
LATEX News
Issue 39, June 2024 — DRAFT version for upcoming release (LATEX release 2024-06-01)

Contents

Introduction 1

News from the “LATEX Tagged PDF” project 1

Enhancements to the new mark mechanism 1

New or improved commands 2
doc: provide \ProvideDocElement 2
doc: better support for upquote 2

Providing xtemplate in the format 2

Code improvements 3
Loading packages at the top level 3
Keep track of lost glyphs 3
Improve fontenc error message 3
Warn if counter names are problematic 3
Extended information in \listfiles 3
Optimize creation of simple document

commands 3
Declaring appropriate sub-encodings for TS1

symbol fonts 3

Changes to packages in the tools category 4
array, longtable, tabularx: support tagging . . . 4
verbatim: \verb showed visible spaces 4
verbatim: Support tabs in \verbatiminput* . . 4
multicol: \columnbreak interferes with mark

mechanism 4
showkeys: Allow \newline in amsthm to work . 5

Changes to files in the cyrillic category 5
Correct definition of \k 5

Introduction
to write

News from the “LATEX Tagged PDF” project
In the previous LATEX News [5] we announced a first
prototype support for tagged tabulars. Some of the
necessary support code has now been moved from
latex-lab to the corresponding packages (using sockets
and plugs) and to the LATEX kernel (for those parts that
are also necessary for other aspects of tagging).

The kernel code specific to tagging is implemented
in the file lttagging.dtx. For now it contains

\UseTaggingSocket, a special invocation command for
sockets that are specific to tagging. This enables us to
also provide \SuspendTagging and \ResumeTagging,
i.e., a very efficient way to temporarily disable the whole
tagging process. This is, for example, necessary, if some
code is doing trial typesetting. In that case the trials
should not generate tagging structures—only the finally
chosen version should. Thus, tabularx, for example,
stops the tagging while doing its trials to figure out the
correct column widths to use, and then renables tagging
when the table is finally typeset.

Over time, lttagging.dtx will hold more general
tagging code as appropriate. For now it is only
documented as part of source2e.pdf but long term we
will provide a separate guide for tagging, which will then
also include the information currently found in various
other places, e.g., tagpdf.pdf.

We also added support for a few missing commands
described in Leslie Lamport’s LATEX Manual [?]: If
phase-III is used the \marginpar command will be
properly tagged (depending on the PDF version) as
an Aside or a Note structure. In the standard classes
\maketitle will be tagged if the additional testphase
module title is used.

The math module has been extended and now includes
options to attach MathML files to the structures. First
tests with a PDF reader and screen reader that support
associated files looks very promising. Examples of
PDF files tagged with the new method can be found
at https://github.com/latex3/tagging-project/
discussions/56.

At last various small bugs and problems reported at
https://github.com/latex3/tagging-project has
been fixed. Such a feedback is very valuable, so we hope
to see you there and thank you for any contribution,
whether it is an issue or a post on a discussion thread.

Enhancements to the new mark mechanism
In June 2022 we introduced a new mark mechanism in
LATEX [1, p. 76] that allows keeping track of multiple
independent marks. It also properly supports top marks,
something that wasn’t reliably possible with LATEX
before.

There was, however, one limitation: to retrieve
the marks from the page data it was necessary to
\vsplit that data artificially so that TEX would
produce split marks that the mechanism could then use.

LATEX News, and the LATEX software, are brought to you by the LATEX Project Team; Copyright 2024 — DRAFT version for upcoming release, all rights reserved.

https://github.com/latex3/tagging-project/discussions/56
https://github.com/latex3/tagging-project/discussions/56
https://github.com/latex3/tagging-project

Unfortunately, TEX gets very upset if it finds infinite
negative glue (e.g., from \vss) within this data. This
is not totally surprising because such glue would allow
splitting off any amount of material as such glue would
hide the size of it. TEX therefore responds with an
error message if it find such glue while doing a \vsplit
operation (and it does so even if a later glue item cancels
the infinite glue).

To account for this, the code in 2022 attempted to
detect this situation beforehand and if so did not do any
splitting but, of course, it would then also not extract
any mark information.

In this release the approach has been changed and we
always do a \vsplit operation and thus always get the
right mark data extracted. While it is not possible to
avoid upsetting TEX in case we have infinite negative
glue present, it is possible to hide this (more or less)
from the user.1 With the new code TEX will neither
stop nor show anything on the terminal. What we can’t
do, though, is to avoid that an error is written to the log
file, but to make it clear that this error is harmless and
should be ignored we have arranged the code so that the
error message, if it is issued, takes the following format:
! Infinite glue shrinkage found in box being split.
<argument> Infinite shrink error above ignored !
l. ... }

Not perfect (especially the somewhat unmotivated
<argument>), but you can only do so much if error
messages and their texts are hard-wired in the engine.

So why all this? There are two reasons: we do not
lose marks in edge cases any longer and perhaps more
importantly we are now also reliably able to extract
marks from arbitrarily boxed data, something that
wasn’t possible at all before. This is, for example,
necessary to support extended marks in multicols
environments or extract them from floats, marginpars,
etc.

Details about the implementation can be found
in texdoc ltmarks-code or in the shorter texdoc
ltmarks-doc (which only describes the general concepts
and the command interfaces).

New or improved commands
doc: provide \ProvideDocElement
Beside \NewDocElement and \RenewDocElement we now
also offer a \ProvideDocElement declaration that does
nothing unless the doc element could be declared with

1A note to l3build users that make use of its testing capabilities:
the new mechanism temporarily changes \interactionmode and,
for implementation reasons in TEX, that results in extra newlines
in the .log file, so instead of seeing [1] [2] you will see each on
separate lines. This means that test files might show difference of
that nature, once the code is active, and must therefore be regen-
erated as necessary.

\NewDocElement. This can be useful if documentation
files are processed both individually as well as combined.

doc: better support for upquote
In LATEX News 37 [4] we wrote that support for the
upquote package was added to the doc package, but
back then this was only done for \verb, and the
verbatim environments. However, the bulk of code in
a typical .dtx file is within macrocode or macrocode*
environments which were not affected by adding upquote.
We have now updated those, such that upquote alters
the quote characters in these environments as well.

(github issue 1230)

Providing xtemplate in the format
In LATEX News 32, we described the move of one
long-term experimental idea into the kernel: the package
xparse, which was integrated as ltcmd. With this edition,
we move another long-term development idea to stable
status: templates.

In this context, templates are a mechanism to abstract
out various elements of a document (such as “sectioning”)
in such a way that different implementations can be
interchanged, and design decisions are set up efficiently
and controllably.

In contrast to ltcmd, which provides a mechanism that
many document authors will exploit routinely, templates
are a more specialised tool. We anticipate that they will
be used by a small number of programmers, providing
generic ideas that will then be used within document
classes. Most document authors will therefore likely
encounter templates directly only rarely. We anticipate
though that they will be using templates provided by
the team or others.

The template system requires three separate ideas
• Template type: the “thing” we are using templates

for, such as “sectioning” or “enumerated-list”
• A template: a combination of code and keys that

can be used to implement a type. Here for example
we might have “standard-LATEX-sectioning” as a
template for “sectioning”

• One or more instances: a specific use case of a
template where (some) keys are set to known
values. We might for example see “LATEX-section”,
“LATEX-subsection”, etc.

As part of the move from the experimental xtemplate
to kernel integration, the team have revisited the
commands provided. The stable set now comprises

• \NewTemplateType

• \DeclareTemplateInterface

• \DeclareTemplateCode

• \DeclareTemplateCopy

–2

https://github.com/latex3/latex2e/issues/1230

• \EditTemplateDefault

• \UseTemplate

• \DeclareInstance

• \DeclareInstanceCopy

• \EditInstance

• \UseInstance

To support existing package authors, we have released
an updated version of xtemplate which will work
smoothly with the new kernel-level code. The existing
commands provided in xtemplate will continue to work,
but we encourage programmers to move to the set above.

Code improvements
Loading packages at the top level
Classes and packages should only be loaded
with \documentclass, \usepackage, or class
interface commands such as \LoadClass or
\RequirePackageWithOptions at the top level, not in-
side a group. Previously LATEX did not check this, which
would often lead to low level errors later on if package
declarations were reverted as a group ended. LATEX now
checks the group level and an error is thrown if the class
or package is loaded in a group. (github issue 1185)

Keep track of lost glyphs
A while ago we changed the LATEX default value for
\tracinglostchars from 1 to 2 so that missing glyphs
generate at least a warning, but we forgot to make the
same change to \tracingnone. Thus, when issuing
that command LATEX stopped generating warnings
about missing glyphs. This has now been corrected.

(github issue 549)

Improve fontenc error message
If the fontenc is asked to load a font encoding for which
it doesn’t find a suitable .def file it generates an error
message indicating that the encoding name might be
misspelled. That is, of course, one of the possible causes,
but another one is that the installation is missing a
necessary support package, e.g., that no support for
Cyrillic fonts has been installed. The error message text
has therefore been extended to explain the issue more
generally. (github issue 1102)

Warn if counter names are problematic
In the past it was possible to declare, for example,
\newcounter{index} with the side-effect that this
defines \theindex, even though LATEX has a theindex
environment that then got clobbered by the declaration.
This has now been changed: if \the⟨counter⟩ is already
defined it is not altered, but instead a warning message
is displayed. (github issue 823)

Extended information in \listfiles
The \listfiles command provides useful information
when finding issues related to variation in package
versions. However, this has to date relied on the
information in the \ProvidesPackage line, or similar:
that can be misleading if for example a file has been
edited locally. We have now extended \listfiles to
take an optional argument which will then include the
MD5 hash of each file (and the size of each file) in the
.log. Thus for example you can use
\listfiles[hashes,sizes]

to get both the file sizes and file hashes in the .log as well
as the standard release information. (github issue 945)

Optimize creation of simple document commands
Creating document commands using
\NewDocumentCommand, etc., provides a very flexi-
ble way of grabbing arguments. When the document
command only takes simple mandatory arguments,
this has to-date added an overhead that could be
avoided. We have now refined the internal code path
such that “simple” document commands avoid almost
any overhead at point-of-use, making the results essen-
tially as efficient as using \newcommand for low-level
TEX constructs. Note that as \NewDocumentCommand
makes engine-robust commands, the direct equivalent
to \newcommand is \NewExpandableDocumentCommand.

(github issue 1189)

Declaring appropriate sub-encodings for TS1 symbol fonts
In 2020 we incorporated support for the TS1 symbol
encoding directly into the kernel and in this way
removed the need to load the textcomp package [2] to
make commands such as \texteuro available.

There is, however, a big problem with this TS1 symbol
encoding: only very few fonts can provide every glyph
that is supposed to be part of TS1. This means that
changing font families might result in certain symbols
becoming unavailable. This can be a major disaster if,
for example, the \texteuro (€) or the \textohm (W) are
no longer printed in your document, just because you
altered your text font family.

To mitigate this problem, we also introduced in
2020 the declaration \DeclareEncodingSubset. This
declaration is supposed to be used in font definition files
for the TS1 encoding to specify which subset (we have
defined 10 common ones) a specific font implements.
If such a declaration is used then missing symbols are
automatically taking from a fallback font. While this
is not perfect, it is the best you can do other than
painstrickenly checking that your document only uses
glyphs that the font supports and if necessary switch to
a different font or avoid the missing symbols. See also
the discussion in [3].

–3

https://github.com/latex3/latex2e/issues/1185
https://github.com/latex3/latex2e/issues/549
https://github.com/latex3/latex2e/issues/1102
https://github.com/latex3/latex2e/issues/823
https://github.com/latex3/latex2e/issues/945
https://github.com/latex3/latex2e/issues/1189

To jumpstart the process we also added declarations to
the LATEX kernel for most of the fonts found in TEXLive
at the time—with the assumption that such declarations
would over time be superseded by declarations in the .fd
files. Unfortunately, this hasn’t happened yet (or not
often) and so many of the initial declarations went stale:
several fonts got new glyphs added to them (so their
sub-encoding should have been changed but didn’t);
others (mainly due to license issues) changed the family
name and thus our declarations became useless and
the renamed fonts (now without a declaration) ended
up in the default sub-encoding which offers only few
glyphs; yet others such as CharisSIL (which triggered
the GitHub issue) were simply not around at the time.

We have therefore, again attempted to provide the
(currently) correct declarations, but it is obvious that
this is not a workable process. As we do not maintain the
fonts we do not have the information that something has
changed, and to regularly check the ever growing font
support bundles is simply not possible. It is therefore
very important that maintainers of font packages do not
only provide .fd files but also add such a declaration to
every TS1...fd font definition file that they distribute.

To simplify this process, we now provide a simple
LATEX file (checkencodingsubset.tex) for determining
the correct (safe) sub-encoding. If run, it asks for a font
family and then outputs its findings, for example, for
AlgolRevived-TLF you will get:

Testing font family AlgolRevived-TLF
(currently TS1-sub-encoding 9)

Some glyphs are missing from sub-encoding 8:

==> \textcelsius (137) is missing
==> \texttwosuperior (178) is missing
==> \textthreesuperior (179) is missing
==> \textonesuperior (185) is missing

Some glyphs are missing from sub-encoding 7:
==> \texteuro (191) is missing

All glyphs between sub-encoding 6 and 7 exist
All glyphs between sub-encoding 5 and 6 exist
All glyphs between sub-encoding 4 and 5 exist
Some glyphs are missing from sub-encoding 3:

==> \textwon (142) is missing
All glyphs between sub-encoding 2 and 3 exist
Some glyphs are missing from sub-encoding 1:

==> \textmho (77) is missing
==> \textpertenthousand (152) is missing

All glyphs between sub-encoding 0 and 1 exist
All glyphs in core exist

TS1 encoding subset for AlgolRevived-TLF (ok)
Use sub-encoding 9

This output is meant for human consumption, e.g.,
you see which glyphs are missing and why a certain
sub-encoding is suggested, but it is not that hard to use
it in a script and extract the suggested sub-encoding by
grepping for the line starting with Use sub-encoding.

Of course, this check will only work if the missing
glyphs are really missing: some fonts placed “tofu”2 into
such slots and in this case it looks to TEX as if the glyph
is provided. For example, for the old Palatino fonts
(family ppl) it would report

TS1 encoding subset for ppl (bad)
Use sub-encoding 0 (not 5)

i.e., all glyphs are provided, while in reality more than
twenty are missing and sub-encoding 5 as declared in
the kernel is correct. (github issue 1257)

Changes to packages in the tools category
array, longtable, tabularx: support tagging
The three packages are now extended to enable
producing tagged tabulars upon request. This is done
by adding a number of sockets (see [5]) that, by default,
do nothing, but are equipped with appropriate plugs if
tagged PDF is requested.

In the previous LATEX release this was handled in
latex-lab patching the packages when tagging was
requested.

verbatim: \verb showed visible spaces
A recent change in the kernel was not reflected in the
verbatim package with the result that \verb showed
visible spaces (␣) after the package was loaded. This has
already been corrected in a hotfix for release 2023-11.

(github issue 1160)

verbatim: Support tabs in \verbatiminput*
Mimicking the kernel update (November, 2023) that
allowed \verb* to mark tabs as spaces, the verbatim
package has been updated such that \verbatiminput*
marks tabs as spaces as well. (github issue 1245)

multicol: \columnbreak interferes with mark mechanism
The multicol package has to keep track of marks
(from \markright or \markboth) as part of its output
routine code and can’t rely on LATEX handling that
automatically. It does so by artificially splitting page
data with \vsplit to extract the mark data. With
the introduction of \columnbreak that code failed
sometimes, because it was not seeing any mark that
followed such a forced column break.

This has now been corrected, but there is further
work to do, because as of now multicol does not yet

2Little squares to indicate a missing symbol.

–4

https://github.com/latex3/latex2e/issues/1257
https://github.com/latex3/latex2e/issues/1160
https://github.com/latex3/latex2e/issues/1245

handle marks using the new mark mechanism—see
the discussion at the beginning of the newsletter.

(github issue 1130)

showkeys: Allow \newline in amsthm to work
Previously showkeys added an extra box layer which
disabled the \newline of amsthm theorem styles. This
extra box has now been avoided. (github issue 1123)

Changes to files in the cyrillic category
Correct definition of \k
Ages ago, the encoding specific definitions for various
accent commands were changed to guard against altering
some parameter values non-locally by mistake. For some
reason the definition for \k in the Cyrillic encodings T2A,
T2B, and T2C didn’t get this treatment. This oversight
has now been corrected. (github issue 1148)

References
[1] LATEX Project Team. LATEX 2ε news 1–39. June,

2024. https://latex-project.org/news/
latex2e-news/ltnews.pdf

[2] LATEX Project Team. LATEX 2ε news 31. February,
2020. https://latex-project.org/news/
latex2e-news/ltnews31.pdf

[3] LATEX Project Team. LATEX 2ε news 33. June 2021.
https://latex-project.org/news/
latex2e-news/ltnews33.pdf

[4] LATEX Project Team. LATEX 2ε news 37. June 2023.
https://latex-project.org/news/
latex2e-news/ltnews37.pdf

[5] LATEX Project Team. LATEX 2ε news 38. November
2023.
https://latex-project.org/news/
latex2e-news/ltnews38.pdf

–5

https://github.com/latex3/latex2e/issues/1130
https://github.com/latex3/latex2e/issues/1123
https://github.com/latex3/latex2e/issues/1148
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews.pdf
https://latex-project.org/news/latex2e-news/ltnews31.pdf
https://latex-project.org/news/latex2e-news/ltnews31.pdf
https://latex-project.org/news/latex2e-news/ltnews33.pdf
https://latex-project.org/news/latex2e-news/ltnews33.pdf
https://latex-project.org/news/latex2e-news/ltnews37.pdf
https://latex-project.org/news/latex2e-news/ltnews37.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf
https://latex-project.org/news/latex2e-news/ltnews38.pdf

	Introduction
	News from the "LaTeX Tagged PDF" project
	Enhancements to the new mark mechanism
	New or improved commands
	doc: provide \ProvideDocElement
	doc: better support for upquote

	Providing xtemplate in the format
	Code improvements
	Loading packages at the top level
	Keep track of lost glyphs
	Improve fontenc error message
	Warn if counter names are problematic
	Extended information in \listfiles
	Optimize creation of simple document commands
	Declaring appropriate sub-encodings for TS1 symbol fonts

	Changes to packages in the tools category
	array, longtable, tabularx: support tagging
	verbatim: \verb showed visible spaces
	verbatim: Support tabs in \verbatiminput*
	multicol: \columnbreak interferes with mark mechanism
	showkeys: Allow \newline in amsthm to work

	Changes to files in the cyrillic category
	Correct definition of \k

