| Title: | Continuous Development Models for Incremental Time-Series Analysis | 
| Version: | 0.1.3 | 
| Date: | 2018-05-01 | 
| Author: | Bijan Seyednasrollah, Jennifer J. Swenson, Jean-Christophe Domec, James S. Clark | 
| Maintainer: | Bijan Seyednasrollah <bijan.s.nasr@gmail.com> | 
| Description: | Using the Bayesian state-space approach, we developed a continuous development model to quantify dynamic incremental changes in the response variable. While the model was originally developed for daily changes in forest green-up, the model can be used to predict any similar process. The CDM can capture both timing and rate of nonlinear processes. Unlike statics methods, which aggregate variations into a single metric, our dynamic model tracks the changing impacts over time. The CDM accommodates nonlinear responses to variation in predictors, which changes throughout development. | 
| Depends: | R (≥ 3.3.0) | 
| Imports: | rjags | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 6.0.1.9000 | 
| BugReports: | https://github.com/bnasr/phenoCDM/issues | 
| Suggests: | knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2018-05-01 23:34:01 UTC; bijan | 
| Repository: | CRAN | 
| Date/Publication: | 2018-05-02 03:45:15 UTC | 
Fit a CDM Model
Description
This function fits a CDM model on the input data as it is described by the phenoSim function.
Usage
fitCDM(x, z, connect = NULL, nGibbs = 1000, nBurnin = 1, n.adapt = 100,
  n.chains = 4, quiet = FALSE, calcLatentGibbs = FALSE, trend = +1)
Arguments
| x | Matrix of predictors [N x p]. | 
| z | Vector of response values [N x 1]. | 
| connect | The connectivity matrix for the z vector [n x 2]. Each row contains the last and next elements of the time-series. NA values indicate not connected. | 
| nGibbs | Number of MCMC itterations | 
| nBurnin | Number of burn-in itterations. | 
| n.adapt | Number of itterations for adaptive sampling | 
| n.chains | Number of MCMC chains | 
| quiet | logical value indicating whether to report the progress | 
| calcLatentGibbs | logical value indicating whether to calculate the latent states | 
| trend | time-series expected trend as -1:decreasing, +1:increasing, 0: not constrained | 
Examples
#Summarize CDM Model Ouput
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)
summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)
colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)
Summarize Output of the CDM Model
Description
This function return a summary of the output from the Gibbs-Sampling of the CDM model.
Usage
getGibbsSummary(ssOut, burnin = NULL, colNames = NULL,
  sigmaPerSeason = TRUE)
Arguments
| ssOut | CDM output list. | 
| burnin | Number of burnin itterations . | 
| colNames | vector of charachters includes names of each variable in the output. | 
| sigmaPerSeason | logical value indicating whether each site/season has a separate process error | 
Examples
#Summarize CDM Model Ouput
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)
summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)
colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)
Simulate Green-up Phenology Data
Description
This function return a set of simulated data for multiple green-up phenology time-series.
Usage
phenoSim(nSites = 1000, nTSet = c(3:6), p = 2, beta = NULL, sig = 0.1,
  tau = 0.01, miss = 0, plotFlag = FALSE, ymax = 1, trend = +1)
Arguments
| nSites | Number of sites/seasons | 
| nTSet | A vector of integer values. Length of each time-series will be randomly sampled from this vector. | 
| p | Number of predictors in the model. | 
| beta | Beta coefficients | 
| sig | Process error. | 
| tau | Observation error. | 
| miss | Fraction of missing data. | 
| plotFlag | logical value indicating whether to plot the resulted time-series. | 
| ymax | Asymptotic maximum values. | 
| trend | time-series expected trend as -1:decreasing, +1:increasing, 0: not constrained | 
Examples
#Simulate Phenology Data
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
Plot Simulated Phenology Data
Description
This function plots the time-series data described with a connectivity matrix.
Usage
phenoSimPlot(z, connect, add = FALSE, col = "blue", ylim = range(z, na.rm
  = TRUE), pch = 1, lwd = 1)
Arguments
| z | A vector of time-series data [n x 1] | 
| connect | The connectivity matrix for the z vector [n x 2]. Each row contains the last and next elements of the time-series. NA values means not connected. | 
| add | logical value indicating whether the plot should be overlaid on the current panel. | 
| col | The color variable as charachter | 
| ylim | Range of the y axis | 
| pch | pch value for the symbols | 
| lwd | lwd value for line tickness | 
Examples
#Simulate Phenology Data
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
#Plot Simulated Data
phenoSimPlot(ssSim$z, ssSim$connect)
Plot Observed vs Predicted
Description
This function plot posterior distributions of the parameters.
Usage
plotPOGibbs(o, p, nburnin = NULL, xlim = range(o, na.rm = TRUE),
  ylim = range(p, na.rm = TRUE), xlab = "Observed", ylab = "Predicted",
  colSet = c("#fb8072", "#80b1d3", "black"), cex = 1, lwd = 2, pch = 19)
Arguments
| o | Observed vector | 
| p | Predicted Gibbs samples | 
| nburnin | numbe of burn-in itterations | 
| xlim | x-axis range | 
| ylim | y-axis range | 
| xlab | x-axis label | 
| ylab | y-axis label | 
| colSet | vector of colors for points, bars and the 1:1 line | 
| cex | cex value for size | 
| lwd | line width | 
| pch | pch value for symbols | 
Examples
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)
summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)
colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)
par(mfrow = c(1,3), oma = c(1,1,3,1), mar=c(2,2,0,1), font.axis=2)
plotPost(chains = ssOut$chains[,c("beta.1", "beta.2")], trueValues = ssSim$beta)
plotPost(chains = ssOut$chains[,c("ymax.1", "ymax.2")], trueValues = ssSim$ymax)
plotPost(chains = ssOut$chains[,c("sigma", "tau")], trueValues = c(ssSim$sig, ssSim$tau))
mtext('Posterior distributions of the parameters', side = 3, outer = TRUE, line = 1, font = 2)
legend('topleft', legend = c('posterior', 'true value'),
     col = c('black', 'red'), lty = 1, bty = 'n', cex=1.5, lwd =2)
yGibbs <- ssOut$latentGibbs
zGibbs <- ssOut$zpred
o <- ssOut$data$z
p <- apply(ssOut$rawsamples$y, 1, mean)
R2 <- cor(na.omit(cbind(o, p)))[1,2]^2
#Plot Observed vs Predicted
par( mar=c(4,4,1,1), font.axis=2)
plotPOGibbs(o = o , p = zGibbs,
            xlim = c(0,10), ylim=c(0,10),
            cex = .7, nburnin = 1000)
            points(o, p, pch = 3)
mtext(paste0('R² = ', signif(R2, 3)), line = -1, cex = 2, font = 2, side = 1, adj = .9)
legend('topleft', legend = c('mean', '95th percentile', '1:1 line', 'latent states'),
      col = c('#fb8072','#80b1d3','black', 'black'),
      bty = 'n', cex=1.5,
      lty = c(NA, 1, 2, NA), lwd =c(NA, 2, 2, 2), pch = c(16, NA, NA, 3))
Plot Posterior Distributions
Description
This function plot posterior distributions of the parameters.
Usage
plotPost(chains, trueValues = NULL, outline = FALSE)
Arguments
| chains | Gibbs sampling chains | 
| trueValues | numeric vector of true values | 
| outline | logical value whether showing outliers | 
Examples
ssSim <- phenoSim(nSites = 2, #number of sites
                  nTSet = 30, #number of Time steps
                  beta = c(1, 2), #beta coefficients
                  sig = .01, #process error
                  tau = .1, #observation error
                  plotFlag = TRUE, #whether plot the data or not
                  miss = 0.05, #fraction of missing data
                  ymax = c(6, 3) #maximum of saturation trajectory
)
ssOut <- fitCDM(x = ssSim$x, #predictors
                nGibbs = 200,
                nBurnin = 100,
                z = ssSim$z,#response
                connect = ssSim$connect, #connectivity of time data
                quiet=TRUE)
summ <- getGibbsSummary(ssOut, burnin = 100, sigmaPerSeason = FALSE)
colMeans(summ$ymax)
colMeans(summ$betas)
colMeans(summ$tau)
colMeans(summ$sigma)
par(mfrow = c(1,3), oma = c(1,1,3,1), mar=c(2,2,0,1), font.axis=2)
plotPost(chains = ssOut$chains[,c("beta.1", "beta.2")], trueValues = ssSim$beta)
plotPost(chains = ssOut$chains[,c("ymax.1", "ymax.2")], trueValues = ssSim$ymax)
plotPost(chains = ssOut$chains[,c("sigma", "tau")], trueValues = c(ssSim$sig, ssSim$tau))
mtext('Posterior distributions of the parameters', side = 3, outer = TRUE, line = 1, font = 2)
legend('topleft', legend = c('posterior', 'true value'), col = c('black', 'red'),
         lty = 1, bty = 'n', cex=1.5, lwd =2)