
Package ‘shinyEditor’
February 8, 2026

Type Package

Title 'Ace' and 'Monaco' Editors Bindings for 'shiny' Application

Version 0.1.0

Date 2026-02-05

Maintainer zearoby <949386232@qq.com>

Description 'Ace' and 'Monaco' editor bindings to enable a rich text widget
within 'shiny' application and provide more features, e.g. text comparison,
spell checking and an extra 'SAS' code highlight mode.

License MIT + file LICENSE

URL https://github.com/zearoby/shinyEditor

BugReports https://github.com/zearoby/shinyEditor/issues

Encoding UTF-8

RoxygenNote 7.3.3

Depends R (>= 4.0.0)

Imports htmlwidgets, jsonlite, memoise, shinyjs, shiny, systemfonts,
methods, yaml

Suggests devtools, testthat

Config/testthat/edition 3

NeedsCompilation no

Author zearoby [aut, cre]

Repository CRAN

Date/Publication 2026-02-08 17:00:03 UTC

Contents
aceDiffEditor . 3
aceDiffEditor-shiny . 4
aceEditor . 4
aceEditor-shiny . 6

1

https://github.com/zearoby/shinyEditor
https://github.com/zearoby/shinyEditor/issues

2 Contents

appendAceCompleter . 7
check_output_id . 8
createAceDiffView . 9
createMonacoDiffView . 9
getAceCursorPosition . 10
getAceModes . 11
getAceSelectedText . 11
getAceSelectionRange . 12
getAceThemes . 12
getAceValue . 13
getMonacoCursorPosition . 13
getMonacoLanguages . 14
getMonacoSelectedText . 14
getMonacoSelectionRange . 15
getMonacoThemes . 15
getMonacoValue . 16
getPackageStatus . 16
getSystemFontFamilies . 17
monacoDiffEditor . 17
monacoDiffEditor-shiny . 18
monacoEditor . 19
monacoEditor-shiny . 21
onAceEditorReady . 21
onMonacoEditorReady . 22
removeAceCompleter . 23
removeAceDiffView . 23
removeMonacoDiffView . 24
setAceEnableAutocompletion . 24
setAceEnableSpellCheck . 25
setAceHighlightActiveLine . 26
setAceLineNumbersVisible . 27
setAceMode . 27
setAceNewLineMode . 28
setAceOption . 29
setAceOptions . 29
setAceReadOnly . 30
setAceShowInvisibles . 31
setAceStatusBarVisible . 31
setAceTheme . 32
setAceValue . 33
setMonacoLanguage . 33
setMonacoTheme . 34
setMonacoValue . 35
updateMonacoOption . 35
updateMonacoOptions . 36

Index 38

aceDiffEditor 3

aceDiffEditor Render an Ace aceDiffEditor

Description

Render an Ace diff editor on an application page.

Usage

aceDiffEditor(
valueA,
valueB,
mode = "ace/mode/text",
enableSpellCheck = FALSE,
...,
width = NULL,
height = NULL,
elementId = NULL

)

Arguments

valueA character: Set text to first editor when initializing

valueB character: Set text to second editor when initializing

mode character: The Ace shinyEditor::getAceModes() to be used by the editor
enableSpellCheck

logical: Enable check typo of spelling

... For more EditorOption, please refer to https://ace.c9.io/api/interfaces/
ace.Ace.EditorOptions.html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)

Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor::aceDiffEditor(valueA = "text1", valueB = "text2")

}

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

4 aceEditor

aceDiffEditor-shiny Shiny bindings for aceDiffEditor

Description

Output and render functions for using aceDiffEditor within Shiny applications and interactive Rmd
documents.

Usage

aceDiffEditorOutput(outputId, width = "100%", height = "400px")

renderAceDiffEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a aceDiffEditor

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Value

htmlwidgets::shinyWidgetOutput

htmlwidgets::shinyRenderWidget

aceEditor Render an Ace editor

Description

Render an Ace editor on an application page.

Usage

aceEditor(
value,
enableBasicAutocompletion = TRUE,
enableSnippets = TRUE,
enableLiveAutocompletion = TRUE,
enableSpellCheck = FALSE,

aceEditor 5

fontFamily = "Consolas",
fontSize = 16,
highlightActiveLine = TRUE,
mode = "ace/mode/text",
newLineMode = "auto",
placeholder = NULL,
printMarginColumn = 120,
readOnly = FALSE,
scrollPastEnd = 0.5,
showInvisibles = TRUE,
showLineNumbers = TRUE,
showPrintMargin = TRUE,
showStatusBar = TRUE,
tabSize = 4,
theme = "ace/theme/xcode",
useSoftTabs = TRUE,
wrap = FALSE,
...,
width = NULL,
height = NULL,
elementId = NULL

)

Arguments

value character: Set text to editor when initializing
enableBasicAutocompletion

logical: Enable basic code automatically completion when editing

enableSnippets logical: Enable code snippets automatically completion when editing
enableLiveAutocompletion

logical: Enable live code automatically completion when editing
enableSpellCheck

logical: Enable check typo of spelling

fontFamily character: System font name

fontSize integer: Font size
highlightActiveLine

logical: Highlight the current line

mode character: The Ace shinyEditor::getAceModes() to be used by the editor

newLineMode character: Set the end of line character Valid values: windows, unix, auto

placeholder character: A string to use a placeholder when the editor has no content
printMarginColumn

integer: The print margin column width

readOnly logical: Set editor to readOnly

scrollPastEnd integer: Scroll past end Valid values: 0 to 1, TRUE, FALSE

showInvisibles logical: Show invisible characters

6 aceEditor-shiny

showLineNumbers

logical: Show line number area

showPrintMargin

logical: Show print margin

showStatusBar logical: Show statusBar

tabSize integer: Tab size

theme character: The Ace shinyEditor::getAceThemes() to be used by the editor

useSoftTabs logical: Replace tabs by spaces

wrap logical: If set to TRUE, Ace will enable word wrapping

... For more EditorOption, please refer to https://ace.c9.io/api/interfaces/
ace.Ace.EditorOptions.html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)

Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor::aceEditor(value = "text")

}

aceEditor-shiny Shiny bindings for aceEditor

Description

Output and render functions for using aceEditor within Shiny applications and interactive Rmd
documents.

Usage

aceEditorOutput(outputId, width = "100%", height = "400px")

renderAceEditor(expr, env = parent.frame(), quoted = FALSE)

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

appendAceCompleter 7

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a aceEditor

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Value

htmlwidgets::shinyWidgetOutput

htmlwidgets::shinyRenderWidget

appendAceCompleter Add completer

Description

Add completer to editor.completers. Please refer to https://ace.c9.io/api/interfaces/ace.
Ace.Completer.html

Usage

appendAceCompleter(
outputId,
id,
completer,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The element id of the first editor

id list: Completer id

completer list: Completer list

session environment: The Shiny session object for the editor (from the server function
of the Shiny app).

Value

No return value, called for side effects

https://ace.c9.io/api/interfaces/ace.Ace.Completer.html
https://ace.c9.io/api/interfaces/ace.Ace.Completer.html

8 check_output_id

Examples

if(interactive()){
shinyEditor::appendAceCompleter(

outputId = "editor",
id = "custom_completer",
completer = list(

list(value = "function", caption = "function", meta = "keyword"),
list(value = "if", caption = "if", meta = "keyword"),
list(value = "else", caption = "else", meta = "keyword"),
list(value = "for", caption = "for", meta = "keyword"),
list(value = "while", caption = "while", meta = "keyword"),
list(value = "console.log()", caption = "console.log", meta = "function"),

list(value = "myCustomFunction()", caption = "myCustomFunction", meta = "custom")
)

)
}

check_output_id Check outputId

Description

Check outputId is character and exist in shiny session

Usage

check_output_id(outputId)

Arguments

outputId character: The id of the table to be manipulated

Examples

if(interactive()){
check_output_id("table_id")

}

createAceDiffView 9

createAceDiffView Create diff view

Description

Create diff view for exist editors

Usage

createAceDiffView(
editorAId,
editorBId,
sessionA = shiny::getDefaultReactiveDomain(),
sessionB = shiny::getDefaultReactiveDomain()

)

Arguments

editorAId character: The element id of the first editor

editorBId character: The element id of the second editor

sessionA environment: The Shiny session object for the first editor (from the server func-
tion of the Shiny app).

sessionB environment: The Shiny session object for the second editor (from the server
function of the Shiny app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::createAceDiffView(editorAId = "editor1", editorBId = "editor2")

}

createMonacoDiffView Create monaco diff view

Description

Create monaco diff view for exist editors in an exist widget

10 getAceCursorPosition

Usage

createMonacoDiffView(
editorAId,
editorBId,
elementId,
sessionA = shiny::getDefaultReactiveDomain(),
sessionB = shiny::getDefaultReactiveDomain()

)

Arguments

editorAId character: The element id of the first editor

editorBId character: The element id of the second editor

elementId character: The element id of the exist widget to show monacoDiffEditor

sessionA environment: The Shiny session object for the first editor (from the server func-
tion of the Shiny app)

sessionB environment: The Shiny session object for the second editor (from the server
function of the Shiny app)

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::createMonacoDiffView(editorAId = "editor1", editorBId = "editor2")

}

getAceCursorPosition Get cursor position in aceEditor

Description

Get cursor position in aceEditor

Usage

getAceCursorPosition(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

getAceModes 11

Value

List of cursor position

Examples

if(interactive()){
shinyEditor::getAceCursorPosition(outputId = "editor")

}

getAceModes Get all ace modes

Description

Gets all of the available modes available in the installed version of ace editor. Modes are often the
programming or markup language which will be used in the editor and determine things like syntax
highlighting and code folding.

Usage

getAceModes()

Value

List of all modes in Ace editor

getAceSelectedText Get selected text in aceEditor

Description

Get selected text in aceEditor

Usage

getAceSelectedText(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

Character of selected text

12 getAceThemes

Examples

if(interactive()){
shinyEditor::getAceSelectedText(outputId = "editor")

}

getAceSelectionRange Get selection range in aceEditor

Description

Get selection range in aceEditor

Usage

getAceSelectionRange(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny

app).

Value

List of selection range

Examples

if(interactive()){
shinyEditor::getAceSelectionRange(outputId = "editor")

}

getAceThemes Get all ace themes

Description

Gets all of the available themes available in the installed version of ace editor. Themes determine
the styling and colors used in the editor.

Usage

getAceThemes()

Value

List of all themes in Ace editor

getAceValue 13

getAceValue Get value in aceEditor

Description

Get value in aceEditor

Usage

getAceValue(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

Character of editor text

Examples

if(interactive()){
shinyEditor::getAceValue(outputId = "editor")

}

getMonacoCursorPosition

Get cursor position in monacoEditor

Description

Get cursor position in monacoEditor

Usage

getMonacoCursorPosition(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

14 getMonacoSelectedText

Value

List of cursor position

Examples

if(interactive()){
shinyEditor::getMonacoCursorPosition(outputId = "editor")

}

getMonacoLanguages Get all ace modes

Description

Gets all of the available modes available in the installed version of ace editor. Modes are often the
programming or markup language which will be used in the editor and determine things like syntax
highlighting and code folding.

Usage

getMonacoLanguages()

Value

List of all languages in Monaco editor

getMonacoSelectedText Get selected text in monacoEditor

Description

Get selected text in monacoEditor

Usage

getMonacoSelectedText(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

Character of selected text

getMonacoSelectionRange 15

Examples

if(interactive()){
shinyEditor::getMonacoSelectedText(outputId = "editor")

}

getMonacoSelectionRange

Get selection range in monacoEditor

Description

Get selection range in monacoEditor

Usage

getMonacoSelectionRange(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor
session environment: The Shiny session object (from the server function of the Shiny

app).

Value

List of selection range

Examples

if(interactive()){
shinyEditor::getMonacoSelectionRange(outputId = "editor")

}

getMonacoThemes Get all monaco themes

Description

Gets all of the available themes available in the installed version of monaco editor. Themes deter-
mine the styling and colors used in the editor.

Usage

getMonacoThemes()

Value

List of all themes in Monaco editor

16 getPackageStatus

getMonacoValue Get value in monacoEditor

Description

Get value in monacoEditor

Usage

getMonacoValue(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

Character of editor text

Examples

if(interactive()){
shinyEditor::getMonacoValue(outputId = "editor")

}

getPackageStatus Get status of shinyEditor package

Description

Get status of shinyEditor package.

Usage

getPackageStatus()

Value

List of package name, package version, package date, Ace editor version, Monaco editor version

Examples

shinyEditor::getPackageStatus()

getSystemFontFamilies 17

getSystemFontFamilies Get system font families

Description

Get system font families

Usage

getSystemFontFamilies()

Value

List of system font families

monacoDiffEditor Render an Ace monacoDiffEditor

Description

Render an Ace diff editor on an application page.

Usage

monacoDiffEditor(
valueA,
valueB,
language = "plaintext",
ignoreTrimWhitespace = FALSE,
...,
width = NULL,
height = NULL,
elementId = NULL

)

Arguments

valueA character: Set text to first editor when initializing

valueB character: Set text to second editor when initializing

language character: The initial language of the auto created model in the editor. To not
automatically create a model, use model: null

ignoreTrimWhitespace

logical: Compute the diff by ignoring leading/trailing whitespace Defaults to
false

18 monacoDiffEditor-shiny

... For more arguments, please refer to https://microsoft.github.io/monaco-editor/
typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)

Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor::monacoDiffEditor(valueA = "text1", valueB = "text2")

}

monacoDiffEditor-shiny

Shiny bindings for monacoDiffEditor

Description

Output and render functions for using monacoDiffEditor within Shiny applications and interactive
Rmd documents.

Usage

monacoDiffEditorOutput(outputId, width = "100%", height = "400px")

renderMonacoDiffEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a monacoDiffEditor

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Value

htmlwidgets::shinyWidgetOutput

htmlwidgets::shinyRenderWidget

https://microsoft.github.io/monaco-editor/typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html
https://microsoft.github.io/monaco-editor/typedoc/interfaces/editor_editor_api.editor.IDiffEditorOptions.html

monacoEditor 19

monacoEditor Render an monaco editor

Description

Render an Monaco editor on an application page.

Usage

monacoEditor(
value,
fontFamily = "Consolas",
fontSize = 16,
insertSpaces = TRUE,
language = "plaintext",
lineNumbers = "on",
placeholder = NULL,
readOnly = FALSE,
renderWhitespace = "boundary",
rulers = list(80, 100, 120),
scrollBeyondLastLine = TRUE,
showStatusBar = TRUE,
tabSize = 4,
theme = "vs",
wordWrap = "off",
automaticLayout = TRUE,
...,
width = NULL,
height = NULL,
elementId = NULL

)

Arguments

value character: Set text to editor when initializing

fontFamily character: The font family

fontSize integer: The font size

insertSpaces logical: Insert spaces when pressing Tab. This setting is overridden based on the
file contents when detectIndentation is on. Defaults to true.

language character: The initial language of the auto created model in the editor. To not
automatically create a model, use model: null.

lineNumbers character, integer: Control the rendering of line numbers. If it is a function,
it will be invoked when rendering a line number and the return value will be
rendered. Otherwise, if it is a truthy, line numbers will be rendered normally
(equivalent of using an identity function). Otherwise, line numbers will not be
rendered. Defaults to on.

20 monacoEditor

placeholder character: Sets a placeholder for the editor. If set, the placeholder is shown if
the editor is empty.

readOnly logical: Should the editor be read only. See also domReadOnly. Defaults to
false.

renderWhitespace

character: Enable rendering of whitespace. Defaults to ’selection’. Valid values:
"all" | "none" | "boundary" | "selection" | "trailing"

rulers list: Render vertical lines at the specified columns. Defaults to empty list.
scrollBeyondLastLine

logical: Enable that scrolling can go one screen size after the last line. Defaults
to true.

showStatusBar logical: Show statusBar

tabSize integer: The number of spaces a tab is equal to. This setting is overridden based
on the file contents when detectIndentation is on. Defaults to 4.

theme character: Initial theme to be used for rendering. The current out-of-the-box
available themes are: ’vs’ (default), ’vs-dark’, ’hc-black’, ’hc-light. You can
create custom themes via monaco.editor.defineTheme. To switch a theme, use
monaco.editor.setTheme. NOTE: The theme might be overwritten if the OS is
in high contrast mode, unless autoDetectHighContrast is set to false.

wordWrap character: Control the wrapping of the editor. When wordWrap = "off", the
lines will never wrap. When wordWrap = "on", the lines will wrap at the
viewport width. When wordWrap = "wordWrapColumn", the lines will wrap
at wordWrapColumn. When wordWrap = "bounded", the lines will wrap at
min(viewport width, wordWrapColumn). Defaults to "off". Valid values: "off" |
"on" | "wordWrapColumn" | "bounded"

automaticLayout

logical: Enable that the editor will install a ResizeObserver to check if its con-
tainer dom node size has changed. Defaults to TRUE.

... For more arguments, please refer to https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.
html

width integer, character: Width in pixels (optional, defaults to automatic sizing)

height integer, character: Height in pixels (optional, defaults to automatic sizing)

elementId character: An element id for the widget (a random character by default)

Value

Widget for shiny application

Examples

if(interactive()){
shinyEditor::monacoEditor(value = "text")

}

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IStandaloneEditorConstructionOptions.html

monacoEditor-shiny 21

monacoEditor-shiny Shiny bindings for monacoEditor

Description

Output and render functions for using monacoEditor within Shiny applications and interactive Rmd
documents.

Usage

monacoEditorOutput(outputId, width = "100%", height = "400px")

renderMonacoEditor(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId output variable to read from

width, height Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which
will be coerced to a string and have 'px' appended.

expr An expression that generates a monacoEditor

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Value

htmlwidgets::shinyWidgetOutput

htmlwidgets::shinyRenderWidget

onAceEditorReady Fires upon aceEditor initialisation

Description

Fires upon aceEditor initialisation

Usage

onAceEditorReady(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

22 onMonacoEditorReady

Value

TRUE

Examples

if(interactive()){
shinyEditor::onAceEditorReady(outputId = "editor")

}

onMonacoEditorReady Fires upon monacoEditor initialisation

Description

Fires upon monacoEditor initialisation

Usage

onMonacoEditorReady(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

TRUE

Examples

if(interactive()){
shinyEditor::onMonacoEditorReady(outputId = "editor")

}

removeAceCompleter 23

removeAceCompleter Remove completer

Description

Remove completer in editor.completers. Please refer to https://ace.c9.io/api/interfaces/
ace.Ace.Completer.html

Usage

removeAceCompleter(outputId, id, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The element id of the first editor

id list: Completer id

session environment: The Shiny session object for the editor (from the server function
of the Shiny app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::removeAceCompleter(outputId = "editor", id = "custom_completer")

}

removeAceDiffView Remove ace diff view

Description

Remove ace diff view for exist editors

Usage

removeAceDiffView(outputId, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The element id of the first editor

session environment: The Shiny session object for the editor (from the server function
of the Shiny app).

https://ace.c9.io/api/interfaces/ace.Ace.Completer.html
https://ace.c9.io/api/interfaces/ace.Ace.Completer.html

24 setAceEnableAutocompletion

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::removeAceDiffView(outputId = "editor")

}

removeMonacoDiffView Remove monaco diff view

Description

Remove monaco diff view for exist editors

Usage

removeMonacoDiffView(elementId)

Arguments

elementId character: The element id of the monacoDiffEditor

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::removeMonacoDiffView(elementId = "editor1")

}

setAceEnableAutocompletion

Enable or disable code completion

Description

Enable or disable code completion in aceEditor

setAceEnableSpellCheck 25

Usage

setAceEnableAutocompletion(
outputId,
enable,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

enable logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceEnableAutocompletion(outputId = "editor", enable = TRUE)

}

setAceEnableSpellCheck

Enable or disable spell check

Description

Enable or disable spell check

Usage

setAceEnableSpellCheck(
outputId,
enable = TRUE,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

enable logical: Set spell check TRUE or FALSE

session environment: The Shiny session object for the editor (from the server function
of the Shiny app).

26 setAceHighlightActiveLine

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceEnableSpellCheck(outputId = "editor", enable = TRUE)

}

setAceHighlightActiveLine

Highlight the current line

Description

Determines whether or not the current line should be highlighted.

Usage

setAceHighlightActiveLine(
outputId,
visible,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

visible logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceHighlightActiveLine(outputId = "editor", visible = TRUE)

}

setAceLineNumbersVisible 27

setAceLineNumbersVisible

Show or hide line number area in aceEditor

Description

Show or hide line number area in aceEditor

Usage

setAceLineNumbersVisible(
outputId,
visible,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

visible logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceLineNumbersVisible(outputId = "editor", visible = TRUE)

}

setAceMode Set new mode

Description

Set a new mode for the EditSession.

Usage

setAceMode(outputId, mode, session = shiny::getDefaultReactiveDomain())

28 setAceNewLineMode

Arguments

outputId character: The id of the editor

mode character: The mode of the code language

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceMode(outputId = "editor", mode = "r")

}

setAceNewLineMode Set the new line mode to aceEditor

Description

Set the new line mode to aceEditor

Usage

setAceNewLineMode(
outputId,
newLineMode,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

newLineMode character: The new line mode in aceEditor Valid values: windows, unix, auto

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceNewLineMode(outputId = "editor", newLineMode = "windows")

}

setAceOption 29

setAceOption Set an option to aceEditor

Description

Set an option to aceEditor

Usage

setAceOption(
outputId,
name,
value,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

name character: Option name. Refer to https://ace.c9.io/api/interfaces/ace.
Ace.EditorOptions.html

value character, integer, logical: Option value. Refer to https://ace.c9.io/api/
interfaces/ace.Ace.EditorOptions.html

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceOption(outputId = "editor", name = "tabSize", value = 3)

}

setAceOptions Set options to aceEditor

Description

Set options to aceEditor

Usage

setAceOptions(outputId, options, session = shiny::getDefaultReactiveDomain())

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

30 setAceReadOnly

Arguments

outputId character: The id of the editor

options list: Editor options. Refer to https://ace.c9.io/api/interfaces/ace.Ace.
EditorOptions.html

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceOptions(outputId = "editor", options = list())

}

setAceReadOnly Set readOnly for aceEditor

Description

If readOnly is true, then the editor is set to read-only mode, and none of the content can change.

Usage

setAceReadOnly(outputId, readOnly, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

readOnly logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceReadOnly(outputId = "editor", readOnly = TRUE)

}

https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html
https://ace.c9.io/api/interfaces/ace.Ace.EditorOptions.html

setAceShowInvisibles 31

setAceShowInvisibles Show or hide invisible characters in aceEditor

Description

Show or hide invisible characters in aceEditor

Usage

setAceShowInvisibles(
outputId,
visible,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

visible logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceShowInvisibles(outputId = "editor", visible = TRUE)

}

setAceStatusBarVisible

Show or hide the statusBar

Description

Show or hide the statusBar of aceEditor

Usage

setAceStatusBarVisible(
outputId,
visible,
session = shiny::getDefaultReactiveDomain()

)

32 setAceTheme

Arguments

outputId character: The id of the editor

visible logical: TRUE or FALSE

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceStatusBarVisible(outputId = "editor", visible = TRUE)

}

setAceTheme Set new theme

Description

Set a new theme for the editor. theme should exist, like ace/theme/github

Usage

setAceTheme(outputId, theme, session = shiny::getDefaultReactiveDomain())

Arguments

outputId character: The id of the editor

theme character: The theme of the aceEditor

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceTheme(outputId = "editor", theme = "ace/theme/github")

}

setAceValue 33

setAceValue Replace text with new text

Description

Replace all the lines in the current Document with the value of text.

Usage

setAceValue(
outputId,
value,
clearChangedHistory = FALSE,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

value character: The text of the editor
clearChangedHistory

logical: Clear undo/redo history

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setAceValue(outputId = "editor", value = "text")

}

setMonacoLanguage Set language

Description

Set language to monaco editor

34 setMonacoTheme

Usage

setMonacoLanguage(
outputId,
language,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

language character: The highlight of code

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setMonacoLanguage(outputId = "editor", language = "text")

}

setMonacoTheme Set new theme

Description

Set a new theme for the editor. theme should exist, like vs-dark

Usage

setMonacoTheme(theme)

Arguments

theme character: The theme of the monacoEditor

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setMonacoTheme(theme = "vs")

}

setMonacoValue 35

setMonacoValue Replace text with new text

Description

Replace all the lines in the current Document with the value of text.

Usage

setMonacoValue(
outputId,
value,
clearChangedHistory = FALSE,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

value character: The text of the editor
clearChangedHistory

logical: Clear undo/redo history

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::setMonacoValue(outputId = "editor", value = "text")

}

updateMonacoOption Update an option to monacoEditor

Description

Update an option to monacoEditor

36 updateMonacoOptions

Usage

updateMonacoOption(
outputId,
name,
value,
session = shiny::getDefaultReactiveDomain()

)

Arguments

outputId character: The id of the editor

name character: Option name. Refer to https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

value character, integer, logical: Option value. Refer to https://microsoft.github.
io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.
html

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::updateMonacoOption(outputId = "editor", name = "tabSize", value = 3)

}

updateMonacoOptions Update options to monacoEditor

Description

Update options to monacoEditor

Usage

updateMonacoOptions(
outputId,
options,
session = shiny::getDefaultReactiveDomain()

)

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

updateMonacoOptions 37

Arguments

outputId character: The id of the editor

options list: monaco editor options. Refer to https://microsoft.github.io/monaco-editor/
docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

session environment: The Shiny session object (from the server function of the Shiny
app).

Value

No return value, called for side effects

Examples

if(interactive()){
shinyEditor::updateMonacoOptions(outputId = "editor", options = list())

}

https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html
https://microsoft.github.io/monaco-editor/docs.html#interfaces/editor_editor_api.editor.IEditorOptions.html

Index

aceDiffEditor, 3
aceDiffEditor-shiny, 4
aceDiffEditorOutput

(aceDiffEditor-shiny), 4
aceEditor, 4
aceEditor-shiny, 6
aceEditorOutput (aceEditor-shiny), 6
appendAceCompleter, 7

character, 3, 5–37
check_output_id, 8
createAceDiffView, 9
createMonacoDiffView, 9

environment, 7, 9–16, 21–23, 25–37

getAceCursorPosition, 10
getAceModes, 11
getAceSelectedText, 11
getAceSelectionRange, 12
getAceThemes, 12
getAceValue, 13
getMonacoCursorPosition, 13
getMonacoLanguages, 14
getMonacoSelectedText, 14
getMonacoSelectionRange, 15
getMonacoThemes, 15
getMonacoValue, 16
getPackageStatus, 16
getSystemFontFamilies, 17

integer, 3, 5, 6, 18–20, 29, 36

list, 7, 20, 23, 30, 37
logical, 3, 5, 6, 17, 19, 20, 25–27, 29–33, 35,

36

monacoDiffEditor, 17
monacoDiffEditor-shiny, 18
monacoDiffEditorOutput

(monacoDiffEditor-shiny), 18

monacoEditor, 19
monacoEditor-shiny, 21
monacoEditorOutput

(monacoEditor-shiny), 21

onAceEditorReady, 21
onMonacoEditorReady, 22

removeAceCompleter, 23
removeAceDiffView, 23
removeMonacoDiffView, 24
renderAceDiffEditor

(aceDiffEditor-shiny), 4
renderAceEditor (aceEditor-shiny), 6
renderMonacoDiffEditor

(monacoDiffEditor-shiny), 18
renderMonacoEditor

(monacoEditor-shiny), 21

setAceEnableAutocompletion, 24
setAceEnableSpellCheck, 25
setAceHighlightActiveLine, 26
setAceLineNumbersVisible, 27
setAceMode, 27
setAceNewLineMode, 28
setAceOption, 29
setAceOptions, 29
setAceReadOnly, 30
setAceShowInvisibles, 31
setAceStatusBarVisible, 31
setAceTheme, 32
setAceValue, 33
setMonacoLanguage, 33
setMonacoTheme, 34
setMonacoValue, 35

updateMonacoOption, 35
updateMonacoOptions, 36

38

	aceDiffEditor
	aceDiffEditor-shiny
	aceEditor
	aceEditor-shiny
	appendAceCompleter
	check_output_id
	createAceDiffView
	createMonacoDiffView
	getAceCursorPosition
	getAceModes
	getAceSelectedText
	getAceSelectionRange
	getAceThemes
	getAceValue
	getMonacoCursorPosition
	getMonacoLanguages
	getMonacoSelectedText
	getMonacoSelectionRange
	getMonacoThemes
	getMonacoValue
	getPackageStatus
	getSystemFontFamilies
	monacoDiffEditor
	monacoDiffEditor-shiny
	monacoEditor
	monacoEditor-shiny
	onAceEditorReady
	onMonacoEditorReady
	removeAceCompleter
	removeAceDiffView
	removeMonacoDiffView
	setAceEnableAutocompletion
	setAceEnableSpellCheck
	setAceHighlightActiveLine
	setAceLineNumbersVisible
	setAceMode
	setAceNewLineMode
	setAceOption
	setAceOptions
	setAceReadOnly
	setAceShowInvisibles
	setAceStatusBarVisible
	setAceTheme
	setAceValue
	setMonacoLanguage
	setMonacoTheme
	setMonacoValue
	updateMonacoOption
	updateMonacoOptions
	Index

