tEDM: Temporal Empirical Dynamic Modeling
Inferring causation from time series data through empirical dynamic modeling (EDM), with methods such as convergent cross mapping from Sugihara et al. (2012) <doi:10.1126/science.1227079>, partial cross mapping as outlined in Leng et al. (2020) <doi:10.1038/s41467-020-16238-0>, and cross mapping cardinality as described in Tao et al. (2023) <doi:10.1016/j.fmre.2023.01.007>.
| Version: | 1.1 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | dplyr, ggplot2, methods, Rcpp | 
| LinkingTo: | Rcpp, RcppThread, RcppArmadillo | 
| Suggests: | RcppThread, RcppArmadillo, readr, plot3D, spEDM, knitr, rmarkdown, purrr, tidyr, cowplot | 
| Published: | 2025-08-25 | 
| DOI: | 10.32614/CRAN.package.tEDM | 
| Author: | Wenbo Lv  [aut,
    cre, cph] | 
| Maintainer: | Wenbo Lv  <lyu.geosocial at gmail.com> | 
| BugReports: | https://github.com/stscl/tEDM/issues | 
| License: | GPL-3 | 
| URL: | https://stscl.github.io/tEDM/, https://github.com/stscl/tEDM | 
| NeedsCompilation: | yes | 
| Materials: | README, NEWS | 
| CRAN checks: | tEDM results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=tEDM
to link to this page.