Implements the template ICA (independent components analysis) model
    proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the 
    spatial template ICA model proposed in proposed in Mejia et al. (2022)
    <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level 
    brain as deviations from known population-level networks, which are 
    estimated using standard ICA algorithms. Both models employ an 
    expectation-maximization algorithm for estimation of the latent brain 
    networks and unknown model parameters. Includes direct support for 'CIFTI',
    'GIFTI', and 'NIFTI' neuroimaging file formats.
| Version: | 0.10.0 | 
| Depends: | R (≥ 3.6.0) | 
| Imports: | abind, fMRItools (≥ 0.5.3), fMRIscrub (≥ 0.14.5), foreach, ica, Matrix, matrixStats, methods, pesel, SQUAREM, stats, utils | 
| Suggests: | ciftiTools (≥ 0.13.2), excursions, RNifti, oro.nifti, gifti, covr, parallel, doParallel, knitr, rmarkdown, INLA, testthat (≥ 3.0.0) | 
| Published: | 2025-05-19 | 
| DOI: | 10.32614/CRAN.package.templateICAr | 
| Author: | Amanda Mejia [aut, cre],
  Damon Pham  [aut],
  Daniel Spencer  [ctb],
  Mary Beth Nebel [ctb] | 
| Maintainer: | Amanda Mejia  <mandy.mejia at gmail.com> | 
| BugReports: | https://github.com/mandymejia/templateICAr/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/mandymejia/templateICAr | 
| NeedsCompilation: | no | 
| Additional_repositories: | https://inla.r-inla-download.org/R/testing | 
| Citation: | templateICAr citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | templateICAr results |