Optimized prediction based on textual sentiment, accounting for the intrinsic challenge that sentiment can be computed and pooled across texts and time in various ways. See Ardia et al. (2021) <doi:10.18637/jss.v099.i02>.
| Version: | 1.0.1 | 
| Depends: | R (≥ 3.3.0) | 
| Imports: | caret, compiler, data.table, foreach, ggplot2, glmnet, ISOweek, quanteda, Rcpp (≥ 0.12.13), RcppRoll, RcppParallel, stats, stringi, utils | 
| LinkingTo: | Rcpp, RcppArmadillo, RcppParallel | 
| Suggests: | covr, doParallel, e1071, lexicon, MCS, NLP, parallel, randomForest, stopwords, testthat, tm | 
| Published: | 2025-04-03 | 
| DOI: | 10.32614/CRAN.package.sentometrics | 
| Author: | Samuel Borms  [aut, cre],
  David Ardia  [aut],
  Keven Bluteau  [aut],
  Kris Boudt  [aut],
  Jeroen Van Pelt [ctb],
  Andres Algaba [ctb] | 
| Maintainer: | Samuel Borms  <borms_sam at hotmail.com> | 
| BugReports: | https://github.com/SentometricsResearch/sentometrics/issues | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://sentometrics-research.com/sentometrics/ | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| Citation: | sentometrics citation info | 
| Materials: | README, NEWS | 
| In views: | NaturalLanguageProcessing | 
| CRAN checks: | sentometrics results |