Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.
| Version: | 4.1.5 | 
| Depends: | R (≥ 4.1) | 
| Imports: | DT (≥ 0.27), dplyr (≥ 1.1.0), shiny (≥ 1.7.4), golem (≥
0.3.5), rlang (≥ 1.0.6), loadeR (≥ 1.0.1), config (≥ 0.3.1), glmnet (≥ 4.1-6), traineR (≥ 2.2.0), shinyjs (≥ 2.1.0), xgboost (≥ 1.7.3.1), shinyAce (≥ 0.4.2), echarts4r (≥
0.4.4), htmltools (≥ 0.5.4), rpart.plot (≥ 3.1.1), colourpicker (≥ 1.1.1), shinydashboard (≥ 0.7.2), shinycustomloader (≥ 0.9.0), shinydashboardPlus (≥ 2.0.3) | 
| Published: | 2025-05-28 | 
| DOI: | 10.32614/CRAN.package.predictoR | 
| Author: | Oldemar Rodriguez [aut, cre],
  Diego Jiménez [ctb, prg],
  Andrés Navarro [ctb, prg] | 
| Maintainer: | Oldemar Rodriguez  <oldemar.rodriguez at ucr.ac.cr> | 
| BugReports: | https://github.com/PROMiDAT/predictoR/issues | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| URL: | https://promidat.website/ | 
| NeedsCompilation: | no | 
| Language: | en-US | 
| CRAN checks: | predictoR results |