Implements a maximum likelihood estimation (MLE) method for
    estimation and prediction of Gaussian process-based spatially varying
    coefficient (SVC) models (Dambon et al. (2021a)
    <doi:10.1016/j.spasta.2020.100470>).  Covariance tapering (Furrer et
    al. (2006) <doi:10.1198/106186006X132178>) can be applied such that
    the method scales to large data. Further, it implements a joint
    variable selection of the fixed and random effects (Dambon et al.
    (2021b) <doi:10.1080/13658816.2022.2097684>). The package and its 
    capabilities are described in (Dambon et al. (2021c)
    <doi:10.48550/arXiv.2106.02364>).
| Version: | 0.3.6 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | glmnet, lhs, methods, mlr, mlrMBO, optimParallel (≥ 0.8-1), ParamHelpers, pbapply, smoof, spam | 
| Suggests: | DiceKriging, knitr, lattice, latticeExtra, parallel, rmarkdown, sp, spData, testthat (≥ 3.0.0) | 
| Published: | 2025-05-04 | 
| DOI: | 10.32614/CRAN.package.varycoef | 
| Author: | Jakob A. Dambon  [aut, cre],
  Fabio Sigrist  [ctb],
  Reinhard Furrer  [ctb] | 
| Maintainer: | Jakob A. Dambon  <jakob.dambon at math.ethz.ch> | 
| BugReports: | https://github.com/jakobdambon/varycoef/issues | 
| License: | GPL-2 | 
| URL: | https://github.com/jakobdambon/varycoef | 
| NeedsCompilation: | no | 
| Citation: | varycoef citation info | 
| In views: | Spatial | 
| CRAN checks: | varycoef results |