walker: Bayesian Generalized Linear Models with Time-Varying
Coefficients
Efficient Bayesian generalized linear models with time-varying coefficients 
    as in Helske (2022, <doi:10.1016/j.softx.2022.101016>). Gaussian, Poisson, and binomial 
    observations are supported. The Markov chain Monte Carlo (MCMC) computations are done using 
    Hamiltonian Monte Carlo provided by Stan, using a state space representation 
    of the model in order to marginalise over the coefficients for efficient sampling. 
    For non-Gaussian models, the package uses the importance sampling type estimators based on 
    approximate marginal MCMC as in Vihola, Helske, Franks (2020, <doi:10.1111/sjos.12492>).
| Version: | 1.0.10 | 
| Depends: | bayesplot, R (≥ 3.4.0), rstan (≥ 2.26.0) | 
| Imports: | coda, dplyr, Hmisc, ggplot2, KFAS, loo, methods, Rcpp (≥
0.12.9), RcppParallel, rlang, rstantools (≥ 2.0.0) | 
| LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.9), RcppArmadillo, RcppEigen (≥ 0.3.3.3.0), RcppParallel, rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0) | 
| Suggests: | diagis, gridExtra, knitr (≥ 1.11), rmarkdown (≥ 0.8.1), testthat | 
| Published: | 2024-08-30 | 
| DOI: | 10.32614/CRAN.package.walker | 
| Author: | Jouni Helske  [aut, cre] | 
| Maintainer: | Jouni Helske  <jouni.helske at iki.fi> | 
| BugReports: | https://github.com/helske/walker/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/helske/walker | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| Citation: | walker citation info | 
| Materials: | README | 
| CRAN checks: | walker results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=walker
to link to this page.