The current version of this package estimates spatial autoregressive models for binary dependent variables using GMM estimators <doi:10.18637/jss.v107.i08>. It supports one-step (Pinkse and Slade, 1998) <doi:10.1016/S0304-4076(97)00097-3> and two-step GMM estimator along with the linearized GMM estimator proposed by Klier and McMillen (2008) <doi:10.1198/073500107000000188>. It also allows for either Probit or Logit model and compute the average marginal effects. All these models are presented in Sarrias and Piras (2023) <doi:10.1016/j.jocm.2023.100432>. 
| Version: | 0.1.3 | 
| Depends: | R (≥ 4.0) | 
| Imports: | Formula, Matrix, maxLik, stats, sphet, memisc, car, methods, numDeriv, MASS, spatialreg | 
| Suggests: | spdep | 
| Published: | 2023-10-11 | 
| DOI: | 10.32614/CRAN.package.spldv | 
| Author: | Mauricio Sarrias  [aut, cre],
  Gianfranco Piras  [aut],
  Daniel McMillen [ctb] | 
| Maintainer: | Mauricio Sarrias  <msarrias86 at gmail.com> | 
| BugReports: | https://github.com/gpiras/spldv/issues | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://github.com/gpiras/spldv | 
| NeedsCompilation: | no | 
| Citation: | spldv citation info | 
| Materials: | NEWS | 
| CRAN checks: | spldv results |