The goal of ptvalue is to provide a S3 class for printing and for small manipulation of Precision Teaching (PT) values (ex., values of celeration, bounce) inside a vector or a dataframe. These values, are usually written on a Standard Celeration Chart (Calkin, 2005; Pennypacker et al., 2003), can be used for further calculations and to print a nice table for report or paper. Some basic helper functions directly related to the manipulation of PT values are also provided.
As this package is could be imported inside other packages (ex., ptchart), it will stay small and simple. The dependency from other packages will also be kept minimal.
You can install ptvalue with the following code:
install.packages("ptvalue")Or you can install the development version as follow:
remotes::install_github("agkamel/ptvalue")You can create PT values with ptvalue():
library(ptvalue)
ptvalue(c(0.5, 1.4, 2))
#> <ptvalue[3]>
#> [1] ÷2 ×1.4 ×2For all original values that are greater or equal than \(1\), a prefixed \(\times\) symbol is added. For all original values that are greater than \(0\) and smaller than \(1\), these values are also converted to values greater than \(1\), but a prefixed \(\div\) symbol is added:
ptvalue(c(5, 2, 1.25))
#> <ptvalue[3]>
#> [1] ×5 ×2 ×1.2
ptvalue(c(0.2, 0.5, 0.8))
#> <ptvalue[3]>
#> [1] ÷5 ÷2 ÷1.2Negative values always raises an error.
ptvalue(-1) # Raises an errorPT values created with ptvalue() can be stored in
objects:
x <- ptvalue(c(0.5, 1.4, 2))
x
#> <ptvalue[3]>
#> [1] ÷2 ×1.4 ×2…and be inserted in dataframe as well:
pt_df <- tibble::tibble(
phase = 1:3,
celeration = x)
pt_df
#> # A tibble: 3 × 2
#> phase celeration
#> <int> <ptval>
#> 1 1 ÷2
#> 2 2 ×1.4
#> 3 3 ×2The type of a ptvalue vector is double. The
original values are always conserved under the hood, it is only the
printing that is different. These can always be converted back:
unclass(x)
#> [1] 0.5 1.4 2.0
as.double(x)
#> [1] 0.5 1.4 2.0Finaly, PT values can be created with times() or
div(). In particular, the function div() is
convenient for creating decaying PT values without having to find the
decimal format before. These following three examples return the same PT
values:
ptvalue(c(0.5, 0.25, 0.125, 0.0625))
#> <ptvalue[4]>
#> [1] ÷2 ÷4 ÷8 ÷16
ptvalue(c(1/2, 1/4, 1/8, 1/16))
#> <ptvalue[4]>
#> [1] ÷2 ÷4 ÷8 ÷16
div(c(2, 4, 8, 16))
#> <ptvalue[4]>
#> [1] ÷2 ÷4 ÷8 ÷16Because original values are always conserved, this allows us to multiply PT values:
# Multiplication is commutative
ptvalue(x) * ptvalue(2)
#> <ptvalue[3]>
#> [1] ×1 ×2.8 ×4
ptvalue(2) * ptvalue(x)
#> <ptvalue[3]>
#> [1] ×1 ×2.8 ×4… and divide PT values:
# Division is not commutative
ptvalue(x) / ptvalue(2)
#> <ptvalue[3]>
#> [1] ÷4 ÷1.4 ×1
ptvalue(2) / ptvalue(x)
#> <ptvalue[3]>
#> [1] ×4 ×1.4 ×1PT values can be multipled by a numeric values…
ptvalue(x) * 2
#> <ptvalue[3]>
#> [1] ×1 ×2.8 ×4…or divided:
# Division is not commutative
ptvalue(x) / 2
#> <ptvalue[3]>
#> [1] ÷4 ÷1.4 ×1
2 / ptvalue(x)
#> <ptvalue[3]>
#> [1] ×4 ×1.4 ×1PT values can be used with comparison operators as well:
x < ptvalue(1.8)
#> [1] TRUE TRUE FALSE
x == ptvalue(1.4)
#> [1] FALSE TRUE FALSEYou can invert signs of PT values with
invert_sign():
x
#> <ptvalue[3]>
#> [1] ÷2 ×1.4 ×2
invert_sign(x)
#> <ptvalue[3]>
#> [1] ×2 ÷1.4 ÷2You can convert values to absolute multiplicative values with
abs_sign() (times or div):
abs_sign(x)
#> <ptvalue[3]>
#> [1] ×2 ×1.4 ×2
abs_sign(x, sign = "div")
#> <ptvalue[3]>
#> [1] ÷2 ÷1.4 ÷2Alternatively, as_times() and as_div() are
wrappers of abs_sign():
as_times(x)
#> <ptvalue[3]>
#> [1] ×2 ×1.4 ×2
as_div(x)
#> <ptvalue[3]>
#> [1] ÷2 ÷1.4 ÷2Because PT values can be stored in dataframes, it helps us to generate beautiful tables for journal articles or for reports.
pt_df |>
knitr::kable(col.names = c("Phase", "Celeration"))| Phase | Celeration |
|---|---|
| 1 | ÷2 |
| 2 | ×1.4 |
| 3 | ×2 |