The Structural Topic Model (STM) allows researchers 
  to estimate topic models with document-level covariates. 
  The package also includes tools for model selection, visualization,
  and estimation of topic-covariate regressions. Methods developed in
  Roberts et. al. (2014) <doi:10.1111/ajps.12103> and 
  Roberts et. al. (2016) <doi:10.1080/01621459.2016.1141684>. Vignette
  is Roberts et. al. (2019) <doi:10.18637/jss.v091.i02>.
| Version: | 1.3.8 | 
| Depends: | R (≥ 3.5.0), methods | 
| Imports: | Rcpp (≥ 0.11.3), data.table, glmnet, grDevices, graphics, lda, Matrix, matrixStats, parallel, quadprog, quanteda, slam, splines, stats, stringr, utils | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| Suggests: | clue, geometry, huge, hunspell, igraph, LDAvis, KernSmooth, NLP, rsvd, Rtsne, SnowballC, spelling, testthat, tm (≥ 0.6), wordcloud | 
| Published: | 2025-09-03 | 
| DOI: | 10.32614/CRAN.package.stm | 
| Author: | Margaret Roberts [aut],
  Brandon Stewart [aut, cre],
  Dustin Tingley [aut],
  Kenneth Benoit [ctb] | 
| Maintainer: | Brandon Stewart  <bms4 at princeton.edu> | 
| BugReports: | https://github.com/bstewart/stm/issues | 
| License: | MIT + file LICENSE | 
| URL: | http://www.structuraltopicmodel.com/ | 
| NeedsCompilation: | yes | 
| Language: | en-US | 
| Citation: | stm citation info | 
| Materials: | NEWS | 
| In views: | NaturalLanguageProcessing | 
| CRAN checks: | stm results |