spacyr provides a convenient R wrapper around the Python spaCy package. It offers easy access to the following functionality of spaCy:
It also allows a user to request additional token-level attributes directly from spaCy.
spacyr also takes care of the installation of not only spaCy but also Python itself, in a self-contained miniconda or virtualenv environment, and can install additional language models or upgrade spaCy as new models and versions become available.
Finally, spacyr works seamlessly with the quanteda package, although such use is optional.
spacyr works through the reticulate package that allows R to harness the power of Python. To access the underlying Python functionality, spacyr must open a connection by being initialized within your R session.
We provide a function for this, spacy_initialize(),
which attempts to make this process as painless as possible. When spaCy
has been installed in a conda environment with
spacy_install() (and see https://spacyr.quanteda.io for detailed instructions on
this setup), spacy_initialize() automatically detects it
and initializes spaCy. If spaCy is installed in a normal environment
(i.e. not in a condaenv or virtualenv), spacy_initialize()
searches your system for Python executables, and testing which have
spaCy installed.
For power users with a specialized setup of spaCy (i.e. users who have a conda environment already set up for spaCy), it is possible to specify which environment or python executable to be used through one of the following methods:
condaenv argument: supplying the name of conda
environmentvirtualenv argument: supplying the path to the python
virtual environmentpython_executable argument: supplying the path to the
pythonThe spacy_parse() function is spacyr’s
main workhorse. It calls spaCy both to tokenize and tag the texts. It
provides two options for part of speech tagging, plus options to return
word lemmas, recognize names entities or noun phrases recognition, and
identify grammatical structures features by parsing syntactic
dependencies. It returns a data.frame corresponding to the
emerging text
interchange format for token data.frames.
The tokenization approach taken by spaCy is inclusive: it includes all tokens without restrictions, including punctuation characters and symbols.
Example:
txt <- c(d1 = "spaCy is great at fast natural language processing.",
         d2 = "Mr. Smith spent two years in North Carolina.")
# process documents and obtain a data.table
parsedtxt <- spacy_parse(txt)
parsedtxt
##    doc_id sentence_id token_id      token      lemma   pos   entity
## 1      d1           1        1      spaCy      spacy  INTJ         
## 2      d1           1        2         is         be   AUX         
## 3      d1           1        3      great      great   ADJ         
## 4      d1           1        4         at         at   ADP         
## 5      d1           1        5       fast       fast   ADJ         
## 6      d1           1        6    natural    natural   ADJ         
## 7      d1           1        7   language   language  NOUN         
## 8      d1           1        8 processing processing  NOUN         
## 9      d1           1        9          .          . PUNCT         
## 10     d2           1        1        Mr.        Mr. PROPN         
## 11     d2           1        2      Smith      Smith PROPN PERSON_B
## 12     d2           1        3      spent      spend  VERB         
## 13     d2           1        4        two        two   NUM   DATE_B
## 14     d2           1        5      years       year  NOUN   DATE_I
## 15     d2           1        6         in         in   ADP         
## 16     d2           1        7      North      North PROPN    GPE_B
## 17     d2           1        8   Carolina   Carolina PROPN    GPE_I
## 18     d2           1        9          .          . PUNCTTwo fields are available for part-of-speech tags. The
pos field returned is the Universal tagset
for parts-of-speech, a general scheme that most users will find
serves their needs, and also that provides equivalencies across
languages. spacyr also provides a more detailed tagset,
defined in each spaCy language model. For English, this is the OntoNotes
5 version of the Penn Treebank tag set.
spacy_parse(txt, tag = TRUE, entity = FALSE, lemma = FALSE)
##    doc_id sentence_id token_id      token   pos tag
## 1      d1           1        1      spaCy  INTJ  UH
## 2      d1           1        2         is   AUX VBZ
## 3      d1           1        3      great   ADJ  JJ
## 4      d1           1        4         at   ADP  IN
## 5      d1           1        5       fast   ADJ  JJ
## 6      d1           1        6    natural   ADJ  JJ
## 7      d1           1        7   language  NOUN  NN
## 8      d1           1        8 processing  NOUN  NN
## 9      d1           1        9          . PUNCT   .
## 10     d2           1        1        Mr. PROPN NNP
## 11     d2           1        2      Smith PROPN NNP
## 12     d2           1        3      spent  VERB VBD
## 13     d2           1        4        two   NUM  CD
## 14     d2           1        5      years  NOUN NNS
## 15     d2           1        6         in   ADP  IN
## 16     d2           1        7      North PROPN NNP
## 17     d2           1        8   Carolina PROPN NNP
## 18     d2           1        9          . PUNCT   .The Penn Treebank is specific to English parts of speech. For other
language models, the detailed tagset will be based on a different
scheme. In the German language model, for instance, the universal tagset
(pos) remains the same, but the detailed tagset
(tag) is based on the TIGER
Treebank scheme. Full details are available from the spaCy models web page.
Direct parsing of texts is also possible, using
spacy_tokenize(). The options are designed to match
those in the tokens()
function from the quanteda package. By default this
returns a named list (where the document name is the list element
name):
spacy_tokenize(txt)
## $d1
## [1] "spaCy"      "is"         "great"      "at"         "fast"      
## [6] "natural"    "language"   "processing" "."         
## 
## $d2
## [1] "Mr."      "Smith"    "spent"    "two"      "years"    "in"       "North"   
## [8] "Carolina" "."but it can also output a data.frame:
spacyr can extract entities, either named or “extended”
from the output of spacy_parse().
parsedtxt <- spacy_parse(txt, lemma = FALSE, entity = TRUE, nounphrase = TRUE)
entity_extract(parsedtxt)
##   doc_id sentence_id         entity entity_type
## 1     d2           1          Smith      PERSON
## 2     d2           1 North_Carolina         GPE“Extended” entities including entities such as dates, events, and cardinal or ordinal quantities.
entity_extract(parsedtxt, type = "all")
##   doc_id sentence_id         entity entity_type
## 1     d2           1          Smith      PERSON
## 2     d2           1      two_years        DATE
## 3     d2           1 North_Carolina         GPEOne very useful feature is to use the consolidation functions to compound multi-word entities into single “tokens” (as they would in a language like German):
entity_consolidate(parsedtxt) %>%
    tail()
##    doc_id sentence_id token_id          token    pos entity_type
## 11     d2           1        2          Smith ENTITY      PERSON
## 12     d2           1        3          spent   VERB            
## 13     d2           1        4      two_years ENTITY        DATE
## 14     d2           1        5             in    ADP            
## 15     d2           1        6 North_Carolina ENTITY         GPE
## 16     d2           1        7              .  PUNCTIn a similar manner to named entity extraction, spacyr can extract or concatenate [noun phrases* (or noun chunks).
nounphrase_extract(parsedtxt)
##   doc_id sentence_id                       nounphrase
## 1     d1           1 fast_natural_language_processing
## 2     d2           1                        Mr._Smith
## 3     d2           1                        two_years
## 4     d2           1                   North_CarolinaJust as with entities, noun phrases can also be consolidated into single “tokens”:
nounphrase_consolidate(parsedtxt)
##    doc_id sentence_id token_id                            token        pos
## 1      d1           1        1                            spaCy       INTJ
## 2      d1           1        2                               is        AUX
## 3      d1           1        3                            great        ADJ
## 4      d1           1        4                               at        ADP
## 5      d1           1        5 fast_natural_language_processing nounphrase
## 6      d1           1        6                                .      PUNCT
## 7      d2           1        1                        Mr._Smith nounphrase
## 8      d2           1        2                            spent       VERB
## 9      d2           1        3                        two_years nounphrase
## 10     d2           1        4                               in        ADP
## 11     d2           1        5                   North_Carolina nounphrase
## 12     d2           1        6                                .      PUNCTIf a user’s only goal is entity or noun phrase extraction, then two functions make this easy without first parsing the entire text:
spacy_extract_entity(txt)
##   doc_id           text ent_type start_id length
## 1     d2          Smith   PERSON        2      1
## 2     d2      two years     DATE        4      2
## 3     d2 North Carolina      GPE        7      2
spacy_extract_nounphrases(txt)
##   doc_id                             text  root_text start_id root_id length
## 1     d1 fast natural language processing processing        5       8      4
## 2     d2                        Mr. Smith      Smith        1       2      2
## 3     d2                        two years      years        4       5      2
## 4     d2                   North Carolina   Carolina        7       8      2Detailed parsing of syntactic dependencies is possible with the
dependency = TRUE option:
spacy_parse(txt, dependency = TRUE, lemma = FALSE, pos = FALSE)
##    doc_id sentence_id token_id      token head_token_id  dep_rel   entity
## 1      d1           1        1      spaCy             2    nsubj         
## 2      d1           1        2         is             2     ROOT         
## 3      d1           1        3      great             2    acomp         
## 4      d1           1        4         at             2     prep         
## 5      d1           1        5       fast             8     amod         
## 6      d1           1        6    natural             7     amod         
## 7      d1           1        7   language             8 compound         
## 8      d1           1        8 processing             4     pobj         
## 9      d1           1        9          .             2    punct         
## 10     d2           1        1        Mr.             2 compound         
## 11     d2           1        2      Smith             3    nsubj PERSON_B
## 12     d2           1        3      spent             3     ROOT         
## 13     d2           1        4        two             5   nummod   DATE_B
## 14     d2           1        5      years             3     dobj   DATE_I
## 15     d2           1        6         in             3     prep         
## 16     d2           1        7      North             8 compound    GPE_B
## 17     d2           1        8   Carolina             6     pobj    GPE_I
## 18     d2           1        9          .             3    punctIt is also possible to extract additional attributes of spaCy
tokens with the additional_attributes option. For
example, detecting numbers and email addresses:
spacy_parse("I have six email addresses, including me@mymail.com.", 
            additional_attributes = c("like_num", "like_email"),
            lemma = FALSE, pos = FALSE, entity = FALSE)
##   doc_id sentence_id token_id         token like_num like_email
## 1  text1           1        1             I    FALSE      FALSE
## 2  text1           1        2          have    FALSE      FALSE
## 3  text1           1        3           six     TRUE      FALSE
## 4  text1           1        4         email    FALSE      FALSE
## 5  text1           1        5     addresses    FALSE      FALSE
## 6  text1           1        6             ,    FALSE      FALSE
## 7  text1           1        7     including    FALSE      FALSE
## 8  text1           1        8 me@mymail.com    FALSE       TRUE
## 9  text1           1        9             .    FALSE      FALSEBy default, spacyr loads an English language model.
You also can load spaCy’s other language models or use one
of the language
models with alpha support by specifying the model
option when calling spacy_initialize(). We have
successfully tested following language models with spaCy version
2.0.18.
| Language | ModelName | 
|---|---|
| German | de | 
| Spanish | es | 
| Portuguese | pt | 
| French | fr | 
| Italian | it | 
| Dutch | nl | 
This is an example of parsing German texts.
## first finalize the old instance of spaCy if it's loaded
spacy_finalize()
spacy_initialize(model = "de_core_news_sm")
## successfully initialized (spaCy Version: 3.7.2, language model: de_core_news_sm)
txt_german <- c(R = "R ist eine freie Programmiersprache für statistische Berechnungen und Grafiken. Sie wurde von Statistikern für Anwender mit statistischen Aufgaben entwickelt.",
               python = "Python ist eine universelle, üblicherweise interpretierte höhere Programmiersprache. Sie will einen gut lesbaren, knappen Programmierstil fördern.")
results_german <- spacy_parse(txt_german, dependency = FALSE, lemma = FALSE, tag = TRUE)
results_german
##    doc_id sentence_id token_id              token   pos   tag entity
## 1       R           1        1                  R     X    XY       
## 2       R           1        2                ist   AUX VAFIN       
## 3       R           1        3               eine   DET   ART       
## 4       R           1        4              freie   ADJ  ADJA       
## 5       R           1        5 Programmiersprache  NOUN    NN       
## 6       R           1        6                für   ADP  APPR       
## 7       R           1        7       statistische   ADJ  ADJA       
## 8       R           1        8       Berechnungen  NOUN    NN       
## 9       R           1        9                und CCONJ   KON       
## 10      R           1       10           Grafiken  NOUN    NN       
## 11      R           1       11                  . PUNCT    $.       
## 12      R           2        1                Sie  PRON  PPER       
## 13      R           2        2              wurde   AUX VAFIN       
## 14      R           2        3                von   ADP  APPR       
## 15      R           2        4       Statistikern  NOUN    NN       
## 16      R           2        5                für   ADP  APPR       
## 17      R           2        6           Anwender  NOUN    NN       
## 18      R           2        7                mit   ADP  APPR       
## 19      R           2        8      statistischen   ADJ  ADJA       
## 20      R           2        9           Aufgaben  NOUN    NN       
## 21      R           2       10         entwickelt  VERB  VVPP       
## 22      R           2       11                  . PUNCT    $.       
## 23 python           1        1             Python  NOUN    NN MISC_B
## 24 python           1        2                ist   AUX VAFIN       
## 25 python           1        3               eine   DET   ART       
## 26 python           1        4        universelle   ADJ  ADJA       
## 27 python           1        5                  , PUNCT    $,       
## 28 python           1        6      üblicherweise   ADV   ADV       
## 29 python           1        7     interpretierte   ADJ  ADJA       
## 30 python           1        8             höhere   ADJ  ADJA       
## 31 python           1        9 Programmiersprache  NOUN    NN       
## 32 python           1       10                  . PUNCT    $.       
## 33 python           2        1                Sie  PRON  PPER       
## 34 python           2        2               will   AUX VMFIN       
## 35 python           2        3              einen   DET   ART       
## 36 python           2        4                gut   ADV  ADJD       
## 37 python           2        5           lesbaren   ADJ  ADJA       
## 38 python           2        6                  , PUNCT    $,       
## 39 python           2        7            knappen   ADJ  ADJA       
## 40 python           2        8    Programmierstil  NOUN    NN       
## 41 python           2        9            fördern  VERB VVINF       
## 42 python           2       10                  . PUNCT    $.
spacy_finalize()Note that the additional language models must first be installed in
spaCy. When spaCy has been installed through
spacy_install(), installation of additional language models
is very simple. For example, the German language model can be installed
(spacy_download_langmodel("de_core_news_sm")). In other
environments, you can install the model by entering
python -m spacy download de in the console.
The outputs and formats of spacyr are designed to integrate directly with the quanteda package.
For instance, many of its functions operate directly on spacyr objects, such as a parsed text.
require(quanteda, warn.conflicts = FALSE, quietly = TRUE)
docnames(parsedtxt)
## [1] "d1" "d2"
ndoc(parsedtxt)
## [1] 2
ntoken(parsedtxt)
## d1 d2 
##  9  9
ntype(parsedtxt)
## d1 d2 
##  9  9Conversion of tokens is easily performed, and the tokenizers in spacyr tend to be smarter than the purely syntactic pattern-based parsers used by quanteda.
spacy_initialize(model = "en_core_web_sm")
## successfully initialized (spaCy Version: 3.7.2, language model: en_core_web_sm)
parsedtxt <- spacy_parse(txt, pos = TRUE, tag = TRUE)
as.tokens(parsedtxt)
## Tokens consisting of 2 documents.
## d1 :
## [1] "spaCy"      "is"         "great"      "at"         "fast"      
## [6] "natural"    "language"   "processing" "."         
## 
## d2 :
## [1] "Mr."      "Smith"    "spent"    "two"      "years"    "in"       "North"   
## [8] "Carolina" "."
as.tokens(parsedtxt, include_pos = "pos")
## Tokens consisting of 2 documents.
## d1 :
## [1] "spaCy/INTJ"      "is/AUX"          "great/ADJ"       "at/ADP"         
## [5] "fast/ADJ"        "natural/ADJ"     "language/NOUN"   "processing/NOUN"
## [9] "./PUNCT"        
## 
## d2 :
## [1] "Mr./PROPN"      "Smith/PROPN"    "spent/VERB"     "two/NUM"       
## [5] "years/NOUN"     "in/ADP"         "North/PROPN"    "Carolina/PROPN"
## [9] "./PUNCT"
as.tokens(parsedtxt, include_pos = "tag")
## Tokens consisting of 2 documents.
## d1 :
## [1] "spaCy/UH"      "is/VBZ"        "great/JJ"      "at/IN"        
## [5] "fast/JJ"       "natural/JJ"    "language/NN"   "processing/NN"
## [9] "./."          
## 
## d2 :
## [1] "Mr./NNP"      "Smith/NNP"    "spent/VBD"    "two/CD"       "years/NNS"   
## [6] "in/IN"        "North/NNP"    "Carolina/NNP" "./."The latter is useful for say, selecting only nouns, using “glob”
pattern matching with quanteda’s
tokens_select() function:
spacy_parse("The cat in the hat ate green eggs and ham.", pos = TRUE) %>%
    as.tokens(include_pos = "pos") %>%
    tokens_select(pattern = c("*/NOUN"))
## Tokens consisting of 1 document.
## text1 :
## [1] "cat/NOUN"  "hat/NOUN"  "eggs/NOUN"Direct conversion of just the spaCy-based tokens is also possible:
spacy_tokenize(txt) %>%
    as.tokens()
## Tokens consisting of 2 documents.
## d1 :
## [1] "spaCy"      "is"         "great"      "at"         "fast"      
## [6] "natural"    "language"   "processing" "."         
## 
## d2 :
## [1] "Mr."      "Smith"    "spent"    "two"      "years"    "in"       "North"   
## [8] "Carolina" "."including for sentences, for which spaCy’s recognition is very smart:
txt2 <- "A Ph.D. in Washington D.C.  Mr. Smith went to Washington."
spacy_tokenize(txt2, what = "sentence") %>%
    as.tokens()
## Tokens consisting of 1 document.
## text1 :
## [1] "A Ph.D. in Washington D.C.  Mr. Smith went to Washington."This also works well with entity recognition, e.g.
If you prefer a tidy approach to text analysis, spacyr works nicely because it returns parsed texts and (optionally) tokenized texts as data.frame-based objects.
if (!requireNamespace("tidytext", quietly = TRUE))
  install.packages("tidytext", repos = "https://cran.rstudio.com/")
library("tidytext")
unnest_tokens(parsedtxt, word, token) %>%
    dplyr::anti_join(stop_words)
## Joining with `by = join_by(word)`
##   doc_id sentence_id token_id      lemma   pos tag   entity       word
## 1     d1           1        1      spacy  INTJ  UH               spacy
## 2     d1           1        5       fast   ADJ  JJ                fast
## 3     d1           1        6    natural   ADJ  JJ             natural
## 4     d1           1        7   language  NOUN  NN            language
## 5     d1           1        8 processing  NOUN  NN          processing
## 6     d2           1        2      Smith PROPN NNP PERSON_B      smith
## 7     d2           1        3      spend  VERB VBD               spent
## 8     d2           1        7      North PROPN NNP    GPE_B      north
## 9     d2           1        8   Carolina PROPN NNP    GPE_I   carolinaPart of speech filtering can then happen using dplyr:
spacyr’s output was designed to conform to the Text Interchange Format,
a cooperatively agreed standard structure for text package objects in R,
such as corpus and token objects. spacy_initialize() can
take a TIF corpus data.frame or character object as a valid input.
Moreover, the data.frames returned by spacy_parse() and
entity_consolidate() conform to the TIF tokens standard for
data.frame tokens objects. This will make it easier to use with any text
analysis package for R that works with TIF standard objects.
When spacy_initialize() is executed, a background
process of spaCy is attached in python space. This can take up a
significant size of memory especially when a larger language model is
used (e.g. en_core_web_lg).
When you do not need the connection to spaCy any longer, you can remove
the spaCy object by calling the spacy_finalize()
function.
By calling spacy_initialize() again, you can reattach
the backend spaCy.