Package ‘shinyEditor’

February 8, 2026

Type Package

Title 'Ace' and 'Monaco' Editors Bindings for 'shiny' Application
Version 0.1.0

Date 2026-02-05

Maintainer zearoby <949386232@qq.com>

Description 'Ace' and 'Monaco' editor bindings to enable a rich text widget
within 'shiny' application and provide more features, e.g. text comparison,
spell checking and an extra 'SAS' code highlight mode.

License MIT + file LICENSE
URL https://github.com/zearoby/shinyEditor

BugReports https://github.com/zearoby/shinyEditor/issues
Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>=4.0.0)

Imports htmlwidgets, jsonlite, memoise, shinyjs, shiny, systemfonts,
methods, yaml

Suggests devtools, testthat
Config/testthat/edition 3
NeedsCompilation no

Author zearoby [aut, cre]

Repository CRAN

Date/Publication 2026-02-08 17:00:03 UTC

Contents

aceDiffEditor L
aceDiffEditor-shiny
aceEditor
aceEditor-shiny

https://github.com/zearoby/shinyEditor
https://github.com/zearoby/shinyEditor/issues

Index

Contents
appendAceCompleter e e e 7
check_output_id 8
createAceDiffView L 9
createMonacoDiffViewo oL 9
getAceCursorPosition Lo 10
getAceModes L e 11
getAceSelectedText L 11
getAceSelectionRange 12
getAceThemes 12
getAceValue L e e 13
getMonacoCursorPosition oo 13
getMonacoLanguages Lol e e e e e e 14
getMonacoSelectedText L 14
getMonacoSelectionRange Lo 15
getMonacoThemes L 15
getMonacoValue L e 16
getPackageStatus L. e 16
getSystemFontFamilies o 17
monacoDiffEditor L 17
monacoDiffEditor-shiny 18
monacoEditor 19
monacoEditor-shiny L 21
onAceEditorReady 21
onMonacoEditorReady L 22
removeAceCompleter 23
removeAceDiffViewo L 23
removeMonacoDiffView oo 24
setAceEnableAutocompletion Lo 24
setAceEnableSpellCheck 25
setAceHighlightActiveLine 26
setAceLineNumbersVisible o 27
setAceMode 27
setAceNewLineMode 28
SEtACEOPLON 29
SEtACEOPHIONS e e 29
setAceReadOnly e 30
setAceShowlnvisibles 31
setAceStatusBarVisible Lo 31
setAceTheme L 32
setAceValue L. 33
setMonacoLanguage e 33
setMonacoTheme e 34
setMonacoValue L 35
updateMonacoOption L. e 35
updateMonacoOptionso e e e e e e 36

aceDiffEditor 3

aceDiffEditor Render an Ace aceDiffEditor

Description

Render an Ace diff editor on an application page.

Usage
aceDiffEditor(
valueA,
valueB,
mode = "ace/mode/text",

enableSpellCheck = FALSE,

width = NULL,
height = NULL,
elementId = NULL

)
Arguments
valueA character: Set text to first editor when initializing
valueB character: Set text to second editor when initializing
mode character: The Ace shinyEditor::getAceModes() to be used by the editor
enableSpellCheck
logical: Enable check typo of spelling
For more EditorOption, please referto https://ace.c9.io/api/interfaces/
ace.Ace.EditorOptions.html
width integer, character: Width in pixels (optional, defaults to automatic sizing)
height integer, character: Height in pixels (optional, defaults to automatic sizing)
elementId character: An element id for the widget (a random character by default)
Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor::aceDiffEditor(valueA = "text1"”, valueB = "text2")
3

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

4 aceEditor

aceDiffEditor-shiny Shiny bindings for aceDiffEditor

Description
Output and render functions for using aceDiffEditor within Shiny applications and interactive Rmd
documents.

Usage
aceDiffEditorOutput(outputId, width = "100%", height = "400px")

renderAceDiffEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', "auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a aceDiffEditor
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

Value
htmlwidgets::shiny WidgetOutput
htmlwidgets::shinyRenderWidget

aceEditor Render an Ace editor

Description

Render an Ace editor on an application page.

Usage

aceEditor(
value,
enableBasicAutocompletion = TRUE,
enableSnippets = TRUE,
enablelLiveAutocompletion = TRUE,
enableSpellCheck = FALSE,

aceEditor

fontFamily = "Consolas”,
fontSize = 16,
highlightActivelLine = TRUE,
mode = "ace/mode/text”,
newLineMode = "auto”,
placeholder = NULL,
printMarginColumn = 120,
readOnly = FALSE,
scrollPastEnd = 0.5,
showInvisibles = TRUE,
showLineNumbers = TRUE,
showPrintMargin = TRUE,
showStatusBar = TRUE,

tabSize = 4,

theme = "ace/theme/xcode”,
useSoftTabs = TRUE,

wrap = FALSE,

width = NULL,

height = NULL,
elementId = NULL

Arguments

value character: Set text to editor when initializing
enableBasicAutocompletion

logical: Enable basic code automatically completion when editing
enableSnippets logical: Enable code snippets automatically completion when editing
enablelLiveAutocompletion

logical: Enable live code automatically completion when editing
enableSpellCheck

logical: Enable check typo of spelling

fontFamily character: System font name
fontSize integer: Font size
highlightActivelLine

logical: Highlight the current line
mode character: The Ace shinyEditor: :getAceModes() to be used by the editor
newLineMode character: Set the end of line character Valid values: windows, unix, auto
placeholder character: A string to use a placeholder when the editor has no content
printMarginColumn

integer: The print margin column width
readOnly logical: Set editor to readOnly
scrollPastEnd integer: Scroll past end Valid values: 0 to 1, TRUE, FALSE

showInvisibles logical: Show invisible characters

6 aceEditor-shiny

showLineNumbers
logical: Show line number area

showPrintMargin
logical: Show print margin

showStatusBar logical: Show statusBar

tabSize integer: Tab size

theme character: The Ace shinyEditor::getAceThemes() to be used by the editor
useSoftTabs logical: Replace tabs by spaces

wrap logical: If set to TRUE, Ace will enable word wrapping

For more EditorOption, please referto https://ace.c9.io/api/interfaces/
ace.Ace.EditorOptions.html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)
Value

Widget for shiny application

Examples
if(interactive()){
shinyEditor::aceEditor(value = "text")
3
aceEditor-shiny Shiny bindings for aceEditor
Description

Output and render functions for using aceEditor within Shiny applications and interactive Rmd
documents.

Usage

aceEditorOutput(outputId, width = "100%", height = "400px")

renderAceEditor(expr, env = parent.frame(), quoted = FALSE)

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

appendAceCompleter 7

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%"', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a aceEditor
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

Value
htmlwidgets::shiny WidgetOutput
htmlwidgets::shinyRenderWidget

appendAceCompleter Add completer

Description

Add completer to editor.completers. Please refer to https://ace.c9.io/api/interfaces/ace.
Ace.Completer.html

Usage
appendAceCompleter(
outputld,
id,
completer,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The element id of the first editor
id list: Completer id
completer list: Completer list
session environment: The Shiny session object for the editor (from the server function
of the Shiny app).
Value

No return value, called for side effects

https://ace.c9.io/api/interfaces/ace.Ace.Completer.html
https://ace.c9.io/api/interfaces/ace.Ace.Completer.html

Examples

if(interactive()){

shinyEditor: :appendAceCompleter(
outputld = "editor”,
id = "custom_completer”,
completer = list(

"function”, caption = "function”, meta = "keyword"),

"if", caption = "if", meta = "keyword"),

"else", caption = "else”, meta = "keyword"),

"for", caption = "for", meta = "keyword"),

"while"”, caption = "while"”, meta = "keyword"),

list(value
list(value
list(value
list(value

list(value =
list(value =

list(value =

)

"console.log()", caption

check_output_id

"console.log"”, meta = "function"),

"myCustomFunction()"”, caption = "myCustomFunction”, meta = "custom")

check_output_id

Check outputld

Description

Check outputld is character and exist in shiny session

Usage

check_output_id(outputId)

Arguments

outputId character: The id of the table to be manipulated
Examples

if(interactive()){

check_output_id("table_id")

createAceDiff View 9

createAceDiffView Create diff view

Description

Create diff view for exist editors

Usage

createAceDiffView(
editorAld,
editorBId,
sessionA = shiny::getDefaultReactiveDomain(),
sessionB = shiny::getDefaultReactiveDomain()

)
Arguments
editorAld character: The element id of the first editor
editorBId character: The element id of the second editor
sessionA environment: The Shiny session object for the first editor (from the server func-
tion of the Shiny app).
sessionB environment: The Shiny session object for the second editor (from the server
function of the Shiny app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::createAceDiffView(editorAId = "editor1”, editorBId = "editor2")
3

createMonacoDiffView Create monaco diff view

Description

Create monaco diff view for exist editors in an exist widget

10 getAceCursorPosition

Usage

createMonacoDiffView(
editorAld,
editorBId,
elementlId,
sessionA = shiny::getDefaultReactiveDomain(),
sessionB = shiny::getDefaultReactiveDomain()

)
Arguments
editorAld character: The element id of the first editor
editorBId character: The element id of the second editor
elementId character: The element id of the exist widget to show monacoDiffEditor
sessionA environment: The Shiny session object for the first editor (from the server func-
tion of the Shiny app)
sessionB environment: The Shiny session object for the second editor (from the server
function of the Shiny app)
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor: :createMonacoDiffView(editorAId = "editor1”, editorBId = "editor2")
3

getAceCursorPosition Get cursor position in aceEditor

Description

Get cursor position in aceEditor

Usage

getAceCursorPosition(outputId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny

app).

getAceModes 11

Value

List of cursor position

Examples
if(interactive()){
shinyEditor::getAceCursorPosition(outputId = "editor")
}
getAceModes Get all ace modes
Description

Gets all of the available modes available in the installed version of ace editor. Modes are often the
programming or markup language which will be used in the editor and determine things like syntax
highlighting and code folding.

Usage
getAceModes ()

Value

List of all modes in Ace editor

getAceSelectedText Get selected text in aceEditor

Description

Get selected text in aceEditor

Usage

getAceSelectedText (outputId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

Character of selected text

12 getAceThemes

Examples

if(interactive()){
shinyEditor::getAceSelectedText (outputld = "editor")
}

getAceSelectionRange Get selection range in aceEditor

Description

Get selection range in aceEditor

Usage

getAceSelectionRange(outputld, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

List of selection range

Examples
if(interactive()){
shinyEditor::getAceSelectionRange(outputld = "editor")
3
getAceThemes Get all ace themes
Description

Gets all of the available themes available in the installed version of ace editor. Themes determine
the styling and colors used in the editor.

Usage

getAceThemes()

Value

List of all themes in Ace editor

getAceValue 13

getAceValue Get value in aceEditor

Description

Get value in aceEditor

Usage

getAceValue(outputld, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

Character of editor text

Examples

if(interactive()){
shinyEditor::getAceValue(outputId = "editor")
}

getMonacoCursorPosition
Get cursor position in monacoEditor

Description

Get cursor position in monacoEditor

Usage

getMonacoCursorPosition(outputId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny

app).

14 getMonacoSelectedText

Value

List of cursor position

Examples
if(interactive()){
shinyEditor::getMonacoCursorPosition(outputId = "editor")
}
getMonacolLanguages Get all ace modes
Description

Gets all of the available modes available in the installed version of ace editor. Modes are often the
programming or markup language which will be used in the editor and determine things like syntax
highlighting and code folding.

Usage

getMonacolLanguages ()

Value

List of all languages in Monaco editor

getMonacoSelectedText Get selected text in monacoEditor

Description

Get selected text in monacoEditor

Usage

getMonacoSelectedText (outputld, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

Character of selected text

getMonacoSelectionRange 15

Examples

if(interactive()){
shinyEditor::getMonacoSelectedText(outputId = "editor™)
}

getMonacoSelectionRange
Get selection range in monacoEditor

Description

Get selection range in monacoEditor

Usage

getMonacoSelectionRange (outputlId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

List of selection range

Examples
if(interactive()){
shinyEditor::getMonacoSelectionRange (outputld = "editor")
3
getMonacoThemes Get all monaco themes
Description

Gets all of the available themes available in the installed version of monaco editor. Themes deter-
mine the styling and colors used in the editor.

Usage

getMonacoThemes ()

Value

List of all themes in Monaco editor

16 getPackageStatus

getMonacoValue Get value in monacoEditor

Description

Get value in monacoEditor

Usage

getMonacoValue(outputld, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

Character of editor text

Examples
if(interactive()){
shinyEditor::getMonacoValue(outputld = "editor")
3
getPackageStatus Get status of shinyEditor package
Description

Get status of shinyEditor package.

Usage
getPackageStatus()

Value

List of package name, package version, package date, Ace editor version, Monaco editor version

Examples

shinyEditor::getPackageStatus()

getSystemFontFamilies

17

getSystemFontFamilies Get system font families

Description

Get system font families

Usage

getSystemFontFamilies()

Value

List of system font families

monacoDiffEditor Render an Ace monacoDiffEditor

Description

Render an Ace diff editor on an application page.

Usage
monacoDiffEditor(
valueA,
valueB,
language = "plaintext”,

ignoreTrimWhitespace = FALSE,

width = NULL,
height = NULL,
elementId = NULL

)
Arguments
valueA character: Set text to first editor when initializing
valueB character: Set text to second editor when initializing
language character: The initial language of the auto created model in the editor. To not
automatically create a model, use model: null
ignoreTrimWhitespace

logical: Compute the diff by ignoring leading/trailing whitespace Defaults to

false

18 monacoDiffEditor-shiny

For more arguments, please refer to https://microsoft.github.io/monaco-editor/
typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)
Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor: :monacoDiffEditor(valueA = "text1”, valueB = "text2")
3

monacoDiffEditor-shiny
Shiny bindings for monacoDiffEditor

Description
Output and render functions for using monacoDiffEditor within Shiny applications and interactive
Rmd documents.

Usage

monacoDiffEditorOutput(outputId, width = "100%", height = "400px")

renderMonacoDiffEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%"', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a monacoDiffEditor
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

Value
htmlwidgets::shiny WidgetOutput
htmlwidgets::shinyRenderWidget

https://microsoft.github.io/monaco-editor/typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html
https://microsoft.github.io/monaco-editor/typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html

monacoEditor

19

monacoEditor

Render an monaco editor

Description

Render an Monaco editor on an application page.

Usage

monacoEditor(
value,

fontFamily = "Consolas”,

fontSize = 16

’

insertSpaces = TRUE,

language = "plaintext”,
lineNumbers = "on",
placeholder = NULL,

readOnly = FALSE,
renderWhitespace = "boundary",
rulers = list(80, 100, 120),
scrollBeyondLastlLine = TRUE,

showStatusBar
tabSize = 4,
theme = "vs",

= TRUE,

wordWrap = "off",
automaticlLayout = TRUE,

width = NULL,
height = NULL

’

elementId = NULL

Arguments

value
fontFamily
fontSize

insertSpaces
language

lineNumbers

character: Set text to editor when initializing
character: The font family
integer: The font size

logical: Insert spaces when pressing Tab. This setting is overridden based on the
file contents when detectIndentation is on. Defaults to true.

character: The initial language of the auto created model in the editor. To not
automatically create a model, use model: null.

character, integer: Control the rendering of line numbers. If it is a function,
it will be invoked when rendering a line number and the return value will be
rendered. Otherwise, if it is a truthy, line numbers will be rendered normally
(equivalent of using an identity function). Otherwise, line numbers will not be
rendered. Defaults to on.

20 monacoEditor

placeholder character: Sets a placeholder for the editor. If set, the placeholder is shown if
the editor is empty.

readOnly logical: Should the editor be read only. See also domReadOnly. Defaults to
false.

renderWhitespace

character: Enable rendering of whitespace. Defaults to ’selection’. Valid values:
"all" | "none" | "boundary" | "selection" | "trailing"

rulers list: Render vertical lines at the specified columns. Defaults to empty list.
scrollBeyondLastLine
logical: Enable that scrolling can go one screen size after the last line. Defaults
to true.

showStatusBar logical: Show statusBar

tabSize integer: The number of spaces a tab is equal to. This setting is overridden based
on the file contents when detectIndentation is on. Defaults to 4.

theme character: Initial theme to be used for rendering. The current out-of-the-box
available themes are: ’vs’ (default), ’vs-dark’, "hc-black’, ’hc-light. You can
create custom themes via monaco.editor.defineTheme. To switch a theme, use
monaco.editor.setTheme. NOTE: The theme might be overwritten if the OS is
in high contrast mode, unless autoDetectHighContrast is set to false.

wordWrap character: Control the wrapping of the editor. When wordWrap = "off", the
lines will never wrap. When wordWrap = "on", the lines will wrap at the
viewport width. When wordWrap = "wordWrapColumn", the lines will wrap
at wordWrapColumn. When wordWrap = "bounded", the lines will wrap at
min(viewport width, wordWrapColumn). Defaults to "off". Valid values: "off" |
"on" | "wordWrapColumn" | "bounded"

automaticlLayout
logical: Enable that the editor will install a ResizeObserver to check if its con-
tainer dom node size has changed. Defaults to TRUE.

For more arguments, please refer to https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.

html
width integer, character: Width in pixels (optional, defaults to automatic sizing)
height integer, character: Height in pixels (optional, defaults to automatic sizing)
elementId character: An element id for the widget (a random character by default)

Value

Widget for shiny application

Examples
if(interactive()){
shinyEditor: :monacoEditor(value = "text")

}

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html

monacoEditor-shiny 21

monacoEditor-shiny Shiny bindings for monacoEditor

Description
Output and render functions for using monacoEditor within Shiny applications and interactive Rmd
documents.

Usage
monacoEditorOutput (outputId, width = "100%", height = "400px")

renderMonacoEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a monacoEditor
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save

an expression in a variable.

Value

htmlwidgets::shinyWidgetOutput
htmlwidgets::shinyRenderWidget

onAceEditorReady Fires upon aceEditor initialisation

Description

Fires upon aceEditor initialisation

Usage

onAceEditorReady(outputld, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny

app).

22 onMonacoEditorReady

Value

TRUE

Examples

if(interactive()){
shinyEditor: :onAceEditorReady(outputId = "editor")
3

onMonacoEditorReady Fires upon monacoEditor initialisation

Description

Fires upon monacoEditor initialisation

Usage

onMonacoEditorReady(outputId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value
TRUE
Examples
if(interactive()){

shinyEditor: :onMonacoEditorReady(outputld = "editor”)
3

removeAceCompleter 23

removeAceCompleter Remove completer

Description
Remove completer in editor.completers. Please refer to https://ace.c9.io/api/interfaces/
ace.Ace.Completer.html

Usage

removeAceCompleter(outputld, id, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The element id of the first editor
id list: Completer id
session environment: The Shiny session object for the editor (from the server function
of the Shiny app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::removeAceCompleter(outputld = "editor”, id = "custom_completer”)
3
removeAceDiffView Remove ace diff view
Description

Remove ace diff view for exist editors

Usage

removeAceDiffView(outputId, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The element id of the first editor
session environment: The Shiny session object for the editor (from the server function

of the Shiny app).

https://ace.c9.io/api/interfaces/ace.Ace.Completer.html
https://ace.c9.io/api/interfaces/ace.Ace.Completer.html

24

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::removeAceDiffView(outputId = "editor")

b

setAceEnableAutocompletion

removeMonacoDiffView Remove monaco diff view

Description

Remove monaco diff view for exist editors

Usage

removeMonacoDiffView(elementId)

Arguments

elementId character: The element id of the monacoDiffEditor

Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor: :removeMonacoDiffView(elementId = "editor1")
}

setAceEnableAutocompletion
Enable or disable code completion

Description

Enable or disable code completion in aceEditor

setAceEnableSpellCheck 25

Usage
setAceEnableAutocompletion(
outputlId,
enable,
session = shiny: :getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
enable logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceEnableAutocompletion(outputId = "editor”, enable = TRUE)

}

setAceEnableSpellCheck
Enable or disable spell check

Description

Enable or disable spell check

Usage

setAceEnableSpellCheck(
outputlId,
enable = TRUE,
session = shiny::getDefaultReactiveDomain()

)
Arguments
outputId character: The id of the editor
enable logical: Set spell check TRUE or FALSE
session environment: The Shiny session object for the editor (from the server function

of the Shiny app).

26

Value

No return value, called for side effects

Examples

if(interactive()){

setAceHighlightActiveLine

shinyEditor::setAceEnableSpellCheck(outputId = "editor"”, enable = TRUE)

3

setAceHighlightActiveline
Highlight the current line

Description

Determines whether or not the current line should be highlighted.

Usage

setAceHighlightActivelLine(
outputld,
visible,
session = shiny::getDefaultReactiveDomain()

Arguments
outputId character: The id of the editor
visible logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){

shinyEditor::setAceHighlightActivelLine(outputId = "editor"”, visible = TRUE)

}

setAceLineNumbers Visible 27

setAceLineNumbersVisible
Show or hide line number area in aceEditor

Description

Show or hide line number area in aceEditor

Usage
setAceLineNumbersVisible(
outputId,
visible,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
visible logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor: :setAceLineNumbersVisible(outputld = "editor”, visible = TRUE)
3
setAceMode Set new mode
Description

Set a new mode for the EditSession.

Usage

setAceMode(outputId, mode, session = shiny::getDefaultReactiveDomain())

28 setAceNewlLineMode
Arguments
outputId character: The id of the editor
mode character: The mode of the code language
session environment: The Shiny session object (from the server function of the Shiny
app).
Value
No return value, called for side effects
Examples
if(interactive()){
shinyEditor::setAceMode(outputIld = "editor”, mode = "r")
3
setAceNewLineMode Set the new line mode to aceEditor
Description
Set the new line mode to aceEditor
Usage
setAceNewLineMode (
outputld,
newLineMode,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
newLineMode character: The new line mode in aceEditor Valid values: windows, unix, auto
session environment: The Shiny session object (from the server function of the Shiny
app).
Value
No return value, called for side effects
Examples
if(interactive()){
shinyEditor::setAceNewLineMode(outputId = "editor"”, newLineMode = "windows")

}

setAceOption 29

setAceOption Set an option to aceEditor

Description

Set an option to aceEditor

Usage
setAceOption(
outputld,
name,
value,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
name character: Option name. Referto https://ace.c9.io/api/interfaces/ace.
Ace.EditorOptions.html
value character, integer, logical: Option value. Refer to https://ace.c9.io/api/
interfaces/ace.Ace.EditorOptions.html
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setAceOption(outputld = "editor”, name = "tabSize", value = 3)
3
setAceOptions Set options to aceEditor
Description

Set options to aceEditor

Usage

setAceOptions(outputId, options, session = shiny::getDefaultReactiveDomain())

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

30 setAceReadOnly

Arguments
outputId character: The id of the editor
options list: Editor options. Refer to https://ace.c9.io/api/interfaces/ace.Ace.
EditorOptions.html
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setAceOptions(outputId = "editor”, options = list())
3
setAceReadOnly Set readOnly for aceEditor
Description

If readOnly is true, then the editor is set to read-only mode, and none of the content can change.

Usage

setAceReadOnly(outputId, readOnly, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
readOnly logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor: :setAceReadOnly(outputId = "editor”, readOnly = TRUE)
3

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

setAceShowlInvisibles 31

setAceShowInvisibles Show or hide invisible characters in aceEditor

Description

Show or hide invisible characters in aceEditor

Usage
setAceShowInvisibles(
outputld,
visible,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
visible logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceShowInvisibles(outputId = "editor"”, visible = TRUE)

}

setAceStatusBarVisible
Show or hide the statusBar

Description

Show or hide the statusBar of aceEditor

Usage

setAceStatusBarVisible(
outputlId,
visible,
session = shiny: :getDefaultReactiveDomain()

32 setAceTheme

Arguments
outputId character: The id of the editor
visible logical: TRUE or FALSE
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setAceStatusBarVisible(outputld = "editor”, visible = TRUE)
3
setAceTheme Set new theme
Description

Set a new theme for the editor. theme should exist, like ace/theme/github

Usage

setAceTheme(outputId, theme, session = shiny::getDefaultReactiveDomain())

Arguments
outputId character: The id of the editor
theme character: The theme of the aceEditor
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceTheme(outputId = "editor”, theme = "ace/theme/github")

}

setAceValue 33

setAceValue Replace text with new text

Description

Replace all the lines in the current Document with the value of text.

Usage

setAceValue(
outputld,
value,
clearChangedHistory = FALSE,
session = shiny::getDefaultReactiveDomain()

)
Arguments
outputId character: The id of the editor
value character: The text of the editor
clearChangedHistory
logical: Clear undo/redo history
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setAceValue(outputId = "editor”, value = "text")
}
setMonacolLanguage Set language
Description

Set language to monaco editor

34 setMonacoTheme

Usage
setMonacolLanguage(
outputld,
language,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
language character: The highlight of code
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setMonacolLanguage(outputld = "editor”, language = "text")
3
setMonacoTheme Set new theme
Description

Set a new theme for the editor. theme should exist, like vs-dark

Usage

setMonacoTheme (theme)

Arguments

theme character: The theme of the monacoEditor

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setMonacoTheme(theme =

"

vs")

}

setMonaco Value 35

setMonacoValue Replace text with new text

Description

Replace all the lines in the current Document with the value of text.

Usage

setMonacoValue(
outputld,
value,
clearChangedHistory = FALSE,
session = shiny::getDefaultReactiveDomain()

)
Arguments
outputId character: The id of the editor
value character: The text of the editor
clearChangedHistory
logical: Clear undo/redo history
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples
if(interactive()){
shinyEditor::setMonacoValue(outputld = "editor"”, value = "text")
}
updateMonacoOption Update an option to monacoEditor
Description

Update an option to monacoEditor

36 updateMonacoOptions

Usage
updateMonacoOption(
outputld,
name,
value,
session = shiny::getDefaultReactiveDomain()
)
Arguments
outputId character: The id of the editor
name character: Option name. Referto https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
value character, integer, logical: Option value. Referto https://microsoft.github.
io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.
html
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor: :updateMonacoOption(outputld = "editor”, name = "tabSize", value = 3)

}

updateMonacoOptions Update options to monacoEditor

Description

Update options to monacoEditor

Usage

updateMonacoOptions(
outputlId,
options,
session = shiny::getDefaultReactiveDomain()

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

updateMonacoOptions 37

Arguments
outputId character: The id of the editor
options list: monaco editor options. Referto https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
session environment: The Shiny session object (from the server function of the Shiny
app).
Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor: :updateMonacoOptions(outputld = "editor”, options = list())
3

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

Index

aceDiffEditor, 3

aceDiffEditor-shiny, 4

aceDiffEditorOutput
(aceDiffEditor-shiny), 4

aceEditor, 4

aceEditor-shiny, 6

aceEditorOutput (aceEditor-shiny), 6

appendAceCompleter, 7

character, 3, 5-37
check_output_id, 8
createAceDiffView, 9
createMonacoDiffView, 9

environment, 7, 9—16, 21-23, 25-37

getAceCursorPosition, 10
getAceModes, 11
getAceSelectedText, 11
getAceSelectionRange, 12
getAceThemes, 12
getAceValue, 13
getMonacoCursorPosition, 13
getMonacolLanguages, 14
getMonacoSelectedText, 14
getMonacoSelectionRange, 15
getMonacoThemes, 15
getMonacoValue, 16
getPackageStatus, 16
getSystemFontFamilies, 17

integer, 3, 5, 6, 18-20, 29, 36

list, 7, 20, 23, 30, 37

logical, 3,5, 6, 17, 19, 20, 25-27, 29-33, 35,

36

monacoDiffEditor, 17

monacoDiffEditor-shiny, 18

monacoDiffEditorOutput
(monacoDiffEditor-shiny), 18

monacoEditor, 19

monacoEditor-shiny, 21

monacoEditorOutput
(monacoEditor-shiny), 21

onAceEditorReady, 21
onMonacoEditorReady, 22

removeAceCompleter, 23
removeAceDiffView, 23
removeMonacoDiffView, 24
renderAceDiffEditor
(aceDiffEditor-shiny), 4
renderAceEditor (aceEditor-shiny), 6
renderMonacoDiffEditor
(monacoDiffEditor-shiny), 18
renderMonacoEditor
(monacoEditor-shiny), 21

setAceEnableAutocompletion, 24
setAceEnableSpellCheck, 25
setAceHighlightActiveline, 26
setAcelLineNumbersVisible, 27
setAceMode, 27
setAceNewlLineMode, 28
setAceOption, 29
setAceOptions, 29
setAceReadOnly, 30
setAceShowInvisibles, 31
setAceStatusBarVisible, 31
setAceTheme, 32
setAceValue, 33
setMonacolanguage, 33
setMonacoTheme, 34
setMonacoValue, 35

updateMonacoOption, 35
updateMonacoOptions, 36

	aceDiffEditor
	aceDiffEditor-shiny
	aceEditor
	aceEditor-shiny
	appendAceCompleter
	check_output_id
	createAceDiffView
	createMonacoDiffView
	getAceCursorPosition
	getAceModes
	getAceSelectedText
	getAceSelectionRange
	getAceThemes
	getAceValue
	getMonacoCursorPosition
	getMonacoLanguages
	getMonacoSelectedText
	getMonacoSelectionRange
	getMonacoThemes
	getMonacoValue
	getPackageStatus
	getSystemFontFamilies
	monacoDiffEditor
	monacoDiffEditor-shiny
	monacoEditor
	monacoEditor-shiny
	onAceEditorReady
	onMonacoEditorReady
	removeAceCompleter
	removeAceDiffView
	removeMonacoDiffView
	setAceEnableAutocompletion
	setAceEnableSpellCheck
	setAceHighlightActiveLine
	setAceLineNumbersVisible
	setAceMode
	setAceNewLineMode
	setAceOption
	setAceOptions
	setAceReadOnly
	setAceShowInvisibles
	setAceStatusBarVisible
	setAceTheme
	setAceValue
	setMonacoLanguage
	setMonacoTheme
	setMonacoValue
	updateMonacoOption
	updateMonacoOptions
	Index

