quadVAR: Quadratic Vector Autoregression
Estimate quadratic vector autoregression models with the
    strong hierarchy using the Regularization Algorithm under Marginality
    Principle (RAMP) by Hao et al. (2018)
    <doi:10.1080/01621459.2016.1264956>, compare the performance with
    linear models, and construct networks with partial derivatives.
| Version: | 0.1.2 | 
| Imports: | cli, dplyr, ggplot2, magrittr, ncvreg, qgraph, RAMP, rlang, shiny, shinythemes, stats, stringr, tibble, tidyr | 
| Suggests: | nonlinearTseries, remotes, SIS, testthat (≥ 3.0.0) | 
| Published: | 2025-02-11 | 
| DOI: | 10.32614/CRAN.package.quadVAR | 
| Author: | Jingmeng Cui  [aut, cre] | 
| Maintainer: | Jingmeng Cui  <jingmeng.cui at outlook.com> | 
| BugReports: | https://github.com/Sciurus365/quadVAR/issues | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/Sciurus365/quadVAR,
https://sciurus365.github.io/quadVAR/ | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| In views: | TimeSeries | 
| CRAN checks: | quadVAR results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=quadVAR
to link to this page.