It fits scale mixture of skew-normal linear mixed models using either an expectation–maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021) <doi:10.1002/sim.8870>.
| Version: | 1.1.2 | 
| Depends: | R (≥ 4.3), optimParallel | 
| Imports: | dplyr, ggplot2, methods, stats, future, ggrepel, haven, mvtnorm, nlme, purrr, furrr, matrixcalc, moments, numDeriv, relliptical, MomTrunc, TruncatedNormal | 
| Published: | 2024-12-15 | 
| DOI: | 10.32614/CRAN.package.skewlmm | 
| Author: | Fernanda L. Schumacher  [aut, cre],
  Larissa A. Matos  [aut],
  Victor H. Lachos  [aut],
  Katherine A. L. Valeriano  [aut],
  Nicholas Henderson [ctb],
  Ravi Varadhan [ctb] | 
| Maintainer: | Fernanda L. Schumacher  <fernandalschumacher at gmail.com> | 
| BugReports: | https://github.com/fernandalschumacher/skewlmm/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/fernandalschumacher/skewlmm | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| In views: | MixedModels, Robust | 
| CRAN checks: | skewlmm results |