| Type: | Package | 
| Title: | Regularized Exponentially Tilted Empirical Likelihood | 
| Version: | 0.1.1 | 
| Description: | Implements the regularized exponentially tilted empirical likelihood method. Details of the method are given in Kim, MacEachern, and Peruggia (2023) <doi:10.48550/arXiv.2312.17015>. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552. | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/markean/retel | 
| BugReports: | https://github.com/markean/retel/issues | 
| Depends: | R (≥ 4.1.0) | 
| Suggests: | melt, spelling | 
| Encoding: | UTF-8 | 
| Language: | en-US | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| Imports: | checkmate, Matrix, matrixcalc, nloptr | 
| NeedsCompilation: | no | 
| Packaged: | 2025-07-27 15:12:12 UTC; markean | 
| Author: | Eunseop Kim | 
| Maintainer: | Eunseop Kim <markean@pm.me> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-07-27 15:30:02 UTC | 
retel: Regularized Exponentially Tilted Empirical Likelihood
Description
Implements the regularized exponentially tilted empirical likelihood method. Details of the method are given in Kim, MacEachern, and Peruggia (2023) doi:10.48550/arXiv.2312.17015. This work was supported by the U.S. National Science Foundation under Grants No. SES-1921523 and DMS-2015552.
Author(s)
Maintainer: Eunseop Kim markean@pm.me (ORCID) [copyright holder]
Other contributors:
- Steven MacEachern [contributor, thesis advisor] 
- Mario Peruggia [contributor, thesis advisor] 
References
Kim E, MacEachern SN, Peruggia M (2023). "Regularized Exponentially Tilted Empirical Likelihood for Bayesian Inference." doi:10.48550/arXiv.2312.17015.
See Also
Useful links:
Exponentially tilted empirical likelihood
Description
Computes exponentially tilted empirical likelihood.
Usage
etel(fn, x, par, opts = NULL)
Arguments
| fn | An estimating function that takes the data  | 
| x | A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation. The number of rows must be greater than the number of columns. | 
| par | A numeric vector of parameter values to be tested. | 
| opts | An optional list with optimization options for  | 
Value
A single numeric value representing the log-likelihood ratio. It contains
the optimization results as the attribute optim.
References
Schennach, SM (2005). "Bayesian Exponentially Tilted Empirical Likelihood." Biometrika, 92, 31–46.
Examples
# Generate data
set.seed(63456)
x <- rnorm(100)
# Define an estimating function (ex. mean)
fn <- function(x, par) {
  x - par
}
# Set parameter value
par <- 0
# Call the etel function
etel(fn, x, par)
Median Income for 4-Person Families in the USA
Description
A dataset of median income for 4-person families by state.
Usage
data("income")
Format
A data frame with 51 rows and 6 columns:
- state
- States, including the District of Columbia. 
- mi_1979
- Estimated median income for 4-person families in 1979 (standardized). 
- mi_1989
- Estimated median income for 4-person families in 1989 (standardized). 
- pci_1979
- Per capita income in 1979. 
- pci_1989
- Per capita income in 1989. 
- ami
- Census median income in 1979, adjusted for per capita income (standardized). 
Source
https://www.census.gov/data/tables/time-series/demo/income-poverty/4-person.html
Examples
data("income")
income
Regularized exponentially tilted empirical likelihood
Description
Computes regularized exponentially tilted empirical likelihood.
Usage
retel(fn, x, par, mu, Sigma, tau, type = "full", opts = NULL)
Arguments
| fn | An estimating function that takes the data  | 
| x | A numeric matrix, or an object that can be coerced to a numeric matrix. Each row corresponds to an observation. The number of rows must be greater than the number of columns. | 
| par | A numeric vector of parameter values to be tested. | 
| mu | A numeric vector of parameters for regularization. See 'Details' for more information. | 
| Sigma | A numeric matrix, or an object that can be coerced to a numeric matrix, of parameters for regularization. See 'Details' for more information. | 
| tau | A single numeric parameter for regularization. See 'Details' for more information. | 
| type | A single character indicating the type of regularized exponentially tilted
empirical likelihood. It must be either  | 
| opts | An optional list with optimization options for  | 
Details
Let \{\bm{X}_i\}_{i = 1}^n denote independent d_x-dimensional
observations from a complete probability space
{(\mathcal{X}, \mathcal{F}, P)} satisfying the moment condition:
\textnormal{E}_P[\bm{g}(\bm{X}_i, \bm{\theta})] = \bm{0},
where {\bm{g}}:
  {\mathbb{R}^{d_x} \times \Theta} \mapsto {\mathbb{R}^p} is an estimating
function with the true parameter value
{\bm{\theta}_0} \in {\Theta} \subset \mathbb{R}^p.
For a given parameter value \bm{\theta}, regularized exponentially
tilted empirical likelihood solves the following optimization problem:
    \min_{\bm{\lambda} \in \mathbb{R}^p}
      \left\{
        d_n\left(\bm{\theta}, \bm{\lambda}\right) +
        p_n\left(\bm{\theta}, \bm{\lambda}\right)
      \right\},
  
where
    d_n\left(\bm{\theta}, \bm{\lambda}\right) =
    \frac{1}{n + \tau_n}
    \sum_{i = 1}^n \exp
      \left(
        \bm{\lambda}^\top \bm{g}\left(\bm{X}_i, \bm{\theta}\right)
      \right)
  
and
    p_n\left(\bm{\theta}, \bm{\lambda}\right) =
    \frac{\tau_n}{n + \tau_n}
    \exp
      \left(
        \bm{\lambda}^\top\bm{\mu}_{n, \bm{\theta}} +
        \frac{1}{2}
        \bm{\lambda}^\top\bm{\Sigma}_{n, \bm{\theta}}\bm{\lambda}
      \right).
  
Here, {\tau_n} > {0}, \bm{\mu}_{n, \bm{\theta}},
\bm{\Sigma}_{n, \bm{\theta}} are all tuning parameters that control
the strength of {p_n(\bm{\theta}, \bm{\lambda})} as a penalty.
Once we have determined the solution {\bm{\lambda}_{RET}}, we define
the likelihood ratio function as follows:
    R_{RET}\left(\bm{\theta}\right) =
    \left(
      \frac{n + \tau_n}{\tau_n}p_c\left(\bm{\theta}\right)\right)
      \prod_{i = 1}^n \left(n + \tau_n\right)p_i\left(\bm{\theta}
    \right),
  
where
    p_i\left(\bm{\theta}\right) =
    \frac{\exp
      \left(
        {\bm{\lambda}_{RET}}^\top\bm{g}\left(\bm{X}_i, \bm{\theta}\right)
      \right)
    }{c_n\left(\bm{\theta}, \bm{\lambda}_{RET}\right)
    } \quad \left(i = 1, \dots, n\right),\quad
    p_c\left(\bm{\theta}\right) =
    \frac{p_n
      \left(\bm{\theta}, \bm{\lambda}_{RET}\right)
    }{c_n\left(\bm{\theta}, \bm{\lambda}_{RET}\right)
    },
  
and
    c_n\left(\bm{\theta}, \bm{\lambda}_{RET}\right) =
    d_n\left(\bm{\theta}, \bm{\lambda}_{RET}\right) +
    p_n\left(\bm{\theta}, \bm{\lambda}_{RET}\right)
  . The reduced version of the likelihood ratio function is defined as:
    \widetilde{R}_{RET}\left(\bm{\theta}\right) =
    \prod_{i = 1}^n \left(n + \tau_n\right)p_i\left(\bm{\theta}\right).
  
See the references below for more details on derivation, interpretation, and properties.
Value
A single numeric value representing the log-likelihood ratio. It contains
the optimization results as the attribute optim.
References
Kim E, MacEachern SN, Peruggia M (2023). "Regularized Exponentially Tilted Empirical Likelihood for Bayesian Inference." doi:10.48550/arXiv.2312.17015.
Examples
# Generate data
set.seed(63456)
x <- rnorm(100)
# Define an estimating function (ex. mean)
fn <- function(x, par) {
  x - par
}
# Set parameter value
par <- 0
# Set regularization parameters
mu <- 0
Sigma <- 1
tau <- 1
# Call the retel function
retel(fn, x, par, mu, Sigma, tau)