## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval = FALSE) options(rmarkdown.html_vignette.check_title = FALSE) ## ----install1, eval = FALSE--------------------------------------------------- # install.packages("psbcSpeedUp") ## ----install2, eval = FALSE--------------------------------------------------- # # install.packages("remotes") # remotes::install_github("ocbe-uio/psbcSpeedUp") ## ----results='hide', warning=FALSE-------------------------------------------- # # Load the example dataset # data("exampleData", package = "psbcSpeedUp") # p <- exampleData$p # q <- exampleData$q # survObj <- exampleData[1:3] # # # Set hyperparameters (see help file for specifying more hyperparameters) # mypriorPara <- list( # "eta0" = 0.02, "kappa0" = 1, "c0" = 2, "r" = 10 / 9, "delta" = 1e-05, # "lambdaSq" = 1, "sigmaSq" = runif(1, 0.1, 10), "beta.prop.var" = 1, "beta.clin.var" = 1 # ) # # # run Bayesian Lasso Cox # library("psbcSpeedUp") # set.seed(123) # fitBayesCox <- psbcSpeedUp(survObj, # p = p, q = q, hyperpar = mypriorPara, # nIter = 1000, burnin = 500, outFilePath = "/tmp" # ) ## ----fig.width=5, fig.height=8------------------------------------------------ # plot(fitBayesCox) ## ----eval=FALSE, echo=FALSE--------------------------------------------------- # png("estimate_beta.png", bg = "transparent", width = 700, height = 900, res = 200) # plot(fitBayesCox) # dev.off() ## ----fig.width=6, fig.heigh=5------------------------------------------------- # plotBrier(fitBayesCox, times = 80) ## ----eval=FALSE, echo=FALSE--------------------------------------------------- # png("estimate_brier.png", bg = "transparent", width = 1000, height = 700, res = 200) # plotBrier(fitBayesCox, times = 80) # dev.off() ## ----------------------------------------------------------------------------- # predict(fitBayesCox, type = c("cumhazard", "survival"))