)
_and__(a,b
Return the bitwise and & andb.

div (a, b
_div__ (a/b
Returna / b when__ future__.division is not in effect. This is also known as “classic” division.

floordiv (a, b
__floordiv__ (a,b
Returna // b . New in version 2.2.

inv (obj)

invert (obj)

__inv__ (ob)

__invert__ (obj)
Return the bitwise inverse of the numbmyj. This is equivalent te-obj . New in version 2.0: The names
invert() and__invert_ ()

Ishift (a, b)
__lIshift__ (a,b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna % h

mul (a, b)
__mul__(a,b
Returna * b, for aandb numbers.
neg (obj)
__neg__ (obj
Returnobj negated.
or_(ab
_or__ (ab
Return the bitwise or of andb.
pos (obj)
__pos__ (obj
Returnobj positive.

pow(a, b)

10.9. operator — Standard operators as functions 239

The Python Library Reference, Release 2.6.4c1

__pow__(a,b
Returna ** b , for aandb numbers. New in version 2.3.

rshift (&, b
rshit (a,b
Returna shifted right byb.

sub (a, b)
_sub__(a,b
Returna - b .

truediv (a, b
__truediv.__ (a,b

Returna / b when__ future__.division is in effect. This is also known as “true” division. New in
version 2.2.
xor (a, b)
_xor__ (a,b
Return the bitwise exclusive or afandb.
index (&)
__index__ (@)
Returna converted to an integer. Equivalentdo _index__ () . New in version 2.5.

Operations which work with sequences include:

concat (a,b)
_concat__ (a,b
Returna + b for aandb sequences.

contains (a,b)

__contains__ (a,b
Return the outcome of the tebt in a . Note the reversed operands. New in version 2.0: The name
__contains__ ()

countOf (a, b
Return the number of occurrencesah a.

delitem (a, b
__delitem__ (a,b
Remove the value daf at indexb.

delslice (a,b,9

__delslice_ (a,b,9
Delete the slice o from indexb to indexc-1. Deprecated since version 2.6: This function is removed in Python
3.0. Usedelitem() with a slice index.

getitem (a,b)
__getitem__ (a,b
Return the value ad at indexb.

getslice (a,b,9

__getslice_ (a,b,9
Return the slice of from indexb to indexc-1. Deprecated since version 2.6: This function is removed in
Python 3.0. Usgetitem() with a slice index.

indexOf (a, b)
Return the index of the first of occurrencelnih a.

repeat (a, b

240 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

__repeat__ (a,b
Deprecated since version 2.6: This function is removed in Python 3.0. Usel () instead. Returma *
b whereais a sequence arglis an integer.

sequencelncludes (..)
Deprecated since version 2.0: Usatains() instead. Alias focontains()

setitem (a,b, 9
__setitem__ (a,b, 9
Set the value o& at indexb to c.

setslice (a,b,c,y

__setslice . (a,b,c,y
Set the slice of from indexb to indexc-1 to the sequence. Deprecated since version 2.6: This function is
removed in Python 3.0. Usestitem() with a slice index.

Example use of operator functions:

>>> # Elementwise multiplication
>>> map(mul, [0, 1, 2, 3], [10, 20, 30, 40)]
[0, 20, 60, 120]

>>> # Dot product
>>> sum(map(mul, [O, 1, 2, 3], [10, 20, 30, 40])
200

Many operations have an “in-place” version. The following functions provide a more primitive access to in-place op-
erators than the usual syntax does; for examplesthiemenk += y is equivalenttox = operator.iadd(X,

y) . Another way to put it is to say that = operator.iadd(x, y) is equivalent to the compound statement
=X z =y .
iadd (a, b
_jadd__ (a,b
a = iadd(a, b) is equivalentt@a += b. New in version 2.5.
iand (a, b
_jand__ (a,b

a = iand(a, b) is equivalentt@a &= b. New in version 2.5.

iconcat (a, b

__iconcat__ (a,b
a = iconcat(a, b) is equivalenttaa += b for aandb sequences. New in version 2.5.
idiv (a, b
_idiv__ (a,b
a = idiv(a, b) is equivalent tea /= b when__future__.division is not in effect. New in ver-
sion 2.5.
ifloordiv (a, b
__ifloordiv__ (a,b
a = ifloordiv(a, b) is equivalentt@a //= b . New in version 2.5.
ilshift (a,b
__lshift__ (a, b
a = ilshift(a, b) is equivalentta <<= b. New in version 2.5.
imod (a, b
__imod__ (a,b

a = imod(a, b) isequivalentta %= h New in version 2.5.

imul (a, b

10.9. operator — Standard operators as functions 241

The Python Library Reference, Release 2.6.4c1

__imul__ (a,b
a = imul(a, b) is equivalentt@a *= b . New in version 2.5.

ior (a, b
_jor__ (a,b
a = ior(a, b) is equivalentt@a |= b . New in version 2.5.

ipow (a, b
_ipow__ (a,b
a = ipow(a, b) isequivalentta **= b . New in version 2.5.

irepeat (a, b
__irepeat__ (a,b
Deprecated since version 2.6: This function is removed in Python 3.0. Useul () instead.a =

irepeat(a, b) is equivalentta *= b whereais a sequence ardlis an integer. New in version 2.5.
irshift ~ (a, b
__irshift__ (a, b
a = irshift(a, b) is equivalentt@a >>= b. New in version 2.5.
isub (a, b
__isub__ (a,b

a = isub(a, b) is equivalentt@a -= b . New in version 2.5.

itruediv. (a, b

__itruediv.__ (&, b
a = itruediv(a, b) is equivalent toa /= b when__future__.division is in effect. New in
version 2.5.
ixor (a,b
__ixor__ (a,b
a = ixor(a, b) is equivalentt@ ~= b. New in version 2.5.
Theoperator module also defines a few predicates to test the type of objects; however, these are not all reliable. It
is preferable to test abstract base classes instead8eetions andnumbers for details).
isCallable (obj)
Deprecated since version 2.0: Usmstance(X, collections.Callable) instead. Returns true if

the objectobj can be called like a function, otherwise it returns false. True is returned for functions, bound and
unbound methods, class objects, and instance objects which supportctie () method.

isMappingType (obj)
Deprecated since version 2.6: This function is removed in Python 3.0. iklestance(x,
collections.Mapping) instead. Returns true if the objeabj supports the mapping interface. This is
true for dictionaries and all instance objects definingetitem ()

isNumberType (obj)
Deprecated since version 2.6: This function is removed in Python 3.0. itlestance(X,
numbers.Number) instead. Returns true if the objemj represents a number. This is true for all numeric
types implemented in C.

isSequenceType (obj)
Deprecated since version 2.6: This function is removed in Python 3.0. iklestance(x,

collections.Sequence) instead. Returns true if the objeabj supports the sequence protocol. This
returns true for all objects which define sequence methods in C, and for all instance objects defining
__getitem__ ()

Theoperator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments foap() , sorted() , itertools.groupby() , or other functions that expect
a function argument.

242 Chapter 10. Numeric and Mathematical Modules

The Python Library Reference, Release 2.6.4c1

attrgetter (attr, [args...])
Return a callable object that fetchatir from its operand. If more than one attribute is requested, returns

a tuple of attributes. Afterf = attrgetter(name’) , the callf(b) returnsb.name . After, f =
attrgetter('name’, 'date’) , the callf(b) returns(b.name, b.date)
The attribute names can also contain dots; dfter attrgetter('date.month’) , the callf(b) returns

b.date.month . New in version 2.4.Changed in version 2.5: Added support for multiple attributes.Changed
in version 2.6: Added support for dotted attributes.

itemgetter (item, [args...)
Return a callable object that fetchiésm from its operand using the operand’sgetitem__ () method. If
multiple items are specified, returns a tuple of lookup values. Equivalent to:

def itemgetter (*items):
if len (items) ==

item = items[O]
def g(obj):
return obj[item]
else :
def g(obj):
return tuple (objfitem] for item in items)
return g

The items can be any type accepted by the operandigtitem_ () method. Dictionaries accept any
hashable value. Lists, tuples, and strings accept an index or a slice:

>>> jtemgetter(1)(" ABCDEFG)

B’
>>> jtemgetter(1, 3, 5)(' ABCDEFG)

(B, 'D, 'F)

>>> jtemgetter(slice (2, None))(' ABCDEFG)

'CDEFG’

New in version 2.4.Changed in version 2.5: Added support for multiple item extraction. Example of using
itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [("apple ', 3), ('banana’, 2), ('pear’, 5), ('orange ', 1)]

>>> getcount = itemgetter(1)

>>> map(getcount, inventory)

[3, 2, 5, 1]

>>> sorted(inventory, key =getcount)

[Corange’, 1), (banana’, 2), (apple’, 3), (pear’, 5)]

methodcaller (name, [args...)
Return a callable object that calls the methwineon its operand. If additional arguments and/or keyword

arguments are given, they will be given to the method as well. After methodcaller('name’) , the
call f(b) returnsb.name() . Afterf = methodcaller('name’, 'foo’, bar=1) , the callf(b)
returnsb.name(’foo’, bar=1) . New in version 2.6.

10.9.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

10.9. operator — Standard operators as functions 243

The Python Library Reference, Release 2.6.4c1

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 concat(seql, seq2)
Containment Test obj in seq contains(seq, obj)
Division alb div(a, b) (without__ future__.division)
Division alb truediv(a, b) (with __ future__.division
Division allb floordiv(a, b)
Bitwise And aé&hb and_(a, b)
Bitwise Exclusive Or | a ™ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or alb or_(a, b)
Exponentiation a*™ b pow(a, b)
Identity aisb is_(a, b)
Identity aisnothb is_not(a, b)
Indexed Assignment | objlk] = v setitem(obj, k, V)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[K] getitem(obj, k)
Left Shift a<<hb Ishift(a, b)
Modulo a%b mod(a, b)
Multiplication a*hb mul(a, b)
Negation (Arithmetic)| - a neg(a)
Negation (Logical) not a not_(a)
Right Shift a>>b rshift(a, b)
Sequence Repetition| seq * i repeat(seq, i)
Slice Assignment seq[i;j] = values setslice(seq, i, j, values)
Slice Deletion del seq[i:j] delslice(seq, i, j)
Slicing seq[i:]] getslice(seq, i, j)
String Formatting S % obj mod(s, obj)
Subtraction a-»b sub(a, b)
Truth Test obj truth(obj)
Ordering a<bhb It(a, b)
Ordering a<=b le(a, b)
Equality a==o> eq(a, b)
Difference al=»b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb gt(a, b)
244 Chapter 10. Numeric and Mathematical Modules

CHAPTER

ELEVEN

FILE AND DIRECTORY ACCESS

The modules described in this chapter deal with disk files and directories. For example, there are modules for reading
the properties of files, manipulating paths in a portable way, and creating temporary files. The full list of modules in
this chapter is:

11.1 os.path — Common pathname manipulations

This module implements some useful functions on pathnames. To read or write filgsesdgg , and for accessing
the filesystem see thees module.

Note: On Windows, many of these functions do not properly support UNC pathnampktunc() and
ismount() do handle them correctly.

Note: Since different operating systems have different path name conventions, there are several versions of this
module in the standard library. Thes.path module is always the path module suitable for the operating system
Python is running on, and therefore usable for local paths. However, you can also import and use the individual
modules if you want to manipulate a path thatls/aysin one of the different formats. They all have the same
interface:

» posixpath for UNIX-style paths

e ntpath for Windows paths

e macpath for old-style MacOS paths
e 0s2emxpath for OS/2 EMX paths

abspath (path
Return a normalized absolutized version of the pathngath On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)) . New in version 1.5.2.

basename (path)
Return the base name of pathnapeth This is the second half of the pair returned $plit(path)
Note that the result of this function is different from the Urbiasenameprogram; wherebasenamefor
'lfoo/bar/ returnsbar’ , thebasename() function returns an empty string).

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all phghsifrist is empty,
return the empty string'(). Note that this may return invalid paths because it works a character at a time.

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned kyplit(path)

245

The Python Library Reference, Release 2.6.4c1

exists (path
ReturnTrue if pathrefers to an existing path. ReturRalse for broken symbolic links. On some platforms,
this function may returiralse if permission is not granted to execute.stat() on the requested file, even
if the pathphysically exists.

lexists (path)
ReturnTrue if path refers to an existing path. Returisue for broken symbolic links. Equivalent to
exists() on platforms lackingps.|stat() . New in version 2.4,

expanduser (path)
On Unix and Windows, return the argument with an initial component of ~user replaced by thatisers
home directory. On Unix, an initiat is replaced by the environment variattd®ME if it is set; otherwise
the current user’s home directory is looked up in the password directory through the built-in rpodlilén
initial ~user is looked up directly in the password directory.

On Windows HOME andUSERPROFILE will be used if set, otherwise a combinationdOMEPATH and
HOMEDRIVE will be used. An initial~user is handled by stripping the last directory component from the
created user path derived above.

If the expansion fails or if the path does not begin with a tilde, the path is returned unchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of th&fame or ${name} are
replaced by the value of environment variableme Malformed variable names and references to non-existing
variables are left unchanged.

On Windows %name%xpansions are supported in additior$tame and${name} .

getatime (path)
Return the time of last access pdth The return value is a number giving the number of seconds since the
epoch (see theme module). Raises.error if the file does not exist or is inaccessible. New in ver-
sion 1.5.2.Changed in version 2.3:df.stat_float times() returns True, the result is a floating point
number.

getmtime (path)
Return the time of last modification gfath The return value is a number giving the number of seconds since
the epoch (see theme module). Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.Changed in version 2.3:0.stat_float_times() returns True, the result is a floating
point number.

getctime (path)
Return the system’s ctime which, on some systems (like Unix) is the time of the last change, and, on others (like
Windows), is the creation time fgrath The return value is a number giving the number of seconds since the
epoch (see theme module). Rais@s.error if the file does not exist or is inaccessible. New in version 2.3.

getsize (path
Return the size, in bytes, phth Raiseos.error if the file does not exist or is inaccessible. New in version
15.2.

isabs (path
ReturnTrue if pathis an absolute pathname. On Unix, that means it begins with a slash, on Windows that it
begins with a (back)slash after chopping off a potential drive letter.

isfile (‘path
ReturnTrue if pathis an existing regular file. This follows symbolic links, so batimk() andisfile()
can be true for the same path.

isdir (path

ReturnTrue if pathis an existing directory. This follows symbolic links, so bathnk() andisdir()
can be true for the same path.

246 Chapter 11. File and Directory Access

The Python Library Reference, Release 2.6.4c1

islink (path)
ReturnTrue if pathrefers to a directory entry that is a symbolic link. Alwdyalse if symbolic links are not
supported.

ismount (path
ReturnTrue if pathnamepathis amount point a point in a file system where a different file system has been
mounted. The function checks whethmath's parentpath/.. , is on a different device thamath, or whether
path/.. andpathpoint to the same i-node on the same device — this should detect mount points for all Unix
and POSIX variants.

join (pathl, [path2, [...])
Join one or more path components intelligently. If any component is an absolute path, all previous components
(on Windows, including the previous drive letter, if there was one) are thrown away, and joining continues.
The return value is the concatenationpaithl, and optionallypath2 etc., with exactly one directory separator
(os.sep) inserted between components, unlpath2is empty. Note that on Windows, since there is a current
directory for each drivegs.path.join("c:", "foo") represents a path relative to the current directory
on driveC: (c:foo), notc:\foo

normcase (path)
Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level referencea/#® that./B and
Alfool../IB all becomeA/B. It does not normalize the case (usermcase() for that). On Windows, it
converts forward slashes to backward slashes. It should be understood that this may change the meaning of the
path if it contains symbolic links!

realpath (path)
Return the canonical path of the specified flename, eliminating any symbolic links encountered in the path (if
they are supported by the operating system). New in version 2.2.

relpath (path, [start])
Return a relative filepath tpatheither from the current directory or from an optios#drt point.

startdefaults toos.curdir . Availability: Windows, Unix. New in version 2.6.

samefile (pathl, path?
ReturnTrue if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception iba stat() call on either pathname fails. Availability: Unix.

sameopenfile (fpl, fp2d
ReturnTrue if the file descriptordpl andfp2 refer to the same file. Availability: Unix.

samestat (statl, stat®
ReturnTrue if the stat tuplesstatl and stat? refer to the same file. These structures may have been re-
turned byfstat() ,Istat() , orstat