| Type: | Package | 
| Title: | Bayesian Spatial Survival Analysis with Parametric Proportional Hazards Models | 
| Version: | 2.0-1 | 
| Date: | 2023-10-18 | 
| Author: | Benjamin M. Taylor and Barry S. Rowlingson Additional contributions Ziyu Zheng | 
| Maintainer: | Benjamin M. Taylor <benjamin.taylor.software@gmail.com> | 
| Description: | Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models. See Benjamin M. Taylor, Barry S. Rowlingson (2017) <doi:10.18637/jss.v077.i04>. | 
| License: | GPL-3 | 
| Imports: | survival, sp, spatstat.explore, spatstat.geom, spatstat.random, raster, iterators, fields, Matrix, stringr, sf, RColorBrewer, methods, lubridate | 
| Suggests: | rgl | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| NeedsCompilation: | no | 
| Packaged: | 2023-10-19 07:47:32 UTC; ben | 
| Depends: | R (≥ 2.10) | 
| Repository: | CRAN | 
| Date/Publication: | 2023-10-19 08:20:02 UTC | 
spatsurv
Description
An R package for spatially correlated parametric proportional hazards survial analysis.
Usage
spatsurv
Format
An object of class logical of length 1.
Details
| Package: | spatsurv | 
| Type: | Package | 
| Title: | Bayesian Spatial Survival Analysis with Parametric Proportional Hazards Models | 
| Version: | 2.0-1 | 
| Date: | 2023-10-18 | 
| Author: | Benjamin M. Taylor and Barry S. Rowlingson Additional contributions Ziyu Zheng | 
| Maintainer: | Benjamin M. Taylor <benjamin.taylor.software@gmail.com> | 
| Description: | Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models. See Benjamin M. Taylor, Barry S. Rowlingson (2017) <doi:10.18637/jss.v077.i04>. | 
| License: | GPL-3 | 
| Imports: | survival, sp, spatstat.explore, spatstat.geom, spatstat.random, raster, iterators, fields, Matrix, stringr, sf, RColorBrewer, methods, lubridate | 
| Suggests: | rgl | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.2.3 | 
| NeedsCompilation: | no | 
| Packaged: | 2022-11-22 14:11:17 UTC; taylorb7 | 
| Depends: | R (>= 2.10) | 
| Repository: | CRAN | 
| Date/Publication: | 2022-11-22 14:30:02 UTC | 
Index of help topics:
.onAttach               .onAttach function
B                       B function
Bspline.construct       Bspline.construct function
BsplineHaz              BsplineHaz function
CSplot                  CSplot function
Et_PP                   Et_PP function
EvalCov                 EvalCov function
ExponentialCovFct       ExponentialCovFct function
FFTgrid                 FFTgrid function
GammaFromY_SPDE         GammaFromY_SPDE function
GammafromY              GammafromY function
Independent             Independent function
MCE                     MCE function
NonSpatialLogLikelihood_or_gradient
                        NonSpatialLogLikelihood_or_gradient function
PsplineHaz              PsplineHaz function
QuadApprox              QuadApprox function
SPDE                    SPDE function
SPDEprec                SPDEprec function
SpikedExponentialCovFct
                        SpikedExponentialCovFct function
Summarise               Summarise function
TwoWayHazAdditive       TwoWayHazAdditive function
YFromGamma_SPDE         YFromGamma_SPDE function
YfromGamma              YfromGamma function
allocate                allocate function
alpha                   alpha function
baseHazST               baseHazST function
basehazard              basehazard function
basehazard.basehazardspec
                        basehazard.basehazardspec function
baselinehazard          baselinehazard function
baselinehazard_multiWay
                        baselinehazard_multiWay function
betapriorGauss          betapriorGauss function
blockDiag               A function to
boxplotRisk             boxplotRisk function
checkSurvivalData       checkSurvivalData function
circulant               circulant function
circulant.matrix        circulant.matrix function
circulant.numeric       circulant.numeric function
circulantij             circulantij function
covmodel                covmodel function
cumbasehazard           cumbasehazard function
cumbasehazard.basehazardspec
                        cumbasehazard.basehazardspec function
cumulativeBspline.construct
                        cumulativeBspline.construct function
density_PP              density_PP function
densityquantile         densityquantile function
densityquantile.basehazardspec
                        densityquantile.basehazardspec function
densityquantile_PP      densityquantile_PP function
derivindepGaussianprior
                        derivindepGaussianprior function
derivindepGaussianpriorST
                        derivindepGaussianpriorST function
derivpsplineprior       derivpsplineprior function
distinfo                distinfo function
distinfo.basehazardspec
                        distinfo.basehazardspec function
estimateY               estimateY function
etapriorGauss           etapriorGauss function
exponentialHaz          exponentialHaz function
fixParHaz               fixParHaz function
fixedpars               fixedpars function
fixmatrix               fixmatrix function
frailtylag1             frailtylag1 function
fs                      London Fire Brigade property
fstimes                 London Fire Brigade response times to dwelling
                        fires, 2009
gamma2risk              gamma2risk function
gencens                 gencens function
getBbasis               getBbasis function
getGrid                 getGrid function
getOptCellwidth         getOptCellwidth function
getbb                   getbb function
getcov                  getcov function
getgrd                  getgrd function
getleneta               getleneta function
getparranges            getparranges function
getsurvdata             getsurvdata function
gompertzHaz             gompertzHaz function
gradbasehazard          gradbasehazard function
gradbasehazard.basehazardspec
                        gradbasehazard.basehazardspec function
gradcumbasehazard       gradcumbasehazard function
gradcumbasehazard.basehazardspec
                        gradcumbasehazard.basehazardspec function
grid2spdf               grid2spdf function
grid2spix               grid2spix function
grid2spts               grid2spts function
gridY                   gridY function
gridY_polygonal         gridY_polygonal function
guess_t                 guess_t function
hasNext                 generic hasNext method
hasNext.iter            hasNext.iter function
hazard_PP               hazard_PP function
hazardexceedance        hazardexceedance function
hazardpars              hazardpars function
hessbasehazard          hessbasehazard function
hessbasehazard.basehazardspec
                        hessbasehazard.basehazardspec function
hesscumbasehazard       hesscumbasehazard function
hesscumbasehazard.basehazardspec
                        hesscumbasehazard.basehazardspec function
imputationModel         imputationModel function
indepGaussianprior      indepGaussianprior function
indepGaussianpriorST    indepGaussianpriorST function
inference.control       inference.control function
insert                  insert function
invtransformweibull     invtransformweibull function
is.burnin               is this a burn-in iteration?
is.retain               do we retain this iteration?
iteration               iteration number
logPosterior            logPosterior function
logPosterior_SPDE       logPosterior_SPDE function
logPosterior_gridded    logPosterior_gridded function
logPosterior_polygonal
                        logPosterior_polygonal function
loop.mcmc               loop over an iterator
makehamHaz              makehamHaz function
maxlikparamPHsurv       maxlikparamPHsurv function
mcmcLoop                iterator for MCMC loops
mcmcPriors              mcmcPriors function
mcmcProgressNone        null progress monitor
mcmcProgressPrint       printing progress monitor
mcmcProgressTextBar     text bar progress monitor
mcmcpars                mcmcpars function
midpts                  midpts function
multiWayHaz             multiWayHaz function
neighLocs               neighLocs function
neighOrder              neighOrder function
nextStep                next step of an MCMC chain
omegapriorGauss         omegapriorGauss function
omegapriorGaussST       omegapriorGaussST function
optifix                 optifix function
plot.FFTgrid            plot.FFTgrid function
plotsurv                plotsurv function
polyadd                 polyadd function
polymult                polymult function
posteriorcov            posteriorcov function
predict.mcmcspatsurv    predict.mcmcspatsurv function
print.mcmc              print.mcmc function
print.mcmcspatsurv      print.mcmcspatsurv function
print.mlspatsurv        print.mlspatsurv function
print.textSummary       print.textSummary function
priorposterior          priorposterior function
proposalVariance        proposalVariance function
proposalVariance_SPDE   proposalVariance_SPDE function
proposalVariance_gridded
                        proposalVariance_gridded function
proposalVariance_polygonal
                        proposalVariance_polygonal function
psplineRWprior          psplineRWprior function
psplineprior            psplineprior function
quantile.mcmcspatsurv   quantile.mcmcspatsurv function
quantile.mlspatsurv     quantile.mlspatsurv function
randompars              randompars function
reconstruct.bs          reconstruct.bs function
reconstruct.bs.coxph    reconstruct.bs.coxph function
reconstruct.bs.mcmcspatsurv
                        reconstruct.bs.mcmcspatsurv function
resetLoop               reset iterator
residuals.mcmcspatsurv
                        resuiduals.mcmcspatsurv function
rootWeibullHaz          rootWeibullHaz function
setTxtProgressBar2      set the progress bar
setupHazard             setupHazard function
setupPrecMatStruct      setupPrecMatStruct function
showGrid                showGrid function
simsurv                 simsurv function
spatialpars             spatialpars function
spatsurv-package        spatsurv
spatsurvVignette        spatsurvVignette function
summary.mcmc            summary.mcmc function
summary.mcmcspatsurv    summary.mcmcspatsurv function
surv3d                  Spatial Survival Plot in 3D
survival_PP             survival_PP function
survspat                survspat function
survspatNS              survspatNS function
textSummary             textSummary function
timevaryingPL           timevaryingPL function
tpowHaz                 tpowHaz function
transformweibull        transformweibull function
txtProgressBar2         A text progress bar with label
vcov.mcmcspatsurv       vcov.mcmcspatsurv function
vcov.mlspatsurv         vcov.mlspatsurv function
weibullHaz              weibullHaz function
Dependencies
The package spatsurv depends upon some other important contributions to CRAN in order to operate; their uses here are indicated:
survival, sp, spatstat, raster, iterators, RandomFields, fields, rgl, Matrix, stringr, RColorBrewer, geostatsp.
Citation
To cite use of spatsurv, the user may refer to the following work:
Benjamin M. Taylor and Barry S. Rowlingson (2017).
spatsurv: An R Package for Bayesian Inference with Spatial Survival Models.
Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04.
references
X
Author(s)
Benjamin Taylor, Health and Medicine, Lancaster University, Barry Rowlingson, Health and Medicine, Lancaster University
.onAttach function
Description
A function to print a welcome message on loading package
Usage
.onAttach(libname, pkgname)
Arguments
| libname | libname argument | 
| pkgname | pkgname argument | 
Value
...
B function
Description
A recursive function used in calculating the coefficients of a B-spline curve
Usage
B(x, i, j, knots)
Arguments
| x | locations at which to evaluate the B-spline | 
| i | index i | 
| j | index j | 
| knots | a knot vector | 
Value
a vector of polynomial coefficients
Bspline.construct function
Description
A function to construct a B-spline basis matrix for given data and basis coefficients. Used in evaluating the baseline hazard.
Usage
Bspline.construct(x, basis)
Arguments
| x | a vector, the data | 
| basis | an object created by the getBbasis function | 
Value
a basis matrix
BsplineHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is modelled by a basis spline. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
BsplineHaz(times, knots = quantile(times), degree = 3, MLinits = NULL)
Arguments
| times | vector of survival times (both censored and uncensored) | 
| knots | vector of knots in ascending order, must include minimum and maximum values of 'times' | 
| degree | degree of the spline basis, default is 3 | 
| MLinits | optional starting values for the non-spatial maximisation routine using optim. Note that we are working with the log of the parameters. Default is -10 for each parameter. | 
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames,
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian,
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters,
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest.
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC,
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
exponentialHaz, gompertzHaz, makehamHaz, weibullHaz
CSplot function
Description
A function to produce a diagnostic plot for model fit using the Cox-Snell residuals.
Usage
CSplot(mod, plot = TRUE, bw = FALSE, ...)
Arguments
| mod | an object produced by the function survspat | 
| plot | whether to plot the result, default is TRUE | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| ... | other arguments to pass to plot | 
Value
the x and y values used in the plot
Et_PP function
Description
A function to compute an individual's approximate expected survival time using numerical integration. Note this appears to be unstable; the function is based on R's integrate function. Not intended for general use (yet!).
Usage
Et_PP(inputs)
Arguments
| inputs | inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model | 
Value
the expected survival time for the individual, obtained by numerical integration of the density function.
EvalCov function
Description
This function is used to evaluate the covariance function within the MCMC run. Not intended for general use.
Usage
EvalCov(cov.model, u, parameters)
Arguments
| cov.model | an object of class covmodel | 
| u | vector of distances | 
| parameters | vector of parameters | 
Value
method EvalCov
ExponentialCovFct function
Description
A function to declare and also evaluate an exponential covariance function.
Usage
ExponentialCovFct()
Value
the exponential covariance function
See Also
SpikedExponentialCovFct, covmodel
FFTgrid function
Description
A function to generate an FFT grid and associated quantities including cell dimensions, size of extended grid, centroids,
Usage
FFTgrid(spatialdata, cellwidth, ext, boundingbox = NULL)
Arguments
| spatialdata | a SpatialPixelsDataFrame object | 
| cellwidth | width of computational cells | 
| ext | multiplying constant: the size of the extended grid: ext*M by ext*N | 
| boundingbox | optional bounding box over which to construct computational grid, supplied as an object on which the function 'bbox' returns the bounding box | 
Value
a list
GammaFromY_SPDE function
Description
A function to go from Y to Gamma
Usage
GammaFromY_SPDE(Y, U, mu)
Arguments
| Y | Y | 
| U | upper Cholesky matrix | 
| mu | the mean | 
Value
the value of Gamma for the given Y
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
GammafromY function
Description
A function to change Ys (spatially correlated noise) into Gammas (white noise). Used in the MALA algorithm.
Usage
GammafromY(Y, rootQeigs, mu)
Arguments
| Y | Y matrix | 
| rootQeigs | square root of the eigenvectors of the precision matrix | 
| mu | parameter of the latent Gaussian field | 
Value
Gamma
Independent function
Description
A function to declare and also evaluate an exponential covariance function.
Usage
Independent()
Value
the exponential covariance function
See Also
SpikedExponentialCovFct, covmodel
MCE function
Description
A function to compute Monte Carlo expectations from an object inheriting class mcmcspatsurv
Usage
MCE(object, fun)
Arguments
| object | an object inheriting class mcmcspatsurv | 
| fun | a function with arguments beta, omega, eta and Y | 
Value
the Monte Carlo mean of the function over the posterior.
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, hazardexceedance
NonSpatialLogLikelihood_or_gradient function
Description
A function to evaluate the log-likelihood of a non-spatial parametric proportional hazards model. Not intended for general use.
Usage
NonSpatialLogLikelihood_or_gradient(
  surv,
  X,
  beta,
  omega,
  control,
  loglikelihood,
  gradient
)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| beta | parameter beta | 
| omega | parameter omega | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
| loglikelihood | logical whether to evaluate the log-likelihood | 
| gradient | logical whether to evaluate the gradient | 
Value
...
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
PsplineHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is modelled by a basis spline and where the coefficients of the model follow a partially imporper random walk prior. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
PsplineHaz(times, knots = quantile(times), degree = 3, MLinits = NULL)
Arguments
| times | vector of survival times (both censored and uncensored) | 
| knots | vector of knots in ascending order, must include minimum and maximum values of 'times' | 
| degree | degree of the spline basis, default is 3 | 
| MLinits | optional starting values for the non-spatial maximisation routine using optim. Note that we are working with the log of the parameters. Default is -10 for each parameter. | 
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required 
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, 
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse 
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, 
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives 
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv 
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a 
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, 
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts 
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. 
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect 
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a 
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, 
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull 
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
exponentialHaz, gompertzHaz, makehamHaz, weibullHaz
QuadApprox function
Description
A function to compute the second derivative of a function (of several real variables) using a quadratic approximation on a grid of points defined by the list argRanges. Also returns the local maximum.
Usage
QuadApprox(fun, npts, argRanges, plot = FALSE, ...)
Arguments
| fun | a function | 
| npts | integer number of points in each direction | 
| argRanges | a list of ranges on which to construct the grid for each parameter | 
| plot | whether to plot the quadratic approximation of the posterior (for two-dimensional parameters only) | 
| ... | other arguments to be passed to fun | 
Value
a 2 by 2 matrix containing the curvature at the maximum and the (x,y) value at which the maximum occurs
SPDE function
Description
A function to declare and evaluate an SPDE covariance function.
Usage
SPDE(ord)
Arguments
| ord | the order of the model to be used, currently an integer between 1 an 3. See Lindgren 2011 paper. | 
Value
an covariance function based on the SPDE model
See Also
SPDEprec function
Description
A function to used in entering elements into the precision matrix of an SPDE model. Not intended for general use.
Usage
SPDEprec(a, ord)
Arguments
| a | parameter a, see Lindgren et al 2011. | 
| ord | the order of the SPDE model, see Lindgren et al 2011. | 
Value
a function used for creating the precision matrix
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
SpikedExponentialCovFct function
Description
A function to declare and also evaluate a spiked exponential covariance function. This is an exponential covariance function with a nugget.
Usage
SpikedExponentialCovFct()
Value
the spiked exponential covariance function
See Also
Summarise function
Description
A function to completely summarise the output of an object of class mcmcspatsurv.
Usage
Summarise(
  obj,
  digits = 3,
  scientific = -3,
  inclIntercept = FALSE,
  printmode = "LaTeX",
  displaymode = "console",
  ...
)
Arguments
| obj | an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars | 
| digits | see the option "digits" in ?format | 
| scientific | see the option "scientific" in ?format | 
| inclIntercept | logical: whether to summarise the intercept term, default is FALSE. | 
| printmode | the format of the text to return, can be 'LaTeX' (the default) or 'text' for plain text. | 
| displaymode | default is 'console' alternative is 'rstudio' | 
| ... | other arguments passed to the function "format" | 
Value
A text summary, that can be pasted into a LaTeX document and later edited.
TwoWayHazAdditive function
Description
A function to
Usage
TwoWayHazAdditive(bhlist, bhtime, bhfix, MLinits = NULL)
Arguments
| bhlist | X | 
| bhtime | X | 
| bhfix | X | 
| MLinits | X | 
Value
...
YFromGamma_SPDE function
Description
A function to go from Gamma to Y
Usage
YFromGamma_SPDE(gamma, U, mu)
Arguments
| gamma | Gamma | 
| U | upper Cholesky matrix | 
| mu | the mean | 
Value
the value of Y for the given Gamma
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
YfromGamma function
Description
A function to change Gammas (white noise) into Ys (spatially correlated noise). Used in the MALA algorithm.
Usage
YfromGamma(Gamma, invrootQeigs, mu)
Arguments
| Gamma | Gamma matrix | 
| invrootQeigs | inverse square root of the eigenvectors of the precision matrix | 
| mu | parameter of the latent Gaussian field | 
Value
Y
allocate function
Description
A function to allocate coordinates to an observation whose spatial location is known to the regional level
Usage
allocate(poly, popden, survdat, pid, sid, n = 2, wid = 2000)
Arguments
| poly | a SpatialPolygonsDataFrame, on which the survival data exist in aggregate form | 
| popden | a sub-polygon raster image of population density | 
| survdat | data.frame containing the survival data | 
| pid | name of the variable in the survival data that gives the region identifier in poly | 
| sid | the name of the variable in poly to match the region identifier in survdat to | 
| n | the number of different allocations to make. e.g. if n is 2 (the default) two candidate sets of locations are available. | 
| wid | The default is 2000, interpreted in metres ie 2Km. size of buffer to add to window for raster cropping purposes: this ensures that for each polygon, the cropped raster covers it completely. | 
Value
matrices x and y, both of size (number of observations in survdat x n) giving n potential candidate locations of points in the columns of x and y.
alpha function
Description
A function used in calculating the coefficients of a B-spline curve
Usage
alpha(i, j, knots, knotidx)
Arguments
| i | index i | 
| j | index j | 
| knots | knot vector | 
| knotidx | knot index | 
Value
a vector
baseHazST function
Description
A function to
Usage
baseHazST(
  bh1 = NULL,
  survobj,
  t0,
  nbreaks = 5,
  breakmethod = "quantile",
  MLinits = NULL
)
Arguments
| bh1 | X | 
| survobj | X | 
| t0 | X | 
| nbreaks | X | 
| breakmethod | X | 
| MLinits | X | 
Value
...
basehazard function
Description
Generic function for computing the baseline hazard
Usage
basehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method basehazard
See Also
basehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
basehazard.basehazardspec function
Description
A function to retrieve the baseline hazard function
Usage
## S3 method for class 'basehazardspec'
basehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
baselinehazard function
Description
A function to compute quantiles of the posterior baseline hazard or cumulative baseline hazard.
Usage
baselinehazard(
  x,
  t = NULL,
  n = 100,
  probs = c(0.025, 0.5, 0.975),
  cumulative = FALSE,
  plot = TRUE,
  bw = FALSE,
  ...
)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| t | optional vector of times at which to compute the quantiles, Defult is NULL, in which case a uniformly spaced vector of length n from 0 to the maximum time is used | 
| n | the number of points at which to compute the quantiles if t is NULL | 
| probs | vector of probabilities | 
| cumulative | logical, whether to return the baseline hazard (default i.e. FALSE) or cumulative baseline hazard | 
| plot | whether to plot the result | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| ... | additional arguments to be passed to plot | 
Value
the vector of times and quantiles of the baseline or cumulative baseline hazard at those times
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
baselinehazard_multiWay function
Description
A function to
Usage
baselinehazard_multiWay(
  x,
  probs = c(0.025, 0.5, 0.975),
  cumulative = FALSE,
  plot = TRUE,
  joint = FALSE,
  xlims = NULL,
  ylims = NULL,
  ...
)
Arguments
| x | X | 
| probs | X | 
| cumulative | X | 
| plot | X | 
| joint | X | 
| xlims | X | 
| ylims | X | 
| ... | X | 
Value
...
betapriorGauss function
Description
A function to define Gaussian priors for beta. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.
Usage
betapriorGauss(mean, sd)
Arguments
| mean | the prior mean, a vector of length 1 or more. 1 implies a common mean. | 
| sd | the prior standard deviation, a vector of length 1 or more. 1 implies a common standard deviation. | 
Value
an object of class "betapriorGauss"
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
A function to
Description
A function to
Usage
blockDiag(matlist)
Arguments
| matlist | X | 
Value
...
boxplotRisk function
Description
A function to
Usage
boxplotRisk(g2r)
Arguments
| g2r | X | 
Value
...
checkSurvivalData function
Description
A function to check whether the survival data to be passed to survspat is in the correct format
Usage
checkSurvivalData(s)
Arguments
| s | an object of class Surv, from the survival package | 
Value
if there are any issues with data format, these are returned with the data an error message explaining any issues with the data
circulant function
Description
generic function for constructing circulant matrices
Usage
circulant(x, ...)
Arguments
| x | an object | 
| ... | additional arguments | 
Value
method circulant
circulant.matrix function
Description
If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.
Usage
## S3 method for class 'matrix'
circulant(x, ...)
Arguments
| x | a matrix object | 
| ... | additional arguments | 
Value
If x is a matrix whose columns are the bases of the sub-blocks of a block circulant matrix, then this function returns the block circulant matrix of interest.
circulant.numeric function
Description
returns a circulant matrix with base x
Usage
## S3 method for class 'numeric'
circulant(x, ...)
Arguments
| x | an numeric object | 
| ... | additional arguments | 
Value
a circulant matrix with base x
circulantij function
Description
A function to return the "idx" i.e. c(i,j) element of a circulant matrix with base "base".
Usage
circulantij(idx, base)
Arguments
| idx | vector of length 2 th (i,j) (row,column) index to return | 
| base | the base matrix of a circulant matrix | 
Value
the ij element of the full circulant
covmodel function
Description
A function to define the spatial covariance model, see also ?CovarianceFct. Note that the parameters defined by the 'pars' argument are fixed, i.e. not estimated by the MCMC algorithm. To have spatsurv estimate these parameters, the user must construct a new covariance function to do so, stop("") see the spatsurv vignette.
Usage
covmodel(model, pars)
Arguments
| model | correlation type, a string see ?CovarianceFct | 
| pars | vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct and are not estimated | 
Value
an object of class covmodel
cumbasehazard function
Description
Generic function for computing the cumulative baseline hazard
Usage
cumbasehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method cumbasehazard
See Also
cumbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
cumbasehazard.basehazardspec function
Description
A function to retrieve the cumulative baseline hazard function
Usage
## S3 method for class 'basehazardspec'
cumbasehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the cumulative baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
cumulativeBspline.construct function
Description
A function to construct the integral of a B-spline curve given data and basis coefficients. Used in evaluating the cumulative baseline hazard.
Usage
cumulativeBspline.construct(x, basis)
Arguments
| x | a vector, the data | 
| basis | an object created by the getBbasis function | 
Value
an object that allows the integral of a given B-spline curve to be computed
density_PP function
Description
A function to compute an individual's density function
Usage
density_PP(inputs)
Arguments
| inputs | inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model | 
Value
the density function for the individual
densityquantile function
Description
Generic function for computing quantiles of the density function for a given baseline hazard. This may not be analytically tractable.
Usage
densityquantile(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method densityquantile
See Also
densityquantile.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
densityquantile.basehazardspec function
Description
A function to retrieve the quantiles of the density function
Usage
## S3 method for class 'basehazardspec'
densityquantile(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the density quantiles
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
densityquantile_PP function
Description
A function to compute quantiles of the density function
Usage
densityquantile_PP(inputs)
Arguments
| inputs | inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model | 
Value
quantiles of the density function for the individual
derivindepGaussianprior function
Description
A function for evaluating the first and second derivatives of the log of an independent Gaussian prior
Usage
derivindepGaussianprior(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | a vector, the parameter beta | 
| omega | a vector, the parameter omega | 
| eta | a vector, the parameter eta | 
| priors | an object of class 'mcmcPrior', see ?mcmcPrior | 
Value
returns the first and second derivatives of the prior
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
derivindepGaussianpriorST function
Description
A function to
Usage
derivindepGaussianpriorST(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | X | 
| omega | X | 
| eta | X | 
| priors | X | 
Value
...
derivpsplineprior function
Description
A function for evaluating the first and second derivatives of the log of an independent Gaussian prior
Usage
derivpsplineprior(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | a vector, the parameter beta | 
| omega | a vector, the parameter omega | 
| eta | a vector, the parameter eta | 
| priors | an object of class 'mcmcPrior', see ?mcmcPrior | 
Value
returns the first and second derivatives of the prior
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
distinfo function
Description
Generic function for returning information about the class of baseline hazard functions employed.
Usage
distinfo(obj, ...)
Arguments
| obj | an object | 
| ... | additional argument – currently there are none, but this is for extensibility | 
Value
method distinfo
See Also
distinfo.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
distinfo.basehazardspec function
Description
A function to retrive information on the baseline hazard distribution of choice
Usage
## S3 method for class 'basehazardspec'
distinfo(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning information on the baseline hazard distribution of choice
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
estimateY function
Description
A function to get an initial estimate of Y, to be used in calibrating the MCMC. Not for general use
Usage
estimateY(X, betahat, omegahat, surv, control)
Arguments
| X | the design matrix containing covariate information | 
| betahat | an estimate of beta | 
| omegahat | an estimate of omega | 
| surv | an object of class Surv | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
an estimate of Y, to be used in calibrating the MCMC
etapriorGauss function
Description
A function to define Gaussian priors for eta. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.
Usage
etapriorGauss(mean, sd)
Arguments
| mean | the prior mean, a vector of length 1 or more. 1 implies a common mean. | 
| sd | the prior standard deviation, a vector of length 1 or more. 1 implies a common standard deviation. | 
Value
an object of class "etapriorGauss"
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
exponentialHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from the exponential model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
exponentialHaz()
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required 
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, 
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse 
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, 
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives 
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv 
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a 
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, 
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts 
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. 
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect 
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a 
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, 
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull 
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
tpowHaz, gompertzHaz, makehamHaz, weibullHaz
fixParHaz function
Description
A function to
Usage
fixParHaz(bh, idx, fixval)
Arguments
| bh | X | 
| idx | X | 
| fixval | X | 
Value
...
fixedpars function
Description
A function to return the mcmc chains for the covariate effects
Usage
fixedpars(x)
Arguments
| x | an object of class mcmcspatsurv | 
Value
the beta mcmc chains
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
fixmatrix function
Description
!! THIS FUNCTION IS NOT INTENDED FOR GENERAL USE !!
Usage
fixmatrix(mat)
Arguments
| mat | a matrix | 
Details
A function to fix up an estimated covariance matrix using a VERY ad-hoc method.
Value
the fixed matrix
frailtylag1 function
Description
A function to produce a plot of, and return, the lag 1 (or higher, see argument 'lag') autocorrelation for each of the spatially correlated frailty chains
Usage
frailtylag1(object, plot = TRUE, lag = 1, ...)
Arguments
| object | an object inheriting class mcmcspatsurv | 
| plot | logical whether to plot the result, default is TRUE | 
| lag | the lag to plot, the default is 1 | 
| ... | other arguments to be passed to the plot function | 
Value
the lag 1 autocorrelation for each of the spatially correlated frailty chains
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
London Fire Brigade property
Description
London Fire Brigade property
Usage
data(fs)Format
data.frame
Source
https://data.london.gov.uk/
References
https://data.london.gov.uk/,https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Examples
fire <- data(fs)London Fire Brigade response times to dwelling fires, 2009
Description
London Fire Brigade response times to dwelling fires, 2009
Usage
data(fstimes)Format
data.frame
Source
https://data.london.gov.uk/
References
https://data.london.gov.uk/,https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Examples
firetimes <- data(fstimes)gamma2risk function
Description
A function to
Usage
gamma2risk(mod)
Arguments
| mod | X | 
Value
...
gencens function
Description
A function to generate observed times given a vector of true survival times and a vector of censoring times. Used in the simulation of survival data.
Usage
gencens(survtimes, censtimes, type = "right")
Arguments
| survtimes | a vector of survival times | 
| censtimes | a vector of censoring times for left or right censored data, 2-column matrix of censoring times for interval censoring (number of rows equal to the number of observations). | 
| type | the type of censoring to generate can be 'right' (default), 'left' or 'interval' | 
Value
an object of class 'Surv', the censoring indicator is equal to 1 if the event is uncensored and 0 otherwise for right/left censored data, or for interval censored data, the indicator is 0 uncensored, 1 right censored, 2 left censored, or 3 interval censored.
getBbasis function
Description
A function returning the piecewise polynomial coefficients for a B-spline basis function i.e. the basis functions.
Usage
getBbasis(x, knots, degree, force = FALSE)
Arguments
| x | a vector of data | 
| knots | a vector of knots in ascending order. The first and last knots must be respectively the minimum and maximum of x. | 
| degree | the degree of the spline | 
| force | logical: skip check on knots? (not recommended!) | 
Value
the knots and the piecewise polynomial coefficients for a B-spline basis function i.e. the basis functions.
getGrid function
Description
A function to extract and return the computational grid from a gridded analysis.
Usage
getGrid(mod, returnclass = "SpatialPolygonsDataFrame")
Arguments
| mod | an object of class mcmcspatsurv, returned by the function survspat | 
| returnclass | the class of object to return, default is a'SpatialPolygonsDataFrame'. Other options are 'raster', which returns a raster brick; or 'SpatialPixelsDataFrame' | 
Value
a SpatialPolygonsDataFrame in which Monte Carlo expectations can be stored and later plotted.
getOptCellwidth function
Description
A function to compute an optimal cellwidth close to an initial suggestion. This maximises the efficiency of the MCMC algorithm when in the control argument of the function survspat, the option gridded is set to TRUE
Usage
getOptCellwidth(dat, cellwidth, ext = 2, plot = TRUE, boundingbox = NULL)
Arguments
| dat | any spatial data object whose bounding box can be computed using the function bbox. | 
| cellwidth | an initial suggested cellwidth | 
| ext | the extension parameter for the FFT transform, set to 2 by default | 
| plot | whether to plot the grid and data to illustrate the optimal grid | 
| boundingbox | optional bounding box over which to construct computational grid, supplied as an object on which the function 'bbox' returns the bounding box | 
Value
the optimum cell width
getbb function
Description
A function to get the bounding box of a Spatial object
Usage
getbb(obj)
Arguments
| obj | a spatial object e.g. a SpatialPolygonsDataFrame, SpatialPolygons, etc ... anything with a bounding box that can be computed with bbox(obj) | 
Value
a SpatialPolygons object: the bounding box
getcov function
Description
A function to return the covariance from a model based on the randomFields covariance functions. Not intended for general use.
Usage
getcov(u, sigma, phi, model, pars)
Arguments
| u | distance | 
| sigma | variance parameter | 
| phi | scale parameter | 
| model | correlation type, see ?CovarianceFct | 
| pars | vector of additional parameters for certain classes of covariance function (eg Matern), these must be supplied in the order given in ?CovarianceFct and are not estimated | 
Value
this is just a wrapper for CovarianceFct
getgrd function
Description
A function to create a regular grid over an observation window in order to model the spatial randome effects as a Gaussian Markov random field.
Usage
getgrd(shape, cellwidth)
Arguments
| shape | an object of class SpatialPolygons or SpatialPolygonsDataFrame | 
| cellwidth | a scalar, the width of the grid cells | 
Value
a SpatialPolygons object: the grid on which prediction of the spatial effects will occur
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
getleneta function
Description
A function to compute the length of eta
Usage
getleneta(cov.model)
Arguments
| cov.model | a covariance model | 
Value
the length of eta
getparranges function
Description
A function to extract parameter ranges for creating a grid on which to evaluate the log-posterior, used in calibrating the MCMC. This function is not intended for general use.
Usage
getparranges(priors, leneta, mult = 1.96)
Arguments
| priors | an object of class mcmcPriors | 
| leneta | the length of eta passed to the function | 
| mult | defaults to 1.96 so the grid formed will be mean plus/minus 1.96 times the standard deviation | 
Value
an appropriate range used to calibrate the MCMC: the mean of the prior for eta plus/minus 1.96 times the standard deviation
getsurvdata function
Description
A function to return the survival data from an object of class mcmcspatsurv. This function is not intended for general use.
Usage
getsurvdata(x)
Arguments
| x | an object of class mcmcspatsurv | 
Value
the survival data from an object of class mcmcspatsurv
gompertzHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from a Gompertz model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
gompertzHaz()
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required 
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, 
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse 
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, 
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives 
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv 
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a 
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, 
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts 
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. 
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect 
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a 
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, 
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull 
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
tpowHaz, exponentialHaz, makehamHaz, weibullHaz
gradbasehazard function
Description
Generic function for computing the gradient of the baseline hazard
Usage
gradbasehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method gradbasehazard
See Also
gradbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
gradbasehazard.basehazardspec function
Description
A function to retrieve the gradient of the baseline hazard function
Usage
## S3 method for class 'basehazardspec'
gradbasehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the gradient of the baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
gradcumbasehazard function
Description
Generic function for computing the gradient of the cumulative baseline hazard
Usage
gradcumbasehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method gradcumbasehazard
See Also
gradcumbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
gradcumbasehazard.basehazardspec function
Description
A function to retrieve the gradient of the cumulative baseline hazard function
Usage
## S3 method for class 'basehazardspec'
gradcumbasehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the gradient of the cumulative baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
grid2spdf function
Description
A function to convert a regular (x,y) grid of centroids into a SpatialPoints object
Usage
grid2spdf(xgrid, ygrid, proj4string = CRS(as.character(NA)))
Arguments
| xgrid | vector of x centroids (equally spaced) | 
| ygrid | vector of x centroids (equally spaced) | 
| proj4string | an optional proj4string, projection string for the grid, set using the function CRS | 
Value
a SpatialPolygonsDataFrame
grid2spix function
Description
A function to convert a regular (x,y) grid of centroids into a SpatialPixels object
Usage
grid2spix(xgrid, ygrid, proj4string = CRS(as.character(NA)))
Arguments
| xgrid | vector of x centroids (equally spaced) | 
| ygrid | vector of x centroids (equally spaced) | 
| proj4string | an optional proj4string, projection string for the grid, set using the function CRS | 
Value
a SpatialPixels object
grid2spts function
Description
A function to convert a regular (x,y) grid of centroids into a SpatialPoints object
Usage
grid2spts(xgrid, ygrid, proj4string = CRS(as.character(NA)))
Arguments
| xgrid | vector of x centroids (equally spaced) | 
| ygrid | vector of x centroids (equally spaced) | 
| proj4string | an optional proj4string, projection string for the grid, set using the function CRS | 
Value
a SpatialPoints object
gridY function
Description
A function to put estimated individual Y's onto a grid
Usage
gridY(Y, control)
Arguments
| Y | estimate of Y | 
| control | control parameters | 
Value
...
gridY_polygonal function
Description
A function to put estimated individual Y's onto a grid
Usage
gridY_polygonal(Y, control)
Arguments
| Y | estimate of Y | 
| control | control parameters | 
Value
...
guess_t function
Description
A function to get an initial guess of the failure time t, to be used in calibrating the MCMC. Not for general use
Usage
guess_t(surv)
Arguments
| surv | an object of class Surv | 
Value
a guess at the failure times
generic hasNext method
Description
test if an iterator has any more values to go
Usage
hasNext(obj)
Arguments
| obj | an iterator | 
hasNext.iter function
Description
method for iter objects test if an iterator has any more values to go
Usage
## S3 method for class 'iter'
hasNext(obj)
Arguments
| obj | an iterator | 
hazard_PP function
Description
A function to compute an individual's hazard function.
Usage
hazard_PP(inputs)
Arguments
| inputs | inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model | 
Value
the hazard function for the individual
hazardexceedance function
Description
A function to compute exceedance probabilities for the spatially correlated frailties.
Usage
hazardexceedance(threshold, direction = "upper")
Arguments
| threshold | vector of thresholds | 
| direction | default is "upper" which will calculate P(Y>threshold), alternative is "lower", which will calculate P(Y<threshold) | 
Value
a function that can be passed to the function MCE in order to compute the exceedance probabilities
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE,
hazardpars function
Description
A function to return the mcmc chains for the hazard function parameters
Usage
hazardpars(x)
Arguments
| x | an object of class mcmcspatsurv | 
Value
the omega mcmc chains
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
hessbasehazard function
Description
Generic function for computing the hessian of the baseline hazard
Usage
hessbasehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method hessbasehazard
See Also
hessbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
hessbasehazard.basehazardspec function
Description
A function to retrieve the Hessian of the baseline hazard function
Usage
## S3 method for class 'basehazardspec'
hessbasehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the Hessian of the baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
hesscumbasehazard function
Description
Generic function for computing the Hessian of the cumulative baseline hazard
Usage
hesscumbasehazard(obj, ...)
Arguments
| obj | an object | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
method hesscumbasehazard
See Also
hesscumbasehazard.basehazardspec, exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
hesscumbasehazard.basehazardspec function
Description
A function to retrieve the hessian of the cumulative baseline hazard function
Usage
## S3 method for class 'basehazardspec'
hesscumbasehazard(obj, ...)
Arguments
| obj | an object of class basehazardspec | 
| ... | additional arguments – currently there are none, but this is for extensibility | 
Value
a function returning the hessian of the cumulative baseline hazard
See Also
exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz
imputationModel function
Description
A function to
Usage
imputationModel(formula, offset, covariateData, priors)
Arguments
| formula | X | 
| offset | X | 
| covariateData | X | 
| priors | X | 
Value
...
indepGaussianprior function
Description
A function for evaluating the log of an independent Gaussian prior for a given set of parameter values.
Usage
indepGaussianprior(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | parameter beta at which prior is to be evaluated | 
| omega | parameter omega at which prior is to be evaluated | 
| eta | parameter eta at which prior is to be evaluated | 
| priors | an object of class mcmcPriors, see ?mcmcPriors | 
Value
the log of the prior evaluated at the given parameter values
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
indepGaussianpriorST function
Description
A function to
Usage
indepGaussianpriorST(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | X | 
| omega | X | 
| eta | X | 
| priors | X | 
Value
...
inference.control function
Description
A function to control inferential settings. This function is used to set parameters for more advanced use of spatsurv.
Usage
inference.control(
  gridded = FALSE,
  cellwidth = NULL,
  ext = 2,
  imputation = NULL,
  optimcontrol = NULL,
  hessian = FALSE,
  plotcal = FALSE,
  timeonlyMCMC = FALSE,
  nugget = FALSE,
  savenugget = FALSE,
  split = 0.5,
  logUsigma_priormean = 0,
  logUsigma_priorsd = 0.5,
  nis = NULL,
  olinfo = NULL
)
Arguments
| gridded | logical. Whether to perform compuation on a grid. Default is FALSE. | 
| cellwidth | the width of computational cells to use | 
| ext | integer the number of times to extend the computational grid by in order to perform compuitation. The default is 2. | 
| imputation | for polygonal data, an optional model for inference at the sub-polygonal level, see function imputationModel | 
| optimcontrol | a list of optional arguments to be passed to optim for non-spatial models | 
| hessian | whether to return a numerical hessian. Set this to TRUE for non-spatial models. equal to the number of parameters of the baseline hazard | 
| plotcal | logical, whether to produce plots of the MCMC calibration process, this is a technical option and should onyl be set to TRUE if poor mixing is evident (the printed h is low), then it is also useful to use a graphics device with multiple plotting windows. | 
| timeonlyMCMC | logical, whether to only time the MCMC part of the algorithm, or whether to include in the reported running time the time taken to calibrate the method (default) | 
| nugget | whether to include a nugget effect in the estimation. Note that only the mean and variance of the nugget effect is returned. | 
| savenugget | whether to save the MCMC chain for the nugget effect | 
| split | how to split the spatial and nugget proposal variance as a the proportion of variance assigned to the spatial effect apriori. Default is 0.5 | 
| logUsigma_priormean | prior mean for log standard deviation of nugget effect | 
| logUsigma_priorsd | prior sd for log standard deviation of nugget effect | 
| nis | list of cell counts, each element being a matrix, with attributes "x" and "y" giving grid centroids in x and y directions. Used to impute locations of aggregated data:. | 
| olinfo | to be supplied with nis, if continuous inference from aggregated data is required | 
Value
returns parameters to be used in the function survspat
See Also
insert function
Description
A function to
Usage
insert(pars, idx, val)
Arguments
| pars | X | 
| idx | X | 
| val | X | 
Value
...
invtransformweibull function
Description
A function to transform estimates of the (alpha, lambda) parameters of the weibull baseline hazard function, so they are commensurate with R's inbuilt density functions, (shape, scale).
Usage
invtransformweibull(x)
Arguments
| x | a vector of paramters | 
Value
the transformed parameters. For the weibull model, this transforms 'shape' 'scale' (see ?dweibull) to 'alpha' and 'lambda' for the MCMC
is this a burn-in iteration?
Description
if this mcmc iteration is in the burn-in period, return TRUE
Usage
is.burnin(obj)
Arguments
| obj | an mcmc iterator | 
Value
TRUE or FALSE
do we retain this iteration?
Description
if this mcmc iteration is one not thinned out, this is true
Usage
is.retain(obj)
Arguments
| obj | an mcmc iterator | 
Value
TRUE or FALSE
iteration number
Description
within a loop, this is the iteration number we are currently doing.
Usage
iteration(obj)
Arguments
| obj | an mcmc iterator | 
Details
get the iteration number
Value
integer iteration number, starting from 1.
logPosterior function
Description
A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.
Usage
logPosterior(
  surv,
  X,
  beta,
  omega,
  eta,
  gamma,
  priors,
  cov.model,
  u,
  control,
  gradient = FALSE,
  hessian = FALSE
)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| beta | parameter beta | 
| omega | parameter omega | 
| eta | parameter eta | 
| gamma | parameter gamma | 
| priors | the priors, an object of class 'mcmcPriors' | 
| cov.model | the spatial covariance model | 
| u | vector of interpoint distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
| gradient | logical whether to evaluate the gradient | 
| hessian | logical whether to evaluate the Hessian | 
Value
evaluates the log-posterior and the gradient and hessian, if required.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
logPosterior_SPDE function
Description
A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.
Usage
logPosterior_SPDE(
  surv,
  X,
  beta,
  omega,
  eta,
  gamma,
  priors,
  cov.model,
  u,
  control,
  gradient = FALSE,
  hessian = FALSE
)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| beta | parameter beta | 
| omega | parameter omega | 
| eta | parameter eta | 
| gamma | parameter gamma | 
| priors | the priors, an object of class 'mcmcPriors' | 
| cov.model | the spatial covariance model | 
| u | vector of interpoint distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
| gradient | logical whether to evaluate the gradient | 
| hessian | logical whether to evaluate the Hessian | 
Value
evaluates the log-posterior and the gradient and hessian, if required.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
logPosterior_gridded function
Description
A function to evaluate the log-posterior of a spatial parametric proportional hazards model using gridded Y. Not intended for general use.
Usage
logPosterior_gridded(
  surv,
  X,
  beta,
  omega,
  eta,
  gamma,
  priors,
  cov.model,
  u,
  control,
  gradient = FALSE,
  hessian = FALSE
)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| beta | parameter beta | 
| omega | parameter omega | 
| eta | parameter eta | 
| gamma | parameter gamma | 
| priors | the priors, an object of class 'mcmcPriors' | 
| cov.model | the spatial covariance model | 
| u | vector of interpoint distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
| gradient | logical whether to evaluate the gradient | 
| hessian | logical whether to evaluate the Hessian | 
Value
evaluates the log-posterior and the gradient and hessian, if required.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
logPosterior_polygonal function
Description
A function to evaluate the log-posterior of a spatial parametric proportional hazards model. Not intended for general use.
Usage
logPosterior_polygonal(
  surv,
  X,
  beta,
  omega,
  eta,
  gamma,
  priors,
  cov.model,
  u,
  control,
  gradient = FALSE,
  hessian = FALSE
)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| beta | parameter beta | 
| omega | parameter omega | 
| eta | parameter eta | 
| gamma | parameter gamma | 
| priors | the priors, an object of class 'mcmcPriors' | 
| cov.model | the spatial covariance model | 
| u | vector of interpoint distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
| gradient | logical whether to evaluate the gradient | 
| hessian | logical whether to evaluate the Hessian | 
Value
evaluates the log-posterior and the gradient and hessian, if required.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
loop over an iterator
Description
useful for testing progress bars
Usage
loop.mcmc(object, sleep = 1)
Arguments
| object | an mcmc iterator | 
| sleep | pause between iterations in seconds | 
makehamHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from the Gompertz-Makeham model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
makehamHaz()
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required 
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, 
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse 
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, 
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives 
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv 
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a 
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, 
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts 
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. 
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect 
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a 
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, 
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull 
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
tpowHaz, exponentialHaz, gompertzHaz, weibullHaz
maxlikparamPHsurv function
Description
A function to get initial estimates of model parameters using maximum likelihood. Not intended for general purose use.
Usage
maxlikparamPHsurv(surv, X, control)
Arguments
| surv | an object of class Surv | 
| X | the design matrix, containing covariate information | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
initial estimates of the parameters
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
iterator for MCMC loops
Description
control an MCMC loop with this iterator
Usage
mcmcLoop(N, burnin, thin, trim = TRUE, progressor = mcmcProgressPrint)
Arguments
| N | number of iterations | 
| burnin | length of burn-in | 
| thin | frequency of thinning | 
| trim | whether to cut off iterations after the last retained iteration | 
| progressor | a function that returns a progress object | 
mcmcPriors function
Description
A function to define priors for the MCMC.
Usage
mcmcPriors(
  betaprior = NULL,
  omegaprior = NULL,
  etaprior = NULL,
  call = NULL,
  derivative = NULL
)
Arguments
| betaprior | prior for beta, the covariate effects | 
| omegaprior | prior for omega, the parameters of the baseline hazard | 
| etaprior | prior for eta, the parameters of the latent field | 
| call | function to evaluate the log-prior e.g. logindepGaussianprior | 
| derivative | function to evaluate the first and second derivatives of the prior | 
Details
The package spatsurv only provides functionality for the built-in Gaussian priors. However, the choice of prior is 
extensible by the user by creating functions similar to the functions betapriorGauss, omegapriorGauss, etapriorGauss, 
indepGaussianprior and derivindepGaussianprior: the first three of which provide a mechanism for storing and retrieving the 
parameters of the priors; the fourth, a function for evaluating the log of the prior for a given set of parameter values; and the fifth, a 
function for evaluating the first and second derivatives of the log of the prior. It is assumed that parameters are a priori independent. 
The user interested in using other priors is encouraged to look at the structure of the five functions mentioned above.
Value
an object of class mcmcPriors
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
null progress monitor
Description
a progress monitor that does nothing
Usage
mcmcProgressNone(mcmcloop)
Arguments
| mcmcloop | an mcmc loop iterator | 
Value
a progress monitor
printing progress monitor
Description
a progress monitor that prints each iteration
Usage
mcmcProgressPrint(mcmcloop)
Arguments
| mcmcloop | an mcmc loop iterator | 
Value
a progress monitor
text bar progress monitor
Description
a progress monitor that uses a text progress bar
Usage
mcmcProgressTextBar(mcmcloop)
Arguments
| mcmcloop | an mcmc loop iterator | 
Value
a progress monitor
mcmcpars function
Description
A function for setting MCMC options.
Usage
mcmcpars(nits, burn, thin, inits = NULL, adaptivescheme = NULL)
Arguments
| nits | numer of iterations, | 
| burn | length of burnin | 
| thin | thinning parameter eg operated on chain every 'thin' iteration (eg store output or compute some posterior functional) | 
| inits | NOT CURRENTLY IN USE | 
| adaptivescheme | NOT CURRENTLY IN USE | 
Value
mcmc parameters
midpts function
Description
A function to compute the midpoints of a vector
Usage
midpts(x)
Arguments
| x | a vector | 
Value
the midpoints, a vector of length length(x)-1
multiWayHaz function
Description
A function to
Usage
multiWayHaz(bhlist, bhtime, bhfix, MLinits = NULL)
Arguments
| bhlist | X | 
| bhtime | X | 
| bhfix | X | 
| MLinits | X | 
Value
...
neighLocs function
Description
A function used in the computation of neighbours on non-rectangular grids. Not intended for general use.
Usage
neighLocs(coord, cellwidth, order)
Arguments
| coord | coordinate of interest | 
| cellwidth | a scalar, the width of the grid cells | 
| order | the order of the SPDE approximation: see Lindgren et al 2011 for details | 
Value
coordinates of centroids of neighbours
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
neighOrder function
Description
A function to compute the order of a set of neighbours. Not intended for general use.
Usage
neighOrder(neighlocs)
Arguments
| neighlocs | an object created by the function neighLocs | 
Value
the neighbour orders
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
next step of an MCMC chain
Description
just a wrapper for nextElem really.
Usage
nextStep(object)
Arguments
| object | an mcmc loop object | 
omegapriorGauss function
Description
A function to define Gaussian priors for omega. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.
Usage
omegapriorGauss(mean, sd)
Arguments
| mean | the prior mean, a vector of length 1 or more. 1 implies a common mean. | 
| sd | the prior standard deviation, a vector of length 1 or more. 1 implies a common standard deviation. | 
Value
an object of class "omegapriorGauss"
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
omegapriorGaussST function
Description
A function to
Usage
omegapriorGaussST(basehaz, fmean, fsd, taumean, tausd, thetamean, thetasd)
Arguments
| basehaz | X | 
| fmean | X | 
| fsd | X | 
| taumean | X | 
| tausd | X | 
| thetamean | X | 
| thetasd | X | 
Value
...
optifix function
Description
optifix. Optimise with fixed parameters
Usage
optifix(
  par,
  fixed,
  fn,
  gr = NULL,
  ...,
  method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
  lower = -Inf,
  upper = Inf,
  control = list(),
  hessian = FALSE
)
Arguments
| par | X | 
| fixed | X | 
| fn | X | 
| gr | X | 
| ... | X | 
| method | X | 
| lower | X | 
| upper | X | 
| control | X | 
| hessian | X | 
Details
its like optim, but with fixed parameters.
specify a second argument 'fixed', a vector of TRUE/FALSE values. If TRUE, the corresponding parameter in fn() is fixed. Otherwise its variable and optimised over.
The return thing is the return thing from optim() but with a couple of extra bits - a vector of all the parameters and a vector copy of the 'fixed' argument.
Written by Barry Rowlingson <b.rowlingson@lancaster.ac.uk> October 2011
This file released under a CC By-SA license: http://creativecommons.org/licenses/by-sa/3.0/
and must retain the text: "Originally written by Barry Rowlingson" in comments.
Value
...
plot.FFTgrid function
Description
A function to
Usage
## S3 method for class 'FFTgrid'
plot(x, y = NULL, ...)
Arguments
| x | X | 
| y | X | 
| ... | X | 
Value
...
plotsurv function
Description
A function to produce a 2-D plot of right censored spatial survival data.
Usage
plotsurv(
  spp,
  ss,
  maxcex = 1,
  transform = identity,
  background = NULL,
  eventpt = 19,
  eventcol = "red",
  censpt = "+",
  censcol = "black",
  xlim = NULL,
  ylim = NULL,
  xlab = NULL,
  ylab = NULL,
  add = FALSE,
  ...
)
Arguments
| spp | A spatial points data frame | 
| ss | A Surv object (with right-censoring) | 
| maxcex | maximum size of dots default is equavalent to setting cex equal to 1 | 
| transform | optional transformation to apply to the data, a function, for example 'sqrt' | 
| background | a background object to plot default is null, which gives a blamk background note that if non-null, the parameters xlim and ylim will be derived from this object. | 
| eventpt | The type of point to illustrate events, default is 19 (see ?pch) | 
| eventcol | the colour of events, default is black | 
| censpt | The type of point to illustrate events, default is "+" (see ?pch) | 
| censcol | the colour of censored observations, default is red | 
| xlim | optional x-limits of plot, default is to choose this automatically | 
| ylim | optional y-limits of plot, default is to choose this automatically | 
| xlab | label for x-axis | 
| ylab | label for y-axis | 
| add | logical, whether to add the survival plot on top of an existing plot, default is FALSE, which produces a plot in a new device | 
| ... | other arguments to pass to plot | 
Value
Plots the survival data non-censored observations appear as dots and censored observations as crosses. The size of the dot is proportional to the observed time.
polyadd function
Description
A function to add two polynomials in the form of vectors of coefficients. The first element of the vector being the constant (order 0) term
Usage
polyadd(poly1, poly2)
Arguments
| poly1 | a vector of coefficients for the first polynomial of length degree plus 1 | 
| poly2 | a vector of coefficients for the second polynomial of length degree plus 1 | 
Value
the coefficients of the sum of poly1 and poly2
polymult function
Description
A function to multiply two polynomials in the form of vectors of coefficients. The first element of the vector being the constant (order 0) term
Usage
polymult(poly1, poly2)
Arguments
| poly1 | a vector of coefficients for the first polynomial of length degree plus 1 | 
| poly2 | a vector of coefficients for the second polynomial of length degree plus 1 | 
Value
the coefficients of the product of poly1 and poly2
posteriorcov function
Description
A function to produce a plot of the posterior covariance function with upper and lower quantiles.
Usage
posteriorcov(
  x,
  probs = c(0.025, 0.5, 0.975),
  rmax = NULL,
  n = 100,
  plot = TRUE,
  bw = FALSE,
  corr = FALSE,
  ...
)
Arguments
| x | an object of class mcmcspatsurv | 
| probs | vector of probabilities to be fed to quantile function | 
| rmax | maximum distance in space to compute this distance up to | 
| n | the number of points at which to evaluate the posterior covariance. | 
| plot | whether to plot the result | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| corr | logical whether to return the correlation function, default is FALSE i.e. returns the covariance function | 
| ... | other arguments to be passed to matplot function | 
Value
produces a plot of the posterior spatial covariance function.
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, MCE, hazardexceedance
predict.mcmcspatsurv function
Description
A function to produce predictions from MCMC output. These could include quantiles of the individual density, survival or hazard functions or quantiles of the density function (if available analytically).
Usage
## S3 method for class 'mcmcspatsurv'
predict(
  object,
  type = "density",
  t = NULL,
  n = 110,
  indx = NULL,
  probs = c(0.025, 0.5, 0.975),
  plot = TRUE,
  pause = TRUE,
  bw = FALSE,
  ...
)
Arguments
| object | an object of class mcmcspatsurv | 
| type | can be "density", "hazard", "survival" or "densityquantile". Default is "density". Note that "densityquantile" is not always analytically tractable for some choices of baseline hazard function. | 
| t | optional vector of times at which to compute the quantiles, Defult is NULL, in which case a uniformly spaced vector of length n from 0 to the maximum time is used | 
| n | the number of points at which to compute the quantiles if t is NULL | 
| indx | the index number of a particular individual or vector of indices of individuals for which the quantiles should be produced | 
| probs | vector of probabilities | 
| plot | whether to plot the result | 
| pause | logical whether to pause between plots, the default is TRUE | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| ... | other arguments, not used here | 
Value
the required predictions
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, priorposterior, posteriorcov, MCE, hazardexceedance
print.mcmc function
Description
print method print an mcmc iterator's details
Usage
## S3 method for class 'mcmc'
print(x, ...)
Arguments
| x | a mcmc iterator | 
| ... | other args | 
print.mcmcspatsurv function
Description
A function to print summary tables from an MCMC run
Usage
## S3 method for class 'mcmcspatsurv'
print(x, probs = c(0.5, 0.025, 0.975), digits = 3, scientific = -3, ...)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| probs | vector of quantiles to return | 
| digits | see help file ?format | 
| scientific | see help file ?format | 
| ... | additional arguments, not used here | 
Value
prints summary tables to the console
See Also
quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
print.mlspatsurv function
Description
A function to print summary tables from an MCMC run
Usage
## S3 method for class 'mlspatsurv'
print(x, probs = c(0.5, 0.025, 0.975), digits = 3, scientific = -3, ...)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| probs | vector of quantiles to return | 
| digits | see help file ?format | 
| scientific | see help file ?format | 
| ... | additional arguments, not used here | 
Value
prints summary tables to the console
See Also
quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
print.textSummary function
Description
A function to print summary tables from an MCMC run
Usage
## S3 method for class 'textSummary'
print(x, ...)
Arguments
| x | an object inheriting class textSummary | 
| ... | additional arguments, not used here | 
Value
prints a text summary of 'x' to the console
priorposterior function
Description
A function to produce plots of the prior (which shows as a red line) and posterior (showing as a histogram)
Usage
priorposterior(
  x,
  breaks = 30,
  ylab = "Density",
  main = "",
  pause = TRUE,
  bw = FALSE,
  ...
)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| breaks | see ?hist | 
| ylab | optional y label | 
| main | optional title | 
| pause | logical whether to pause between plots, the default is TRUE | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| ... | other arguments passed to the hist function | 
Value
plots of the prior (red line) and posterior (histogram).
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, posteriorcov, MCE, hazardexceedance
proposalVariance function
Description
A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.
Usage
proposalVariance(
  X,
  surv,
  betahat,
  omegahat,
  Yhat,
  priors,
  cov.model,
  u,
  control
)
Arguments
| X | the design matrix, containing covariate information | 
| surv | an object of class Surv | 
| betahat | an estimate of beta | 
| omegahat | an estimate of omega | 
| Yhat | an estimate of Y | 
| priors | the priors | 
| cov.model | the spatial covariance model | 
| u | a vector of pairwise distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
an estimate of eta and also an approximate scaling matrix for the MCMC
proposalVariance_SPDE function
Description
A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.
Usage
proposalVariance_SPDE(
  X,
  surv,
  betahat,
  omegahat,
  Yhat,
  priors,
  cov.model,
  u,
  control
)
Arguments
| X | the design matrix, containing covariate information | 
| surv | an object of class Surv | 
| betahat | an estimate of beta | 
| omegahat | an estimate of omega | 
| Yhat | an estimate of Y | 
| priors | the priors | 
| cov.model | the spatial covariance model | 
| u | a vector of pairwise distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
an estimate of eta and also an approximate scaling matrix for the MCMC
proposalVariance_gridded function
Description
A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.
Usage
proposalVariance_gridded(
  X,
  surv,
  betahat,
  omegahat,
  Yhat,
  priors,
  cov.model,
  u,
  control
)
Arguments
| X | the design matrix, containing covariate information | 
| surv | an object of class Surv | 
| betahat | an estimate of beta | 
| omegahat | an estimate of omega | 
| Yhat | an estimate of Y | 
| priors | the priors | 
| cov.model | the spatial covariance model | 
| u | a vector of pairwise distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
an estimate of eta and also an approximate scaling matrix for the MCMC
proposalVariance_polygonal function
Description
A function to compute an approximate scaling matrix for the MCMC algorithm. Not intended for general use.
Usage
proposalVariance_polygonal(
  X,
  surv,
  betahat,
  omegahat,
  Yhat,
  priors,
  cov.model,
  u,
  control
)
Arguments
| X | the design matrix, containing covariate information | 
| surv | an object of class Surv | 
| betahat | an estimate of beta | 
| omegahat | an estimate of omega | 
| Yhat | an estimate of Y | 
| priors | the priors | 
| cov.model | the spatial covariance model | 
| u | a vector of pairwise distances | 
| control | a list containg various control parameters for the MCMC and post-processing routines | 
Value
an estimate of eta and also an approximate scaling matrix for the MCMC
psplineRWprior function
Description
A function to define Gaussian priors for omega. This function simply stores a vector of means and standard deviations to be passed to the main MCMC function, survspat.
Usage
psplineRWprior(taumean, tausd, basehaz, order = 2)
Arguments
| taumean | the prior mean, a vector of length 1 or more. 1 implies a common mean. | 
| tausd | the prior standard deviation, a vector of length 1 or more. 1 implies a common standard deviation. | 
| basehaz | an object inheriting class "basehazardspec", specificlly, this function was used for such objects created by a call to the function PsplineHaz | 
| order | the order of the random walk, default is 2 | 
Value
an object of class "omegapriorGauss"
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
psplineprior function
Description
A function for evaluating the log of an independent Gaussian prior for a given set of parameter values.
Usage
psplineprior(beta = NULL, omega = NULL, eta = NULL, priors)
Arguments
| beta | parameter beta at which prior is to be evaluated | 
| omega | parameter omega at which prior is to be evaluated | 
| eta | parameter eta at which prior is to be evaluated | 
| priors | an object of class mcmcPriors, see ?mcmcPriors | 
Value
the log of the prior evaluated at the given parameter values
See Also
survspat, betapriorGauss, omegapriorGauss, etapriorGauss, indepGaussianprior, derivindepGaussianprior
quantile.mcmcspatsurv function
Description
A function to extract quantiles of the parameters from an mcmc run
Usage
## S3 method for class 'mcmcspatsurv'
quantile(x, probs = c(0.025, 0.5, 0.975), ...)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| probs | vector of probabilities | 
| ... | other arguments to be passed to the function, not used here | 
Value
quantiles of model parameters
See Also
print.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
quantile.mlspatsurv function
Description
A function to extract quantiles of the parameters from an mcmc run
Usage
## S3 method for class 'mlspatsurv'
quantile(x, probs = c(0.025, 0.5, 0.975), ...)
Arguments
| x | an object inheriting class mcmcspatsurv | 
| probs | vector of probabilities | 
| ... | other arguments to be passed to the function, not used here | 
Value
quantiles of model parameters
See Also
print.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
randompars function
Description
A function to return the mcmc chains for the spatially correlated frailties
Usage
randompars(x)
Arguments
| x | an object of class mcmcspatsurv | 
Value
the Y mcmc chains
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
reconstruct.bs function
Description
Generic function for reconstructing B-spline covariate effects. See ?reconstruct.bs.mcmcspatsurv and ?reconstruct.bs.coxph
Usage
reconstruct.bs(mod, ...)
Arguments
| mod | an object | 
| ... | additional arguments | 
Value
method reconstruct.bs
reconstruct.bs.coxph function
Description
When bs(varname) has been used in the formula of a coxph model, this function can be used to reconstruct the predicted relative risk of that parameter over time.
Usage
## S3 method for class 'coxph'
reconstruct.bs(
  mod,
  varname,
  fun = NULL,
  probs = c(0.025, 0.975),
  bw = FALSE,
  xlab = NULL,
  ylab = NULL,
  plot = TRUE,
  ...
)
Arguments
| mod | model output, created by function survspat | 
| varname | name of the variable modelled by a B-spline | 
| fun | optional function to feed in. Default is to plot relative risk against the covariate of interest. Useful choices include "identity" (but with no quotes), which plots the non-linear effect on the scale of the linear predictor. | 
| probs | upper and lower quantiles for confidence regions to plot> The default is c(0.025,0.975). | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| xlab | label for x axis, there is a sensible default | 
| ylab | label for y axis, there is a sensible default | 
| plot | logical, whether to plot the effect of varname over time | 
| ... | other arguments to be passed to the plotting function. | 
Value
median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.
reconstruct.bs.mcmcspatsurv function
Description
When bs(varname) has been used in the formula of a model, this function can be used to reconstruct the posterior relative risk of that parameter over time.
Usage
## S3 method for class 'mcmcspatsurv'
reconstruct.bs(
  mod,
  varname,
  probs = c(0.025, 0.975),
  bw = FALSE,
  xlab = NULL,
  ylab = NULL,
  plot = TRUE,
  ...
)
Arguments
| mod | model output, created by function survspat | 
| varname | name of the variable modelled by a B-spline | 
| probs | upper and lower quantiles for confidence regions to plot> The default is c(0.025,0.975). | 
| bw | Logical. Plot in black/white/greyscale? Default is to produce a colour plot. Useful for producing plots for journals that do not accept colour plots. | 
| xlab | label for x axis, there is a sensible default | 
| ylab | label for y axis, there is a sensible default | 
| plot | logical, whether to plot the effect of varname over time | 
| ... | other arguments to be passed to the plotting function. | 
Value
median, upper and lower confidence bands for the effect of varname over time; the funciton also produces a plot.
reset iterator
Description
call this to reset an iterator's state to the initial
Usage
resetLoop(obj)
Arguments
| obj | an mcmc iterator | 
resuiduals.mcmcspatsurv function
Description
A function to compute Cox-Snell / modeified Cox-Snell / Martingale or Deviance residuals
Usage
## S3 method for class 'mcmcspatsurv'
residuals(object, type = "Cox-Snell", ...)
Arguments
| object | an object produced by the function survspat | 
| type | type of residuals to return. Possible choices are 'Cox-Snell', 'modified-Cox-Snell', 'Martingale' or 'deviance'. | 
| ... | other arguments (not used here) | 
Value
the residuals
rootWeibullHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from the Weibull model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
rootWeibullHaz(MLinits = NULL)
Arguments
| MLinits | initial values for optim, default is NULL | 
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames,
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian,
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters,
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest.
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC,
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
tpowHaz, exponentialHaz, gompertzHaz, makehamHaz
set the progress bar
Description
update a text progress bar. See help(txtProgressBar) for more info.
Usage
setTxtProgressBar2(pb, value, title = NULL, label = NULL)
Arguments
| pb | text progress bar object | 
| value | new value | 
| title | ignored | 
| label | text for end of progress bar | 
setupHazard function
Description
A function to set up the baseline hazard, cumulative hazard and derivative functions for use in evaluating the log posterior. This fucntion is not intended for general use.
Usage
setupHazard(dist, pars, grad = FALSE, hess = FALSE)
Arguments
| dist | an object of class 'basehazardspec' | 
| pars | parameters with which to create the functions necessary to evaluate the log posterior | 
| grad | logical, whetether to create gradient functions for the baseline hazard and cumulative hazard | 
| hess | logical, whetether to create hessian functions for the baseline hazard and cumulative hazard | 
Value
a list of functions used in evaluating the log posterior
setupPrecMatStruct function
Description
A function to set up the computational grid and precision matrix structure for SPDE models.
Usage
setupPrecMatStruct(shape, cellwidth, no)
Arguments
| shape | an object of class SpatialPolygons or SpatialPolygonsDataFrame | 
| cellwidth | a scalar, the width of the grid cells | 
| no | the order of the SPDE approximation: see Lindgren et al 2011 for details | 
Value
the computational grid and a function for constructing the precision matrix
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
- Finn Lindgren, Havard Rue, Johan Lindstrom. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B 73(4) 
showGrid function
Description
A function to show the grid that will be used for a given cellwidth
Usage
showGrid(dat, cellwidth, ext = 2, boundingbox = NULL)
Arguments
| dat | any spatial data object whose bounding box can be computed using the function bbox. | 
| cellwidth | an initial suggested cellwidth | 
| ext | the extension parameter for the FFT transform, set to 2 by default | 
| boundingbox | optional bounding box over which to construct computational grid, supplied as an object on which the function 'bbox' returns the bounding box | 
Value
a plot showing the grid and the data. Ideally the data should only just fit inside the grid.
simsurv function
Description
A function to simulate spatial parametric proportional hazards model. The function works by simulating candidate survival times using MCMC in parallel for each individual based on each individual's covariates and the common parameter effects, beta.
Usage
simsurv(
  X = cbind(age = runif(100, 5, 50), sex = rbinom(100, 1, 0.5), cancer = rbinom(100, 1,
    0.2)),
  beta = c(0.0296, 0.0261, 0.035),
  omega = 1,
  dist = exponentialHaz(),
  coords = matrix(runif(2 * nrow(X)), nrow(X), 2),
  cov.parameters = c(1, 0.1),
  cov.model = ExponentialCovFct(),
  mcmc.control = mcmcpars(nits = 1e+05, burn = 10000, thin = 90),
  savechains = TRUE
)
Arguments
| X | a matrix of covariate information | 
| beta | the parameter effects | 
| omega | vector of parameters for the baseline hazard model | 
| dist | the distribution choice: exp or weibull at present | 
| coords | matrix with 2 columns giving the coordinates at which to simulate data | 
| cov.parameters | a vector: the parameters for the covariance function | 
| cov.model | an object of class covmodel, see ?covmodel | 
| mcmc.control | mcmc control paramters, see ?mcmcpars | 
| savechains | save all chains? runs faster if set to FALSE, but then you'll be unable to conduct convergence/mixing diagnostics | 
Value
in list element 'survtimes', a vector of simulated survival times (the last simulated value from the MCMC chains) in list element 'T' the MCMC chains
See Also
covmodel, survspat, tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz
spatialpars function
Description
A function to return the mcmc chains for the spatial covariance function parameters
Usage
spatialpars(x)
Arguments
| x | an object of class mcmcspatsurv | 
Value
the eta mcmc chains
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
spatsurvVignette function
Description
Display the introductory vignette for the spatsurv package.
Usage
spatsurvVignette()
Value
displays the vignette by calling browseURL
summary.mcmc function
Description
summary of an mcmc iterator print out values of an iterator and reset it. DONT call this in a loop that uses this iterator - it will reset it. And break.
Usage
## S3 method for class 'mcmc'
summary(object, ...)
Arguments
| object | an mcmc iterator | 
| ... | other args | 
summary.mcmcspatsurv function
Description
A function to return summary tables from an MCMC run
Usage
## S3 method for class 'mcmcspatsurv'
summary(object, probs = c(0.5, 0.025, 0.975), ...)
Arguments
| object | an object inheriting class mcmcspatsurv | 
| probs | vector of quantiles to return | 
| ... | additional arguments | 
Value
summary tables to the console
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, vcov.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
Spatial Survival Plot in 3D
Description
Do a 3d plot of spatial survival data
Usage
surv3d(
  spp,
  ss,
  lwd = 2,
  lcol = "black",
  lalpha = 1,
  pstyle = c("point", "text"),
  psize = c(20, 10),
  pcol = c("red", "black"),
  ptext = c("X", ""),
  palpha = 1,
  title = "Spatial Survival",
  basegrid = TRUE,
  baseplane = TRUE
)
Arguments
| spp | A spatial points data frame | 
| ss | A Surv object (with right-censoring) | 
| lwd | Line width for stems | 
| lcol | Line colour for stems | 
| lalpha | Opacity for stems | 
| pstyle | Point style "point" or "text" | 
| psize | Vector of length 2 for uncensored/censored points size | 
| pcol | Vector of length 2 for uncensored/censored points colours | 
| ptext | Vector of length 2 for uncensored/censored text characters | 
| palpha | Opacity for points/text | 
| title | Main title for plot | 
| basegrid | add a grid at t=0 | 
| baseplane | add a plane at t=0 | 
Details
Uses rgl graphics to make a spinny zoomy plot
Value
nothing
Author(s)
Barry S Rowlingson
Examples
## Not run: 
require(sp)
require(survival)
d = data.frame(
  x=runif(40)*1.5,
  y = runif(40),
  age=as.integer(20+30*runif(40)),
  sex = sample(c("M","F"),40,TRUE)
)
coordinates(d)=~x+y
d$surv = Surv(as.integer(5+20*runif(40)),runif(40)>.9)
clear3d();surv3d(d,d$surv,baseplane=TRUE,basegrid=TRUE)
clear3d();surv3d(d,d$surv,baseplane=TRUE,basegrid=TRUE,pstyle="t",lalpha=0.5,lwd=3,palpha=1)
## End(Not run)
survival_PP function
Description
A function to compute an individual's survival function
Usage
survival_PP(inputs)
Arguments
| inputs | inputs for the function including the model matrix, frailties, fixed effects and the parameters of the baseline hazard derived from this model | 
Value
the survival function for the individual
survspat function
Description
A function to run a Bayesian analysis on censored spatial survial data assuming a proportional hazards model using an adaptive Metropolis-adjusted Langevin algorithm.
Usage
survspat(
  formula,
  data,
  dist,
  cov.model,
  mcmc.control,
  priors,
  shape = NULL,
  ids = list(shpid = NULL, dataid = NULL),
  control = inference.control(gridded = FALSE),
  boundingbox = NULL
)
Arguments
| formula | the model formula in a format compatible with the function flexsurvreg from the flexsurv package | 
| data | a SpatialPointsDataFrame object containing the survival data as one of the columns OR for polygonal data a data.frame, in which case, the argument shape must also be supplied | 
| dist | choice of distribution function for baseline hazard. Current options are: exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz | 
| cov.model | an object of class covmodel, see ?covmodel ?ExponentialCovFct or ?SpikedExponentialCovFct | 
| mcmc.control | mcmc control parameters, see ?mcmcpars | 
| priors | an object of class Priors, see ?mcmcPriors | 
| shape | when data is a data.frame, this can be a SpatialPolygonsDataFrame, or a SpatialPointsDataFrame, used to model spatial variation at the small region level. The regions are the polygons, or they represent the (possibly weighted) centroids of the polygons. | 
| ids | named list entry shpid character string giving name of variable in shape to be matched to variable dataid in data. dataid is the second entry of the named list. | 
| control | additional control parameters, see ?inference.control | 
| boundingbox | optional bounding box over which to construct computational grid, supplied as an object on which the function 'bbox' returns the bounding box | 
Value
an object inheriting class 'mcmcspatsurv' for which there exist methods for printing, summarising and making inference from.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
See Also
tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz,
covmodel, ExponentialCovFct, SpikedExponentialCovFct,
mcmcpars, mcmcPriors, inference.control
survspatNS function
Description
A function to perform maximun likelihood inference for non-spatial survival data.
Usage
survspatNS(formula, data, dist, control = inference.control())
Arguments
| formula | the model formula in a format compatible with the function flexsurvreg from the flexsurv package | 
| data | a SpatialPointsDataFrame object containing the survival data as one of the columns | 
| dist | choice of distribution function for baseline hazard. Current options are: exponentialHaz, weibullHaz, gompertzHaz, makehamHaz, tpowHaz | 
| control | additional control parameters, see ?inference.control | 
Value
an object inheriting class 'mcmcspatsurv' for which there exist methods for printing, summarising and making inference from.
References
- Benjamin M. Taylor and Barry S. Rowlingson (2017). spatsurv: An R Package for Bayesian Inference with Spatial Survival Models. Journal of Statistical Software, 77(4), 1-32, doi:10.18637/jss.v077.i04. 
See Also
tpowHaz, exponentialHaz, gompertzHaz, makehamHaz, weibullHaz,
covmodel, ExponentialCovFct, SpikedExponentialCovFct,
mcmcpars, mcmcPriors, inference.control
textSummary function
Description
A function to print a text description of the inferred paramerers beta and eta from a call to the function lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars or lgcpPredictMultitypeSpatialPlusPars
Usage
textSummary(
  obj,
  digits = 3,
  scientific = -3,
  inclIntercept = FALSE,
  printmode = "LaTeX",
  ...
)
Arguments
| obj | an object produced by a call to lgcpPredictSpatialPlusPars, lgcpPredictAggregateSpatialPlusPars, lgcpPredictSpatioTemporalPlusPars orlgcpPredictMultitypeSpatialPlusPars | 
| digits | see the option "digits" in ?format | 
| scientific | see the option "scientific" in ?format | 
| inclIntercept | logical: whether to summarise the intercept term, default is FALSE. | 
| printmode | the format of the text to return, can be 'LaTeX' (the default) or 'text' for plain text. | 
| ... | other arguments passed to the function "format" | 
Value
A text summary, that can be pasted into a LaTeX document and later edited.
timevaryingPL function
Description
A function to
Usage
timevaryingPL(
  formula,
  t0,
  t,
  delta,
  dist,
  data,
  ties = "Efron",
  optimcontrol = NULL
)
Arguments
| formula | a formula of the form 'S ~ coef1 + coef2' etc the object S will be created | 
| t0 | X | 
| t | X | 
| delta | censoring indicator a vector of 1 for an event and 0 for censoring | 
| dist | X | 
| data | X | 
| ties | X default is Efron | 
| optimcontrol | X | 
Value
...
tpowHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from the 'powers of t' model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
tpowHaz(powers)
Arguments
| powers | a vector of powers of t. These are powers are treated as fixed in estimation routines and it is assumed that the log cumulatice baseline hazard is a linear combination of these powers of t | 
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required 
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames, 
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse 
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian, 
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives 
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv 
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a 
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters, 
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts 
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest. 
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect 
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a 
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC, 
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull 
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'
See Also
exponentialHaz, gompertzHaz, makehamHaz, weibullHaz
transformweibull function
Description
A function to back-transform estimates of the parameters of the weibull baseline hazard function, so they are commensurate with R's inbuilt density functions. Transforms from (shape, scale) to (alpha, lambda)
Usage
transformweibull(x)
Arguments
| x | a vector of paramters | 
Value
the transformed parameters. For the weibull model, this is the back-transform from 'alpha' and 'lambda' to 'shape' 'scale' (see ?dweibull).
A text progress bar with label
Description
This is the base txtProgressBar but with a little modification to implement the label parameter for style=3. For full info see txtProgressBar
Usage
txtProgressBar2(
  min = 0,
  max = 1,
  initial = 0,
  char = "=",
  width = NA,
  title = "",
  label = "",
  style = 1
)
Arguments
| min | min value for bar | 
| max | max value for bar | 
| initial | initial value for bar | 
| char | the character (or character string) to form the progress bar. | 
| width | progress bar width | 
| title | ignored | 
| label | text to put at the end of the bar | 
| style | bar style | 
vcov.mcmcspatsurv function
Description
A function to return the variance covariance matrix of the parameters beta, omega and eta
Usage
## S3 method for class 'mcmcspatsurv'
vcov(object, ...)
Arguments
| object | an object inheriting class mcmcspatsurv | 
| ... | other arguments, not used here | 
Value
the variance covariance matrix of the parameters beta, omega and eta
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
vcov.mlspatsurv function
Description
A function to return the variance covariance matrix of the parameters beta, omega and eta
Usage
## S3 method for class 'mlspatsurv'
vcov(object, ...)
Arguments
| object | an object inheriting class mcmcspatsurv | 
| ... | other arguments, not used here | 
Value
the variance covariance matrix of the parameters beta, omega and eta
See Also
print.mcmcspatsurv, quantile.mcmcspatsurv, summary.mcmcspatsurv, frailtylag1, spatialpars, hazardpars, fixedpars, randompars, baselinehazard, predict.mcmcspatsurv, priorposterior, posteriorcov, MCE, hazardexceedance
weibullHaz function
Description
A function to define a parametric proportional hazards model where the baseline hazard is taken from the Weibull model. This function returns an object inheriting class 'basehazardspec', list of functions 'distinfo', 'basehazard', 'gradbasehazard', 'hessbasehazard', 'cumbasehazard', 'gradcumbasehazard', 'hesscumbasehazard' and 'densityquantile'
Usage
weibullHaz(MLinits = NULL)
Arguments
| MLinits | initial values for optim, default is NULL | 
Details
The distinfo function is used to provide basic distribution specific information to other spatsurv functions. The user is required
to provide the following information in the returned list: npars, the number of parameters in this distribution; parnames,
the names of the parameters; trans, the transformation scale on which the priors will be provided; itrans, the inverse
transformation function that will be applied to the parameters before the hazard, and other functions are evaluated; jacobian,
the derivative of the inverse transformation function with respect to each of the parameters; and hessian, the second derivatives
of the inverse transformation function with respect to each of the parameters – note that currently the package spatsurv
only allows the use of functions where the parameters are transformed independently.
The basehazard function is used to evaluate the baseline hazard function for the distribution of interest. It returns a
function that accepts as input a vector of times, t and returns a vector.
The gradbasehazard function is used to evaluate the gradient of the baseline hazard function with respect to the parameters,
this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hessbasehazard function is used to evaluate the Hessian of the baseline hazard function. It returns a function that accepts
as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The cumbasehazard function is used to evaluate the cumulative baseline hazard function for the distribution of interest.
It returns a function that accepts as input a vector of times, t and returns a vector.
The gradcumbasehazard function is used to evaluate the gradient of the cumulative baseline hazard function with respect
to the parameters, this typically returns a vector. It returns a function that accepts as input a vector of times, t, and returns a matrix.
The hesscumbasehazard function is used to evaluate the Hessian of the cumulative baseline hazard function. It returns a
function that accepts as input a vector of times, t and returns a list of hessian matrices corresponding to each t.
The densityquantile function is used to return quantiles of the density function. This is NOT REQUIRED for running the MCMC,
merely for us in post-processing with the predict function where type is 'densityquantile'. In the case of the Weibull
model for the baseline hazard, it can be shown that the q-th quantile is:
Value
an object inheriting class 'basehazardspec'