A flexible framework combining 
  variable screening and random projection techniques for fitting ensembles of 
  predictive generalized linear models to high-dimensional data.
  Designed for extensibility, the package implements
  key techniques as S3 classes with user-friendly constructors,
  enabling easy integration and development of new procedures for 
  high-dimensional applications. For more details see 
  Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130> and
  Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>.
| Version: | 1.1.1 | 
| Depends: | R (≥ 4.0.0) | 
| Imports: | Matrix, ROCR, Rdpack, ggplot2, rlang, glmnet, methods | 
| Suggests: | testthat (≥ 3.0.0), foreach, doParallel, doRNG, robustbase, cellWise, VariableScreening, ggpubr, R.matlab | 
| Published: | 2025-08-19 | 
| DOI: | 10.32614/CRAN.package.spareg | 
| Author: | Laura Vana-Gür  [aut, cre],
  Roman Parzer  [aut],
  Peter Filzmoser  [aut] | 
| Maintainer: | Laura Vana-Gür  <laura.vana.guer at tuwien.ac.at> | 
| BugReports: | https://github.com/lauravana/spareg/issues | 
| License: | GPL-3 | 
| URL: | https://github.com/lauravana/spareg | 
| NeedsCompilation: | no | 
| Citation: | spareg citation info | 
| Materials: | README, NEWS | 
| CRAN checks: | spareg results |