| Type: | Package | 
| Title: | Conduct Additional Modeling and Analysis for 'seminr' | 
| Version: | 0.2.0 | 
| Description: | Supplemental functions for estimating and analysing structural equation models including Cross Validated Prediction and Testing (CVPAT, Liengaard et al., 2021 <doi:10.1111/deci.12445>). | 
| Imports: | seminr (≥ 2.3.0), stats | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| Suggests: | testthat (≥ 3.0.0), knitr, rmarkdown | 
| Config/testthat/edition: | 3 | 
| URL: | https://github.com/sem-in-r/seminr | 
| BugReports: | https://github.com/sem-in-r/seminr/issues | 
| RoxygenNote: | 7.3.2 | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2025-09-03 08:40:16 UTC; nicholasdanks | 
| Author: | Soumya Ray [aut, ths], Nicholas Patrick Danks [aut, cre] | 
| Maintainer: | Nicholas Patrick Danks <nicholasdanks@hotmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-09-03 14:00:02 UTC | 
SEMinR function to compare CVPAT loss of two models
Description
'assess_cvpat' conducts a single model CVPAT assessment against item average and linear model prediction benchmarks.
Usage
assess_cvpat(
  seminr_model,
  testtype = "two.sided",
  nboot = 2000,
  seed = 123,
  technique = predict_DA,
  noFolds = NULL,
  reps = NULL,
  cores = NULL
)
Arguments
| seminr_model | The SEMinR model for CVPAT analysis | 
| testtype | Either "two.sided" (default) or "greater". | 
| nboot | The number of bootstrap subsamples to execute (defaults to 2000). | 
| seed | The seed for reproducibility (defaults to 123). | 
| technique | predict_EA or predict_DA (default). | 
| noFolds | Number of folds for k-fold cross validation. | 
| reps | Number of repetitions for cross validation. | 
| cores | Number of cores for parallelization. | 
Value
A matrix of the estimated loss and results of significance testing.
References
Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European journal of marketing, 57(6), 1662-1677.
Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2021). Prediction: coveted, yet forsaken? Introducing a crossâvalidated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2), 362-392.
Examples
# Load libraries
library(seminr)
# Create measurement model ----
corp_rep_mm_ext <- constructs(
  composite("QUAL", multi_items("qual_", 1:8), weights = mode_B),
  composite("PERF", multi_items("perf_", 1:5), weights = mode_B),
  composite("CSOR", multi_items("csor_", 1:5), weights = mode_B),
  composite("ATTR", multi_items("attr_", 1:3), weights = mode_B),
  composite("COMP", multi_items("comp_", 1:3)),
  composite("LIKE", multi_items("like_", 1:3))
)
# Create structural model ----
corp_rep_sm_ext <- relationships(
  paths(from = c("QUAL", "PERF", "CSOR", "ATTR"), to = c("COMP", "LIKE"))
)
# Estimate the model ----
corp_rep_pls_model_ext <- estimate_pls(
  data = corp_rep_data,
  measurement_model = corp_rep_mm_ext,
  structural_model  = corp_rep_sm_ext,
  missing = mean_replacement,
  missing_value = "-99")
# Assess the base model ----
assess_cvpat(seminr_model = corp_rep_pls_model_ext,
             testtype = "two.sided",
             nboot = 20,
             seed = 123,
             technique = predict_DA,
             noFolds = 5,
             reps = 1)
SEMinR function to compare CVPAT loss of two models
Description
'assess_cvpat_compare' conducts a CVPAT significance test of loss between two models.
Usage
assess_cvpat_compare(
  established_model,
  alternative_model,
  testtype = "two.sided",
  nboot = 2000,
  seed = 123,
  technique = predict_DA,
  noFolds = NULL,
  reps = NULL,
  cores = NULL
)
Arguments
| established_model | The base seminr model for CVPAT comparison. | 
| alternative_model | The alternate seminr model for CVPAT comparison. | 
| testtype | Either "two.sided" (default) or "greater". | 
| nboot | The number of bootstrap subsamples to execute (defaults to 2000). | 
| seed | The seed for reproducibility (defaults to 123). | 
| technique | predict_EA or predict_DA (default). | 
| noFolds | Mumber of folds for k-fold cross validation. | 
| reps | Number of repetitions for cross validation. | 
| cores | Number of cores for parallelization. | 
Value
A matrix of the estimated loss and results of significance testing.
References
Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European journal of marketing, 57(6), 1662-1677.
Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2021). Prediction: coveted, yet forsaken? Introducing a crossâvalidated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2), 362-392.
Examples
# Load libraries
library(seminr)