A method for fitting the entire regularization path of the principal components lasso for linear and logistic regression models. The algorithm uses cyclic coordinate descent in a path-wise fashion. See URL below for more information on the algorithm. See Tay, K., Friedman, J. ,Tibshirani, R., (2014) 'Principal component-guided sparse regression' <doi:10.48550/arXiv.1810.04651>.
| Version: | 1.2 | 
| Imports: | svd | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2020-09-03 | 
| DOI: | 10.32614/CRAN.package.pcLasso | 
| Author: | Jerome Friedman, Kenneth Tay, Robert Tibshirani | 
| Maintainer: | Rob Tibshirani <tibs at stanford.edu> | 
| License: | GPL-3 | 
| URL: | https://arxiv.org/abs/1810.04651 | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | pcLasso results | 
| Reference manual: | pcLasso.html , pcLasso.pdf | 
| Vignettes: | Introduction to pcLasso (source, R code) | 
| Package source: | pcLasso_1.2.tar.gz | 
| Windows binaries: | r-devel: pcLasso_1.2.zip, r-release: pcLasso_1.2.zip, r-oldrel: pcLasso_1.2.zip | 
| macOS binaries: | r-release (arm64): pcLasso_1.2.tgz, r-oldrel (arm64): pcLasso_1.2.tgz, r-release (x86_64): pcLasso_1.2.tgz, r-oldrel (x86_64): pcLasso_1.2.tgz | 
| Old sources: | pcLasso archive | 
Please use the canonical form https://CRAN.R-project.org/package=pcLasso to link to this page.